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Nonparametric Detection of Signals by Information
Theoretic Criteria: Performance Analysis and an

Improved Estimator
Boaz Nadler

Abstract—Determining the number of sources from observed
data is a fundamental problem in many scientific fields. In this paper
we consider the nonparametric setting, and focus on the detection
performance of two popular estimators based on information
theoretic criteria, the Akaike information criterion (AIC) and min-
imum description length (MDL). We present three contributions
on this subject. First, we derive a new expression for the detection
performance of the MDL estimator, which exhibits a much closer
fit to simulations in comparison to previous formulas. Second, we
present a random matrix theory viewpoint of the performance of the
AIC estimator, including approximate analytical formulas for its
overestimation probability. Finally, we show that a small increase
in the penalty term of AIC leads to an estimator with a very good
detection performance and a negligible overestimation probability.

Index Terms—Information theoretic criteria, performance anal-
ysis, random matrix theory, source enumeration.

I. INTRODUCTION

D ETECTION of the number of sources measured by an
array of passive sensors is a fundamental problem in sta-

tistical signal processing, which has received considerable at-
tention in the past 20 years, see [3], [5], [24], [27], [29], [32],
and [33]. In the nonparametric setting, where no assumptions
on the array manifold or on the desired signal waveforms are
made, two of the most common estimators for this problem are
the AIC and the MDL estimators, both derived from informa-
tion theoretic considerations [29]. Information theoretic criteria
have also been used to derive estimators in parametric settings,
where the array manifold is assumed known, as in [28] and [30],
or when other information is available, such as explicit knowl-
edge of the waveform of the desired signal or some shift invari-
ance properties of the sensor array response, as in [9] and [10].
Most of these estimators require the eigendecomposition of the
sample covariance matrix. We note that in certain parametric
settings, this step can be avoided, leading to more computation-
ally efficient estimators, see, for example, [11].

In this paper, we focus on the detection performance of the
original AIC and MDL estimators as proposed in [29]. In partic-
ular, we analyze the performance of these estimators in the non-
parametric setting, where no assumptions are made neither on
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the array manifold, nor on the desired signal waveforms. While
some of the techniques employed in our analysis could poten-
tially be used to analyze more sophisticated estimators, such
analysis is beyond the scope of the current paper.

A. Problem Formulation

We consider the standard model for signals impinging on an
array of sensors,

(1)

where is the complex observation vector received at the
sensors, is the steering matrix, composed

of linearly independent vectors, is a vector containing
the zero mean random signals and is a -dimensional complex
Gaussian white noise vector. The parameter is the unknown
noise variance.

We assume the signals have a full rank covariance matrix
(e.g., there are no fully correlated signals), and denote by

the noise-free population signal eigen-
values. That is, the eigenvalues of the population covariance ma-
trix of are

(2)

For simplicity of the analysis and without loss of generality, we
assume that for the rest of this paper. Furthermore, for
the analysis of the MDL estimator we assume that the smallest
signal eigenvalue has multiplicity one

or equivalently ), and as described explic-
itly below, it is well separated from the next eigenvalue. The
smallest signal eigenvalue will have multiplicity one, for ex-
ample, whenever the emitting sources are at markedly different
distances from the sensors. Our analysis can be generalized to
the case of multiplicity larger than one, or to two signal eigen-
values which are not well separated, but these extensions are
beyond the scope of this paper.

Let denote i.i.d. observations from the model
(1). The problem of interest is to determine the number of
sources . In the nonparametric setting, where no knowl-
edge of the desired signal waveforms is assumed, and no
assumptions on the steering matrix are made beyond it being
of rank , most methods to perform this task use the eigen-
values of the sample covariance matrix

of the observations, see [31] for a review.
Some of the most common nonparametric estimators for the
number of signals are based on information theoretic criteria
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[29], [32]. In this paper, we consider the MDL and AIC esti-
mators, given by

(3)

and

(4)

where

Note that these two estimators differ only by their penalty terms
for AIC, and for MDL. Also

note that our definition of and is slightly dif-
ferent from the standard notation in the literature, as for con-
venience later on, we divide these terms by (which does not
change the estimate of the number of sources).

