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Abstract

The behavior in terms of information theoretic metrics of thiscrete-input, continuous-output noncoherent
MIMO Rayleigh fading channel is studied as a function of Edabrrelations. In the low SNR regime, the mutual
information metric is considered, while at higher SNR reggnthe cutoff rate expression is employed. For any
fixed input constellation and at sufficiently low SNR, a fullgrrelated channel matrix is shown to maximize the
mutual information. In contrast, at high SNR, a fully unedated channel matrix (with independent identically
distributed elements) is shown to be optimal, under a candin the constellation which ensures full diversity.
In the special case of the separable correlation model,shévn that as a function of the receive correlation
eigenvalues, the cutoff rate expression is a Schur-conweotibn at low SNR and a Schur-concave function at high
SNR, and as a function of transmit correlation eigenvaliesgutoff rate expression is Schur-concave at high SNR
for full diversity constellations. Moreover, at sufficigntow SNR, the fully correlated transmit correlation matri
is optimal. Finally, for the general model, it is shown that bptimal correlation matrices aganeralSNR can be

obtained using difference of convex programmifgrmulation.

Index Terms

Block fading channels, noncoherent, MIMO, spatial cotrela mutual information, cutoff rate expression,

general SNR, schur-convexity, schur-concavity, globdihoization, d.c. programming, concave minimization.

. INTRODUCTION

Practical MIMO channels exhibit correlations between pgdins of the antenna elements.
It is therefore important to understand the effect of spatarelations on the channel capacity
since this helps in optimally designing the transmit ancerex antenna arrays. For this rea-
son, the effect of spatial correlations on the capacity efatherentMIMO Rayleigh fading
channel—where the channel realizations are assumed todwenkait the receiver but only the
long term statistics are known at the transmitter—is sulidieseveral papers including [1-5].
In this paper, we consider the more challengmogncoherenMIMO Rayleigh fading channel
where the transmitter and the receiver have only knowlefltfeedong term statistics and neither
has knowledge of the channel realizations.

The rationale for studying the noncoherent model is thisc&in practice the channel is not
known to the receiver at the start of communication, an mgtion theoretic formulation of the
noncoherent problem—which implicitly accounts for theawses needed for (implicit) chan-
nel estimation without constraining the transmission sahé any way—is more fundamental

than the coherent formulation. Systems that assume cdhtea@smission by arguing that the
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channel can be acquired at the receiver by the use of pitabsyassisted transmission to per-
form explicit channel estimation either (a) do not take iatwount the resources (power and
degrees of freedom) needed for pilot transmissions or (lervthey do (as they should), they in-
cur a significant loss of optimality in regimes involving shooherence times and/or low SNRs,

implying that explicit pilot-assisted channel estimatisiighly sub-optimal in these regimes.

We study the problem of noncoherent multi-antenna comnatiioic in the context of the gen-
eral spatial correlation model of [6], referred to in [2] Be Unitary-Independent-Unitary (UIU)
model, which subsumes the well knoweaparable transmit and receive correlatiomodel of
[1, 7] and thevirtual channel representatiomodel of [8]. While even the UIU Rayleigh fading
model does not capture the most general form of correlatibissviewed as a reasonable com-
promise between validity and analytical tractability. tifisation for the UIU Rayleigh fading
model is given in [9] based on physical measurements. Thicpkar case of the separable
model is justified in [1] as an approximation, while [7] inporates physical parameters like the
angle spread and antenna spacing in this model. Conseguegatbften specialize our results

to the separable model and obtain sharper results for it.

A summary of the main results in [2,3] which compare the cehtecapacity for the separable
model with transmit and receive correlations with the i.fatling model, is as follows :
1. Receive correlation reduces the capacity at every SNR.
2. ForN; < N,, transmit correlation reduces the capacity at high SNR.

3. ForN; > N,, transmit correlation increases the low SNR capacity.

The application of the theory of majorization to such protdgc.f. [1,4,5]) helps in providing
a more complete understanding of how the correlationstatiegperformance measure of inter-
est, and it aids comparison of correlated channels. Thesisah [4] is specific to the coherent
capacity of the MISO channelly > 1 and N, = 1) and it is shown that at a general SNR, the
capacity is a Schur-convex function with respect to therigkies of the transmit correlation
matrix. This means that higher transmit correlations taauligher capacity at all SNRs for the
MISO channel. In [5], it is proved that the pairwise erroripability (PEP) between every pair of
symbol matrices is a Schur-convex function of the receiveetation eigenvalues. This means
that higher correlations at the receiver result in highelP® Bt every SNR, which indicates that

higher correlations are detrimental to error probability.
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With regard to the noncoherent MIMO Rayleigh fading chanaalecent paper by Wu and
Srikant [10] shows that at asymptotically low SNR, a fullym@dated channel maximizes the
reliability function. In other SNR regimes however, litieknown about the effect of spatial
correlations on the noncoherent MIMO channel performaite main stumbling block in the
analysis of the noncoherent channel is the absence of addiosa expression for the capacity.
Indeed, the problem of finding the noncoherent MIMO capasityne of the longstanding open
problems, partial characterizations of which may be foumfor instance [11-14]. We therefore
adopt the cutoff rate for our analysis and obtain usefubinisi in this regard. The cutoff rate is a
lower bound on capacity and was previously used by [15] (hedéferences contained therein
in different contexts), to analyze and characterize odtanastellations for the peak-power con-
strained noncoherent MIMO i.i.d. Rayleigh fading channel[16], the cutoff rate expression
is used as a criterion to design constellations for the gesppwer constrained noncoherent
MIMO Rayleigh fading channel at general SNRs.

