
Temporally-Aware Algorithms for Document Classification ∗

Thiago Salles
Fed. Univ. of Minas Gerais

Computer Science Dep.
Belo Horizonte, Brazil

tsalles@dcc.ufmg.br

Leonardo Rocha
Fed. Univ. São João Del Rei

Computer Science Dep.
of São João Del Rei, Brazil
lcrocha@ufsj.edu.br

Gisele L. Pappa
Fed. Univ. of Minas Gerais

Computer Science Dep.
Belo Horizonte, Brazil

glpappa@dcc.ufmg.br

Fernando Mourão
Fed. Univ. of Minas Gerais

Computer Science Dep.
Belo Horizonte, Brazil

fhmourao@dcc.ufmg.br

Wagner Meira Jr.
Fed. Univ. of Minas Gerais

Computer Science Dep.
Belo Horizonte, Brazil

meira@dcc.ufmg.br

Marcos Gonçalves
Fed. Univ. of Minas Gerais

Computer Science Dep.
Belo Horizonte, Brazil

mgoncalv@dcc.ufmg.br

ABSTRACT
Automatic Document Classification (ADC) is still one of the
major information retrieval problems. It usually employs a
supervised learning strategy, where we first build a classi-
fication model using pre-classified documents and then use
this model to classify unseen documents. The majority of
supervised algorithms consider that all documents provide
equally important information. However, in practice, a do-
cument may be considered more or less important to build
the classification model according to several factors, such
as its timeliness, the venue where it was published in, its
authors, among others. In this paper, we are particularly
concerned with the impact that temporal effects may have
on ADC and how to minimize such impact. In order to deal
with these effects, we introduce a temporal weighting func-

tion (TWF) and propose a methodology to determine it for
document collections. We applied the proposed methodol-
ogy to ACM-DL and Medline and found that the TWF of
both follows a lognormal. We then extend three ADC algo-
rithms (namely kNN, Rocchio and Näıve Bayes) to incorpo-
rate the TWF. Experiments showed that the temporally-
aware classifiers achieved significant gains, outperforming
(or at least matching) state-of-the-art algorithms.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; I.5.4 [Applications]: Text process-
ing;

General Terms
Algorithms, Experimentation

∗This work was partially supported by CNPq, CAPES,
FINEP, Fapemig, and INWEB.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’10, July 19–23, 2010, Geneva, Switzerland.
Copyright 2010 ACM 978-1-60558-896-4/10/07 ...$10.00.

Keywords
Classification and Clustering, Text Mining

1. INTRODUCTION
Text classification is still one of the major information re-

trieval problems, and developing robust and accurate classi-
fication models continues to be a relevant demand, as a con-
sequence of the increasing complexity and scale of current
application scenarios, such as the Web. The task of Auto-
matic Document Classification (ADC) aims to create models
that associate documents with semantically meaningful cat-
egories, and these models are key for building spam filters
and topic directories, identifying documents writing style,
creating digital libraries, and guiding a user’s search on the
World Wide Web.

ADC usually follows a supervised learning strategy, in
which a classification model is built using some training (pre-
classified) documents and later employed to classify a new
set of unseen documents. The majority of supervised algo-
rithms consider that all documents provide equally impor-
tant information. However, in practice, a document may be
considered more or less important to build the classification
model according to several factors, such as its timeliness, the
venue where it was published in, its authors, among others.

In this work we are particularly concerned with the im-
pact that temporal effects may have on ADC and how to
minimize such impact. Consider, for instance, the terms
pheromone and ant colony. Before the 1990s, they referred
exclusively to documents in the area of Natural Sciences.
However, after the introduction of the technique of Ant Co-

lony Optimization in the area of Artificial Intelligence, these
terms became relevant for classifying Computer Science doc-
uments too. Previous work has demonstrated that temporal
effects, such as the variation of the strenght of term-class re-
lationship over time, may have a significant impact on ADC,
and strategies for assessing these effects and their impact on
ADC have already been devised [19].

In general, methods proposed to deal with temporal ef-
fects are based on three main approaches: instance selection,
instance weighting, and ensembles. Instance selection [20]
uses heuristics to decide which instances should be used (or
the time intervals that contain those instances) to create
a classification model. However, tuning these heuristics to
select the most relevant documents is a challenge, since we

may easily gather too many or too few documents. Methods
based on instance weighting [11] may ameliorate this prob-
lem 1. However, this strategy raises the additional challenge
of determining the weighting functions and their parame-
ters, which are collection-dependent and usually performed
in ad-hoc way. Finally, approaches based on ensembles, that
correspond to the combination of various classification mod-
els generated from different classification algorithms, present
the challenge of how to manage, efficiently, several models
simultaneously [7].

This paper proposes a strategy to incorporate temporal
models to document classifiers, aiming to address the two
main drawbacks of instance selection and instance weighting
approaches. Our strategy is based on the evolution of the
term-class relationship over time, captured by a metric of
dominance. We start by determining a temporal weighting

function for a collection according to its characteristics. We
found that this function follows a lognormal distribution for
the datasets we used.