The main focus of this paper is on the performance analysis
of these two estimators

In particular, we focus on the underestimation probability of
MDL and overestimation probability of AIC by exactly one
signal, as these are the leading terms governing their respective
detection performances for large sample sizes.

B. Previous Work

Various works analyzed the performance of these two esti-
mators, see [7], [20], [34], and [35]. The MDL estimator was
proven to be strongly consistent [36]

For finite sample sizes, it was observed empirically that the main
source of error in the MDL estimator is underestimation of the
number of signals by exactly one signal. Following this obser-
vation, both [7] and [35] studied the properties of

(5)

Asymptotically as this random variable follows a
Gaussian distribution with some mean and standard
deviation , where both of these quantities depend on the
parameters , , and . It readily follows that

(6)

where is the cumulative dis-
tribution function of a standard Gaussian. Both references de-
rived the following asymptotic approximations for the parame-
ters and

(7)

(8)

In [35, Fig. 4] and in [7, Fig. 2] it is suggested that these formulas
are in very close agreement with simulation results.

The performance of the AIC estimator was also studied in var-
ious works, see [15], [35] and references therein. It was shown
that its main source of error is model order overestimation by
exactly one signal

(9)

where is given by

(10)

and . In [34] and [35], expressions for
this overestimation probability were derived, which require
numerical evaluation of a possibly high dimensional integral
(although [34] also presented approximations to these high di-
mensional integrations). Both simulations and theory show that
for number of sensors the overestimation probability of
AIC for complex valued signals is nonnegligible, of the order
of 5%–10%.

II. MAIN RESULTS

In this paper we present three main contributions related to the
AIC and MDL estimators. First, regarding the MDL estimator,
we show that despite the above results, (6) for MDL’s detec-
tion performance with given by (7) is not as accurate as
claimed. We explain the source of this discrepancy and derive a
new more accurate formula which provides a much better fit to
simulations. Our first main result is the following lemma.

Lemma 1: Assume has multiplicity one, and
. Then, an accurate expression

for the detection performance of the MDL estimator is given by
(6), but with a modified expression for as follows [see
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(11) at the bottom of the page], where for real valued
signals and noise, and in the complex valued case.

Note that the difference between (7) and the new formula (11)
are the additional terms, neglected in the calculation
of the expectation in previous works. We
note that independent of our work, a similar observation was
made recently in [8]. While the underlying analysis is similar,
our results are different as we obtain an explicit formula for
the correction terms, (11), whereas [8] require the numerical
solution of some nonlinear equations.

We now show that for practical values of , and signal
eigenvalues, these terms are nonnegligible. To this end,
assume is large and perform a Taylor expansion of the loga-
rithms in (11). This gives, up to terms

(12)
Note that the second term in (12) is ,
which is small with respect to the first term if .
Hence, for reasonable values of (say , for
which ), the difference is ap-
proximately , which is nonnegligible in
comparison to the difference in the penalty term of MDL,

. Further, for , from
(8) it follows that . Hence, the change
in the number of standard deviations due to these terms is

, which again
may be significant for small signal strengths, see Section V for
a numerical example.

The second contribution of this paper is a random matrix
view of the overestimation probability of the AIC estimator. We
present a relation between this probability and the distribution
of the largest eigenvalue of a Wishart matrix with identity co-
variance, and obtain the following result.

Lemma 2: Let be i.i.d. observations from (1)
with signals, noise variance , and noise-free signal
eigenvalues . Let be the solution
of

(13)
and define

(14)

In addition, let be a Wishart matrix with identity covariance
matrix and parameters and , and let denote its
largest eigenvalue.