In this paper, we maximize the cutoff rate expression widpeet to the channel correlation
matrices for arbitrary but fixed signal constellations. Wsarve that the cutoff rate at suffi-
ciently low SNR behaves exactly the same way as the mutuaidnrdtion upto second order,
and hence the results hold for the mutual information as inghis regime. Our main results
are as follows :

1. At sufficiently low SNR, we prove that the mutual infornmatiand cutoff rate expression are
maximized by a fully correlated channel matrix. For the sapke model, the cutoff rate ex-

pression is thus maximized by fully correlated transmit eewkive correlation matrices. In the
separable case, we show the sharper result that the mufioihattion is in fact a Schur-convex

function of the receive correlation eigenvalues. Thiscatis that at low SNRs, it helps to have
more correlations at the receive antennas, which is in astito results in the coherent case.

2. Atasymptotically high SNR, and under a condition thauees that the constellation achieves
full diversity, we show that the cutoff rate expression isximazed by a fully uncorrelated chan-

nel matrix. In the case of the separable model, we prove thgshresult that the cutoff rate

expression is a Schur-concave function of the transmit acélive correlation matrices.

3. We show how the optimal correlation matrix may be obtaiaea general SNR, using stan-

dard global optimization formulations. In particular, wartsform such problems into standard
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global optimization problems like difference of convexddl.programming and concave mini-
mization, and indicate algorithms that obtain the globaffyimal solution.

Notation : For an integerV, Iy isanN x N identity matrix. Matrices are denoted by the
boldfaced capital letters, and vectors by bold faced srettiéls. The symbaok denotes the
Kronecker product. The matricés”, X andX* denote the transpose, complex-conjugate, and
conjugate transpose respectively. We denote the innewuptdzbtween two vectors andy
by < x,y > = x*y and the norm|x|| = /< x,x >. E[.] denotes the expectation operator.
diag(a;, as,...,ay) isanN x N diagonal matrix with diagonal elements, as, ..., ay. We

use the notation(p) to mean thatim,_., L;) = 0.

II. SYSTEM MODEL

We consider a communication system withtransmit antennas and, receive antennas. We
assume a block fading channel where the channel mEtrixt'" " is assumed to be constant
for a duration ofl’ symbols, after which it changes to an independent value clhihanel matrix
is assumed to be unknown to the transmitter and the recewlie the channestatisticsare

assumed to be known at the transmitter. The received signal i
R = ASH+W, 1)

whereS e 7> is the transmitted symbol matrix a®¥ € @”*"" is the noise matrix. Here, the
symbols{S} are normalized such thafte(SS*)] = 1, so that the average transmit power equals
7. Itis assumed tha®¥ has i.i.d. circularly symmetri€A/ (0, 1) entries. We next describe the
form of the channel matriH, which has correlated, circularly symmetric, complex gaaus

entries.

A. Unitary-Independent-Unitary (UIU) Rayleigh fading nebd
In the UIU Rayleigh fading model, the channel matrix is assdito be of the form
H=UHU, (2)

where U, and U, are the transmit and receive unitary matrices. The elenwrE$ are un-
correlated and zero-mean, circularly symmetric, compbaxsgian, but not necessarily with the
same variance. Define = veqH). Assuming that> = E[veqH)veqH)*] = A, which is a
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non-negative diagonal matrix, we have

S =Ehb'] = (U,8U)A(T, 2 U,)" 3)

Let {\;} Y~ be the eigenvalues &. The normalizations in (1) are assumed to be such that
SN = NN,

B. Separable Transmit and Receive Correlation model

For the separable transmit and receive correlation méfied,represented by
H = »/*H,2? (4)

whereH,, has i.i.d. circularly symmetri€\/ (0, 1) entries. The matriceX,; and X, are the
transmit and receive array correlation matrices, with migues{ \‘}*, and {\/}-,, respec-
tively. Substituting the eigenvalue decompositions¥hr= U;A,U; andX, = U, A, U’, we
get that

H = UHU, (5)

whereH = A;/*U7H, U, A,*. The normalizations in (1) are assumed to be suchyffat At =
N, andEfi"l Al = N,. SinceU;H,, U, has the same distribution &k,, it can be seen that with

h = veqdH), ¥ = E[hh*] = A, ® A,. We may therefore obtain the correlation matrix of
h =vedH) as

Ehh*] = (U, @ Uy)(A, ® A)(U, @ Uy)". (6)

Comparing (3) and (6), we see that the main difference betweeseparable and UIU Rayleigh
fading model is that the eigenvalue matrix of the channetetation matrix in the separable
model is a Kronecker product, while there is no such restncin the UIU Rayleigh fading
model.
C. Effective channel model and output probability densitycfion (p.d.f.)

