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Abstract

The behavior in terms of information theoretic metrics of the discrete-input, continuous-output noncoherent

MIMO Rayleigh fading channel is studied as a function of spatial correlations. In the low SNR regime, the mutual

information metric is considered, while at higher SNR regimes the cutoff rate expression is employed. For any

fixed input constellation and at sufficiently low SNR, a fullycorrelated channel matrix is shown to maximize the

mutual information. In contrast, at high SNR, a fully uncorrelated channel matrix (with independent identically

distributed elements) is shown to be optimal, under a condition on the constellation which ensures full diversity.

In the special case of the separable correlation model, it isshown that as a function of the receive correlation

eigenvalues, the cutoff rate expression is a Schur-convex function at low SNR and a Schur-concave function at high

SNR, and as a function of transmit correlation eigenvalues,the cutoff rate expression is Schur-concave at high SNR

for full diversity constellations. Moreover, at sufficiently low SNR, the fully correlated transmit correlation matrix

is optimal. Finally, for the general model, it is shown that the optimal correlation matrices at ageneralSNR can be

obtained using adifference of convex programmingformulation.

Index Terms

Block fading channels, noncoherent, MIMO, spatial correlation, mutual information, cutoff rate expression,

general SNR, schur-convexity, schur-concavity, global optimization, d.c. programming, concave minimization.

I. INTRODUCTION

Practical MIMO channels exhibit correlations between pathgains of the antenna elements.

It is therefore important to understand the effect of spatial correlations on the channel capacity

since this helps in optimally designing the transmit and receive antenna arrays. For this rea-

son, the effect of spatial correlations on the capacity of the coherentMIMO Rayleigh fading

channel—where the channel realizations are assumed to be known at the receiver but only the

long term statistics are known at the transmitter—is studied in several papers including [1–5].

In this paper, we consider the more challengingnoncoherentMIMO Rayleigh fading channel

where the transmitter and the receiver have only knowledge of the long term statistics and neither

has knowledge of the channel realizations.

The rationale for studying the noncoherent model is this. Since in practice the channel is not

known to the receiver at the start of communication, an information theoretic formulation of the

noncoherent problem—which implicitly accounts for the resources needed for (implicit) chan-

nel estimation without constraining the transmission scheme in any way—is more fundamental

than the coherent formulation. Systems that assume coherent transmission by arguing that the
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channel can be acquired at the receiver by the use of pilot-symbol assisted transmission to per-

form explicit channel estimation either (a) do not take intoaccount the resources (power and

degrees of freedom) needed for pilot transmissions or (b) when they do (as they should), they in-

cur a significant loss of optimality in regimes involving short coherence times and/or low SNRs,

implying that explicit pilot-assisted channel estimationis highly sub-optimal in these regimes.

We study the problem of noncoherent multi-antenna communication in the context of the gen-

eral spatial correlation model of [6], referred to in [2] as the Unitary-Independent-Unitary (UIU)

model, which subsumes the well knownseparable transmit and receive correlationmodel of

[1,7] and thevirtual channel representationmodel of [8]. While even the UIU Rayleigh fading

model does not capture the most general form of correlations, it is viewed as a reasonable com-

promise between validity and analytical tractability. Justification for the UIU Rayleigh fading

model is given in [9] based on physical measurements. The particular case of the separable

model is justified in [1] as an approximation, while [7] incorporates physical parameters like the

angle spread and antenna spacing in this model. Consequently, we often specialize our results

to the separable model and obtain sharper results for it.

A summary of the main results in [2,3] which compare the coherent capacity for the separable

model with transmit and receive correlations with the i.i.d. fading model, is as follows :

1. Receive correlation reduces the capacity at every SNR.

2. ForNt ≤ Nr, transmit correlation reduces the capacity at high SNR.

3. ForNt > Nr, transmit correlation increases the low SNR capacity.

The application of the theory of majorization to such problems (c.f. [1,4,5]) helps in providing

a more complete understanding of how the correlations affect the performance measure of inter-

est, and it aids comparison of correlated channels. The analysis in [4] is specific to the coherent

capacity of the MISO channel (Nt > 1 andNr = 1) and it is shown that at a general SNR, the

capacity is a Schur-convex function with respect to the eigenvalues of the transmit correlation

matrix. This means that higher transmit correlations result in higher capacity at all SNRs for the

MISO channel. In [5], it is proved that the pairwise error probability (PEP) between every pair of

symbol matrices is a Schur-convex function of the receive correlation eigenvalues. This means

that higher correlations at the receiver result in higher PEPs at every SNR, which indicates that

higher correlations are detrimental to error probability.
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With regard to the noncoherent MIMO Rayleigh fading channel, a recent paper by Wu and

Srikant [10] shows that at asymptotically low SNR, a fully correlated channel maximizes the

reliability function. In other SNR regimes however, littleis known about the effect of spatial

correlations on the noncoherent MIMO channel performance.The main stumbling block in the

analysis of the noncoherent channel is the absence of a closed form expression for the capacity.

Indeed, the problem of finding the noncoherent MIMO capacityis one of the longstanding open

problems, partial characterizations of which may be found in for instance [11–14]. We therefore

adopt the cutoff rate for our analysis and obtain useful insights in this regard. The cutoff rate is a

lower bound on capacity and was previously used by [15] (and the references contained therein

in different contexts), to analyze and characterize optimal constellations for the peak-power con-

strained noncoherent MIMO i.i.d. Rayleigh fading channel.In [16], the cutoff rate expression

is used as a criterion to design constellations for the average-power constrained noncoherent

MIMO Rayleigh fading channel at general SNRs.

In this paper, we maximize the cutoff rate expression with respect to the channel correlation

matrices for arbitrary but fixed signal constellations. We observe that the cutoff rate at suffi-

ciently low SNR behaves exactly the same way as the mutual information upto second order,

and hence the results hold for the mutual information as wellin this regime. Our main results

are as follows :

1. At sufficiently low SNR, we prove that the mutual information and cutoff rate expression are

maximized by a fully correlated channel matrix. For the separable model, the cutoff rate ex-

pression is thus maximized by fully correlated transmit andreceive correlation matrices. In the

separable case, we show the sharper result that the mutual information is in fact a Schur-convex

function of the receive correlation eigenvalues. This indicates that at low SNRs, it helps to have

more correlations at the receive antennas, which is in contrast to results in the coherent case.