Then, for , in the joint limit as both with
, an approximate expression for the overestimation

probability of the AIC estimator in the presence of signals is
given by

(15)

where is the Tracy-Widom distribution of order , and
for real valued noise or for complex valued noise. The
centering and scaling parameters and are given by
(25), (26) below.

There are two key points in (15), beyond its possible use as
an approximate expression for the overestimation probability of
the AIC estimator. First, it shows that the overestimation prob-
ability is asymptotically independent of the signal eigenvalues.
Second, and perhaps more importantly, it provides a novel in-
sight, from a random matrix point of view, of why this overesti-
mation probability is nonnegligible for practical values of , .
Consider, for example the case of no signals, , and assume

is large, so that . A Taylor expansion with respect to
in (13) gives that

(16)

According to (14) and (15), the condition for AIC to overesti-
mate the number of signals is

But, as is well known from random matrix theory [13], the
largest eigenvalue of a pure noise covariance matrix is

, which is comparable to the overesti-
mation threshold . Thus, for finite small number of sen-
sors , the penalty term of AIC is not sufficiently large
for this event to have negligible probability. We stress that the

(11)
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above is only an approximate analysis, whose purpose is to pro-
vide insight, rather than exact results. In Lemma 3, we provide
an explicit nonasymptotic bound on the overestimation proba-
bility for a family of modified AIC estimators.

Since the AIC estimator has a nonnegligible model order
overestimation probability, an interesting question is what is a
sufficient penalty term that would yield a negligible probability
of overestimation for large sample sizes and typical number
of sensors, . As already discussed in the original
paper by Wax and Kailath [29], (see also [36] for a corrected
analysis), any penalty term of the form with an
increasing function such that but

as sample size , leads to an asymptot-
ically consistent estimator. One solution is of course offered
by the MDL estimator with penalty term .
However, this penalty is too large and leads to poor detection
performance at low SNR, see [4], [17], and [35].

In the third contribution of this paper, we show that even a
small increase in the penalty term of the original AIC estimator
is sufficient to obtain a new nonparametric estimator for the
number of sources, with both a high detection performance at
low SNR and a negligible overestimation probability. In more
detail, we consider a modified AIC estimator of the form

(17)

whose penalty term depends on a yet unspecified constant .
This specific form is chosen so that the difference in the penalty
terms in is , which will
turn out to be convenient for the analysis later on. Note that
for this estimator has a penalty term comparable to that
of the original AIC estimator, and so we naturally focus on
values . The following lemma provides a nonasymptotic
quantitative bound for the overestimation probability of this
modified AIC estimator, and shows that a penalty constant
as small as is sufficient to obtain a practically zero
overestimation probability.

Lemma 3: Consider the modified AIC estimator (17) with
constant . In the presence of pure noise with no signals

, this estimator has a negligible overestimation prob-
ability which can be bounded by an explicitly computable ex-
pression. Analysis of the resulting expression for large gives
the following approximate bound which holds for any value of

(18)

In addition, for a single signal to be detected with probability
at least 1/2 by this estimator, its noise-free eigenvalue must be
larger than , where

(19)

For comparison purposes, to detect the same signal with proba-
bility at least 1/2 by the MDL estimator, its eigenvalue must be
larger than , where

(20)

Hence, with a penalty coefficient as small as this modi-
fied AIC estimator enjoys both a much improved detection per-
formance in comparison to MDL, together with a negligible
overestimation probability. For example, for ,
and the bound (18) is of the order of

. In practice, this bound is highly conservative and the ac-
tual overestimation probability is orders of magnitude smaller,
see Section V for simulation results. Finally, we mention that
if one would like the estimator to also be strongly consistent
( as ), then following the analysis in [29],
this can be achieved with a sample-dependent penalty term, such
as .

III. MATHEMATICAL PRELIMINARIES

To derive approximate expressions for the overestimation and
underestimation probabilities of the AIC and MDL estimators,
we shall use the following results regarding the distribution of
sample eigenvalues of both “signal plus noise” covariance ma-
trices or of pure noise covariance matrices.