The next step is to incorporate the temporal weighting
function to ADC algorithms and we propose two strategies
that follow a lazy classification approach. In both strate-
gies, the weights assigned to each example depend on the
notion of a temporal distance δ, defined as the difference
between the time of creation p of a training example and a
reference time point pr. The first strategy, named temporal

weighting on documents, weights training instances accord-
ing to δ. The second strategy, called temporal weighting on

scores, is based on an ensemble of classifiers, one for each
pair 〈class c,time point p〉. In this case, the scores (e.g.,
similarities, probabilities) returned by the respective classi-
fiers for each pair 〈c, p〉 are weighted according to δ. The
combined weighted scores are then used to take the final
classification decision. We specifically show how these two
strategies are implemented in three traditional ADC algo-
rithms, namely, Rocchio, k Nearest Neighbors (KNN), and
Näıve Bayes.

We evaluated our strategies using two actual digital li-
braries that span for decades, ACM-DL and MedLine, and
achieved significant improvements on classification effective-
ness for all classifiers. For instance, the temporal-aware ver-
sion of Näıve Bayes outperformed by up to 10% the state-of-
the-art classifier (SVM), while presenting an execution time
up to hundreds of times faster.

2. RELATED WORK
Although document classification is a widely studied sub-

ject, the analysis of temporal aspects in this class of al-
gorithms is quite recent – it has been studied just in the
last decade. As previously mentioned, strategies to deal
with these effects involve one or more of three approaches,
namely: instance selection, instance weighting, and ensem-
bles. Here we review the most relevant works of two broad
areas where there has been significant efforts in terms of
temporal effects on classification: adaptive document classi-
fication and concept drift.

Adaptive Document Classification [4] encompasses a set
of techniques related to temporal aspects with the goal of
improving the effectiveness of document classifiers through
their incremental and efficient adaptation. Adaptive Do-

1The first strategy may be seem as an instance weighting
strategy with binary weights.

cument Classification brings three main challenges to text
mining [17]. The first one, and most relevant to this re-
search, is the notion of context and how it may be exploited
towards better classification models. Previous research in
document classification identified two essential forms of con-
text: neighbor terms that are close to a certain keyword [14]
and terms that indicate the scope and semantics of the do-
cument [2]. The second challenge is creating the models
incrementally [10]. The third challenge has to do with the
computational efficiency of the document classifiers. Meth-
ods for Adaptive Document Classification usually follow an
instance selection approach, as they select semantic contexts
based on, for instance, the co-occurrence of terms, not tak-
ing into account all documents in the training set.

Concept or topic drift [22] comprises another relevant set
of efforts to deal with temporal effects in classification. To
deal with concept drift, a prevailing approach in the lit-
erature is to completely retrain the classifier according to
a sliding window. This involves instance selection and in-
stance weighting techniques [12, 11, 23, 15]. The method
presented in [12], for instance, maintains a window with
documents sufficiently “close” to the current target concept
and automatically adjusts the window size so that the esti-
mated generalization error is minimized. In [11], the meth-
ods presented either maintain an adaptive time window on
the training data, select representative training examples, or
weight the training examples. In [23] the authors describe a
set of algorithms that react to concept drift in a flexible way
and can take advantage of situations where contexts reap-
pear. The main idea of these algorithms is to keep only a
window of currently trusted examples and hypothesis, and
store concept descriptions in order to reuse them if a previ-
ous context reappears. Unlike previous works, which use a
single window to determine drift in the data, in [15] the au-
thors present a method that uses three windows of different
sizes to estimate the change in the data. While algorithms
that use a window of fixed size impose hard constraints over
drift patterns, those that use heuristics to adjust the win-
dow size to the current extent of concept drift often involve
lots of parameters to be calibrated. The approach proposed
in this paper relies on statistical properties of the collection
to assess the temporal effects, solving such drawbacks, while
promoting a high quality classification.

Other common approach to deal with concept drift fo-
cuses on the combination of various classification models
generated from different algorithms (ensembles) for classifi-
cation, pruning or adapting the weights according to recent
data [21, 13, 7]. In [21], the authors propose a boosting-like
method to train a classifier ensemble from data streams.
It naturally adapts to concept drift and allows to quantify
the drift in terms of its base learners. The algorithm was
shown to outperform learning algorithms that ignore con-
cept drift. In this same direction, Kolter et al. [13] present
a technique that maintains an ensemble of base learners,
predicts instance classes using a weighted-majority vote of
these “experts”, and dynamically creates and deletes experts
in response to changes in performance. In [7], a method that
builds an ensemble of classifiers using Genetic Programming
(GP) to inductively generate decision trees is presented.
However, how to manage, efficiently, several models simul-
taneously remains a challenge. To address such drawback,
we propose an approach based on the combination of vari-

ous classification models, but with a simpler way to manage
them.

Another approach that can be easily compared to ours,
and is based on instance selection, is the one proposed in [20].
In [20], the authors introduce the concept of temporal con-

text, defined as a subset of the documents collection that
minimizes the impact of temporal effects in classifiers’ per-
formance. An algorithm named Chronos was proposed to
identify these contexts based on the stability of the terms in
the training set. The temporal contexts were then used to
sample the training documents for the classification process.
Hence, training documents that were considered to be out-
side the temporal context were discarded by the classifier.

In contrast with the aforementioned works, here we pro-
pose an approach to classify documents in scenarios where
we may have information about both the past and the future,
and this information may change over time. It should be no-
ticed, however, that our approach may be easily adapted
for scenarios where we only have past information, such
as Adaptive Document Classification and Concept Drift.
Moreover, we address the drawbacks of which instances to
select by approximating a temporal weighting function using
a lognormal distribution, and may easily tune its parameters
using statistical methods.

