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Abstract
Background Endogenous uveitis is a sight-threatening
disease. In addition to corticosteroids, immunosuppressive
agents are commonly used to treat patients with severe
course. Immunosuppressive drugs act nonspecifically, rath-
er than providing a specific interaction with the critical
pathogenetic pathways of uveitis. Better knowledge of the
basic mechanisms underlying uveitis and of the molecules
that are important for regulating inflammation has helped to
create new and more specific treatment approaches.
Biological therapy for inflammatory diseases employs
substances that interfere with specific molecules or path-
ways induced in the body during the inflammatory process.
Methods This review gives an overview on molecules that
play a critical role in the pathogenetic process of uveitis, as
has been observed in patients or the respective animal
models, and summarizes the current experience with
biologicals for the treatment of uveitis refractive to
conventional immunosuppressives.
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Introduction

Endogenous uveitis manifesting as Behçet’s disease, Vogt–
Koyanai–Harada (VKH) disease, ocular sarcoidosis, juvenile
idiopathic arthritis, or others is known to be a sight-
threatening intraocular disease. Complications such as cystoid
macular edema, glaucoma, vascular occlusion, and prolifera-
tive vitreoretinopathy are common causes of permanent loss
of vision [1–4].

While corticosteroids are usually required to control
acute inflammation, immunosuppressive agents, such as
cyclosporine A, azathioprine, methotrexate, or mycopheno-
late mofetil, are needed to downregulate chronic inflamma-
tion and prevent recurrences. However, long-term treatment
with immunosuppressive agents is frequently required,
which goes hand-in-hand with a significant risk of severe
side-effects, such as osteoporosis, infertility, diabetes, liver
and kidney dysfunction, and secondary malignancy. Impor-
tantly, immunosuppressive drugs act nonspecifically rather
than providing a specific interaction with the critical
pathogenetic pathways of uveitis.

Biologicals

Biological agents are defined as substances produced from
living organisms, or which consist of their products, which
are applied for the diagnosis, prevention, and treatment of
disease. Recently, biological agents have been introduced in
the treatment of inflammatory diseases, aiming to stimulate
or restore immune system function. They have been
suggested as alternatives to classical immunosuppressive
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drugs, in order to accelerate drug action and to avoid
harmful side-effects.

Chronic inflammatory disease is caused by a dysregula-
tion in the immune response. During the effector phase,
humoral and cellular components of the immune response
trigger a cascade of events that ultimately lead to tissue
destruction. Knowledge of the underlying events from
human disease and the respective animal models has
defined therapeutic targets to specifically modulate the
harmful cascade of events. The development of biologic
agents has produced a novel therapeutic task force for
specific immune interventions, such as in rheumatoid
arthritis, multiple sclerosis, Crohn’s disease, and many
other chronic autoimmune diseases.

Biological therapy for inflammatory diseases employs
substances that interfere with specific molecules or path-
ways induced in the body during the inflammatory process.
Currently available biological agents include monoclonal
antibodies, which are complete molecules or fragments,
human–rodent chimeric or completely humanized forms,
and recombinant forms of natural inhibitory molecules,
such as receptor constructs, and immunomodulatory cyto-
kines. The currently available biologicals are applied
parenterally. Some of them are currently being introduced
into treatment regimens for several chronic inflammatory
eye diseases.

Material and methods

This review gives an overview on molecules that play a
critical role in the pathogenetic process of uveitis, as has
been observed in patients or the respective animal models,
and summarizes the current experience with biologicals
for the treatment of uveitis refractive to conventional
immunosuppressives.

Results

Animal models

To establish new therapeutic targets for treating human
uveitis, different experimental animal models are used
which resemble the pathologic features of the human
disease. There are two principal models: endotoxin-
induced uveitis (EIU), representing an unspecific, innate
efferent immune response (inflammation), and experimental
autoimmune uveitis (EAU), which includes the afferent arm
(antigen-specific activation of T cells) and the subsequent
ocular inflammation.

Endotoxin-induced anterior uveitis (EIU), which can be
induced in rats and mice via intraocular or systemic

injection of lipopolysaccharides (LPS), is rather a model
for endophthalmitis than for any autoimmune uveitis or
acute anterior uveitis [5–7]. The inflammation ensues 4
hours after LPS injection, peaks after 24-48 h, and declines
96 h after disease induction. EIU is marked by a
vasodilatation of the iris and vascular changes in the ciliary
body, accompanied by an increased vascular permeability
and breakdown of the blood–aqueous barrier [8–10]. The
cells involved in EIU are monocytes/macrophages and
polymorphonuclear neutrophils (PMNs), the key players of
inflammation, while T and B cells are not involved. The
inflammatory cells infiltrate the anterior chamber from
ciliary body (cb) and iris in conjunction with protein
extravasion into the aqueous humor. It has been shown
that TNF-α is important for the induction of EIU, and that
IL-6 produced in the eye plays a major role in the
development of ocular inflammation [11, 12].

Experimental autoimmune uveitis (EAU), which can be
induced in mice and rats by immunization with ocular
proteins in adjuvants, serves as a model of human
autoimmune uveitis [13]. While EAU in mice can only be
induced with IRBP or an IRBP-derived peptide, a variety of
retinal autoantigens and their peptides are pathogenic in
rats. In addition to IRBP, S-antigen, rhodopsin, phosducin,
and CRALBP can also be used to induce uveitis. Adoptive
transfer of antigen-primed T cells also induces EAU in both
rats and mice [14–19]. The ocular inflammation peaks
about 14 days after immunization, or about 7 days after
adoptive transfer of antigen-specific cells [19–21]. Serum
antibodies do not appear to play a role in disease induction
[22]. Histological signs of EAU include leukocyte infiltra-
tion, retinal granulomas, and folding and detachment of the
retina [17]. The disease is mediated by CD4+ T cells, but
retinal destruction is mainly caused by infiltrating activated
macrophages [22, 23]. EAU in rats induced with a peptide
from IRBP can have a relapsing-remitting course, which is
useful for the investigation of therapeutic approaches [24,
25]. Therapies for uveitis patients such as cyclosporin A or
oral tolerance induction were first developed or proven in
rat and mouse models of EAU [26–30].

The T-cell populations that induce EAU belong to the
Th1 and/or Th17 type in both rats and mice [24]. As it is
difficult in an intact eye to induce an autoimmune response
to the sequestered retinal autoantigens, which are separated
by the blood–ocular barriers, antigenic mimicry has been
proposed for extraocular activation of T cells. That is,
peptides from environmental antigens such as viruses,
bacteria, or others with similarity to ocular autoantigens
could induce cross-reactive T cells [25, 26], which are able
to pass the BRB due to their activated state and induce
intraocular inflammation [32, 33].

Animal models have helped us to identify and test novel
autoantigens for uveitis; they have enabled us to dissect

1532 Graefes Arch Clin Exp Ophthalmol (2010) 248:1531–1551



afferent and efferent immune responses in the eye, as well
as to study the pathogenic mechanisms leading to uveitis.
The initiating events of intraocular inflammation can only
rarely be detected in patients, since the disease seen
clinically represents only the efferent arm of the immune
response.

For an overview of the immune response, see Fig. 1.