The following theorem characterizes the asymptotic variance
and bias of sample eigenvalues. The expression for the variance
is well known, see, e.g., Anderson’s book [1, ch. 13]. The ex-
pression for the bias, due to interaction terms with other eigen-
values, was first derived by Lawley [18].

Theorem 1: Let denote the sample eigenvalues
of a covariance matrix of multivariate real or complex
valued Gaussian observations . Let denote
the (population) eigenvalues of . For each such that has
multiplicity one, asymptotically in

(21)

(22)

with for real or complex valued samples, respectively.
The following theorem, proven in [12] and [13] for com-

plex or real valued noise matrices, respectively, characterizes
the asymptotic distribution of the largest eigenvalue of a pure
noise matrix.

Theorem 2: Let denote the sample covariance matrix of
pure noise observation vectors distributed . In the joint
limit , with , the distribution
of the largest eigenvalue of converges to a Tracy-Widom
distribution. That is, for every

(23)

where for real valued noise and for complex-
valued noise. The centering and scaling parameters, and

, respectively, are functions of and only.
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Furthermore, with carefully constructed expressions for
and , the convergence rate to the Tracy-Widom distribution
is . In particular, for

(24)

For real valued observations, the following formulas provide
convergence rate, see [21]

(25)

(26)

For complex valued observations, similar, though more involved
expressions appear in [6], Theorem 2.

The last result we shall use is the following theorem, which
provides a nonasymptotic bound on large deviations of the
largest eigenvalue of a pure noise matrix for finite values of

(see [19, Eq. (2.4)]):
Theorem 3: Let be the largest eigenvalue of a covari-

ance matrix of complex multivariate Gaussian observations
distributed . Then the following nonasymptotic bound
holds for all values of ,

(27)

where

(28)

with , , and .

IV. ANALYSIS OF MDL AND AIC DETECTION PERFORMANCE

In this section, we prove Lemmas 1–3 from Section II. Fol-
lowing [7] and [35], we assume the performance of the MDL
estimator is governed by the underestimation probability by ex-
actly one signal. Thus, we start our analysis with the random
variable , given by (5). We
prove the following result, from which Lemma 1 follows.

Lemma 4: Let denote i.i.d. observations from
(1) with signals, noise variance and noise-free signal
eigenvalues . Define

Then, up to an error [see (29) at the bottom of the page].
This expression depends on all signal eigenvalues. However, as-
suming , and approximating

(30)

gives the expression in (11) in Lemma 1.
Remark 1: By a similar analysis it is possible to derive the

correction term to in (8). However, this requires
considerable more tedious algebraic calculations and is hence
omitted. Also, note that the correction term to
does not change the value of where ,
since according to (6), this value is determined by the condition

.
Remark 2: The proof of this lemma uses Theorem 1 regarding

the bias of sample eigenvalues. Hence, while (22) and (29) are
correct asymptotically as , they provide a good approx-
imation for finite only if the eigenvalue with multiplicity one
is sufficiently separated from the other eigenvalues, see [22]. A
necessary condition is that no eigenvalue crossover (or subspace
swap) occurs. Since the sample eigenvalue corresponding to a
population eigenvalue has asymptotically Gaussian fluctua-
tions with variance , the condition for a negligible prob-
ability of eigenvalue crossover is . In
our case , and so (29) is a good approximation if

.
Proof of Lemma 4: Equation (5) contains terms of the form

for various random variables , whose distribution
depends on the number of samples , and whose variance is

. Let

(29)
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For each we make the following change of variables

where is a random variable with
some density , which in general depends on the number
of samples . Nonetheless, by construction
so that . Further, note that

.
Assuming is large, we compute the asymptotic expansion

in of the quantity via a Taylor expansion of the
logarithm function, as follows:

(31)

To apply (31) to the various random variables appearing in
in (5) we thus need to know, up to terms, the

means and variances of the following three random variables:
, and . Applying (21) and (22) of The-

orem 1 gives the equation at the bottom of the page, and

where for real valued observations and for
complex valued observations. Combining these expressions
with (31) and (5) yields the required result, (29).