3. TEMPORAL WEIGHTING FUNCTION
As mentioned before, the potential impact that certain

temporal effects have on term-class relationships may have a
great influence on the results of the classification process, as
showed in [19]. Thus, incorporating information about these
changes into the classification process has the potential to
improve its effectiveness.

We address this issue through a temporal weighting func-
tion (TWF) that quantifies the influence of a training do-
cument while classifying a test document, as a function of
the temporal distance between their creation times. We dis-
tinguish two major steps in determining such function: its
expression and its parameters. The expression is usually
harder to determine, since it may express the generative pro-
cess behind the function, while the parameters are usually
obtained using approximation strategies.

Intuitively, given a test document to be classified, the
TWF must set higher weights to training documents that
are more similar to that test document w.r.t. the strength
of term-class relationships. One metric that expresses such
strength is the dominance [20], since the more exclusive a
term is to a given predefined class, the stronger this rela-
tionship. Dominance can be formally defined as:

Dominance(t, c) =
Ntc

P

c′ Ntc′
,

where Ntc stands for the number of documents in class c

that contain term t.
For ease of understanding, before we continue the discus-

sion about the temporal weighting function, we describe the
two document collections for which we want to determine the
functions: ACM Digital Library (ACM-DL) and the Med-
Line. The ACM-DL has 24.897 documents containing arti-
cles related to Computer Science created between the years
of 1980 and 2002. We considered only the first level of the
taxonomy adopted by ACM, including 11 categories, which
did not vary during this period of time. The second one is

derived from the MedLine collection, and has 861.454 doc-
uments, classified into 7 distinct classes related to Medicine
and created between the years of 1970 and 1985. In both
collections, each document is assigned to a single class.

We start by defining the temporal granularity of the weight-
ing function, which should be the minimum time interval be-
tween relevant changes in the collection (e.g., days, weeks, or
years). Since both collections contain scientific documents,
it is intuitive that a year granularity is representative, once
documents are usually published yearly (scientific confer-
ences are usually annual).

The simplest approach would be to use a pulse function at
temporal distance 0, that is, the pulse magnitude is propor-
tional to the term dominance associated with the training
documents produced in the same year of the test document.
However, as pointed by [19], considering a larger time inter-
val instead of a single time point is better, since the influ-
ence decreases with the increase of the temporal distance.
We then need to determine the time period that must be
considered, which we call stability period. Notice that each
term may present a different stability period for each year
when it occurred in the collection. We first determine the
stability period for each term and then combine them, as
follows.

One approach for the first step is presented in [20], where
a stability period St,r of a term t, considering the refer-
ence time point pr in which the test document was created,
consists of the largest continuous period of time, starting
from pr and growing both to the past and the future, where
Dominance(t, c) > α (for some predefined α and any class
c). In the case of the collections ACM-DL and Medline, we
investigated different values for α when computing stabil-
ity periods and, as they lead to similar results, we adopted
α = 50%, ensuring that the terms will have a high degree of
exclusivity with some class.

We then combine the stability periods St,r for each term
t and each reference time point pr in the collection. A
difficulty in this case is related to the fact that a term
may present different stability periods for different reference
years. In order to avoid this problem, we mapped all the
time points in a stability period to temporal distances, where
the reference year is considered as distance 0. For instance,
a term t1 may have different stability periods when consider-
ing the years 1989 or 2000 as a reference. More specifically,
if the stability period of t1 is {1999,2000,2001} regarding
pr = 2000, and {1988,1989,1990} regarding pr = 1989, these
periods would be both mapped to {-1,0,1}. Considering S′

t

as the set of temporal distances that occur on the stability
periods of term t (considering all reference moments r, then
S′

t = {δ ← pn − pr|∀rpn ∈ St,r}. Making the stability peri-
ods easily comparable is important because our real interest
is to know what kind of distribution this temporal distances
follow w.r.t. different terms.

The next step is to determine the function expression and,
towards this goal, we considered the stability period of each
term as a random variable (RV), where the occurrence of
each possible temporal distance in its stability period is an
event. More formally, as Table 1 shows, we are interested
in the frequencies of the temporal distances δ1 to δn, for
terms t1 to tk. An interesting property that we may test is
whether these RV’s are independent. This hypothesis can
be corroborated by the Fisher’s Exact Test to assess the
independence of each RVi and RVj , ∀i 6= j [3], where, as

t1 t2 . . . tk Dδ

δ1 f11 f12 . . . f1k

Pk

i=1
f1i

δ2 f21 f22 . . . f2k

Pk

i=1
f2i

...

δn fn1 fn2 . . . fnk

Pk

i=1
fni

Table 1: Temporal distances versus terms

mentioned, each RV represents the occurrence of a temporal
distance δ for a term t.

We applied this test to both ACM-DL and Medline and
obtained a p-value of 0.99 through a Monte Carlo simulation,
which allows us to state that the random variables consid-
ered are indeed independent. Thus, the observed variability
of occurrences of δ for different terms is a result of indepen-
dent effects [16]. However, it is still not clear whether the ef-
fects responsible for the observed variability can be additive
(leading to a normal distribution) or multiplicative (leading
to a lognormal distribution). We then apply a statistical
normality test. According to D’Agostino’s D-Statistic Test
of Normality [6], with 0.01 significance level, we found that
the lognormal distribution best fits both the ACM-DL and
Medline collections, as presented in Table 3.