2. At asymptotically high SNR, and under a condition that ensures that the constellation achieves

full diversity, we show that the cutoff rate expression is maximized by a fully uncorrelated chan-

nel matrix. In the case of the separable model, we prove the sharper result that the cutoff rate

expression is a Schur-concave function of the transmit and receive correlation matrices.

3. We show how the optimal correlation matrix may be obtainedat a general SNR, using stan-

dard global optimization formulations. In particular, we transform such problems into standard
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global optimization problems like difference of convex (d.c.) programming and concave mini-

mization, and indicate algorithms that obtain the globallyoptimal solution.

Notation : For an integerN , IN is anN × N identity matrix. Matrices are denoted by the

boldfaced capital letters, and vectors by bold faced small letters. The symbol⊗ denotes the

Kronecker product. The matricesXT , X̄ andX∗ denote the transpose, complex-conjugate, and

conjugate transpose respectively. We denote the inner product between two vectorsx andy

by < x,y > = x∗y and the norm‖x‖ =
√

< x,x >. E[.] denotes the expectation operator.

diag(a1, a2, . . . , aN) is anN × N diagonal matrix with diagonal elementsa1, a2, . . . , aN . We

use the notationo(ρ) to mean thatlimρ→0
o(ρ)

ρ
= 0.

II. SYSTEM MODEL

We consider a communication system withNt transmit antennas andNr receive antennas. We

assume a block fading channel where the channel matrixH ∈ ICNt×Nr is assumed to be constant

for a duration ofT symbols, after which it changes to an independent value. Thechannel matrix

is assumed to be unknown to the transmitter and the receiver,while the channelstatisticsare

assumed to be known at the transmitter. The received signal is

R =
√

γSH + W, (1)

whereS ∈ ICT×Nt is the transmitted symbol matrix andW ∈ ICT×Nr is the noise matrix. Here, the

symbols{S} are normalized such that E[tr(SS∗)] = 1, so that the average transmit power equals

γ. It is assumed thatW has i.i.d. circularly symmetricCN (0, 1) entries. We next describe the

form of the channel matrixH, which has correlated, circularly symmetric, complex gaussian

entries.

A. Unitary-Independent-Unitary (UIU) Rayleigh fading model

In the UIU Rayleigh fading model, the channel matrix is assumed to be of the form

H = UtH̃U∗
r , (2)

whereUt andUr are the transmit and receive unitary matrices. The elementsof H̃ are un-

correlated and zero-mean, circularly symmetric, complex gaussian, but not necessarily with the

same variance. Defineh = vec(H). Assuming that̃Σ = E[vec(H̃)vec(H̃)∗] = Λ, which is a
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non-negative diagonal matrix, we have

Σ = E[hh∗] = (Ūr ⊗ Ut)Λ(Ūr ⊗ Ut)
∗. (3)

Let {λi}NtNr

i=1 be the eigenvalues ofΣ. The normalizations in (1) are assumed to be such that
∑NtNr

i=1 λi = NtNr.

B. Separable Transmit and Receive Correlation model

For the separable transmit and receive correlation model,H is represented by

H = Σ
1/2
t HwΣ1/2

r , (4)

whereHw has i.i.d. circularly symmetricCN (0, 1) entries. The matricesΣt andΣr are the

transmit and receive array correlation matrices, with eigenvalues{λt
i}Nt

i=1 and{λr
i}Nr

i=1, respec-

tively. Substituting the eigenvalue decompositions forΣt = UtΛtU
∗
t andΣr = UrΛrU

∗
r, we

get that

H = UtH̃U∗
r, (5)

whereH̃ = Λ
1/2
t U∗

tHwUrΛ
1/2
r . The normalizations in (1) are assumed to be such that

∑Nt

i=1 λt
i =

Nt and
∑Nr

i=1 λr
i = Nr. SinceU∗

tHwUr has the same distribution asHw, it can be seen that with

h̃ = vec(H̃), Σ̃ = E[h̃h̃∗] = Λr ⊗ Λt. We may therefore obtain the correlation matrix of

h = vec(H) as

E[hh∗] = (Ūr ⊗ Ut)(Λr ⊗ Λt)(Ūr ⊗ Ut)
∗. (6)

Comparing (3) and (6), we see that the main difference between the separable and UIU Rayleigh

fading model is that the eigenvalue matrix of the channel correlation matrix in the separable

model is a Kronecker product, while there is no such restriction in the UIU Rayleigh fading

model.

C. Effective channel model and output probability density function (p.d.f.)

The output of the channel in (1) using either assumption on the channel matrixH can be

written as

R =
√

γSUtH̃U∗
r + W . (7)
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After post-multiplying (7) byUr, denotingSUt by X, and denotingRUr by Y, we get

Y =
√

γXH̃ + N , (8)

which represents the sufficient statistics of the received signal. Clearly, E[tr(SS∗)] = E[tr(XX∗)],

and hence theprecodedconstellation{X} satisfies the same average-power constraint as the

original constellation{S}. N has i.i.d. circularly symmetricCN (0, 1) entries since it has the

same distribution asW. We may hence consider (8) to be our effective channel model,and use

the notationX to denote a constellation matrix precoded by the transmit unitary matrix. Note

that this amounts to a form of statistical beamforming whichexploits knowledge of the channel

statistics at the transmitter and is not to be confused with channel realization dependent transmit

beamforming which is of course not feasible in the noncoherent channel.

Applying a vec operation to (8), we gety =
√

γ(INr
⊗ X)h̃ + n =

√
γX h̃ + n, where

y = vec(Y) andn = vec(N). The pdf ofy conditioned onX being sent is given by

p(y|X ) =
1

πTNr |I + γX Σ̃X
∗|

e−y∗(I+γXΣ̃X
∗)−1y .