We now turn our attention to the performance analysis of the
AIC and modified AIC estimators.

Proof of Lemma 2: Following [34] and [35], we assume that
the signals present are sufficiently strong so that the misdetec-
tion performance of AIC is governed by its overestimation prob-
ability by exactly one source. That is

(32)

with given by (10).

Our first goal is to show that under the conditions of the
lemma, as this probability is to leading order in

independent of the signal eigenvalues and depends only
on the eigenvalues of a random Wishart
matrix with identity covariance. To this end, we denote the
signal subspace by , and its orthog-
onal complement by , such that . Let

be a basis of whose first
vectors are the eigenvectors of the population covariance

matrix corresponding to the signal eigenvalues ,
and the remaining vectors diagonalize the projection of the
sample covariance matrix onto the noise subspace . That
is

...
. . .

...

. . .

The diagonal entries are the sample variances in
the (unknown) directions that correspond to the population
signal eigenvalues . Hence, .
The quantities are the eigenvalues of the projec-
tion of onto the noise subspace , of dimension .
Note that the projection of onto the noise subspace gives a

sub-matrix which is independent of its pro-
jection onto the signal subspace. Since this submatrix contains
no signal contributions, it is a random realization of a Wishart
matrix with identity covariance.

The matrix captures the interactions between the
signal and the noise subspaces. We consider the case ,
view this matrix as a small perturbation, and expand the eigen-
values and eigenvectors of , which correspond to the
noise subspace, in terms of the matrix (see [22, The-
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orem 2.2] for a similar analysis). We thus write for

where the expansion coefficients and are quan-
tities yet to be determined. Inserting these expressions into the
eigenvalue/eigenvector system , and equating
powers of gives linear equations for the unknown quan-
tities above. Solving these equations gives that for each

(33)

The random variable is given by

It captures, to leading order in , the interaction between the
signal subspace direction with variance and the direction

corresponding to the noise subspace eigenvalue .
Since and

, we can write

(34)

where and .
Hence, the sum in (33) can be written as

Next, we study the properties of the random variables .
By definition, each such variable is proportional to the correla-
tion coefficient between the projection of the data onto a fixed
direction and its projection onto the direction . Since
the directions and are orthogonal, the random vari-
ables are independent of . Furthermore, since the direction

is fixed and independent of the signal and noise realizations,
under the assumption of Gaussian sources and noise, the vector

is uniformly distributed on the -dimensional
unit sphere. In particular, we have that

and for .
Similarly, the properties of the random variable rele-
vant to our proof are that ,
and . Furthermore, since

, we have that
whereas for the noise eigenvalues .
Hence

(35)

where , and the zero mean random
variable is defined as follows:

Note that under the conditions of the lemma that , it
follows that and . Similarly, we
obtain up to terms

where and . Inserting
all of the above expressions into (10) the terms cancel out,
and up to terms we obtain

(36)

where the random variable is a linear combination of , for
, explicitly given by

(37)

The key point thus far is that to leading order in , the
effect of the signals is captured solely by the fluctuations
in the random variable , as all other terms in (36) de-
pend only on the eigenvalues of the noise subspace ,

. A similar conclusion was also reached
by [35], where the random variable was neglected alto-
gether. We now show that asymptotically as , the
random variable can indeed be neglected. To this end, note
that both and

. Hence,

is indeed negligible with

respect to the term in (36).
Our analysis departs from [35] by introducing the random

variable , so that

(38)

Recall that . Hence, by definition
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Inserting these expressions into (36) gives that the condition for
AIC to overestimate the number of signals is, up to

(39)
Let be the solution with equality in (39). Then, asymp-

totically in , overestimation occurs when

(40)

Thus, asymptotically, the overestimation probability of the AIC
estimator depends on the tail statistics of the ratio

of the largest eigenvalue of a Wishart matrix with identity co-
variance and parameters and to the mean of all its eigen-
values. For small values of (say ), the tail distribution
of this random variable was tabulated, see [25], and in principle
could be numerically calculated for larger values of with the
aid of a computer.