Consider that the RV Dδ related to the occurrences of δ,
which represents the distribution of each δi over all terms
t, is lognormally distributed if lnDδ is normally distributed.
More generally, since δi are RV’s under the independence
assumption with finite mean and variance, then, by the Cen-
tral Limit Theorem, lnDδ =

Pn

i=1
lnδi will asymptotically

approach a normal distribution and, by definition, converges
to a lognormal distribution [5]. For a lognormal distribution,
the asymptotically most efficient method for estimating its
associated parameters relies on a log-transformation [16].
Using a Maximum Likelihood method, we estimated those
parameters for both collections, and then back-transformed
them, as shown in Table 2. We considered a 3-parameter

gaussian function, F = aie
−

(x−bi)
2

2c2
i . The parameter ai is

the height of the curve’s peak, bi is the position of the cen-
tre of the peak, and ci controls the width of the curve. The
last one, also called the shape parameter, reflects the nature
of the variations of term-class relationships over time. Since
abrupt or smooth variations lead to small or greater stability
periods, respectively, the shape of the distribution changes
accordingly, being a matter of parameter estimation to cap-
ture such distinct natures. We performed two curve fitting
procedures, considering a single gaussian F and a mixture
of two gaussians, given by G = G1 + G2, where each Gi de-
notes a gaussian function. The last one was the model that
best fitted Dδ , and its parameters are presented in Table 2,
along with the goodness of fitting measure Adjusted-R2. The
Adjusted-R2 measure denotes the percentage of variance ex-
plained by the model and, for both collections, the obtained
model explains 99% of such variance.

The greater the frequency of δ on stability periods, the
more suitable training documents created in δ are to build
an accurate classification model, making the modelling of the
Temporal Weighting Function as a lognormal distribution an
effective strategy. To account for the problem faced when
the scale of the score is not compatible with the algorithm
input, we include a scaling factor β ∈ R, that is algorithm
specific and will be defined in Section 5.

Figure 1 shows the distribution of temporal scores, when

Param.
ACM-DL Medline

Value Conf. Interval Value Conf. Interval
a1 0.325 (0.288, 0.362) 0.089 (0.066, 0.113)
b1 -0.028 (-0.309, 0.253) -0.013 (-0.349, 0.324)
c1 3.636 (3.117, 4.154) 1.635 (1.099, 2.17)
a2 0.616 (0.589, 0.643) 0.901 (0.891, 0.911)
b2 0.037 (-0.395, 0.470) 0.092 (-0.130, 0.314)
c2 20.14 (20.93, 23.35) 24.51 (23.71, 25.3)

Adj. R2 0.990 0.992

Table 2: Estimated parameters for both collections,
with 99% confidence intervals.

β = 1, for each possible temporal distance between the cre-
ation time of test document d′ and the training documents
for both the ACM-DL and the Medline collections.

Data ACM-DL Medline

Original 4.497e−6 0.002762
Log-Transformed 0.2144 0.6802

Table 3: D’Agostino’s D-Statistic Test of Normality.
Bold-face for tests that we can not reject the null
hypothesis of normality.

(a) ACM-DL Collection

(b) MedLine Collection

Figure 1: Fitted temporal weighting function with
log-transformed data.

4. TEMPORALLY-AWARE ADC
This section shows how three well-known text classifiers,

namely Rocchio, KNN and Näıve Bayes [18], can be mod-
ified to take into account the temporal weighting function
defined in Section 3. The three algorithms are modified fol-
lowing two strategies: temporal weighting on documents and
temporal weighting on scores, as detailed below.

4.1 Temporal Weighting on Documents
The temporal weighting on documents strategy weights

each training document by the temporal weighting function
according to its temporal distance to the test document d′,
as detailed next.

The strategy to incorporate the weight of each training
document to a given classifier depends inherently on the
characteristics of the classification algorithm being modified.
For example, while Rocchio and KNN classify new instances

based on a distance metric, Näıve Bayes is a probabilistic
classifier that assigns to a test document the most probable
class that would have generated d′, adopting some näıve as-
sumptions such as positional and conditional independence
of terms.

In the case of distance-based classifiers, the temporal wei-
ghting function can be easily applied when calculating the
distance between the training and test documents, by weight-
ing each training document (TF -IDF vector) by its associ-
ated temporal weight. In the case of the Näıve Bayes, the
temporal function can be used to weight the impact of each
training example in both the a priori and conditional prob-
abilities, in order to generate a more accurate a posteriori
probability.

Rocchio Rocchio is an eager classifier that uses the cen-
troid of a class to find boundaries between classes. As an
eager classifier, Rocchio does not require any information
from d′ to create a classification model. Hence, we will have
to adapt it to become a lazy classifier when using the tem-
poral weighting function, since the weights depends on the
creation time of a test document.

The centroid of a class is defined as the average value of all
its training examples. When classifying a new document d′,
Rocchio associates it to the class represented by the centroid
closest to d′. In order to make Rocchio a lazy classifier, we
have to change the separation boundaries of classes accord-
ing to the temporal weights produced by our function.

Hence, it needs to calculate each Rocchio’s class centroid
based on the creation time pr of a test document d′. Con-
sider the set of training documents d of class c. This set can
be partitioned into subgroups of documents created at the
same temporal distance δ from pr, i.e., subgroups of docu-
ments created at a temporal distance of 1 or −1 , 2 or −2,
and so on. The centroid −→µ c for class c is defined by weight-
ing the documents vector representations with the score pro-
duced by the temporal function TWF (δ), obtained using the
temporal distance δ between the creation time point of d and
d′. Thus, a centroid −→µ c is given by:

−→µ c =
1

‖Dc‖

X

d∈Dc

X

δ∈∆

−→
dδ · TWF (δ)

!