TNF-α inhibitors

TNF-α is synthesized by T helper cells and by activated
macrophages, monocytes, neutrophils, and endothelial

cells. It activates other cytokines, upregulates adhesion
molecules, induces nitric oxide synthase (NOS), and
increases cell-mediated immunity and granuloma formation
[27]. TNF-α thus plays a role in all types of uveitis: in
macrophage-mediated granulomatous uveitis (sarcoid,
VKH, infectious uveitis such as tuberculosis or syphilis),
as well as in uveitis mediated by neutrophilic and
basophilic granulocytes (B27-associated iritis, Behçet’s
disease, SLE, juvenile idiopathic uveitis, and endophthal-
mitis). Furthermore, it activates neutrophils and renders
them more adherent to vascular endothelia and more
sensitive for IL-1 and IL-6. TNF-α also shows effects on
many non-immune cells. In the brain, it induces fever and

Fig. 1 Specific autoimmune response leading to inflammation. a An
autoantigen is recognized and bound by antibodies. This leads to
cross-linking of the surface immunoglobulins (antibodies, Ab) on the
respective antibody-producing B cell. Here, the surface antibodies
serve as B-cell receptors. Antigen binding stimulates the B cell to
proliferate and to further mature to a plasma cell (b). B cells can also
internalize the antigen, which is bound by their surface Ab, process it,
and present peptides from this antigen on their MHC class II
molecules, to seek T cell help (c). The help provided from a Th2 cell
by cytokines such as IL-4, IL-5, and IL-13 enables the B cell to
undergo isotype switch and subsequently produce antibodies of
another IgG, IgA, or IgE type. Antibody-bound or “opsonized”
antigen is easily sensed by macrophages via their surface Fc receptors
(d); they subsequently phagocytose the complex. The bound antigen is
also processed and presented to T cells as peptides (e). By secreting
certain cytokines during antigen presentation to a naive T cell, antigen-
presenting cells can determine the T-cell type (Th1 by IL-12 or Th17

by IL-6 and TGF-β) (f). These T cells can help cytotoxic T cells (if
they are Th1 cells) to support lysis of cells that present intracellular
antigen on their surface MHC class I molecules, a mechanism
normally used to eliminate virus-infected cells but also found in
autoimmunity (g). Cell lysis can also be obtained by binding of
antibodies and complement factors (antibody-dependent cytotoxicity)
(h). T-helper cells of all three types, Th1, Th2, and Th17, can recruit
inflammatory cells such as granulocytes and monocytes/macrophages
to the site of their antigen recognition, no matter if the antigen is a
pathogen, an allergen, or an autoantigen. This recruitment is mediated
by cytokines and chemokines (chemotactic cytokines) (i), which
induce upregulation of cell adhesion molecules (“CAMs”) on
neighboring vascular endothelia (j) used to attract and catch leukocytes
from the circulation (k). They finally migrate through the endothelium
into the tissue to fight against pathogens (or, in autoimmune diseases,
against their own tissue) with their highly effective “chemical
weapons”, causing the typical signs of inflammation
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sleep, and in osteoblasts, fibroblasts, and myocytes the
production of proteases, which lead to tissue destruction
[28]. In addition to the proinflammatory activity of TNF-α,
these latter effects are responsible for the destruction of
bone and connective tissue in rheumatic diseases.

Due to its central role in inflammation, TNF-α is an
important target for immune therapy. Nevertheless, despite
its ability to activate immune or inflammatory responses,
TNF-α is also important for the downregulation of immune
responses by inducing apoptosis.

It is primarily produced as a membrane-bound surface
molecule; the soluble form is created by proteolytic
cleavage from the cell surface. For both soluble and
transmembrane TNF-α, homotrimerization is important for
receptor binding and biological function.

TNF-α acts on two receptors: (a) TNFR1 (p55, CD120a)
is constitutively expressed on all nucleated cells, and (b)
TNFR2 (p75, CD120b) can be induced on lymphocytes,
endothelial cells, and neurons. TNFR1 contains a death
domain; thus, activation of TNFR1 in general leads to
apoptosis, while activation of TNFR2 confers resistance to
cell death. Both receptors can be cleaved off the cell surface
after TNF binding, thus transiently desensitizing cells to
TNF activity. Soluble TNF receptors are also regarded as
endogenous inhibitors of TNF because they still have the
capacity to bind TNF-α [29, 30].

TNF receptors on cells are stimulated by both soluble
and membrane-expressed TNF. While soluble TNF-α

mainly stimulates TNFR1, membrane-bound TNF-α sig-
nals through both receptors, but activates TNFR2 more
efficiently. Interestingly, signaling not only occurs via the
receptors, but also through the membrane-bound TNF-α
itself (“reverse signaling”) [31]. Stimulating mTNF-α can
provide costimulatory signals for both T and B cells, and
reverse signaling in monocytes induced by TNFR2 on
activated T cells activates and enhances TNF-α secretion.
Reverse signaling cannot be achieved with anti-TNF anti-
bodies (Fig. 2a), but etanercept does not block reverse
signaling, and thus monocytes are still partially activated, in
terms of cytokine release (Fig. 2b).

In addition to its role in the immune system, TNF-α can
be both neurotoxic and neuroprotective, a feature that must
be considered for anti-TNF-α therapies of ocular diseases.
Under pathologic conditions, TNF-α induces demyelination
and/or neuronal degeneration, either directly or indirectly
via the production of other proinflammatory cytokines,
nitric oxide, or oxygen radicals [32]. LPS stimulation of
microglia is followed by autocrine activation through
TNFR1: this positive feedback loop results in prolonged
activation and neuronal and axonal damage even after the
inflammatory cell infiltrates have disappeared, as has also
been observed in neurodegenerative and ischemic disor-
ders. On the other hand, microglia-produced TNF-α plays
an important role in the development of the nervous system,
modulating cell cycle and metabolism [33]. Furthermore,
TNF-α protects neurons against hypoxia- or nitric oxide-

Binding of therapeutic anti-TNF antibodies:
1. Neutralization of soluble TNF
2. Blocking of mTNF on T cells and monocytes
3. Inhibition of TNFR-signaling and reverse signaling via mTNF
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Fig. 2 TNF-α inhibition.
a Effect of anti-TNF antibodies.
Activated T cells and monocytes
express TNFR2 for activation by
TNF-α binding. They also bear
membrane TNF, which confers
activation after binding of
TNFR2. TNF-specific antibod-
ies prevent activation of TNFRs
by binding TNF-α, but, on the
other hand, they are not able to
induce reverse signaling, block-
ing TNF-mediated activation on
the sides of both T cells and
monocytes. b Effect of TNFR-
Fcγ treatment. In contrast to
anti-TNF antibodies, etanercept,
which contains the TNF-binding
site of TNFR2, is still able to
induce reverse signaling and
thus does not completely
impede monocyte reactivity
to infections
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induced damage by upregulating expression of the anti-
apoptotic proteins Bcl-2 and Bcl-x [34]. Deprivation of
TNF-α during anti-TNF-α therapies could thus result in
adverse events such as exacerbation or initiation of acute
neuropathies, multiple sclerosis, and uveitis [35, 36].

Infliximab

Infliximab is a chimeric monoclonal antibody of predom-
inantly human origin with two murine antigen-binding
sites. The usual dose is 3–5 mg/kg body weight (intrave-
nous infusion), which can be escalated to 10 mg/kg.
Infusions are repeated after 2 and 6 weeks and then every
8 weeks, but particularly in patients with uveitis the
infusion frequency must be increased. Side-effects during
infusion include dizziness and headaches. Infusion reac-
tions to infliximab are rare but may be severe. Infliximab
induces a strong immunosuppression, and thus inhibits
defense of infections. Frequently, viral and respiratory
infections develop and tuberculosis is reactivated [37].
Thus, before initiating anti-TNF therapy, tuberculosis must
be excluded by chest X-ray and tuberculin skin testing. If
results are positive, prophylactic INH (isoniazide) treatment
is mandatory. Infliximab has also been associated with a
higher incidence of death and hospitalization of patients
with moderate to severe congestive heart failure [38]. Optic
neuritis may develop [39].