III. OPTIMAL CORRELATIONS AT LOW SNR

Throughout this paper, we assume our model to be a discrete input (of cardinalityL) and

continuous output channel over which a constellation{Xi}L
i=1 with corresponding prior proba-

bilities {Pi}L
i=1 is used. In this section we obtain the optimal correlation matrices that maximize

the mutual information at sufficiently low SNR.

Rao and Hassibi [17] derive the low SNR mutual information for the continuous input and

continuous output channel, when the signals are subject to average and peak power constraints.

Such regularity conditions are required since otherwise the optimal signals at low SNR have

very large peak-powers. With a similar analysis tailored tothe discrete input and continuous

output channel with spatially correlated fading, a similarexpression for the mutual information

can be obtained which is

Ilow =
γ2

2

{

E[tr{(XΛX
∗)2}] − tr{(E[XΛX

∗])2
}

+ o(γ2). (9)

Under different regularity conditions and for more generalchannels, the authors in [18] also ob-

tain the mutual information upto the second order. When the expression for mutual information
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at low SNR in [18] is specialized to the channel model assumedin this paper, it can be seen to

be identical to (9).

The expression forIlow in (9) may be rewritten as follows

Ilow =
γ2

4

{

∑

i

Pitr(X iΛX
∗
i X iΛX

∗
i ) +

∑

j

Pjtr(X jΛX
∗
jX jΛX

∗
j)

−2tr(
∑

i

PiX iΛX
∗
i

∑

j

PjX jΛX
∗
j)

}

+ o(γ2)

=
γ2

4

∑

i

∑

j

PiPjtr{(X iΛX∗
i − X jΛX

∗
j )

2} + o(γ2) . (10)

Let λ denote the vector of diagonal elements ofΛ, which are the eigenvalues ofΣ. Let λi

denote theith element ofλ. We next maximize (10) with respect toλ subject to the constraint
∑

i λi = NtNr.

Theorem 1:limγ→0
Ilow

γ2 is maximized by choosing all eigenvalues ofΣ to be zero except for

one, ie.λ = [0, 0, . . . , NtNr, . . . , 0]T , where the position of the non-zero elementNtNr depends

on the specific constellation used.

Proof: Denote thekth column ofX i by xik , k = 1, . . . , NtNr.

lim
γ→0

Ilow

γ2
=

1

4

∑

i

∑

j

PiPjtr{(X iΛX
∗
i − X jΛX

∗
j)

2} (11)

=
1

4

∑

i

∑

j

PiPjtr







{

NtNr
∑

k=1

λk(xikx
∗
ik − xjkx

∗
jk)

}2






(12)

=
1

4

∑

i

∑

j

PiPjtr

{

∑

k

∑

l

λkλl(xikx
∗
ik − xjkx

∗
jk)(xilx

∗
il − xjlx

∗
jl)

}

(13)

Let Aijk = xikx
∗
ik − xjkx

∗
jk, ∀k = 1, . . . , NtNr. Also, defineakl = λkλl. We need to solve the

optimization problem maxP

k λk=NtNr
λk≥0 ∀k

∑

k

∑

l λkλl

{

∑

i

∑

j PiPjtr(AijkAijl)
}

= max
P

k
P

l λkλl=N2
t

N2
r

λk≥0 ∀k

∑

k

∑

l

λkλl

{

∑

i

∑

j

PiPjtr(AijkAijl)

}

(14)

= N2
t N2

r max
P

k
P

l
akl

N2
t

N2
r

=1

λk≥0 ∀k

∑

k

∑

l

akl

N2
t N2

r

{

∑

i

∑

j

PiPjtr(AijkAijl)

}

, (15)
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which can be viewed as a convex combination of terms of the form
∑

i

∑

j PiPjtr(AijkAijl), ∀k, l,

with weights
{

akl

N2
t N2

r

}

. Therefore, the maximum should occur when all except one of the{akl}
are zero. The only non-zero weight (say)akl = N2

t N2
r corresponds to the indices that achieve

maxk,l

∑

i

∑

j PiPjtr(AijkAijl). We cannot however haveakl = λkλl = N2
t N2

r whenk 6= l

since
∑

k λk = NtNr. Therefore, we first show that the maximum occurs only whenk = l and

then conveniently obtain the maximum of the convex combination.

∑

i

∑

j

PiPjtr(AijkAijl) =
∑

i

∑

j

PiPj

∑

m

< A
(m)
ijk ,A

(m)
ijl > (16)

≤
∑

i

∑

j

PiPj

∑

m

‖A(m)
ijk ‖‖A

(m)
ijl ‖ (17)

≤
∑

i

∑

j

PiPj

√

∑

m

‖A(m)
ijk ‖2

√

∑

m

‖A(m)
ijl ‖2 (18)

=
∑

i

∑

j

PiPj

√

tr(A2
ijk)tr(A

2
ijl) (19)

≤

√

√

√

√

{

∑

i

∑

j

PiPjtr(A2
ijk)

}{

∑

i

∑

j

PiPjtr(A2
ijl)

}

(20)

≤ max

{

∑

i

∑

j

PiPjtr(A
2
ijk),

∑

i

∑

j

PiPjtr(A
2
ijl)

}

. (21)

The inequalities in (17) and (18) are obtained by applying the Cauchy-Schwarz inequality suc-

cessively. The inequality in (20) is obtained by recognizing that the geometric meanf(x) =
√

x1x2 is a concave function onx ∈ <2
++ and by applying the Jensen’s inequality on (19). The

square root is well defined sincetr(A2) ≥ 0 wheneverA is Hermitian, which is the case here.

Finally, (21) is obtained by using the fact that
√

ab ≤ max {a, b} for positivea,b.