,

where Dc is the number of documents in class c, ∆ is the
set of all possible temporal distances between the training

documents and the test document d′, and
−→
dδ ∈ Dc is a

training document with temporal distance δ from d′.
This approach redefines the centroid’s coordinates in the

vectorial space considering document’s representativeness on
class c w.r.t. the reference time point pr. Both training and
classification procedures are presented in Algorithm 1.

Algorithm 1 Rocchio-TWF-Doc: Rocchio with Temporal
Weighting on Documents

1: function Train(C, D)
2: Dc,δ ← {d : 〈d, 〈c, δ〉〉 ∈ D}

3: −→µ c ←
1

‖Dc‖

P

d∈Dc

P

δ∈∆

−→
dδ · TWF (δ)

!

4: return {−→µ c : c ∈ C}

5: function Classify({µc : c ∈ C}, d′)

6: return arg maxc cos(−→µ c,
−→
d′)

KNN KNN is a lazy classifier that assigns to a test do-
cument d′ the majority class among those of its k nearest

neighbor documents in the vector space. Determining the
test document’s class from the k nearest neighbors training
documents may not be ideal in the presence of term-class re-
lationships that vary considerably over time. To deal with it,
we apply the proposed temporal weighting function during
the computation of similarities among d′ and the documents
in the training set, aiming to select the closest documents,
in terms of both similarity and temporality.

Let s be the cosine similarity between a training document
d and d′. If d is similar to d′ but is temporally distant,
then it is moved away from d′, reducing the probability of
being among the k nearest documents of d′. Let TWF (δ) be
the temporal weight associated with the temporal distance
between the time of creation of documents d and d′. Then,
the documents’ similarity is given by:

sim(d, d
′)← cos(d, d

′) · TWF (δ).

Both training and classification procedures are presented
in Algorithm 2.

Algorithm 2 KNN-TWF-Doc: KNN with Temporal
Weighting on Documents

1: function getKNearestNeighbors(D, d′, k)
2: for each d ∈ D do

3: sim(d, d′)← cos(d, d′) · TWF (δ)
4: priorityQueue.insert(sim, d)

5: return priorityQueue.first(k)

6: function Classify(D, d′, k)
7: knn← getKNearestNeighbors (d′, D, k)
8: return {arg maxc

P

c

knn.nextDoc(c)}

Näıve Bayes Näıve Bayes is a probabilistic learning me-
thod that aims to infer a model for each class, assigning to d′

the class associated to the most probable model that would
have generated d′. Here we adapt the Multinomial Näıve
Bayes approach [18], since it is widely used for the proba-
bilistic text classification. Similarly to the previously defined
“temporal weighting on documents” approaches, here we ap-
ply the temporal weighting function on the information used
by the learning method, namely the relative frequencies of
documents and terms, as follows:

P (d′|c) = η·

P

p(Ncp · TWF (δ))
P

p(Np · TWF (δ))
·
Y

t∈d′

P

p(ftcp · TWF (δ))
P

p

P

t′∈V

(ft′cp · TWF (δ))
,

where η denotes a normalizing factor, Ncp is the number
of training documents of D assigned to class c and created
at time point p, Np is the number of training documents
created at time point p, ftcp stands for the frequency of oc-
currence of term t in training documents of class c that were
created on time point p and, finally, δ denotes the temporal
distance between time point p and the creation time of d′.

The main goal of this strategy is to reduce the impact
that temporally distant information have when estimating a
posteriori probabilities. Algorithm 3 presents this strategy.

4.2 Temporal Weighting on Scores
A more sophisticated approach to exploit the temporal

weighting function considers the “scores” produced by the
traditional classifiers, as listed in Algorithm 4. By score we
mean: (i) the smallest distance from the test document d′

to a class centroid for Rocchio; (ii) the smallest sum of the

Algorithm 3 Näıve Bayes TWF-Doc: Näıve Bayes with
Temporal Weighting on Documents

1: function Classify(D, d′)

2: aPriori[c]←
P

p(Ncp·T WF (δ))
P

p(Np·TW F (δ))

3: termCond[c]←
Q

t∈d′

P

p(ftcp·T WF (δ))
P

p
P

t′∈V
(f

t′cp
·T WF (δ))

4: return {arg maxc η · aPriori[c] · termCond[c]}

distances of the K-nearest neighbors to document d′ assigned
to class c in the case of KNN; or (iii) the probability to
generate d′ with the model associated to some class c for
Näıve Bayes. From now on, we refer to this approach as
temporal weighting on scores.

Let C and P be the set of classes and creation time points
of the training documents. First, each training document
class c ∈ C is associated with the corresponding creation
time point p ∈ P, generating a new class defined as 〈c, p〉.
Then, we use a traditional classification algorithm to gener-
ate scores for each new class 〈c, p〉. Note that this scenario
isolates term-class relationship variations, since it considers
only one time point. To decide to which class c the do-
cument d′ should be assigned to, we sum up all the scores
〈c, p〉, for all pr ∈ P, weighting them by the TWF (δ), where
δ = p − pr corresponds to the temporal distance between p

and the creation moment of d′. At the end of this process,
d′ will be assigned to the class c with highest score, as listed
in Algorithm 4.