The output of the channel in (1) using either assumption enctrannel matrix can be
written as

R = ASUHU +W. 7)
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After post-multiplying (7) byU,, denotingSU, by X, and denotinRU,. by Y, we get
Y=,AXH+N, (8)

which represents the sufficient statistics of the receiigrubd. Clearly, Etr(SS*)] = E[tr(XX*)],
and hence th@recodedconstellation{ X} satisfies the same average-power constraint as the
original constellatioS}. N has i.i.d. circularly symmetri€A/ (0, 1) entries since it has the
same distribution a8V. We may hence consider (8) to be our effective channel maddluse
the notationX to denote a constellation matrix precoded by the transniiagnmatrix. Note
that this amounts to a form of statistical beamforming whagploits knowledge of the channel
statistics at the transmitter and is not to be confused viiimoel realization dependent transmit
beamforming which is of course not feasible in the noncafitezkannel.

Applying a vec operation to (8), we get = ,/7(In, ® X)fl +n = ﬁxﬂ + n, where
y = veqY) andn = veqN). The pdf ofy conditioned onX being sent is given by

p(y|X) _ 1 6_}'*(I+’YX2X*)71y .

TN+ X EX

1. OPTIMAL CORRELATIONS ATLOW SNR

Throughout this paper, we assume our model to be a discrpte (of cardinality) and
continuous output channel over which a constellafidn} %, with corresponding prior proba-
bilities { P;}~_, is used. In this section we obtain the optimal correlatiotrives that maximize
the mutual information at sufficiently low SNR.

Rao and Hassibi [17] derive the low SNR mutual informationtfee continuous input and
continuous output channel, when the signals are subjeoet@ge and peak power constraints.
Such regularity conditions are required since otherwigegptimal signals at low SNR have
very large peak-powers. With a similar analysis tailoredht® discrete input and continuous
output channel with spatially correlated fading, a siméapression for the mutual information
can be obtained which is

liow = 7; {E[tr{(XAX*)*}] — tr{(E[XAX"])*} + o(~*). (9)
Under different regularity conditions and for more genetannels, the authors in [18] also ob-

tain the mutual information upto the second order. When fipeession for mutual information
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at low SNR in [18] is specialized to the channel model assuiméiis paper, it can be seen to
be identical to (9).

The expression fof,,,, in (9) may be rewritten as follows

2
Y * * * *
Liow = T { E Pitr(X,AX X AXT) + E Pitr(X;AX ;X ;AXY)

J

—2tr(>  PXAX]Y PijAXj»)} +o(7?)

J

2
— 7 * *\ 2 2
= 7 Xi:;ﬂﬂu{(xiz&xi — XAX) +o(7?) (10)

Let A denote the vector of diagonal elementsAgfwhich are the eigenvalues &f. Let \;
denote the' element ofA. We next maximize (10) with respect fosubject to the constraint
>N = NN,

Ilu

Theorem 1:lim,_.g by is maximized by choosing all eigenvaluesXto be zero except for

one,ieX = [0,0,..., N;N,,...,0]%, where the position of the non-zero elemaitV, depends
on the specific constellation used.
Proof: Denote thé:!” column of X, by x;, , k = 1, ..., N;N,.

. Ilow 1 * *\ 2
lim =5 = ZZZ P Ptr{(XAX; — X;AX7)?} (11)
(N
1 N¢N,. 2
= 3 Z Z P, Pjtr { Z A (XX, — xjkxj»k)} (12)
g k=1
1
- X A Y s s - | @
g ko1
Let Ay = xuXjy, — XXy, VE=1,..., N;N,.. Also, defineay; = A\ \;. We need to solve the
optimization problem max s, x,=vnve . > AN {Zi Zj Pijjjtr(AijkAijl)}
Ap>0 Vk

= max - ZZ)\k)\l ZZ P, Pitr(A;jrAi) (14)
st G55
k>

— N2N?  max _dm_ P.PAr(A;pAiy) S 15
t TZkZl V(Z%T;_l;; NtzN,? ; - J ( jk ]l> ( )
Ap>0 Vi
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which can be viewed as a convex combination of terms of tha fpr, Zj P, Pitr(Ayj.A41), Yk, 1,

with weights{ N?XZZ } Therefore, the maximum should occur when all except onbefd,,; }
are zero. The only non-zero weight (say) = N?N? corresponds to the indices that achieve
maxg; ., >, PiPjtr(AirAq). We cannot however havg; = A\ = NZN? whenk # [
since), A\, = N, N,. Therefore, we first show that the maximum occurs only when ! and

then conveniently obtain the maximum of the convex comimnat

i

< ZZ% ZnAijk 1A 17)
(2 ] m

< ZZPZ-PJ-\/Z HA%)HQ\/ZIIAEZL k (18)
% J m m

= DD npy /Al u(Ay) (19)
(]

<

J{ZZP@-P]-U(AW }{ZZPPU 2 } (20)
< max{ZZPPtr 20); ZZPPtr AZ) } (21)

The inequalities in (17) and (18) are obtained by applyirg@auchy-Schwarz inequality suc-
cessively. The inequality in (20) is obtained by recogrdzihat the geometric meaf(x) =
\/T1; is a concave function or € %, and by applying the Jensen’s inequality on (19). The
square root is well defined sin¢cg(A?) > 0 wheneverA is Hermitian, which is the case here.
Finally, (21) is obtained by using the fact thdt:b < max {a,b} for positivea,b.