The chain of inequalities leads to the conclusion that themaxk,l

∑

i

∑

j PiPjtr(AijkAijl)

occurs only whenk = l. For this maximizing indexk (say), the convex combination in

(15) is maximized by choosingλk = NtNr and all other eigenvalues to be zero, ie.,λ =

[0 0 . . . NtNr . . . 0]T . The maximum value of the mutual information would be

N2
t N2

r

γ2

4
max

k

∑

i

∑

j

PiPjtr(A
2
ijk). (22)
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Theorem 1 implies that foranyset of signals, at sufficiently low SNR, a channel having justa

single effective eigenchannel is optimal. Having a single effective channel would imply that the

effective dimensions available is one, but this enables focusing power which is more essential at

low SNR, when there is no channel state information at the receiver. Placing the transmit and

receive antennas densely reduces the resolvability of the different paths in the angular domain,

thus resulting inH having more correlated entries [19]. In terms of system design therefore,

Theorem 1 suggests that having closely spaced transmit and receive antenna arrays results in

a higher capacity for noncoherent MIMO communications in the low SNR regime. This is in

contrast to the coherent MIMO scenario at high SNR, where maximizing the number of degrees

of freedom in the channel is crucial. Similar insights are also obtained in [10] while considering

the reliability function at low SNR.

We will need the definitions of majorization, Schur-convex and Schur-concave functions from

[20] for some of the ensuing propositions. These definitionsand properties are provided in

Appendix-A for the sake of completeness.

If x andy are vectors of eigenvalues of two correlation matricesΣ1 andΣ2, x ≺ y would

mean thatΣ2 is more correlated thanΣ1. This notion of majorization has been used in many

papers studying the effect of fading correlations on the MIMO channel. It provides a more

detailed characterization of the performance, and therebyhelps to compare two correlated chan-

nels whenever possible using their respective vectors of eigenvalues. It should be noted that the

notion of majorization need not relate any two vectors whoseentries sum up to the same value.

The results obtained, hence pertain to those vectors of eigenvalues that can be compared via

majorization.

The optimal correlations for the separable model may be obtained by solvingΛr ⊗Λt = Λ =

diag(0, . . . , 0, NtNr, 0, . . . , 0). Therefore, the jointly optimal transmit and receive correlation

eigenvalues are given byΛt = diag(0, . . . , 0, Nt, 0, . . . , 0) andΛr = diag(0, . . . , 0, Nr, 0, . . . , 0)

respectively. The optimal matricesΛt andΛr have exactly one non-zero value each and their

positions depend on the specific constellation used. We introduce the following notation which

will be used in the rest of this paper. Letλt andλr be the vectors of eigenvalues of the transmit

and receive correlation matrices, with elements{λt
n}Nt

n=1 and{λr
n}Nr

n=1, respectively. Using the

fact that for the separable modelΛ = Λr ⊗Λt, the low SNR mutual information expression can
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be simplified to the following form

Ilow =
γ2

4

{

∑

n

(λr
n)

2

}

∑

i

∑

j

PiPjtr{(XiΛtX
∗
i −XjΛtX

∗
j )

2} + o(γ2). (23)

The following propositions describe more conclusions thatcan be made with respect to the low

SNR mutual information as a function ofλr andλt, for the separable model.

Proposition 1: In the separable model, the mutual information at low SNR is aSchur-convex

function ofλr.

Proof: Since{∑n(λr
n)2} is a Schur-convex function ofλr [20], so isIlow.

Proposition 1 indicates that higher correlations at the receiver are beneficial in the low SNR

regime. This result contrasts with results in the coherent scenario, where receive correlations are

detrimental to the performance at any SNR. An intuitive explanation for this difference is that

in the low SNR noncoherent channel, it helps the implicit channel estimation when the fading

coefficients across the receive antennas are highly correlated.

The mutual information upto second order is not a Schur-convex function of the transmit

eigenvalues at low SNR in general. This is because it dependson the specific signals used and

the expression is not even a symmetric function ofλt. The following proposition can however

be proved by analytically maximizing (23) with respect toλt, for any fixedλr.

Proposition 2:The mutual information at sufficiently low SNR for the separable model is

maximized byλt = [0 0 .. Nt 0 0]T for any fixed λr, where the position of the non-zero

elementNt depends on the specific constellation used.

Proof: The proof is along similar lines to that of Theorem 1 and the details are left to the

reader.

IV. OPTIMAL CORRELATIONS AT HIGHER SNR REGIMES

At a general SNR, the mutual information is not known in closed form. As a result we use the

cutoff rate expression as our design criterion.
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A. The cutoff rate

Consider a constellation{Xi}L
i=1 with corresponding prior probabilities{Pi}L

i=1. The cutoff

rate for the discrete input (of cardinalityL) and continuous output channel is given by

R0 = max
{Pi}L

i=1,{Xi}L
i=1

− log

{

∑

i

∑

j

PiPj

∫

√

p(y|i)p(y|j)dy
}

. (24)

For the system model given in Section II, the argument ofmax(.) in (24) is easily found in

Appendix-B to be

CR = − log

{

∑

i

∑

j

PiPj

|I + γX iΛX
∗
i |1/2

∣

∣I + γX jΛX
∗
j

∣

∣

1/2

∣

∣I + γ
2
(X iΛX

∗
i + X jΛX

∗
j )
∣

∣

}

. (25)

We refer toCR in (25) as thecutoff rate expression. It should be noted that the cutoff rate

expression is a lower bound on the mutual information at any SNR.

The next proposition is an extension of a result for the i.i.d. channel by Hero and Marzetta in

[15] to the correlated channel.

Proposition 3: In the low SNR regime, the cutoff rate expression upto secondorder inγ may

be expressed as

CRlow =
γ2

8

∑

i

∑

j

PiPjtr{(X iΛX
∗
i − X jΛX

∗
j )

2} + o(γ2). (26)

Proof: Refer to Appendix-C.

The following simple proposition shows that the low SNR cutoff rate expression behaves

identicallyto the low SNR mutual information.

Proposition 4:At sufficiently low SNR,CRlow = 1
2
Ilow + o(γ2).

Proof: The proposition follows by inspection of (10) and (26).

SinceCRlow has the same behavior as the mutual information at sufficiently low SNR, the

results in Section III are valid for the cutoff rate expression as well.