Infliximab has been used to treat many different uveitis
entities. In most of these studies, patients with chronic or
relapsing uveitis were included who did not respond
adequately to conventional therapy. Anterior uveitis associat-
ed with HLA-B27 seems to respond quickly to monotherapy
with infliximab. Some of the patients experienced relapses
after a median period of 5 months, which, however, might
reflect the natural course of the disease [40, 41]. Moreover, in
ankylosing spondylitis (AS) patients treated with infliximab
for their rheumatic diseases, the frequency of anterior uveitis
relapse is sharply reduced to 3.4 relapses per 100 patient
years, compared to placebo-treated patients with 15.6
relapses per 100 patient years [42]. Another retrospective
study found a reduction in anterior uveitis flares under
treatment with TNF-α antibodies (infliximab and adalimu-
mab) from 50.6 to 6.8 per 100 patient years [43].

Due to the severity of uveitis in Behçet's disease, several
groups have used infliximab. A single infusion of inflix-
imab rapidly induces uveitis inactivity [44, 45]. Long-term
treatment for 1 to 3 years was successful in preventing
uveitis relapses and improved visual acuity [46–50].

Infliximab has been and is used to treat juvenile
idiopathic arthritis and associated uveitis. Heiligenhaus et
al. have reviewed the literature for the effect of TNF
inhibitors on juvenile uveitis, and found infliximab to be
effective in 51 of 55 children. Most other reports

document a good therapeutic effect on uveitis, but it
seems that the effect fades in chronic treatment of longer
than 1 year [51–54].

Adalimumab

Adalimumab is a human monoclonal anti-TNF-α antibody,
which is injected subcutaneously at a dose of 40 mg every
2 weeks in adults with uveitis. In children the usual dose is
in the range of 24 mg/m2. Adalimumab is well-tolerated
and after injection usually only mild local side-effects
occur, if any. The side-effects with respect to the immuno-
suppression are basically the same as seen in infliximab,
but with slightly reduced incidence and severity.

Many types of uveitis seem to respond to adalimumab.
Among 31 patients reported by Callejas-Rubio et al., Diaz-
Llopis et al., and Petropoulos et al., inflammation and
visual acuity improved in 21 while reducing conventional
immunosuppressive treatment. Relapses of anterior uveitis
associated with AS are reduced significantly by treatment
with adalimumab. In a series of eight AS patients, the
number of relapses per 100 patient years was reduced from
60.5 to 0 [55]. Another series of 274 uveitis patients in a
cohort of 1,250 AS patients demonstrated a reduction of
uveitis flares from 15 to 7.4 per 100 patient years [56].

Uveitis in children with JIA also reponds to adalimumab.
In 28 of 43 children, uveitis improved after initiating
adalimumab treatment [51, 57, 58]. Tynjala et al. [57] also
reported reduced frequency of uveitis flares.

Etanercept

Etanercept binds both TNF-α and TNF-β, preventing the
interaction with the natural receptor on cell surfaces. Due to its
long half-life of 98 to 300 hours, 25 mg of etanercept are
administered subcutaneously twice a week only. Side-effects
include a local reaction at the injection site, which usually
does not require special care. Other undesired effects as a
consequence of etanercept’s antiinflammatory and immuno-
suppressive activity, which interferes with the host's defense
against infections, include respiratory infections, reactivation
of tuberculosis, and sepsis. Since patients with rheumatoid
diseases have an increased risk of infections due to their
disease, close monitoring is mandatory.

In patients with chronic or relapsing uveitis, etanercept
was used with the aim of preventing relapses after disease
has been brought under control by methotrexate [59]. With
regard to the frequency of relapses and the final visual
acuity, the authors did not find any significant difference
between the treatment and placebo groups. Others found
only limited effects of etanercept on uveitis in four of a total
of 11 patients [60, 61]. The efficacy of etanercept in
children with treatment-resistant uveitis with or without
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underlying juvenile chronic arthritis is rather disappointing
[54], and Smith et al. did not find any therapeutic effect in a
small, double-blind and placebo-controlled trial of 12
children with pediatric uveitis, thus questioning the efficacy
of etanercept in these patients [62]. Reiff et al. reported that
uveitis was alleviated in ten of 16 eyes and relapses
prevented in most of the children, but visual acuity did
not improve much [63].

Etanercept is widely used for the treatment of AS due to
its documented tolerability even for long-term administra-
tion. One important aspect for these patients is accompa-
nying anterior uveitis. While Elewaut et al. found basically
no effect of etanercept on uveitis flares per 100 patient
years (54.6 in controls vs 58.5 in treated patients), Cobo-
Ibanez et al. recorded increased uveitis flares (52 vs 82) and
Braun et al. a decrease in flares (15.6 vs 7.9) in patients
receiving etanercept [42, 55, 64].

New TNF-α blockers

Recently, two other TNF-α inhibitors (certolizumab-pegol
and golimumab) for systemic use were introduced to the
market, but no experience in the treatment of uveitis is
available yet.

For the treatment of anterior uveitis, a new topical
TNF blocker for topical use is under development
(ESBA105CRD04). While this approach promises to
avoid systemic side-effects, complications, and inconven-
iences during application, its efficaciousness cannot be
evaluated at present.

General considerations for all TNF inhibitors

In past years, the important question of whether TNF
inhibitors can induce uveitis did arise. A number of case
reports linking the first attack of uveitis to TNF blockers in
the treatment of rheumatic disease seem to burden etanercept
in particular [65, 66]. In an attempt to clarify this question,
Lim et al. analyzed two drug event databases in the USA
and found that etanercept is indeed associated with a higher
incidence of uveitis than adalimumab and infliximab [67].
The authors concluded that etanercept is less effective for
the treatment of uveitis but does not seem to induce uveitis,
and that if uveitis occurs under an etanercept regimen, it is
possible to switch to another TNF blocker.

Interleukin-6 and anti-IL-6 therapy

Interleukin-6

Interleukin-6 (IL-6) is a pleiotropic and multifunctional
inflammatory cytokine produced by T cells, monocytes,

macrophages, and synovial fibroblasts which influences the
immune response, hematopoiesis, acute phase response,
and inflammation. IL-6 can amplify acute inflammation,
and promote progression to a chronic state. The receptor
complex contains the IL-6 receptor and the signal-
transducing molecule gp130. In addition to the membrane
receptor, a soluble form of IL-6R is released into blood and
inflamed tissue. IL-6 can bind to both receptor types, mIL-
6R and sIL-6R, and the IL-6/sIL-6R complexes then bind
to gp130 to transduce the IL-6 signal into the cell [68, 69]
(Fig. 3a).

Together with transforming growth factor β (TGF-β),
IL-6 induces the differentiation of pathogenic Th17 cells
(Figs. 1 and 4), while TGF-β in the absence of IL-6 induces
CD4+CD25+ regulatory T cells [70, 71]. IL-6 not only
induces inflammation, but also accelerates vascular perme-
ability and angiogenesis by inducing vascular endothelial
growth factor (VEGF) [72]. Systemically, IL-6 provokes
fever, fatigue, C-reactive protein, and fibrinogen [69].