The chain of inequalities leads to the conclusion thatithe;; . Zj P, Pitr(A;jsA )
occurs only wherk = [. For this maximizing index: (say), the convex combination in
(15) is maximized by choosing, = N;N, and all other eigenvalues to be zero, i&.,=

00 ... N;N, ...0]T. The maximum value of the mutual information would be
N2N27— max ZZ P, Pitr(A zak (22)
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Theorem 1 implies that faanyset of signals, at sufficiently low SNR, a channel having gust
single effective eigenchannel is optimal. Having a sindfieative channel would imply that the
effective dimensions available is one, but this enablesdmg power which is more essential at
low SNR, when there is no channel state information at theivec Placing the transmit and
receive antennas densely reduces the resolvability ofiffexeht paths in the angular domain,
thus resulting inH having more correlated entries [19]. In terms of systemgietherefore,
Theorem 1 suggests that having closely spaced transmitemeive antenna arrays results in
a higher capacity for noncoherent MIMO communications ia lthw SNR regime. This is in
contrast to the coherent MIMO scenario at high SNR, whereimiaing the number of degrees
of freedom in the channel is crucial. Similar insights asmaibtained in [10] while considering

the reliability function at low SNR.

We will need the definitions of majorization, Schur-conver &chur-concave functions from
[20] for some of the ensuing propositions. These definitiand properties are provided in

Appendix-A for the sake of completeness.

If x andy are vectors of eigenvalues of two correlation matriEgsand 3, x < y would
mean tha®:, is more correlated tha®;. This notion of majorization has been used in many
papers studying the effect of fading correlations on the KIkhannel. It provides a more
detailed characterization of the performance, and thenelps to compare two correlated chan-
nels whenever possible using their respective vectorgyeiwalues. It should be noted that the
notion of majorization need not relate any two vectors wrergeies sum up to the same value.
The results obtained, hence pertain to those vectors oheadjges that can be compared via

majorization.

The optimal correlations for the separable model may bamddaby solvingA, @ A, = A =
diag(0, ...,0, NyN,.,0,...,0). Therefore, the jointly optimal transmit and receive clatien
eigenvalues are given by, = diag0,...,0, N;,0,...,0) andA, = diag(0,...,0, N,,0,...,0)
respectively. The optimal matrices, and A, have exactly one non-zero value each and their
positions depend on the specific constellation used. Wedntre the following notation which

will be used in the rest of this paper. L&t and\, be the vectors of eigenvalues of the transmit

N,
n=11

and receive correlation matrices, with elemef§}”* | and {\" respectively. Using the

fact that for the separable model= A, ® A;, the low SNR mutual information expression can
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be simplified to the following form

Liow = ”{{Z(W} Y3 PP {(XiAX; — XAX)} +o(v?). (29)

n % J

The following propositions describe more conclusions taat be made with respect to the low

SNR mutual information as a function af. and,, for the separable model.

Proposition 1: In the separable model, the mutual information at low SNRSglaur-convex

function of \,.
Proof: Since{} ,(\")?} is a Schur-convex function o, [20], SO iS,,. [

Proposition 1 indicates that higher correlations at theiver are beneficial in the low SNR
regime. This result contrasts with results in the coheresnario, where receive correlations are
detrimental to the performance at any SNR. An intuitive arpkion for this difference is that
in the low SNR noncoherent channel, it helps the implicitroied estimation when the fading

coefficients across the receive antennas are highly ctetela

The mutual information upto second order is not a Schur-eeriunction of the transmit
eigenvalues at low SNR in general. This is because it depemdse specific signals used and
the expression is not even a symmetric functiorhof The following proposition can however

be proved by analytically maximizing (23) with respectNg for any fixedA,.

Proposition 2: The mutual information at sufficiently low SNR for the sefdeamodel is
maximized byA; = [0 0.. N, 0 0]T for anyfixed X\, where the position of the non-zero

elementV,; depends on the specific constellation used.