B. High SNR

In this section, we optimize the cutoff rate expresssion at high SNR over the eigenvalues of

the correlation matrix. In the next theorem, we assume that[Xi Xj] has full column rank ie. a

rank of2Nt , for which in turnT ≥ 2Nt is a necessary condition. These conditions are known

to be sufficient to ensure that the constellation achieves the maximum possible diversity order in

the channel [21]. IfΛ is of full rank, the maximum possible diversity order would beNtNr.
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Theorem 2:Let [Xi Xj] be of full column rank2Nt for every pairi,j of constellation matrices.

Then, at asymptotically high SNR the cutoff rate expressionis a Schur-concave function ofλ

for λk ∈ (0, NtNr], ∀k.

Proof: Since[Xi Xj] is of full column rank,[X i X j] is also of full column rank. We may

write the cutoff rate expression as

CR = − log











∑

i

P 2
i +

∑

i,j
j 6=i

PiPj

|I + γX iΛX
∗
i |1/2

∣

∣I + γX jΛX
∗
j

∣

∣

1/2

∣

∣I + γ
2
(X iΛX

∗
i + X jΛX

∗
j)
∣

∣











. (27)

Using the identity|I + AB| = |I + BA| , we simplifyCR as follows

CR = − log











∑

i

P 2
i +

∑

i,j
j 6=i

PiPj

|I + γX
∗
i X iΛ|1/2

∣

∣I + γX
∗
jX jΛ

∣

∣

1/2

∣

∣I + γ
2
[X i X j]∗[X i X j] (I2 ⊗ Λ)

∣

∣











(28)

≈ − log











∑

i

P 2
i +

∑

i,j
j 6=i

PiPj

|γX
∗
i X iΛ|1/2

∣

∣γX
∗
jX jΛ

∣

∣

1/2

∣

∣

γ
2
[X i X j ]∗[X i X j ] (I2 ⊗ Λ)

∣

∣











(29)

= − log











∑

i

P 2
i +

∑

i,j

j 6=i

PiPj

|γX
∗
i X i|1/2 |Λ|1/2

∣

∣γX
∗
jX j

∣

∣

1/2 |Λ|1/2

∣

∣

γ
2
[X i X j]∗[X i X j ]

∣

∣ |Λ|2











(30)

= − log











∑

i

P 2
i +

∑

i,j
j 6=i

PiPjcij
1

|Λ|











. (31)

Now, 1
|Λ|

is a Schur-convex function ofλ for λk > 0. The conditionλk > 0 is needed so that

|Λ|, which occurs in the denominator is non-zero. Therefore, sincecij ≥ 0 ∀i, j and{Pi}L
i=1

are all non-negative, and sinceh(x) = − log(x) is a decreasing function in<++, CR at high

SNR is a Schur-concave function ofλ for λk ∈ (0, NtNr], ∀k.

By the theory of majorization and Theorem 2, we conclude thatλ = [1 1 . . . 1]T is the

optimal choice of the eigenvalue vector. At high SNR, Theorem 2 indicates that the channel

matrix should be made as close to i.i.d. as possible. This hasthe beneficial effect of creating as

many independent paths as possible.

The optimal correlations for the separable model may be obtained by solvingΛr ⊗Λt = Λ =

diag(1, 1, . . . , 1) under the assumption that
∑

n λt
n = Nt and

∑

n λr
n = Nr. This implies that the

jointly optimal transmit and receive correlation eigenvalues are given byΛt = diag(1, 1, . . . , 1)
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andΛr = diag(1, 1, . . . , 1), respectively. More insightful conclusions pertaining tothe sepa-

rable model can be made using the theory of majorization, which are stated in the following

proposition.

Proposition 5: (i) At asymptotically high SNR and foranyλt, the cutoff rate expression is a

Schur-concave function ofλr.

(ii) Let [Xi Xj] be of full column rank2Nt for every pairi,j of constellation matrices.

Then, at asymptotically high SNR and foranyλr, the cutoff rate expression is a Schur-concave

function ofλt for λt
k ∈ (0, Nt] ∀k.

Proof: Let N = rank(Σr).

(i) We may write the cutoff rate expression as

CR = − log











∑

i

P 2
i +

∑

i,j

j 6=i

PiPj

N
∏

n=1

|I + γXiΛtX
∗
i λ

r
n|1/2

∣

∣I + γXjΛtX
∗
jλ

r
n

∣

∣

1/2

∣

∣I + γ
2
(XiΛtX

∗
i + XjΛtX

∗
j )λ

r
n

∣

∣











.(32)

Let the non-zero eigenvalues ofAi = 1
2
XiΛtX

∗
i be{µiq}Qi

q=1 and those ofAi+Aj = 1
2
(XiΛtX

∗
i +

XjΛtX
∗
j) be{θijs}Sij

s=1. Then the cutoff rate expression may be written as

CR = − log











∑

i

P 2
i +

∑

i,j

j 6=i

PiPj

N
∏

n=1

[

∏Qi

q=1(1 + γλr
nµiq)

]1/2 [
∏Qj

r=1(1 + γλr
nµjr)

]1/2

∏Sij

s=1(1 + γλr
nθs)











, (33)

which, for asymptotically high SNR (γ → ∞), may be written as

CR = − log











∑

i

P 2
i +

∑

i,j
j 6=i

PiPj

(

1

γN
∏N

n=1 λr
n

)Sij−Qi/2−Qj/2 ∏Qi

q=1 µ
N
2
iq

∏Qj

r=1 µ
N
2
jr

∏Sij

s=1 θN
s











. (34)

Now,
(

∏N
n=1 λr

n

)−1

is a Schur-convex function ofλr by (3.E.1) [20] , since1/λr
n is a log-convex

function ofλr
n. SinceQi = rank(A1/2

i ), Qj = rank(A1/2
j ), andSij = rank([A1/2

i A
1/2
j ]), clearly

Sij ≥ Qi andSij ≥ Qj . This makesSij −Qi/2−Qj/2 ≥ 0. Hence
(

∏N
n=1 λr

n

)−(Sij−Qi/2−Qj/2)

is also a Schur-convex function ofλ
r by (3.B.1) [20]. Grouping all terms within the summation

which multiply this term and denoting it bycij ≥ 0, we get that
∑

i,j cij×
(

∏N
n=1 λr

n

)−(Sij−Qi/2−Qj/2)

is also a Schur-convex function, since a non-negative weighted combination of Schur-convex

functions is also Schur-convex. Finally, sinceh(x) = − log(x) is a decreasing function in<++,
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andg(x) =
∑

i,j cij ×
(

∏N
n=1 λr

n

)−(Sij−Qi/2−Qj/2)

is Schur-convex, the compositionh ◦ g is

Schur-concave. Hence,CR is a Schur-concave function ofλr at high SNR.