Algorithm 4 TWF-Sc: Temporal Weighting on Scores

1: function Classify(d′, C, P, D)
2: for each c ∈ C do

3: for each p ∈ P do

4: c′ ← 〈c.p〉
5: score[c]+ =TraditionalClassifier(d′, D, c′) ·TWF (δ)

6: return {arg maxc score}

5. RESULTS
In order to evaluate the impact that the proposed TWF

has on the classification task, we evaluate both the tradi-
tional and temporally-aware versions of Rocchio, KNN and
Näıve Bayes in the ACM-DL and Medline collections, and
contrast them. The methods were compared using two stan-
dard information retrieval measures: Accuracy and macro
average F1 (MacroF1). While the Accuracy measures the
classification effectiveness over all decisions, the MacroF1

measures the classification effectiveness for each individual
class and averages them. All experiments were executed us-
ing a 10-fold cross-validation [1] procedure considering train-
ing, validation and test sets. The parameters were set using
the validation set, and the effectiveness of the algorithms
measured in the test partition.

5.1 Parameter settings
In order to run the experiments, two important parame-

ters had to be set: the value of k for KNN and the scaling
factor β.

We first performed some experiments with KNN to de-
fine the value of k. This parameter significantly impacts
the quality of classifier, and must be carefully chosen. Four
values were tested for each version of the traditional and
temporally-aware algorithms: 30, 50, 150, and 200. For the
traditional version of the algorithm k = 30 presented better
results, while for both temporally-aware versions of KNN

the best value of k was 50. The intuition for the tradi-
tional KNN to perform better with smaller values of k is
that, as the number of neighbors increases, the variation on
term-class relationships also increases, and the probability
of misclassification increases. When considering temporal
information by means of the proposed temporal weights, in
contrast, more consistent information becomes available, al-
lowing a more accurate model.

As discussed in Section 4, the TWF scale must be compat-
ible with the classifiers scores, ensuring that it effectively im-
proves the classifier’s decision rules without dismissing them.
We empirically tested three values for β: 1, 10, and 100. The
best value of each version of each classifier was considered.
For Rocchio and KNN, the best results were obtained with
β = 1. For Näıve Bayes, the best value was β = 10. This is
due to the multiplicative nature of this classifier: many con-
ditional probabilities are multiplied, leading to even smaller
values.

5.2 Experiments
After setting the parameters, we perform experiments com-

paring the traditional and the proposed temporally-aware
versions of Rocchio, KNN and Näıve Bayes. The results
for the ACM-DL and Medline collections are reported in
Tables 4 and 5. In both tables, each line presents the re-
sults achieved by the versions of the classifiers identified in
the first row and column. The values obtained for MacroF1

(“macF1”) and accuracy (“acc.”) are reported, as well as
the percentage difference between values achieved by the
temporally-aware methods and the traditional version of the
classifiers. This percentage difference is followed by a sym-
bol that indicates whether the variations are statistically
significant according to a 2-tailed paired t-test, given a 99%
confidence level. N denotes a significant positive variation,
• a non significant variation and H a significant negative
variation.

As we can see in Tables 4 and 5, all modified versions
of Rocchio and KNN achieved better results than the base-
line in ACM-DL. In Medline, the versions on score achieved
gains, while the versions on documents were statistically the
same as the baseline. In particular, Rocchio with TWF on
scores presents the most significant improvements in both
collections, with gains up to +18.87 and +11.46 for MacroF1

and Accuracy, respectively. Similarly, KNN with TWF on
scores achieves the best results among all KNN variations,
with gains of +8.85% and +3.80% for MacroF1 and Accu-
racy in the ACM-DL collection. In the case of Rocchio, the
improvements achieved using the TWF can be explained by
the fact that, in the traditional version, the documents are
summarized in a unique representative vector (centroid), ag-
gregating documents from distinct creation time points, and
affecting the prediction ability of the classifier. In the case of
KNN, the definition of class boundaries is done considering
each training document independently. KNN assumes that
documents of same class are located close by on the vecto-
rial space. By using the TWF, the k nearest documents are
reorganized, and the most temporally relevant are placed
closer to the example being classified.

The Näıve Bayes with TWF on documents presents better
results for MacroF1 on both ACM-DL and Medline, and bet-
ter Accuracy in Medline. Note that the best improvement
was achieved in MacroF1, pointing out that this strategy
effectively reduces the Näıve Bayes bias towards the most

Algorithm Rocchio KNN Näıve Bayes
Metric macF1(%) acc.(%) macF1(%) acc.(%) macF1(%) acc.(%)

Baseline 55.12 66.42 61.80 72.29 57.33 73.69
TWF 57.24 68.64 63.40 73.98 60.78 74.14

on documents (+3.85) N (+3.34) N (+2.59) N (+2.34) N (+6.02) N (+0.61) •
TWF 59.07 71.54 64.18 74.56 40.62 48.76

on scores (+7.17) N (+7.71) N (+3.85) N (+3.14) N (-41.14) H (-51.13) H

Table 4: Results obtained when incorporating TWF to Rocchio, KNN, and Näıve Bayes – ACM-DL

Algorithm Rocchio KNN Näıve Bayes
Metric macF1(%) acc.(%) macF1(%) acc.(%) macF1(%) acc.(%)