IL-6 and autoimmune disease

Several lines of evidence have shown that overproduction
of IL-6 augments various inflammatory autoimmune dis-
eases, including rheumatoid arthritis, systemic lupus eryth-
ematosus, systemic-onset juvenile idiopathic arthritis, and
Castleman’s disease [73, 74]. Observations in experimental
autoimmune models of encephalomyelitis and type II

Fig. 3 Effect of tocilizumab (anti-IL-6R). a The membrane form of
IL-6R is complexed with gp130, which transfers the intracellular
signal after IL-6 binds to its receptor chains, leading to activation of
the cell. b, c While gp130 is always membrane-bound, a soluble IL-
6R exists which can bind IL-6. The complex of IL-6/IL-6R can then
bind to gp130 on the cell surface, inducing an activating signal.
Tocilizumab competes with IL-6 for binding to its receptor, the soluble
(b) as well as the membrane-bound form (c), and thus blocks IL-6-
mediated signaling

1536 Graefes Arch Clin Exp Ophthalmol (2010) 248:1531–1551



collagen-induced arthritis suggest that IL-6 is involved in
the induction of inflammation. IL-6 production induced by
chronic inflammation activated polyclonal B cells and
produced autoantibodies under experimental conditions
and in patients [73, 75, 76].

IL-6 and uveitis

IL-6-deficient C57BL/6 mutant mice immunized with
hIRBP1-20 showed lower uveitis scores than wild-type
C57BL/6 mice. Furthermore, the systemic administration of
recombinant anti-IL-6 receptor antibody reduced the uveitis
score in wild-type mice during the entire course of uveitis.
T cells from the draining lymph nodes produced lower
amounts of IL-17, and IL-17 concentrations within the
ocular fluid were lower than in the wild-type control mice,

suggesting an impaired Th17 response after IL-6 blockade
[77].

It has been previously shown that IL-6 is elevated in the
vitreous body of patients with active intermediate and
posterior uveitis [78]. In the undiluted vitreous fluid from
35 eyes of chronic uveitis patients that was collected during
pars plana vitrectomy, IL-6 was higher than in 82 eyes of
control patients. The IL-6 level was also increased in the
aqueous humor from six patients during the acute onset of
uveitis [77].

Anti-IL-6 receptor antibody tocilizumab

Anti-IL-6R antibodies have been effective in experimental
models of arthritis and autoimmune encephalomyelitis [79,
80]. Tocilizumab is a recombinant humanized anti-IL-6
receptor antibody which specifically blocks both the
membrane and the soluble IL-6R. Tocilizumab competi-
tively inhibits the binding of IL-6 to these receptors, and
prevents biological activity [68, 69, 81] (Fig. 3b).

Tocilizumab for the treatment of autoimmune disease

Clinical trials with tocilizumab have been promising in the
treatment of several autoimmune diseases in patients who
inadequately respond to conventional immunosuppression
or TNF-α inhibitors. Tocilizumab was beneficial in patients
with refractory rheumatoid arthritis, either as systemic
monotherapy or combined with immunosuppressive drugs
[69, 82]. This drug has also been effective in the treatment
of patients with a severe systemic-onset form of juvenile
idiopathic arthritis and vasculitis syndromes [83, 84].
Tocilizumab might represent a treatment option for uveitis
as well.

IL-17 and anti-IL-17 antibodies (AIN457)

Interleukin-17

Naive CD4+ T cells differentiate into different T-cell
populations after stimulation with antigen (Fig. 4). These
subsets include T-helper 1 (Th1), Th2, and Th17 cells, in
which cytokine production and effector functions differ [85,
86]. Th1 cells produce large amounts of IFN-γ and mediate
cellular immunity. Th2 cells primarily produce IL-4, IL-5,
and IL-13 and are involved in humoral immunity. Th17
cells preferentially produce IL-17, IL-21, and IL-22 [87,
88]. Under certain conditions, CD8+ T cells, γδ T cells,
natural killer T cells, neutrophils, and monocytes also
produce IL-17 [89, 90].

Th17 cell differentiation is induced by transforming
growth factor-β and IL-6 or IL-21, and is accelerated by the

Fig. 4 Antigen presentation and T helper cell types. Antigen
presentation, as described for Fig. 1, induces three different T helper
cell types. The T cell receptor binds peptide antigen presented on
MHC class II molecules of the respective antigen-presenting cell
(APC). This complex is stabilized by the CD4 molecule on T helper
cells, and many other receptor–ligand pairs, which form the “immune
synapse”, the contact region between T cells and their APCs. Among
these additional interacting molecules, ICAM- and LFA-1 are potential
targets for therapeutic intervention to prevent T cell activation. Once
Th1 cells are activated, they secrete IL-2 and upregulate CD25, the IL-
2 receptor. In addition to activating neighboring T cells, IL-2 also
promotes autocrine activation of the secreting cell. Blocking CD25
can efficiently impede T-cell activation
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coordinated activities of IL-1 and TNF-α [70, 71]. IL-23 is
required for the growth, survival, and effector functions of
Th17 cells, and promotes IL-17, IL-21, and IL-22 produc-
tion by this T-cell subset. IL-23 drives a pathogenic Th17 T
cell population that induces autoimmune encephalomyelitis
[91, 92]. In contrast, Th17 cell differentiation is negatively
regulated by several different mediators, e.g., by IFN-γ,
type 1 interferon, IL-2, IL-4, and IL-27 [87, 92–94].

IL-17 induces the production of antimicrobial peptides,
cytokines, chemokines, and matrix metalloproteinases from
fibroblasts, endothelial and epithelial cells, intercellular cell
adhesion molecule 1 (ICAM-1), inducible nitric oxide
synthase (iNOS), cyclooxygenase-2 (Cox2), and nuclear
factor kB (NF-kB) ligand [90]. The stimulated cells in turn
cause chronic inflammation by inducing the secretion of IL-
6, IL-8, PGE2, MCP-1, and G-CSF [95].

IL-17 and autoimmune disease

Th17 cells are important effector cells in the development
of several autoimmune diseases, allergic diseases (delayed-
type hypersensitivity (DTH), contact hypersensitivity, and
allergic airway inflammation), and host defense against
infections [87, 90]. While experimental autoimmune en-
cephalomyelitis (EAE), an experimental model for multiple
sclerosis, was thought to be mediated by Th1 cells, recent
experiments demonstrated that Th17, but not Th1 cells are
involved in the development of the disease [96]. Accord-
ingly, IL-17 mRNA expression is upregulated in multiple
sclerosis lesions, and IL-17 expression is increased in the
cerebrospinal fluid of multiple sclerosis patients [97, 98].

In patients with autoimmune rheumatoid arthritis, too,
high levels of TNF, IL-1, IL-6, and IL-17 were measured in
synovial fluid and serum [99]. More recent observations
have shown that, although Th17 cells are critical for the
development of arthritis, disease progression was impeded
by the blockade of TNF, IL- 1, or IL-6 [100, 101].

In 2002, Hamzaoui et al. found a striking increase in IL-
17 in the blood of patients with active systemic Behçet’s
disease and, recently, Chi et al. reported markedly elevated
IL-17 production from peripheral blood mononuclear cells
in patients with active Behçet’s uveitis as compared to
Behçet’s disease patients without active uveitis and healthy
controls [102, 103].

IL-17 and experimental autoimmune uveitis

There is significant evidence that Th17 cells can induce
EAU. Depending on the method of induction, however, the
relative impact of Th17 and Th1 cells differed.

When EAU was induced by immunization with IRBP
and complete Freund’s adjuvants, disease was significantly
reduced in p19 (lacking IL-23 that is required for Th17 cell

expansion) and p40 (lacking IL-12 and IL-23) knockout
mice, while EAU was significantly increased in p35
knockout mice (lacking IL-12 that is required for
Th1development) as compared to wild-type mice. EAU
was reduced in mice after antibody blockade of IL-17
during disease induction or after disease onset. In contrast,
antibody blockade of IL-23 reduced disease only when
given during disease induction, most likely because this
cytokine is required for expansion of pre-existing Th17
cells but not for lineage commitment [24]. Transfer of
IRBP-specific CD4+ cells from mice polarized towards
Th17 with IL-23, TGF-β, IL-6, and anti-IL-4 antibody also
induced EAU. Disease was similar when the cells were
transferred to IFN-γ deficient mice, showing that Th17
effector cells induce EAU in the absence of an IFN-γ
response.