To derive an approximate explicit expression for this overes-
timation probability, we first note that similar to Theorem 2, in
the joint limit as both , it can be proven that with
the same centering and scaling parameters, as for the
largest eigenvalue

However, as discussed in [23], a more accurate expression for
tail probabilities of the ratio, with an error is

Combining this expression with (40) proves the lemma.
Proof of Lemma 3: We perform an analysis similar to the

one for the AIC estimator. Note that for the case of no signals,
there are no interactions between signal and noise eigenvalues.
Hence, the exact condition for is

(41)

where is the solution of the following equation, which de-
pends on the penalty constant ,

(42)

For future use, we note that similar to the analysis made in
(16), for large we have that .
Also, recall that the random variable is the trace of
a pure noise covariance matrix divided by its size, and is thus
distributed as a random variable.

Let be some positive number. Then, [see (43) at the
bottom of the page]. In principle, both terms on the right-hand
side (RHS) above can be computed numerically for any value
of , , , and , and one can also find the value of where
the bound attains a minimum. As we now show, the key point
is that both terms in (43) are exponentially small in .

For the first term, we use the following inequality (see [14]):

(44)

Applying this bound with and , gives
that the first term in (43) is bounded by . As
for the second term, according to Theorem 3 it is bounded
by (27), with .
To understand the dependence of this bound on the number
of sensors and on the penalty coefficient , we con-
sider in more detail the probability of an event of the form

. According to (27), this
probability is bounded by , where

Evaluating the integral gives that for any , [see (45) at the
bottom of the next page]. Hence

(46)

In our case, , and so
. Hence, combining (44), (46), and (43) gives (18).

Finally, to prove (19), we note that the condition for the mod-
ified estimator to detect a single signal with probability at least

(43)
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Fig. 1. Comparison of empirical performance of the MDL estimator to the theoretical formula (7) and to the improved formula (11). Parameters: � � �, complex
valued signals and noise (a) � � � one signal. (b) � � � two signals. (c) � � �� three signals. (d) � � ��, five signals.

Fig. 2. Analysis of the difference between (7) and (11) for �� �. (a) Difference �	� � � 
 as function of sample size for � � �, � � �� � � ���.
(b) Difference in standard deviations 	� � � 
	� as a function of sample size.

1/2 is . Similar to the analysis of the
MDL estimator, this gives

For large and small , a Taylor expansion of the logarithms
gives the approximate condition

from which (19) follows.

V. SIMULATIONS

In this section, we compare simulation results to our theoret-
ical predictions regarding the probability of misdetection of both
the MDL, the AIC and the modified AIC estimators. We start
with the MDL estimator. In Fig. 1 we show the result of com-
puter simulations for the misdetection probability of the MDL
estimator, in comparison to the theoretical prediction of (6) for

or sensors and for various numbers of signals, ei-
ther with the original expression for , (7), or with our modified
expression, (11). As shown in the figure, there is a consider-
able discrepancy between the original theoretical curve com-

puted from (7) and the empirical results, whereas the theoret-
ical curve computed with the modified expression (11) is more
accurate.

Next, we show that the difference is nonneg-
ligible for practical values of . Consider sensors, and
a single signal of strength , as in the upper
left simulation in Fig. 1. In Fig. 2(a), we plot the difference

as a function of sample size . As expected
from (12), this difference converges to . In Fig. 2(b),
we plot as a function of sample size .
Note that the difference is of the order of one standard deviation
for the values of considered. This nonnegligible difference
explains the discrepancy in Fig. 1 between the empirical sim-
ulation results and the theoretical performance curve based on
the original expression for , (7).