(ii) The proof of this part is similar to the proof of Theorem 2. The proof is omitted and details

are left to the reader.

Under input peak constraints, since the noncoherent capacity scales asO(SNR2) [17], the

energy per bit increases without bound as the SNR tends to zero. This observation, which was

first made in [22], indicates that it is very energy inefficient to operate at vanishingly small SNRs.

Nevertheless, numerical results in [22] indicate that the minimum energy per bit typically occurs

in the non-asymptotic low SNR regime. Since the noncoherentcapacity is not known at general

SNR, the insights that we obtain at asymptotically low SNR offer engineering guidelines which

may still hold at the SNR where the energy-efficiency is maximum. In any case, we next propose

a technique to find the optimal correlations at ageneralSNR.

C. General SNR

It can be seen that the cutoff rate expression is non-convex in general with respect to the

transmit and receive eigenvalues, and hence this problem comes under the realm ofdeterministic

global optimization[23]. In order to maximize the cutoff rate at a general SNR, a globally

optimal solution can be obtained by formulating it as adifference of convex programming(d.c.

programming) problem [23].

We give some definitions from [23] that we will need in the theorem that follows.

Definition 1: A polyhedronis defined to be the set of pointsC = {x ∈ <n : Ax ≤ b, where

A ∈ <m×n andb ∈ <m. A bounded polyhedron is called a polytope.

Definition 2: A real valued functionf defined on a convex setA ⊆ <n is called d.c. (differ-

ence of convex) onA if, for all x ∈ A, f can be expressed in the form

f(x) = p(x) − q(x) , (35)

wherep, q are convex functions onA. The representation (35) is said to be a d.c. decomposition

of f .

Definition 3: A global optimization problem is called a d.c. programming problem or d.c.

program if it has the form
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min f0(x)

s.t x ∈ A ,

fi(x) ≤ 0 (i = 1, . . . , m) , (36)

whereA is a closed convex subset of<n and all functionsfi , (i = 0, 1, . . . , m) are d.c onA.

If the set of all constraints form a polytope, then the problem is called a d.c. program over a

polytope.

There are a number of algorithms given in Chapter 4 of [23] to find the global minimum of a

d.c. program if the d.c. decomposition is known.

Definition 4: A concave minimizationproblem is an optimization problem in the following

form :

min
x ∈ X

f(x) , (37)

wheref(x) is a concave function andX ⊂ <n is a convex set.

Definition 5: A reverse convex set (or concave set) is a set whose complement is an open

convex set.

We state the next lemma which is needed to prove the ensuing theorem.

Lemma 1:The functionf(µ,D1,D2) = det
{

(I + µ(AD1A
∗ + BD2B

∗))−1} defined over

positive semidefinite diagonal matricesD1, D2 and non-negativeµ is a jointly log-convex func-

tion of D1 andD2 for fixedµ.

Proof: The functions indicated are all compositions of the function h(C) = − log det(I +

C) and linear functions of the formg(D1,D2) = AD1A
∗ + BD2B

∗. Sinceh(C) is convex

over positive semidefiniteC, the compositionf = h ◦ g is also convex [24].

Definition 6: A functionf(x) is log-convex iflog(f(x)) is convex.

A lemma that will be found useful in obtaining d.c. decompositions of complicated functions

is next proved. It will be invoked in the ensuing theorem to get d.c. decompositions.

Lemma 2:Let hi(x) andgi(x) be log-convex functions∀ i = 1. . . . , L over<n andci be

non-negative constants. Thenf(x) = log
(

∑

i ci
gi(x)
hi(x)

)

is d.c. and has a d.c. decomposition

log

(

∑

i

cigi(x)
∏

j 6=i

hj(x)

)

−
∑

i

log hi(x) (38)

Proof:
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f(x) = log

(

∑

i

ci
gi(x)

hi(x)

)

(39)

= log

(

∑

i cigi(x)
∏

j 6=i hj(x)
∏

i hi(x)

)

(40)

The product of log-convex functions is log-convex, the sum of log-convex is log-convex and

a positive constant times a log-convex function is log-convex. Hence the argument oflog(.)

in (40) is the ratio of log-convex functions. Therefore, a d.c. decomposition forf(x) is

log
(

∑

i cigi(x)
∏

j 6=i hj(x)
)

−∑i log hi(x).

Theorem 3:For a general SNR, the problem of maximizing the cutoff rate with respect toλ

can be obtained through either

(i) a d.c. program over a polytope, or

(ii) a concave minimization program , or

(iii) a convex minimization program with an additional reverse convex constraint.

Proof: The constraint set is
∑

n λn = NtNr, which is a closed and convex set. We can

instead use the inequality constraint
∑

n λn ≤ NtNr, since the cutoff rate expression is an in-

creasing function inγ and hence a solution has to lie on the boundary.

The cutoff rate expression may be written as

CR = − log











∑

i

P 2
i +

∑

i,j
j 6=i

PiPj

∣

∣I + γ
2
(X iΛX

∗
i + X jΛX

∗
j )
∣

∣

−1

|I + γX iΛX
∗
i |−1/2

∣

∣I + γX jΛX
∗
j

∣

∣

−1/2











(41)

Maximizing the expression in (41) is equivalent to maximizing the following expression due to

the monotonicity oflog(c + x) andlog(x).