However, when EAU was induced in the animal model
by transferring IRBP-specific CD4+ T cells obtained from
the regional lymph nodes of IRBP/CFA-immunized mice
that had been polarized towards Th1 with IL-12 and anti-
IL-4 antibody, blockade with anti-IL17 had no effect on
EAU.

Furthermore, when an IFN-γ producing Th1 cell line
was used to induce EAU, severe disease without any
detectable IL-17 was observed, showing that under some
conditions IL-17 might be dispensable for EAU and
possibly other types of autoimmunity. In line with this,
when EAU was induced with IRBP-pulsed mature dendritic
cells followed by pertussis toxin injection 2 days later (this
is an induction protocol that favours a Th1-dominated
response as opposed to the more common protocol that
utilizes complete Freund’s adjuvant that primes the T helper
cells toward IL-17 production, i.e., Th17), disease was
decreased in IFN-γ deficient mice, despite the presence of a
Th17 response [24]. Therefore both a Th1 and a Th17
response seem to be capable of inducing EAU [24]. It
seems to depend on the induction method of EAU, whether
the resulting immune response and inflammation is domi-
nated by IFN-γ (Th1) or IL-17 (Th17). Or in other
(clinically minded) words: not all patients with uveitis
might have IL-17 dominated disease (depending on thus far
not known initiating factors), but those whose IL-17 levels
are increased might benefit from anti-IL17 treatment. In
fact, Th17 cells were detected in human peripheral
mononuclear cells from healthy individuals, but the
numbers were increased in uveitis patients during active
disease [104].

Anti-IL-17 AIN457 antibody: description and mechanisms
of action

AIN457 is a high-affinity human monoclonal anti-human
IL-17 antibody of the IgG1 isotype. AIN457 binds to
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human IL-17 and neutralizes the bioactivity of this
cytokine. When administered intravenously, the molecule
was shown to have only a limited potential for being
distributed into normal and uninflamed tissues. Analysis of
terminal phases of the serum concentration-versus-time
profile did not reveal any signs of formation of anti-
idiotypic (neutralizing) antibodies in Cynomolgus monkeys
(Novartis, unpublished data).

Impact of anti-IL-17 antibody AIN457 on autoimmune
disease

Recently, two clinical trials with intravenous AIN457 in
patients with rheumatoid arthritis and psoriasis have shown
rapid improvement in the clinical manifestations of disease
as compared to placebo-treated controls (Novartis, unpub-
lished data).

Impact of anti-IL-17 antibody AIN457 on autoimmune
uveitis

In an open-label pilot study including 16 patients with
active noninfectious uveitis not adequately responding to
systemic immunosuppression, AIN457 was given at a
dosage of 10 mg/kg intravenously at baseline and 3 weeks.
Five patients had anterior, another one had intermediate,
three had posterior, and another seven patients had
panuveitis. Uveitis was of diverse etiologies, including
idiopathic, HLA-B27-associated, Vogt–Koyanagi–Harada
disease, sarcoidosis, and Behçet’s disease. The preliminary
data show that uveitis responded to treatment at 8 weeks in
12 of the 16 patients (Novartis, unpublished data).
Currently, a multicenter randomized, double-masked,
placebo-controlled study is underway in order to assess
the rate of recurrent exacerbations in Behçet’s patients with
posterior or panuveitis treated with AIN457 versus placebo
as an adjuvant to conventional immunosuppressive therapy.

IL-1 and treatment with IL-1 receptor antagonist

IL-1 and the IL-1 receptor antagonist (anakinra)

So far, 11 members of the IL-1 family of ligands have been
described. In contrast to other cytokines, some of the IL-1
family members exert their function at both the receptor
and nuclear level [105]. IL-1 plays a role in chronic
inflammation and immune responses and is linked to the
innate immune responses (Fig. 1). While some of the IL-1
members induce local and systemic inflammation (IL-1α,
IL-1β, and IL-18), others protect against ongoing immune
reactions (IL-1 receptor antagonist; IL-1Ra). IL-1Ra is a
specific inhibitor of the activity of both IL-1α and IL-1β.

IL-1 activity blockade, in particular of IL-1β is already
well-established for clinical use. Anakinra is the truncated,
N-terminally methionylated recombinant form of the
human IL-1Ra, which can block receptor binding of IL-
1α and IL-1β.

Anakinra in autoinflammatory and autoimmune disease

Recently, a group of certain diseases with a chronic
inflammatory component have been defined as auto-
inflammatory diseases that characteristically respond to
IL-1 blockade rather than TNF-α inhibitors. Typical
examples are adult-onset of Still’s disease, systemic-
onset juvenile idiopathic arthritis, macrophage activation
syndrome, and Blau’s syndrome. Anakinra has become
the standard treatment for patients with systemic-onset
juvenile idiopathic arthritis and for Still’s syndrome in
adults [106, 107].

Anakinra has also been shown to be effective in treating
various other systemic and local inflammatory disorders. It
is approved for therapy in typical autoimmune diseases,
such as rheumatoid arthritis, and has been effective in
Behcet’s syndrome [108, 109].

IL-1 and anakinra in uveitis

IL-1 and IL-1Ra levels in the aqueous humor of patients
with uveitis were found to be higher than in healthy
controls. They were increased in patients with active
disease in particular [110]. High levels of IL-1 and IL-
1Ra have also been determined in experimental models of
uveitis [111]. Indeed, anakinra has been shown to suppress
intraocular inflammation in a rabbit model of IL-1 induced
uveitis [112]. In a recent study, treatment with anakinra
suppressed the development of experimental autoimmune
uveitis and the IRBP-specific immune response, and also
inhibited IL-1α, IL-1β, TNF-α and IFN-γ being produced
in draining lymph node cells [113]. During immunomod-
ulatory treatment of patients with idiopathic pars planitis
and ocular Behcet’s disease, the serum levels of IL-1Ra
significantly increased, suggesting a potential role of IL-
1Ra in the therapeutic effect [114]. Finally, Theol and
colleagues reported that treatment of CINCA-associated
uveitis with anakinra was successful [115].

CD-25 / IL-2R and Daclizumab

Daclizumab is a humanized monclonal antibody, which
recognizes the α-chain of the human high-affinity IL-2
receptor (IL-2R), CD25. The IL-2Rα is expressed on
activated T cells, but not on resting T cells or B cells, NK
cells, and monocytes (Fig. 4).
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Targeting the α-chain of the high-affinity IL-2R is
thought to affect only activated T cells, the population
that maintains the autoaggressive immune response,
while leaving the pool of memory and naïve T cells
untouched. In rodent experimental autoimmune uveitis,
the autoaggressive Th1 cells express large numbers of
IL-2R [11]. However, CD25 is also expressed by
regulatory T cells of the CD4+CD25+Foxp3+ phenotype
and on negative regulatory NK cells (CD56bright, IL-10-
producing) [116]. While IL-2 is a characteristic cytokine
of Th1 effector cells, the recently discovered Th17 cells,
which have been shown to play an important role in many
autoimmune diseases, are not affected by anti-IL-2R-
targeted therapies [117].