Proof: The proof is along similar lines to that of Theorem 1 and thiitkeare left to the

reader. [ |

IV. OPTIMAL CORRELATIONS AT HIGHERSNR REGIMES

At a general SNR, the mutual information is not known in ctbB®m. As a result we use the

cutoff rate expression as our design criterion.
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A. The cutoff rate

Consider a constellatiofiX;} -, with corresponding prior probabilities?; } ;. The cutoff

rate for the discrete input (of cardinalify) and continuous output channel is given by

Ry = rmx{-%%{E:X:BE/\WWWMﬂﬁ@}. (24)

{PY X}

For the system model given in Section Il, the argumeninek(.) in (24) is easily found in
Appendix-B to be
L4+ XAX; ) T+ X AKX

1/2
CR = —1 PP, . 25
%{22; I+ 2 (AGAX] + XAXY) } (29)

We refer toC'R in (25) as thecutoff rate expressianlt should be noted that the cutoff rate

expression is a lower bound on the mutual information at a%R.S
The next proposition is an extension of a result for the.iglthnnel by Hero and Marzetta in
[15] to the correlated channel.
Proposition 3:In the low SNR regime, the cutoff rate expression upto seavddr iny may
be expressed as
CRipy = §§:2pym«&mw—Xﬁxyym@% (26)
Proof: Refer to Appendix-ZC. ’ [
The following simple proposition shows that the low SNR dutate expression behaves
identicallyto the low SNR mutual information.
Proposition 4: At sufficiently low SNR,C' Ripw, = 3110w + 0(72).
Proof: The proposition follows by inspection of (10) and (26). [
SinceCR,,,, has the same behavior as the mutual information at suffigitow SNR, the

results in Section Il are valid for the cutoff rate expressas well.

B. High SNR

In this section, we optimize the cutoff rate expresssionigth SNR over the eigenvalues of
the correlation matrix. In the next theorem, we assume[®aiX ;] has full column rank ie. a
rank of 2}V, , for which in turnT > 2NN, is a necessary condition. These conditions are known
to be sufficient to ensure that the constellation achievegitiximum possible diversity order in

the channel [21]. IfA is of full rank, the maximum possible diversity order woulel /g, N,..
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Theorem 2:Let [X; X,] be of full column rankR V, for every paiti,; of constellation matrices.
Then, at asymptotically high SNR the cutoff rate expresssom Schur-concave function of
for \x € (0, NyN,], Vk.

Proof: Since[X; X;] is of full column rank,[X; X,]is also of full column rank. We may

write the cutoff rate expression as

* x|1/2
T4+ X, AX|? AX|!
CR = -1 P? P,P; 27
o6 Z ’ +Z T3 XAX*+XAX*) (27)
J#i
Using the identityI + AB\ = I+ BA|, we simplify CR as follows
* * /2
T+ 7 X A2 T+ X XA
CR = -1 P? P,P; J 28
o8 Z +Z M+ 71X A7 XL o A) (28)
\ J?ﬁz
* " 1/2
VXA [ XX A
~ —1 P2+ P,P; J 29
o8 Z Z 2x; XX X1, @ A)| (29)
\ J#l
/2 1/2
wx X' IAI |y 2] A
= —lo P2+ PP; 30
1= 2 A 2 IAT 0
= —log ZP2+Z PPC”‘A‘ . (31)
J#L
Now, IA\ is a Schur-convex function of for A\, > 0. The condition\,, > 0 is needed so that

|A|, which occurs in the denominator is non-zero. Thereforgest;; > 0 Vi, j and{P}-,

are all non-negative, and siné¢z) = — log(x) is a decreasing function i®, ., C'R at high
SNR is a Schur-concave function Affor A\, € (0, N;N,], Vk. [ |
By the theory of majorization and Theorem 2, we conclude #hat [1 1 ... 1]7 is the

optimal choice of the eigenvalue vector. At high SNR, Theo2 indicates that the channel
matrix should be made as close to i.i.d. as possible. Thishealseneficial effect of creating as
many independent paths as possible.

The optimal correlations for the separable model may bamddaby solvingA, @ A, = A =
diag1,1,...,1) under the assumptionthaf A\’ = N,and>" A! = N,. This implies that the

jointly optimal transmit and receive correlation eigemesd are given by, = diag(1,1,...,1)
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andA, = diag(1,1,...,1), respectively. More insightful conclusions pertainingthe sepa-
rable model can be made using the theory of majorizationchvare stated in the following
proposition.

Proposition 5: (i) At asymptotically high SNR and faainy A,, the cutoff rate expression is a
Schur-concave function oX,..

(i) Let [X; X,] be of full column rank2N; for every pairi,j of constellation matrices.
Then, at asymptotically high SNR and fany \,., the cutoff rate expression is a Schur-concave
function of \, for AL, € (0, NV,] Vk.

Proof: Let N = rank(3,.).