− log











2
∑

i
j>i

PiPj

∣

∣I + γ
2
(X iΛX

∗
i + X jΛX

∗
j )
∣

∣

−1

|I + γX iΛX
∗
i |−1/2

∣

∣I + γX jΛX
∗
j

∣

∣

−1/2











. (42)

By Lemma 1, we have that|I+ γ
2
(X iΛX

∗
i +X jΛX

∗
j )|−1, |I+γX iΛX

∗
i |−1 and|I+γX jΛX

∗
j |−1

are log-convex functions ofΛ. A log-convex function raised to a positive index is still log-

convex. Also, a positive constant times a log-convex function is log-convex. Therefore, the

expression (42) can be seen to be in the form needed in Lemma 2,and hence a d.c. decompo-

sition can be obtained. We can further simplify this d.c. decomposition and transform it into
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other standard global optimization problems as follows. The argument of− log(.) in (42) can

be written as

2
∑

i
j>i

PiPj

∣

∣I + γ
2
(X jΛX

∗
j + X iΛX

∗
i )
∣

∣

−1∏
k 6=i

l6=j,k>l
|(I + γX kΛX

∗
k) (I + γX lΛX

∗
l )|−1/2

∏

i
j>i

|I + γX iΛX
∗
i |−1/2

∣

∣I + γX jΛX
∗
j

∣

∣

−1/2
.

By the properties of log-convex functions, and since the sumand product of log-convex func-

tions is still log-convex, the last expression is a ratio of two log-convex functions. Therefore,

taking− log(.) gives a d.c. decomposition forCR.

We will next express the maximization of (42) as a concave minimization problem. We need

to maximize the− log(.) of the last expression, which is

= max
tr(Λ)≤NtNr

1

2
log
∏

i,j>i

(

|I + γX iΛX
∗
i |
∣

∣I + γX jΛX
∗
j

∣

∣

)−1 − q(Λ), (43)

whereq(Λ) is convex overΛ . An additional variablet is now introduced to get the equivalent

optimization problem

max
tr(Λ)≤NtNr

q(Λ)≤t

1

2
log
∏

i,j>i

(

|I + γX iΛX
∗
i |
∣

∣I + γX jΛX
∗
j

∣

∣

)−1 − t (44)

= min
tr(Λ)≤NtNr

q(Λ)≤t

t +
∑

i,j>i

1

2
log
(

|I + γX iΛX
∗
i |
∣

∣I + γX jΛX
∗
j

∣

∣

)

(45)

Sinceq(Λ) − t is a convex function,q(Λ) − t ≤ 0 is a convex set. Since the intersection of

convex sets is convex, the constraint set is convex. Further, since the objective function in (45)

is concave, the optimization is a concave minimization problem overΛ andt by definition.

The additional variablet may also be introduced in place of the other convex function in (43),

to get the equivalent problem

max
tr(Λ)≤NtNr

t≤r(Λ)

t − q(Λ) = min
tr(Λ)≤NtNr

t≤r(Λ)

q(Λ) − t, (46)

wherer(Λ) =
∑

i,j>i −1
2
log
(

|I + γX iΛX
∗
i |
∣

∣I + γX jΛX
∗
j

∣

∣

)

. Sincer(Λ) is a convex func-

tion of Λ , t ≤ r(Λ) is a reverse convex constraint ofΛ . Sinceq(Λ)− t is a convex function of

Λ, this form of the optimization problem is a convex minimization problem with an additional

reverse convex constraint (or concave constraint).

All the three forms indicated are global optimization problems and algorithms are available

to solve them. An example of an algorithm that solves the d.c.program is the Simplical Branch
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and Bound algorithm(Section 4.6) [23]. Alternatively, onecould convert the problem into a

canonical d.c. program and then use the Edge Following Algorithm (Section 4.5) [23]. More

algorithms may be found in [23] and another reference [25]. The concave minimization prob-

lem is known [23] to have a solution at an extreme point of the constraint region and this fact is

exploited in algorithms to solve it. Several algorithms to solve this problem are given in Chap-

ter 3 of [23] and in [25]. The formulation involving a convex minimization problem with an

additional reverse convex constraint can be solved by the branch and bound algorithm given in

[26].

Since the number of transmit and receive antennas is relatively small in practice, the problem

of finding the optimalΛ which involvesNtNr variables, can be solved numerically with tractable

complexity in many practical cases of interest.

D. A Numerical Example

In Figure 1, we give a numerical example using the UIU Rayleigh fading model. In this figure,

we compare the simulated (via Monte-Carlo simulations) mutual informations of a systematic

unitary constellation at different values ofγ on a fully correlated channel, an i.i.d. channel and

a channel using the optimal correlations. The constellation used has8 points and the parameters

Nt = 3, Nr = 3 andT = 6. At relatively low SNR, the performance with optimal correlations

coincides with that of the fully correlated channel. At highSNRs, the performance with optimal

correlations coincides with that of the i.i.d. fading channel. These simulations are hence in

concordance with the analytical results in Theorems 1 and 2.At moderate SNRs, gains of upto

≈ 2.5 dB are observed when using the optimal correlations as compared to the better of the i.i.d.

or fully correlated case. Significant improvements are observed for the optimal correlations over

the i.i.d. fading case.

V. CONCLUSIONS

We considered the problem of finding the optimal correlationmatrices of a noncoherent spa-

tially correlated MIMO Rayleigh fading channel at different SNR regimes. In the low SNR

regime, we use the mutual information as our design criterion, while at higher SNR regimes we

use the cutoff rate expression. At sufficiently low SNR, we showed that a fully correlated chan-

nel matrix maximizes the mutual information. This indicates that it is best to focus power along
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one effective channel in the low SNR regime. Therefore, systems with more densely packed

antenna arrays that result in high spatial correlations have a higher capacity at low SNR. At

asymptotically high SNR, we showed that a fully uncorrelated channel matrix is optimal under

a condition on the constellation which ensures full diversity. This indicates that in the high SNR

regime, it helps to create as many independent parallel channels as possible. In the case of sepa-

rable correlations, we showed that the cutoff rate expression is Schur-convex with respect to the

receive correlation eigenvalues at sufficiently low SNR andSchur-concave at high SNR. This

indicates that it is beneficial to have high receive correlations at sufficiently low SNR, while it

helps to have the receive correlation matrix as close to i.i.d. as possible at high SNR. At suffi-

ciently low SNR, the fully correlated transmit correlationmatrix is optimal for any fixed receive

correlation matrix. We show that the cutoff rate expressionis Schur-concave with respect to the

transmit correlation eigenvalues at high SNR. This indicates that it helps to have the transmit

correlation matrix as close to i.i.d. as possible at high SNR. We also show how the problem of

finding the eigenvalues of the optimal correlation matrix ata general SNR can be formulated

and solved by using standard global optimization algorithms.