Baseline 55.36 70.17 73.33 84.63 76.81 84.69
TWF 56.21 70.83 73.94 84.07 81.58 87.48

on Documents (+1.53) • (+0.94) • (+0.83) • (+0.66) • (+6.21) N (+3.29) N

TWF 65.81 78.21 76.82 87.01 51.54 48.02
on scores (+18.87) N (+11.46) N (+4.54) N (+2.81) N (-49.03) H (-76.36) H

Table 5: Results obtained when incorporating TWF to Rocchio, KNN, and Näıve Bayes – Medline

frequent classes. However, in contrast with Rocchio and
KNN, the Näıve Bayes with TWF on scores performs poorly
in both collections. We attribute this to two major weak-
nesses of traditional Näıve Bayes version. First, when facing
skewed data distributions, Näıve Bayes unwittingly prefers
larger classes over others, causing decision boundaries to be
biased. Second, when data is scarce, there is not enough
information to perform accurate estimates, leading to bad
results.

The skewness of data distribution among classes 〈c, p〉 can
be quantified by the Coefficient of Variation CV = σ

µ
of their

sizes, where σ and µ stand for the standard deviation and
mean. To explore the impact of data skewness on Näıve
Bayes, we sampled MedLine, creating two sub-collections
composed by the least and most frequent classes 〈c, p〉, min-
imizing data skewness. While the entire collection presents
CV = 1.33, the sub-collections with the least and most fre-
quent classes present CV equal to 0.57 and 0.43, respec-
tively. As we can observe in Tables 5 and 6, the greater the
CV, the worse are the results.

ACM-DL has an even more skewed data distribution over
each time point, preventing us to sample it in sub-collections
with smaller CV. Figure 2 shows that in the ACM-DL col-
lection data scarcity is also prominent, contributing to the
poor performance. Notice that 70% of classes 〈c, p〉 have
less than 100 documents, a number too low to guarantee
accurate estimates.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

R
el

at
iv

e
Fr

eq
ue

nc
ie

s
(%

)

Size

Figure 2: 〈c, p〉 sizes – ACM-DL

As observed, using TWF on scores in most cases led to
better results than those applying TWF on documents. We
believe this is because, in many applications, terms present
distinct evolutive patterns, and the proposed function ne-
glects this fact. Hence, when the temporal TWF is ap-
plied on documents, all terms are multiplied by the same
score (i.e., using a fine-grained representation of the docu-
ment), given in function of the temporal distance δ. Thus,
we consider an uniform evolution among terms. In contrast,
the TWF on scores minimizes this problem, as it applies

the score in a coarse-grained representation of a document.
Hence, one could argue that the TWF is more suitable to the
“on scores”approach. The definition of a temporal weighting
for each term independently is left for future work.

Finally, we also compared the best version of the meth-
ods previously proposed, i.e., KNN with TWF on scores and
Näıve Bayes with TWF on documents, to the state of the art
classifier Support Vector Machine [8], in terms of effective-
ness (classification quality) and efficiency (execution time).
We run an efficient SVM implementation, SVM Perf [9],
which is based on the maximum-margin approach and can
be trained in linear time. We used an one-against-all [18]
methodology to adapt binary SVM to multi-class classifi-
cation, since the collections present 11 (ACM-DL) and 7
(MedLine) classes. The results are presented in Table 7.
For ACM-DL collection, the significant gains are of 3.74%
and 2.66% in macroF1 and accuracy, respectively. For Med-
Line collection, the most significant gains are of 12.87% and
5.06% in macroF1 and accuracy, respectively. Considering
that SVM is a state of the art classifier, and that both col-
lections are very unbalanced (which significantly difficulties
classification), our results evidence the quality of the pro-
posed solution, with better performance.

6. CONCLUSION AND FUTURE WORK
This work discussed the impact that temporal effects may

have in ADC, and proposed two new strategies for instance
weighting that leads to more accurate classification. We
started by proposing a methodology to model a Temporal
Weighting Function (TWF) that captures changes in term-
class relationships for a given period of time. For our real
datasets, we showed that TWF follows a lognormal distri-
bution, whose parameters may easily be tuned using statis-
tical methods. In order to incorporate this TWF to classi-
fiers, we presented two approaches: TWF on documents and
TWF on scores. TWF on documents weights each training
document by the TWF according to its temporal distance
to the test document. TWF on scores, in contrast, takes
into account scores produced by the traditional classifiers
on scenarios without temporal variability on term-class re-
lationships, performing a weighted sum of them, where the
weights come from the TWF. Both strategies were incorpo-
rated to three traditional classifiers, namely Rocchio, KNN,
and Näıve Bayes.

Results with the traditional versions of these classifiers
and the temporally-aware ones showed that considering tem-
poral information significantly improves the results of the

Näıve Bayes Least frequent classes 〈c, p〉 Most frequent classes 〈c, p〉
Metric CV macF1(%) acc.(%) CV macF1(%) acc.(%)

Baseline
0.57

87.32 88.10
0.43

91.09 91.92
TWF 92.03 92.21 93.19 93.86

on Scores (+5.40) N (+4.66) N (+2.31) N (+2.12) N

Table 6: Results obtained for the least and most frequent classes 〈c, p〉 sampling for Näıve Bayes – Medline

Collection ACM-DL Medline
Metric macF1(%) acc.(%) Time (s) macF1(%) acc.(%) Time (s)
SVM 60.07 73.03 4200 72.28 83.27 1300000

KNN with 64.18 (+6.84) 74.56 (+2.09)
62

76.82 (+5.90) 87.01 (+4.49)
4757

TWF on scores N N N N

Näıve Bayes with 60.78 (+1.18) 74.14 (+1.52)
51

81.58 (+12.87) 87.48 (+5.06)
2840

TWF on documents • • N N

Table 7: Results obtained when adding TWF on scores to KNN and TWF on Documents to Näıve Bayes
versus SVM for both collections

traditional classifiers. Also, both temporally-aware KNN
and Näıve Bayes achieved better results than SVM, with
better performance. Considering that SVM is a state of the
art classifier, and that both collections are very unbalanced,
our results evidence the quality of our solution, coupled with
an efficient implementation.