(i) We may write the cutoff rate expression as

T A X AN [T 4 XA XA

(32)
T+ 2(XAXS + XA X))

n=1

CR = —log ZP2+ZPPH
J?ﬁz

Let the non-zero eigenvalues Af = %XZ-AtX;f be{uiq}fgl andthose oA;+A; = %(XiAtX;HL

XA X7) be {Hijs}f;jl. Then the cutoff rate expression may be written as

()] I 0 0]

,(33)
Hslzjl(]' + 7)\298)

—log ZP2+ZPP H [

J#L

which, for asymptotically high SNRy(— o0), may be written as

AR | H e
—log P2+ PP e AEY
> re2en ()

Now, (Hn 1 A;) is a Schur-convex function &" by (3.E.1) [20], sincé /! is a log-convex
function of \/,. SinceQ; = rankA}’%), Q; = rank A}/%), andS;; = rank[A}"> A}/%)), clearly
Si; > Q; andS;; > Q;. This makesS;; — Q,/2—-Q,/2 > 0. Hence(Hn 1 A;) e

is also a Schur-convex function af by (3.B.1) [20]. Grouping all terms within the summation
which multiply this term and denoting it by; > 0, we getthad _, ; c;; x (Hn 1 A;) Som @z

is also a Schur-convex function, since a non-negative vietghombination of Schur-convex

functions is also Schur-convex. Finally, singer) = — log(z) is a decreasing function iR .,
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—(8i—Qi/2-Q;/2) . .
) is Schur-convex, the compositidno g is

andg(z) = >, ; cij X <Hg=1 An
Schur-concave. Henc€,R is a Schur-concave function of. at high SNR.

(ii) The proof of this part is similar to the proof of TheoremThe proof is omitted and details
are left to the reader. |

Under input peak constraints, since the noncoherent dgpsciles ag)(SNR?) [17], the
energy per bit increases without bound as the SNR tends ¢o Zé&is observation, which was
first made in [22], indicates that it is very energy ineffidismoperate at vanishingly small SNRs.
Nevertheless, numerical results in [22] indicate that ti@mmum energy per bit typically occurs
in the non-asymptotic low SNR regime. Since the noncoherapacity is not known at general
SNR, the insights that we obtain at asymptotically low SNferoéngineering guidelines which
may still hold at the SNR where the energy-efficiency is maximIn any case, we next propose

a technique to find the optimal correlations ajemeralSNR.

C. General SNR

It can be seen that the cutoff rate expression is non-conveeneral with respect to the
transmit and receive eigenvalues, and hence this problemsander the realm dieterministic
global optimization[23]. In order to maximize the cutoff rate at a general SNR]abaglly
optimal solution can be obtained by formulating it aditierence of convex programmiiid.c.
programming) problem [23].

We give some definitions from [23] that we will need in the tiezo that follows.

Definition 1: A polyhedroris defined to be the set of poinfs= {x € ®" : Ax < b, where
A € ™™ andb € R™. A bounded polyhedron is called a polytope.

Definition 2: A real valued functiory defined on a convex sed C R" is called d.c. (differ-

ence of convex) oA if, for all x € A, f can be expressed in the form

f(x) = p(x) —q(x), (35)

wherep, ¢ are convex functions oil. The representation (35) is said to be a d.c. decomposition
of f.
Definition 3: A global optimization problem is called a d.c. programminglgem or d.c.

program if it has the form
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min  fo(x)
st xe A,
filx) <0 (i=1,...,m), (36)

where A is a closed convex subset 8f* and all functionsf; , (: = 0,1,...,m) are d.c onA.
If the set of all constraints form a polytope, then the probis called a d.c. program over a
polytope.

There are a number of algorithms given in Chapter 4 of [23]rd fhe global minimum of a
d.c. program if the d.c. decomposition is known.

Definition 4: A concave minimizatioproblem is an optimization problem in the following

form :

min  f(x), (37)

wheref(x) is a concave function and C " is a convex set.

Definition 5: A reverse convex set (or concave set) is a set whose compiasnan open
convex set.

We state the next lemma which is needed to prove the ensusogdin.

Lemma 1:The functionf(x, Dy, Dy) = det {(I+ u(AD;A* + BDQB*))‘I} defined over
positive semidefinite diagonal matricBgs, D, and non-negativg is a jointly log-convex func-

tion of D; andD, for fixed .

Proof: The functions indicated are all compositions of the funtfi¢C) = — log det (I +
C) and linear functions of the form(D;,D;) = AD;A* + BDy,B*. Sinceh(C) is convex
over positive semidefinit€, the compositiorf = & o g is also convex [24]. |

Definition 6: A function f(x) is log-convex iflog( f(x)) is convex.
A lemma that will be found useful in obtaining d.c. decompiosis of complicated functions
is next proved. It will be invoked in the ensuing theorem todje. decompositions.

Lemma 2:Let h;(x) andg;(x) be log-convex functionsV i = 1. ... , L overR" andc; be

non-negative constants. Théfx) = log (ZZ_ ¢ ZE’;%) is d.c. and has a d.c. decomposition

log (Z ¢i9i(x) H hj(x)> - Z log hi(x) (38)

i j#i
Proof:
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f(x) = log <Z cl%> (39)

— log (Zi Cigif[}:)}gl(zi hj(X))

The product of log-convex functions is log-convex, the suntog-convex is log-convex and

(40)

a positive constant times a log-convex function is log-exavHence the argument bfg(.)
in (40) is the ratio of log-convex functions. Therefore, &.d.decomposition forf(x) is
log (32, €i9:(0) T, hi(x)) = 52, log ha(x). .

Theorem 3:For a general SNR, the problem of maximizing the cutoff raiti wespect to\
can be obtained through either
(i) a d.c. program over a polytope, or
(i) a concave minimization program , or
(iif) a convex minimization program with an additional rese convex constraint.