Upon binding to CD25, daclizumab does not completely
inhibit IL-2-induced intracellular signal transduction via the
beta and gamma chains of the IL-2 receptor, i.e., JAK-1,
JAK-3, and STAT-5 are still intracellularly activated [118].

Surprisingly, daclizumab therapy primarily affects T
effector cells rather than regulatory T cells, although it is
known that they strongly depend on IL-2. Nevertheless, the
fate of CD4+CD25+ regulatory T cells under daclizumab
therapy is contradictory [119]: on the one hand, daclizumab
is used to enhance immune responses to vaccination by
knocking out regulatory T cells [120, 121], while on the
other it successfully treats autoimmune diseases, which are
supposed to be caused by a dysregulation of Tregs.
However, even if classical regulatory CD4+CD25+ T cells
are impaired by daclizumab therapy, their function might be
taken over by other regulatory cell populations such as IL-
10-producing CD56bright NK cells [116].

Daclizumab for the treatment of autoimmune uveitis

In a nonhuman primate model, targeting IL-2 receptors
effectively downregulated experimentally induced intraoc-
ular inflammation [122], offering the rationale for treating
the first patients in a nonrandomized open-label pilot study
[123]. Uveitis improved with daclizumab at 1 mg/kg
bodyweight in 2-week intervals in eight of ten patients.
After 24 weeks, the intervals between infusions were
increased to 4 weeks. Within the first year patients did not
need any other immunosuppressive or anti-inflammatory
therapy other than daclizumab. Meanwhile, seven addi-
tional studies have reported clinical improvement in 42 of
64 uveitis patients treated with daclizumab with a follow-
up of 1 to 2 years [51, 124–129]. Two of these studies
reported an increase in average visual acuity from 68 to
79.6 and 69.2 to 78.2 letters [124, 126]. Side-effects
included nausea, fatigue, muscle aches, rashes, edema,
upper respiratory infections, cutaneous herpes zoster
lesion, hepatic dysfunction, or leukopenia, but were
considered to be nonhazardous.

In January 2009, authorization for marketing daclizumab
in Europe was withdrawn, leaving basiliximab as the only
anti-IL-2R agent. Unfortunately, publications on basilixi-
mab in the context of uveitis are not available.

CTLA-4

In addition to T-cell receptor recognition of the peptide/
MHC complex on antigen-presenting cells, costimulatory
signals are needed to fully activate a naive T cell. Those
costimulatory signals are mediated by CD28 binding to
CD80 or CD86 (B7.1 and B7.2) on the surface of T cells and
on APC. Upon TCR ligation, CTLA-4 or CD152, another
ligand of CD80/CD86, is upregulated on the surface of T-
helper cells. CTLA-4 has a higher affinity to CD80/86 than
CD28 and, in contrast to the activating effect of CD28
signalling, the natural function of CTLA-4 is to terminate T
cell activation [130]. Tregs constitutively express CTLA-4
[131, 132]. Abatacept and belatacept are fusion proteins of
an IgG Fc part and the extracellular domain of CTLA-4.
They inhibit interaction between CD28 on T cells with
CD80/CD86 on APC, and thus impede T-cell activation
[133, 134] (Fig. 5).

Fig. 5 Inhibitory effect of CTLA4-Ig on T-cell activation via blocking
of antigen-presenting cells. In addition to MHC–peptide antigen
recognition, T cells require interaction with additional molecules on
the APC to become fully activated. The interaction between CD28 on
T cells and CD80 or CD86 on APC induces one of the most important
“second signals”. CD80 and CD86 have a second high-affinity ligand,
CTLA4, a molecule expressed on cytotoxic T cells. Abatacept or
belatacept contain the CD80/CD86 binding site of CTLA4, coupled to
the Fc part of an immunoglobulin. This construct blocks the
costimulatory molecule on APC and thus prevents CD28 activation
and costimulation, impeding T cell activation
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The CTLA4-Ig construct (abatacept, belatacept) blocks the
receptor on APCs and thus prevents costimulation of T cells,
resulting in immunosuppression; in contrast, there are fully
humanized therapeutic antibodies directed against CTLA-4
(ipilimumab and tremelimumab) which have the opposite
effect. Abatacept and beletacept are used to treat autoimmune
diseases [135] or to prevent kidney graft rejection, while the
antibodies to CTLA4, ipilimumab and tremelimumab, block
CTLA4, impeding the natural downregulation of T-cell
activation, and are thus used as adjuvant therapy to activate
the immune response against cancers [136].

A single case report has been published on abatacept
(Orenica®). The drug was given to a patient with JIA-
associated uveitis who showed a good therapeutic response.
Inflammation and visual acuity improved, and other
immunosuppressive treatments, including corticosteroids,
could be reduced [137].

Cell-adhesion molecules (CAM) and treatment
with anti-CAM antibodies

VCAM-1/VLA-4 and treatment with α4 integrin inhibitor

VCAM-1 and its ligand VLA-4

The vascular cell adhesion molecule (VCAM) belongs to
the immunoglobulin gene superfamily. It is expressed on
the surface of activated endothelial cells, dendritic cells,
fibroblasts, and tissue macrophages, and facilitates entry of
activated leukocytes through blood vessels into inflamed
tissues via its ligand very late activation antigen-4 (VLA-4)
(Fig. 1). VLA-4 belongs to a family of β1-integrins that
have the CD19 β-chain in common. It is expressed on T
and B lymphocytes, monocytes, natural killer cells, and
eosinophils.

VCAM-1/VLA-4 and autoimmune disease

Cell adhesion molecules such as VCAM-1 and VLA-4 are
essential to guide leukocytes to tissue sites in order to
initiate and maintain local inflammation. While this is
essential for removing infectious agents or foreign particles,
it has deleterious effects if host structures are being
targeted, such as in autoimmunity. Increased levels of
VCAM-1 expression have been found in synovial tissue
from rheumatoid arthritis (RA) patients [138]. A soluble
form of VCAM-1 (sVCAM-1) inducing T-cell chemotaxis
has been detected in synovial fluid of RA patients [139,
140]. Furthermore, high levels of VLA-4 expression in
memory T cells and increased expression of the
corresponding VCAM-1 have been found in inflamed
intestine [141].

VCAM-1/VLA-4 and uveitis

In the EIU model in rabbits, VLA-4 blockade significantly
reduced both disease scores and protein content in aqueous
humor [142]. In addition, VCAM-1 expression was found
to be significantly higher in iris biopsy specimens from
patients with uveitis (mostly anterior uveitis) than in
healthy individuals [143].

Natalizumab as anti-VLA-4 antibody

Natalizumab is a humanized monoclonal IgG4-antibody
targeting the α4-integrin subunit of VLA-4. It blocks the
binding of VLA-4 to VCAM-1 and interferes with an
important molecular interaction for the entry of leukocytes
into sites of inflammation.

Natalizumab for the treatment of autoimmune disease

Recent clinical trials used natalizumab to treat patients
with multiple sclerosis, and showed significant ameliora-
tion of the disease. It substantially reduced the risk of the
sustained progression of disability and the rate of
relapses in patients with multiple sclerosis [144]. Natali-
zumab has also shown promise in the treatment of Crohn’s
disease [145].

Intercellular cell-adhesion molecule-1

Intercellular cell-adhesion molecule-1 (ICAM-1, CD54)
is a member of the integrin family, and is expressed on
the surface of vascular endothelium (Fig. 1), fibroblasts,
dendritic cells, ocular cells such as keratinocytes, mono-
cytes, and B and T cells. It binds to its ligands Mac-1 (also
known as complement receptor 3, CD11b paired with
CD18, the integrin β2) and lymphocyte function-
associated molecule-1 (LFA-1, CD11a/CD18), which is
expressed on granulocytes, monocytes, and leukocytes. In
addition to its function in leukocyte trafficking, it is
involved in interactions between lymphocytes and APCs,
where it enables the formation of an immunological
synapse (Fig. 4). This is important for the APC to provide
sufficient costimulatory signals to activate lymphocytes.
The expression of adhesion molecules is regulated by
cytokines. IFN-γ, IL-1, and TNF-α are strong inducers of
ICAM-1 expression.