Given the results obtained when comparing SVM to the
temporal versions of KNN and Näıve Bayes, as a future
work, we will incorporate temporal information to the SVM
classifier, by defining kernel functions that use the proposed
TWF. We also plan to refine our TWF, in order to account
for distinct evolutive patterns that terms may present, by
means of a more sophisticated statistical analysis. More-
over, similarly to time, social and geographical aspects may
induce variations on term-class relationships, and we will
also explore those dimensions in order to achieve an even
better classification quality.

7. REFERENCES
[1] L. Breiman and P. Spector. Submodel selection and

evaluation in regression – the x-random case.
International Statistical Review, 60:291–319, 1992.

[2] N. H. M. Caldwell, P. J. Clarkson, P. A. Rodgers, and
A. P. Huxor. Web-based knowledge management for
distributed design. IEEE Intelligent Systems,
15(3):40–47, 2000.

[3] D. B. Clarkson, Y.-a. Fan, and H. Joe. A remark on
algorithm 643: Fexact: an algorithm for performing
fisher’s exact test in r x c ACM Trans. Math. Softw.,
19(4):484–488, 1993.

[4] W. W. Cohen and Y. Singer. Context-sensitive
learning methods for text categorization. ACM Trans.

Inf. Syst., 17(2):141–173, 1999.

[5] S. K. Crow EL. Log-normal distributions: Theory and

application. New York: Dekker, December 1988.

[6] P. E. D’Agostino R.B. Tests for departure from
normality. Biometrika, 60:613–622, 1973.

[7] G. Folino, C. Pizzuti, and G. Spezzano. An adaptive
distributed ensemble approach to mine
concept-drifting data streams. In ICTAI ’07, Volume

2, pages 183–188, Washington, DC, USA, 2007. IEEE
Computer Society.

[8] T. Joachims. Making large-scale support vector
machine learning practical. Advances in kernel

methods: support vector learning, pages 169–184, 1999.

[9] T. Joachims. Training linear svms in linear time. In
Proc. of the 12th ACM SIGKDD Conference, pages
217–226, New York, NY, USA, 2006. ACM.

[10] Y. S. Kim, S. S. Park, E. Deards, and B. H. Kang.
Adaptive web document classification with mcrdr. In
ITCC ’04, Volume 2, page 476, Washington, DC,
USA, 2004. IEEE Computer Society.

[11] R. Klinkenberg. Learning drifting concepts: Example
selection vs. example weighting. Intell. Data Anal.,
8(3):281–300, 2004.

[12] R. Klinkenberg and T. Joachims. Detecting concept
drift with support vector machines. In P. Langley,
editor, ICML ’00, pages 487–494, Stanford, US, 2000.
Morgan Kaufmann Publishers, San Francisco, US.

[13] J. Kolter and M. Maloof. Dynamic weighted majority:
A new ensemble method for tracking concept drift.
Technical report, Department of Computer Science,
Georgetown University, Washington, DC, June 2003.

[14] S. Lawrence and C. L. Giles. Context and page
analysis for improved web search. IEEE Internet

Computing, 2(4), 1998.

[15] M. M. Lazarescu, S. Venkatesh, and H. H. Bui. Using
multiple windows to track concept drift. Intell. Data

Anal., 8(1):29–59, 2004.

[16] E. Limpert, W. A. Stahel, and M. Abbt. Log-normal
distributions across the sciences: Keys and clues.
BioScience, 51(5):341–352, 2001.

[17] R. Liu and Y. Lu. Incremental context mining for
adaptive document classification. In Proc. of the 8th

ACM SIGKDD, pages 599–604. ACM Press, 2002.

[18] C. D. Manning, P. Raghavan, and H. Schtze.
Introduction to Information Retrieval. Cambridge
University Press, New York, NY, USA, 2008.

[19] F. Mourao, L. Rocha, R. Araújo, T. Couto,
M. Gonçalves, and W. Meira Jr. Understanding
temporal aspects in document classification. In Proc.

of the WSDM ’08, 2008.

[20] L. Rocha, F. Mourao, A. Pereira, M. A. Gonçalves,
and W. Meira Jr. Exploiting temporal contexts in text
classification. In Proc. of the CIKM ’08, 2008.

[21] M. Scholz and R. Klinkenberg. Boosting classifiers for
drifting concepts. Intell. Data Anal., 11(1):3–28, 2007.

[22] A. Tsymbal. The problem of concept drift: Definitions
and related work. Technical report, Department of
Computer Science, Trinity College, Dublin, Ireland,
December 2004.

[23] G. Widmer and M. Kubat. Learning in the presence of
concept drift and hidden contexts. Machine Learning,
23(1):69–101, 1996.