Proof: The constraint set i3\, = N,N,, which is a closed and convex set. We can

instead use the inequality constrajnt, A, < N,N,, since the cutoff rate expression is an in-
creasing function iny and hence a solution has to lie on the boundary.

The cutoff rate expression may be written as

-1

. (41)

I+ 2(XAX] + X ;AX
CR=—logs Y P+ > PP 1+ 3 o )
i I+ X AX| TP T+ X AX

JFi

Maximizing the expression in (41) is equivalent to maximgthe following expression due to

the monotonicity ofog(c + ) andlog(z).

-1

(42)

I+ 2(AXAX] + X;AX
~log42Y " PP, T+ 5 X AL =y

x|—1/2 *
Z I+ X AX| T2 I+ X AXS

j>i

By Lemma 1, we have thél+1 (X, AX [+ X ;AX) |7, [T+ X AX] |7 and| I+ XA X
are log-convex functions alh. A log-convex function raised to a positive index is stilgto
convex. Also, a positive constant times a log-convex fuamcis log-convex. Therefore, the
expression (42) can be seen to be in the form needed in Lemaraddyence a d.c. decompo-

sition can be obtained. We can further simplify this d.c. aeposition and transform it into
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other standard global optimization problems as followse &lgument of- log(.) in (42) can
be written as
25 i PP |1+ 3(XAX] 4+ XAX])
j>i
[T

By the properties of log-convex functions, and since the anthproduct of log-convex func-

g, 109 XAXD) (TR AXD

—1/2

L+ X AX 2 T+ X AX]

%

tions is still log-convex, the last expression is a ratiowb tog-convex functions. Therefore,
taking — log(.) gives a d.c. decomposition forR.
We will next express the maximization of (42) as a concavamigation problem. We need

to maximize the- log(.) of the last expression, which is

)" —q(A), (43)

1
= =1 I+ ~yX,AX7
B 318 I (T oA

whereg(A) is convex overA . An additional variable is now introduced to get the equivalent

optimization problem

1 i} 1
nax o log [T (T+rxAx;| [T+yx,A%5) " — ¢ (44)
q(A)<t 1,j>1
. 1 i .
= Join b+ Y log ([T X AX]| [T+ X AX)) (45)

a(A)<t 1,5>1
Sinceq(A) — t is a convex functiong(A) — ¢ < 0 is a convex set. Since the intersection of
convex sets is convex, the constraint set is convex. Fyrsirere the objective function in (45)
is concave, the optimization is a concave minimization f@eboverA andt by definition.
The additional variablemay also be introduced in place of the other convex functidd 3),

to get the equivalent problem

(R) S Ny t=a(A) = ()N Ny q(A) —t, (46)
t<r(A) ()

wherer(A) = 3, —tlog ([T+ X AX]| [T+ X;AX]

tion of A, ¢ < r(A) is areverse convex constraintAf. Sinceq(A) — ¢ is a convex function of

i i ). Sincer(A) is a convex func-

A, this form of the optimization problem is a convex minimiratproblem with an additional

reverse convex constraint (or concave constraint). [
All the three forms indicated are global optimization peybk and algorithms are available

to solve them. An example of an algorithm that solves thegt@gram is the Simplical Branch
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and Bound algorithm(Section 4.6) [23]. Alternatively, oteuld convert the problem into a
canonical d.c. program and then use the Edge Following Algar(Section 4.5) [23]. More
algorithms may be found in [23] and another reference [2%le Toncave minimization prob-
lem is known [23] to have a solution at an extreme point of thestraint region and this fact is
exploited in algorithms to solve it. Several algorithms ddve this problem are given in Chap-
ter 3 of [23] and in [25]. The formulation involving a conveximmization problem with an
additional reverse convex constraint can be solved by thedbrand bound algorithm given in
[26].

Since the number of transmit and receive antennas is relatwmall in practice, the problem
of finding the optimalA which involvesN; N, variables, can be solved numerically with tractable

complexity in many practical cases of interest.

D. A Numerical Example

In Figure 1, we give a numerical example using the UIU Rayidsagling model. In this figure,
we compare the simulated (via Monte-Carlo simulations)ualinformations of a systematic
unitary constellation at different values gfon a fully correlated channel, an i.i.d. channel and
a channel using the optimal correlations. The constellaiged has points and the parameters
N, = 3, N, = 3andT = 6. At relatively low SNR, the performance with optimal coagbns
coincides with that of the fully correlated channel. At higNRs, the performance with optimal
correlations coincides with that of the i.i.d. fading chahnThese simulations are hence in
concordance with the analytical results in Theorems 1 arAt Jaoderate SNRs, gains of upto
~ 2.5 dB are observed when using the optimal correlations@apaced to the better of the i.i.d.
or fully correlated case. Significantimprovements are oleskfor the optimal correlations over

the i.i.d. fading case.