ICAM-1 and autoimmune disease

The major role of ICAM-1 in cell migration implies that
it may possibly be involved in autoimmune processes,
too. Several studies revealed evidence for neutrophil
recruitment to the colonic mucosa in inflammatory
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bowel disease (IBD) that is mediated by ICAM-1.
Furthermore, ICAM-1 levels were correlated with dis-
ease activity [146, 147]. Hence, ICAM-1 seemed a
logical target in IBD such as Crohn’s disease (CD)
and ulcerative colitis (UC). Expression of ICAM-1 is
also increased in the synovial tissue of RA patients and
in the central nervous system of MS patients. In
addition to its role in autoimmune diseases, ICAM-1 has
been shown to be a major receptor in several infectious
diseases.

ICAM-1 and uveitis

In EIU, ICAM-1 is first expressed on the ciliary body
endothelium, followed by the vascular endothelium of the
iris and the corneal endothelium. Treatment of rats with either
anti-ICAM-1 or anti-LFA-1 antibody prevented development
of EIU [148]. ICAM-1 and LFA-1 have also been shown to
play a critical role in experimental autoimmune uveitis
(EAU) [149]. ICAM-1 expression was observed on day 7
after immunization with IRBP on the vascular endothelium
of the retina and the ciliary body. As in EIU, monoclonal
antibodies against ICAM-1 or LFA-1 significantly reduced
disease scores in an EAU mouse model.

Blockade of ICAM-1 expression by ISIS-2302

ISIS-2302 is a 20-nucleotide phosphorothioate antisense
oligonucleotide designed to inhibit the expression of
ICAM-1. Due to its complementary structure, it can bind
ICAM-1-m-RNA to form a DNA:RNA heteroduplex,
which is a substrate for hydrolysis by RNAse H [150,
151]. Thereby, it can block the ICAM-1 transcription and
reduce expression levels.

ISIS-2302 for the treatment of autoimmune disease

ISIS-2302 has been used in clinical trials for the treatment
of patients with active CD. However, it failed to demon-
strate statistical significance as compared to a placebo
group [152].

Efalizumab as LFA-1-antibody

Another inhibitor of the ICAM-1/LFA-1 axis is the
humanized monoclonal IgG1 antibody efalizumab. It binds
the CD11a chain of LFA-1, and therefore blocks interaction
with ICAM-1.

Efalizumab for the treatment of autoimmune disease

Efalizumab has been shown to be effective for the treatment
of psoriasis [153].

CD-20 and anti-CD20 antibody (rituximab) treatment

CD20 antigen

The surface antigen CD20 is expressed on pre-B and
mature B cells, but it is not present on stem cells and
plasma cells. After the antibody binds to the target antigen,
B cells are depleted from the peripheral blood and also
moderately from the lymph nodes and bone marrow.

B cells and autoimmune disease

There is significant evidence that B cells play potential
roles in the immunopathogenesis of autoimmune disease. In
rheumatoid arthritis, B cells are involved in the secretion of
proinflammatory cytokines, antigen presentation and thus T
cell activation, autoantibody production, and self-
perpetuation, which eventually cause inflammatory tissue
damage and cartilage loss [154–157].

Rituximab: description and mechanisms of action

The monoclonal antibody rituximab is directed against the
CD20 antigen expressed on B cells. Rituximab is a
monoclonal chimeric antibody, consisting of a variable
region with a murine antibody fragment and the human IgG
and k-constant regions. The cytotoxic mechanisms of anti-
CD20 on B cells include complement-mediated cell lysis,
cell-mediated cytotoxicity through natural killer cells and
macrophages, and apoptosis [158, 159] (Fig. 6).

Anti-CD20 therapy for autoimmune disease affects the
secretion of proinflammatory cytokines, antigen presenta-
tion, T-cell activation, and autoantibody production. As the
treatment commonly has little impact on the extent of
serum immunoglobulin levels and on the antibody-secreting
cells in the bone marrow, the antibody-secreting plasma
cells are presumably long-lived, and memory B cells are
not targeted [160]. In addition, an immune complex decoy
hypothesis has been proposed: rituximab could generate
IgG-opsonized cells that bind to macrophages to divert
them from pathogenic interactions with tissue-associated
immune complexes [159].

Impact of rituximab on systemic autoimmune disease

Recent clinical studies have underlined the substantial
impact of rituximab for the treatment of systemic autoim-
mune diseases. Rituximab was effective in treating active
rheumatoid arthritis with an inadequate response to MTX or
TNF-α inhibitors [161–163]. Rituximab has also been
successful in the treatment of refractory systemic lupus
erythematosus [164–166], and effective in treating refrac-
tory ANCA-associated vasculitis [167–169].
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However, the treatment protocols applied in these
studies differ from each other in that infusions were
given once weekly for 2 to 4 weeks, and the dosages
were either fixed at 500 mg or 2,000 mg or were
375 mg/m2 in other studies. In order to prevent an
anaphylactic response to the chimeric antibody, intrave-
nous methylprednisolone was given 30 min before each
infusion at dosages of 100 to 250 mg. A sustained B-cell
depletion of naïve and autoimmune cells was achieved,
with peripheral blood CD20 cells being low or undetect-
able for up to 6 months, returning to pretreatment levels
within 12 months [169]. Earlier repopulation of B cells
was observed after rituximab monotherapy rather than
after combination therapy with immunosuppressive agents,
such as methotrexate.

Impact of rituximab on inflammatory eye disease

Rituximab has been successfully used for the treatment of
refractory keratoconjunctivits, scleritis, peripheral ulcera-
tive keratitis, and uveitis, also when associated with
systemic diseases.

Sjögren’s syndrome Extended improvement in submandib-
ular flow rate, dry mouth score, IgM rheumatoid factors,
fatigue, and health-related quality of life (SF-36) was
observed in Sjögren’s patients upon treatment and retreat-
ment [170, 171]. In addition, keratitis refractory to
immunosuppression improved with rituximab infusions
[172–174].

Scleritis Rituximab improved Wegener’s granulomatosis.
Clinically, systemic disease resolved rapidly and ANCA
levels were reduced. Associated necrotizing and non-
necrotizing scleritis that persisted despite immunosup-
pression and TNF-α inhibitors also showed improvement
[175–178].

Uveitis Rituximab may be helpful in selected patients
with chronic uveitis refractory to corticosteroid and
immunosuppression. In an adult with endogenous anteri-
or uveitis, uveitis stabilized and the associated CME
resolved with rituximab infusions. The treatment also had
some steroid-sparing effect [179]. However, the B-cell
depletion in the peripheral blood and the positive effect on
uveitis was transient, as inflammation and CME recurred
after 6-9 months. Retreatment with rituximab produced
improvement. In selected patients with refractory JIA-
associated uveitis not responding to immunosuppressive
drugs and TNF-α inhibitors, a rituximab infusion im-
proved uveitis activity (Heiligenhaus et al., submitted for
publication).

In summary, one cycle of rituximab was effective for
treating active disease and the subjective and objective
symptoms for a prolonged period. Retreatment was re-
quired in selected cases, with favorable long-term response.
Rituximab is an intriguing new modality for the treatment
of sight-threatening ocular inflammatory disease. Indica-
tions and treatment protocols for initial and maintenance
therapy must be studied in future trials.