Next, we consider the misdetection probability of the AIC
estimator. In Fig. 3, we present the result of computer simula-
tions of the probability of overestimation of the AIC estimator,
in comparison to the theoretical prediction of (15), for
or samples as a function of the number of sensors

, and for different number of sources, . In all cases
the theoretical prediction is quite accurate with an error of up to
1%–2%.

(45)

Authorized licensed use limited to: Weizmann Institute. Downloaded on April 21,2010 at 09:56:12 UTC from IEEE Xplore.  Restrictions apply. 



NADLER: NONPARAMETRIC DETECTION OF SIGNALS 2755

Fig. 3. Comparison of empirical misdetection probability of the AIC estimator to the theoretical formula (15). Parameters: � � �, complex valued signals and
noise, each point is the average of 100 000 simulations (a) � � ���, no signals. (b) � � ���, two signals. (c) � � ����, two signals. (d) � � ����, four signals.

TABLE I
MISDETECTION PROBABILITY OF MODIFIED AIC ESTIMATOR WITH PENALTY

� � �. EMPIRICAL AVERAGE RESULTS OF 15 000 000 SIMULATIONS,
INCLUDING ONE STANDARD DEVIATION CONFIDENCE INTERVALS.

Fig. 4. Comparison of misdetection probability of various algorithms as a func-
tion of sample size �.

Finally, we consider the misdetection probability of the mod-
ified AIC estimator. Table I presents simulation results for the
probability of misdetection of the modified AIC estimator with
a penalty constant , various values for and different
number of sources. As predicted theoretically, the overestima-
tion probability is extremely small, and it slightly increases with
the number of signals , as this decreases the noise subspace di-
mension from to . Since the penalty term of the modified
AIC estimator is significantly smaller than that of the MDL esti-
mator, it enjoys a much improved signal detection performance
at low SNR, compared to the MDL estimator. We illustrate this
in Fig. 4, where we compare the misdetection probability of the
MDL, AIC, and modified AIC estimator with , as well
as the algorithm recently developed in [16], with a confidence
level of . The latter algorithm performs a sequence of
hypothesis tests for the significance of the largest eigenvalue as
arising from a signal, using results from random matrix theory,

and we thus denote it as RMT. Note that even though the modi-
fied-AIC and the RMT algorithms are not consistent, their over-
estimation probabilities are so small that on the scale of the
figure, their misdetection error appears to reach a value of zero.

VI. SUMMARY AND CONCLUSION

In this paper, we presented a statistical performance analysis
of the MDL and AIC estimators, and of a modified AIC-type
estimator with a penalty slightly larger than that of the AIC es-
timator but significantly smaller than that of the MDL estimator.
We showed that this modified AIC estimator has a much better
detection performance than MDL with a negligible probability
of overestimation.

The two key quantities used in our analysis were: i) the distri-
bution of the largest eigenvalue of a pure noise matrix; and ii) the
interaction of signal and noise eigenvalues. These quantities also
played a key role in our previous work [16], [17], where we de-
veloped a source enumeration estimator based on a sequence of
hypothesis tests and analyzed its performance and that of two
other recent estimators [24], [26].

Since source enumeration involves choosing amongst many
composite hypothesis, in general there is no universally optimal
detection procedure. Indeed, comparing the detection perfor-
mance of the modified AIC estimator, (19), with that of the RMT
estimator, (25) in [17], no estimator dominates the other over all
parameter ranges. In particular, the modified AIC algorithm may
be useful in legacy systems where only minimal changes to an
existing code can be made.

In this paper, we focused on analysis in the nonparametric
setting and relied on recent results from random matrix theory.
In a similar fashion, both analysis and development of improved
estimators in a parametric setting, with an explicit knowledge
of the array manifold, are possible, this time using results
from extreme value theory on the maxima of random pro-
cesses and fields. This analysis will be described in a separate
publication [2].
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