V. CONCLUSIONS

We considered the problem of finding the optimal correlatiatrices of a noncoherent spa-
tially correlated MIMO Rayleigh fading channel at diffetéBNR regimes. In the low SNR
regime, we use the mutual information as our design critefihile at higher SNR regimes we
use the cutoff rate expression. At sufficiently low SNR, wewséd that a fully correlated chan-

nel matrix maximizes the mutual information. This indicatkat it is best to focus power along
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one effective channel in the low SNR regime. Therefore,esystwith more densely packed
antenna arrays that result in high spatial correlation® leahigher capacity at low SNR. At
asymptotically high SNR, we showed that a fully uncorredatbannel matrix is optimal under
a condition on the constellation which ensures full divgrsihis indicates that in the high SNR
regime, it helps to create as many independent parallehgisas possible. In the case of sepa-
rable correlations, we showed that the cutoff rate expoedsiSchur-convex with respect to the
receive correlation eigenvalues at sufficiently low SNR &otiur-concave at high SNR. This
indicates that it is beneficial to have high receive correfat at sufficiently low SNR, while it
helps to have the receive correlation matrix as close th ids possible at high SNR. At suffi-
ciently low SNR, the fully correlated transmit correlatiovatrix is optimal for any fixed receive
correlation matrix. We show that the cutoff rate expressddchur-concave with respect to the
transmit correlation eigenvalues at high SNR. This indisdhat it helps to have the transmit
correlation matrix as close to i.i.d. as possible at high SWR also show how the problem of
finding the eigenvalues of the optimal correlation matrbaaeneral SNR can be formulated

and solved by using standard global optimization algorghm
APPENDIX

A. Majorization, Schur-convex and Schur-concave funstion

The following two definitions are from [20].

Definition 7: Forx,y € R", x is said to be majorized by, denoted bk < y, if

k k
Z[L’m S Zym, ]{3:1,...,71—1,
i=1 i=1

and me = Zym

i=1 =1

wherez; andyj; denote the' largest components of andy respectively.

Definition 8: A real valued functiory defined on a sed C R" is said to be Schur-convex on
Aifforanyx,y € A, x <y = f(x) < f(y). Similarly, f is defined to be Schur-concave
onAifforanyx,y € A, x<y = f(x)> f(y).

Since the vectom 0 ... 0]7(with then occuring at any position) majorizes every other non-

negative vector whose elements add up,tevery Schur-convex function of such vectors attains
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its maximum atn 0 ... 0]7. Similarly, every Schur-concave function attains its maxin at

[11 ... 1]¥ among all non-negative vectors whose elements add up to

B. Derivation of cutoff rate

The integralf \/p(y|i) p(y|j)dy in (24) is known as the Bhattacharya coefficipptbetween
hypotheses and;. For the noncoherent MIMO Rayleigh fading channgl; ,is

pij = /F [Mr/zm(y}dy

pi(}’)

I+ XAXY? .
AR Rl Bl @)
Yt j

whereF;; = (I+7X;AX;) " — 3 (I+7X;AX;)"". The expectation in (47) can be evaluated

using the main result in [27] to get

14+ XAX[?
I+ 7 XAX 2 |31+ 3L+ Y X AX)) (T + X AX)
T+ 92AX; ) [T+ 2,0%5]

- - . (48)
\%(I +YXAX]) + (147X AXS)

Pij =

Substituting these expressions in (24) we get (25).

In the special case of separable correlations, we may $yr(@l) further to obtain the fol-

lowing expression :

N Ty XAXAL 2 T4 X AX |
Pij = H

49
vl ‘I + (XAXE + XjAXj-))\;"L‘ (49)

Equation (49) follows from (48) using the relations

= Iy, ®Ir + (Iy, @ 7X;AXIA)
= INT & (IT + ’}/XZAX;k)\;),

and simplifying.
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C. Derivation of low SNR cutoff rate

In this appendix, we derive the low SNR cutoff rate. The dutate expression may be written

as
I+ 2(XAX! + X;AX
CR = —log{ 3 PR | o AXAM T BATI] L gy
5 T+ XAX 7 T+ X AX
= —log Z P,P; e{%log\l-i-'sz‘AXﬂ-l-%log|I+’ijAX;f —log|T+3 (X, AXT+X;AX])|} (51)

i.j
Now apply the formuldog [T+ yA| = ~tr(A) — 7;tr(A2) + o(v?), which is valid for any
Hermitian matrixA and smally. With this approximation and some simplification, we get tha

CRow = —logd3 3 PP, o b r{(XAX] — XA X)) + o(2?)} (52)

(N

= —log ZEJ: P,P; (1 - gtr{(XiAXf —XAX)?) 0(72)) (53)
= —log{1l-— ZZ PP tr{ (X AX; — X;AX0) + o(y) (54)
- 5 ZZ PPtr{(X:AX] — X;AX75)°} + o(77). (55)

In (53), we have used the approximatiep(—z) = 1 — = + o(x) which holds for smalk. In

(55), we have used the approximatieriog(1 — x) = x — o(x) which is true for smalk.
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Fig. 1. Mutual information plot for systematic unitary dgsiwith L = 8,7 = 6, N; = 3 andN,. = 3.
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