APPENDIX

A. Majorization, Schur-convex and Schur-concave functions

The following two definitions are from [20].

Definition 7: Forx,y ∈ Rn, x is said to be majorized byy, denoted byx ≺ y, if

k
∑

i=1

x[i] ≤
k
∑

i=1

y[i], k = 1, ..., n − 1,

and
n
∑

i=1

x[i] =
n
∑

i=1

y[i]

wherex[i] andy[i] denote theith largest components ofx andy respectively.

Definition 8: A real valued functionf defined on a setA ⊆ Rn is said to be Schur-convex on

A if for any x,y ∈ A, x ≺ y ⇒ f(x) ≤ f(y). Similarly,f is defined to be Schur-concave

onA if for any x,y ∈ A, x ≺ y ⇒ f(x) ≥ f(y).

Since the vector[n 0 . . . 0]T (with then occuring at any position) majorizes every other non-

negative vector whose elements add up ton, every Schur-convex function of such vectors attains

July 24, 2006 DRAFT



20

its maximum at[n 0 . . . 0]T . Similarly, every Schur-concave function attains its maximum at

[1 1 . . . 1]T among all non-negative vectors whose elements add up ton.

B. Derivation of cutoff rate

The integral
∫
√

p(y|i) p(y|j)dy in (24) is known as the Bhattacharya coefficientρij between

hypothesesi andj. For the noncoherent MIMO Rayleigh fading channel ,ρij is

ρij =

∫

Γ

[

pj(y)

pi(y)

]1/2

pi(y)dy

=
|I + γX iΛX

∗
i |1/2

∣

∣I + γX jΛX
∗
j

∣

∣

1/2
EX i

[exp (−y∗Fjiy)], (47)

whereFji = 1
2
(I+γX jΛX

∗
j)

−1− 1
2
(I+γX iΛX

∗
i )

−1. The expectation in (47) can be evaluated

using the main result in [27] to get

ρij =
|I + γX iΛX

∗
i |1/2

∣

∣I + γX jΛX
∗
j

∣

∣

1/2 ∣
∣

1
2
I + 1

2
(I + γX iΛX

∗
i )(I + γX jΛX

∗
j )

−1
∣

∣

=
|I + γX iΛX

∗
i |1/2

∣

∣I + γX jΛX
∗
j

∣

∣

1/2

∣

∣

1
2
(I + γX iΛX

∗
i ) + 1

2
(I + γX jΛX

∗
j )
∣

∣

(48)

Substituting these expressions in (24) we get (25).

In the special case of separable correlations, we may simplify (48) further to obtain the fol-

lowing expression :

ρij =
Nr
∏

n=1

|I + γXiΛX∗
i λ

r
n|1/2

∣

∣I + γXjΛX∗
jλ

r
n

∣

∣

1/2

∣

∣I + γ
2
(XiΛX∗

i + XjΛX∗
j)λ

r
n

∣

∣

(49)

Equation (49) follows from (48) using the relations

I + γλr
nX iΛX

∗
i = ITNr

+ (INr
⊗ γXi)(Λr ⊗Λ)(INr

⊗ λr
nXi)

∗

= INr
⊗ IT + (INr

⊗ γXiΛX∗
i λ

r
n)

= INr
⊗ (IT + γXiΛX∗

i λ
r
n),

and simplifying.
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C. Derivation of low SNR cutoff rate

In this appendix, we derive the low SNR cutoff rate. The cutoff rate expression may be written

as

CR = − log

{

∑

i

∑

j

PiPj exp

{

− log

∣

∣I + γ
2
(X iΛX

∗
i + X jΛX

∗
j )
∣

∣

|I + γX iΛX
∗
i |1/2

∣

∣I + γX jΛX
∗
j

∣

∣

1/2

}}

(50)

= − log

{

∑

i,j

PiPj e{
1
2

log|I+γX iΛX
∗
i |+

1
2

log|I+γXjΛX
∗
j |−log|I+ γ

2
(XjΛX

∗
j +X iΛX

∗
i )|}
}

.(51)

Now apply the formulalog |I + γA| = γtr(A) − γ2

2
tr(A2) + o(γ2), which is valid for any

Hermitian matrixA and smallγ. With this approximation and some simplification, we get that

CRlow = − log

{

∑

i

∑

j

PiPj e−
γ2

8
tr{(X iΛX

∗
i −XjΛX

∗
j )2} + o(γ2)}

}

(52)

= − log

{

∑

i

∑

j

PiPj

(

1 − γ2

8
tr{(X iΛX

∗
i − X jΛX

∗
j )

2} + o(γ2)

)

}

(53)

= − log

{

1 −
{

∑

i

∑

j

PiPj
γ2

8
tr{(X iΛX

∗
i − X jΛX

∗
j)

2} + o(γ2)

}}

(54)

=
γ2

8

∑

i

∑

j

PiPjtr{(X iΛX
∗
i − X jΛX

∗
j )

2} + o(γ2). (55)

In (53), we have used the approximationexp(−x) = 1 − x + o(x) which holds for smallx. In

(55), we have used the approximation− log(1 − x) = x − o(x) which is true for smallx.
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Fig. 1. Mutual information plot for systematic unitary design withL = 8, T = 6, Nt = 3 andNr = 3.
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