Interferons

Interferon-α and interferon-β (IFN-α, -β) are type 1
interferons induced by viral infections, tumors, or foreign
cells. They are produced by macrophages, IFN-α 2b
preferentially by fibroblasts. Both IFNs bind to a specific
cell surface receptor complex known as the IFN-α receptor
(IFNAR) that consists of IFNAR1 and IFNAR2 chains.

IFN-α subtypes are preferentially produced by mono-
cytes/macrophages, but also by T cells and mainly by
plasmacytoid dendritic cells (PDC) during viral infections.
This reaction is triggered by viral DNA or bacterial CpG
motifs via TLR7 and/or TLR9. Thus, interferons have
primarily been used for the treatment of chronic hepatitis B
and C. The mechanism of action of recombinant IFN-α2a
treatment, especially of patients with Behçet’s disease, is
not yet fully understood. It was shown that the capacity of
PDC from Behçet’s disease patients to secrete IFN-α was
lower after stimulation with CpG in culture [180]; thus,
IFN-α therapy might substitute the defective function of
PDC in these patients.

Fig. 6 Rituximab and B cells. CD20 is expressed on all B cells,
except plasma cells. Binding of the CD20-specific therapeutic
antibody Rituximab kills B cells either by complement fixation or
mediates killing by macrophages, which bind to rituximab via their Fc
receptors
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The effect may also involve modulation of the immune
system. NK (natural killer) cells and NKT cells, a cell
population bearing NK receptors as well as T-cell receptors
(of restricted variability), are stimulated with IFN-α. The
original hypothesis was based on reports that NK/NKT cell
activity is impaired and that numbers of cells are decreased
in several autoimmune animal models and human diabetes
[181]. NKT cells have an important regulatory function in
both innate and adaptive immune responses [182]. It was
possible to correct the deficiency of NK cells with IFN-α
treatment. Later, IFN-α was reported to induce circulating
IL-1 receptor antagonists. In this case, induction of an
antiinflammatory status was suggested through modulation
of the IL-1/IL-1receptor antagonist balance. Recent results
suggest that host immunity is an important factor in the
response to interferon therapy [183].

Side-effects of IFN-α therapies are commonly observed,
and are dose-dependent. Most patients experience flu-like
symptoms, which can effectively be treated with para-
cetamol (acetaminophen) and resolve with time. In addi-
tion, anti-thyroid antibody production has frequently been
observed (40% of patients treated with IFN-a for HCV
infection), sometimes leading to thyroiditis (15% of IFN-α
treated patients), and anti-DNA-antibodies were increased
in others [184, 185]. Since increased IFN-α production and
anti-DNA antibodies are also found in patients with lupus
erythematosus, it is a major concern that IFN-α treatment
might have the potential to induce SLE. Depression is
observed frequently, probably due to the presence of IFN-α
receptors in the hypothalamus [186]. Furthermore, IFN-α
stimulates expression of corticotropin-releasing factor. In
humans, IFN-α injection increased cortisol levels, which
are also correlated with subsequent development of depres-
sion. IFN-α decreases concentrations of serotonin and
dopamine in the brain, and can also directly bind to opioid
receptors.

In an uncontrolled prospective study, 50 patients with
Behçet’s disease and sight-threatening uveitis were treated
with a daily subcutaneous dose of initially 6 million units
recombinant human IFN-α2a, and followed for up to
5 years [187]. Forty-six patients responded well with
increasing visual acuity and regressing intraocular inflam-
mation. The overall activity of Behçet’s disease was
reduced to 50 %, and after a mean observation period of
3 years, 20 patients were able to discontinue treatment and
were in remission for 7 to 58 months. The remaining
patients were able to reduce their dose of IFN-α2a to 3
million units three times a week. These positive effects
have also been observed by others [188–190]. The
additional use of corticosteroids at initiation or during
continued IFN-α2a treatment is controversial, but has been
shown to be effective [191]. The use of IFN-α2a has been
extended to the treatment of occlusive vasculitis, pediatric

Behçet's patients, Vogt–Koyanagi–Harada's disease, and
cystoid macular edema [192–194].

CD-52

CD-52 is a glycoprotein expressed on the surface of all
mature lymphocytes and also found on dendritic cells and
monocytes. Its precise function is still unknown.

Alemtuzumab as anti-CD52 antibody

Alemtuzumab (Campath-1H) is a humanized monoclonal
antibody, which targets CD-52. Even a single treatment can
substantially deplete the blood of lymphocytes, resulting in
leukopenia that can last for several months.

Alemtuzumab for the treatment of autoimmune disease,
uveitis, and cancer

Alemtuzumab has shown promising results in some patients
with noninfectious refractory posterior uveitis [195]. An-
other study demonstrated its efficacy in Behcet’s disease,
although the effect on the associated uveitis was not
specifically addressed [196]. In early multiple sclerosis,
alemtuzumab has been shown to be superior to IFN-β1a
[197].

An adverse effect of alemtuzumab is secondary autoim-
munity, mainly Graves' disease and idiopathic thrombocy-
topenia purpura. This effect is driven by increased levels of
IL-21, caused by antibody-induced lymphopenia, which is
followed by enhanced lymphocyte proliferation [198].
Interestingly, increased IL-21 levels prior to treatment
identified those patients who went on to develop these
adverse effects. Furthermore, alemtuzumab has been eval-
uated in clinical trials as being effective in treating chronic
lymphocytic leukemia [199].

Interleukin-15

IL-15 is secreted by mononuclear phagocytes, e.g., in
response to viral infections. It is a crucial growth factor for
NK cells, and seems to be important for inducing cytotoxic
T cells, particularly of CD8+ memory T cells.

IL-15 and autoimmune disease

Patients with multiple sclerosis present increased numb-
ers of peripheral blood mononuclear cells expressing IL-
15 m-RNA, and the skin lesions in psoriasis express high
levels of IL-15 [200]. Increased levels of IL-15 have been
found in patients with rheumatoid arthritis, both in serum
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and the synovial membrane. Elevated serum levels have
also been found in patients with ulcerative colitis, and also
in patients with Behcet’s disease. However, the latter was
not correlated with disease activity or treatment [201].

HuMax-IL-15 as anti-IL-15 antibody

HuMax-IL15 is a human monoclonal anti-IL-15 IgG1
antibody with the capacity to neutralize both exogenous
and endogenous IL-15 activity in vitro.

HuMax-IL15 for the treatment of autoimmune disease

A phase I/II dose-escalation trial with HuMAX-IL15 in
patients with RA showed substantial improvement in
disease activity [202]. HuMax-IL15 was well-tolerated,
and had no significant effects on the numbers of lympho-
cyte subsets.

Conclusions

Better knowledge of the basic mechanisms underlying
uveitis and of the molecules that are important for
regulating inflammation would help us to create new and
more specific treatment approaches. In biological therapy,
the therapeutic targets for immunomodulation specifically
interact with molecules that play a critical role in the
pathogenetic process of uveitis, as has been defined by
observations in patients or the respective animal models of
uveitis.

Recently, small case series have already shown that in
selected patients biologicals are valid alternatives to classical
immunosuppressive drugs in order to accelerate drug actions.
Biological agents are currently used as rescue therapy for
uveitis unresponsive to corticosteroids and classical immuno-
suppressives. Now, prospective randomized clinical trials are
warranted to compare the benefit and risk between the diverse
biologicals and the classical immunosuppressive drugs, in
order to better define their place in the step-ladder approach
for treating uveitis patients.
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