
Scienti�c Approaches and Techniques for NegotiationA Game Theoretic and Arti�cial Intelligence PerspectiveE.H. Gerding D.D.B. van Bragt J.A. La Poutr�eCWIP.O. Box 94079, 1090 GB Amsterdam, The NetherlandsABSTRACTDue to the rapid growth of electronic environments (such as the Internet) much research is currently beingperformed on autonomous trading mechanisms. This report contains an overview of the current literatureon negotiations in the �elds of game theory and arti�cial intelligence (AI). Game theorists have successfullydeveloped and analyzed a variety of bargaining models in the past decades. We give an extensive overviewof this theoretical work. In particular, research performed in the �elds of cooperative and non-cooperativebargaining, bargaining with incomplete information, and bargaining over multiple issues is evaluated. The useand shortcomings of game-theoretical concepts in practical applications is discussed.Simplifying assumptions frequently made in game-theoretical analyses, such as assumptions of perfect ra-tionality and common knowledge, do not need to be made if the behavior of boundedly-rational negotiatingagents is modeled directly, for instance using techniques borrowed from the �eld of AI. We show how di�erentAI-techniques, such as decision trees, Q-learning, evolutionary algorithms, and Bayesian beliefs, can be usedto develop a negotiation environment consisting of intelligent agents. These agents are able to adapt theirnegotiation strategies to changing user preferences and opponents. A survey of state-of-the art applicationsusing AI-techniques is given in this report.The main conclusion from this survey is that combining techniques and ideas from game theory and AI willmake it possible to create robust and intelligent negotiation systems in the near future.2000 Mathematics Subject Classi�cation: 68T05, 91A051999 ACM Computing Classi�cation System: I.2.11, J.4, I.2.6Keywords and Phrases: game theory, arti�cial intelligence, bargaining, negotiation protocols, agents, learning,evolutionary algorithmsNote: Work carried out under theme SEN4 \Evolutionary Systems and Applied Algorithmics". This work hasbeen performed in the framework of the project \Autonomous Systems of Trade Agents in E-Commerce" andhas been funded by the Telematics Institute in the Netherlands.1. IntroductionThis report contains an overview of approaches and techniques concerned with bargaining. We herefocus on the large body of literature that has been published in the �elds of economics (in particulargame theory) and arti�cial intelligence (AI). To give a brief impression of the rapid developmentsin this �eld, we �rst highlight some important breakthroughs in economic bargaining theory in thisintroduction. More details, extensions, and analyses can then be found in Section 2.Perhaps surprisingly, the bargaining problem has challenged economists for decades. Yet the bar-gaining problem is stated very easily [35]:Two individuals have before them several possible contractual agreements. Both haveinterests in reaching agreement but their interests are not entirely identical. What \willbe" the agreed contract, assuming that both parties behave rationally?Before the path-breaking work of Nash [24] and, much later, Rubinstein [35] the bargaining problemwas considered to be indeterminate. For example, in their inuential work Von Neumann and Mor-genstern [46] argued that the most one can say is that the agreed contract will lie in the so-called



2\bargaining set" (i.e., it is no worse than disagreement and there is no agreement that both partieswould prefer). But because this bargaining set consists in general of an in�nite number of di�erentagreements this requirement does not yield a unique bargaining solution. A unique solution can befound, however, if the agreed contract satis�es additional axioms such as those proposed by Nash [24].Because one can argue about which axioms are \reasonable" and which are not, Nash suggested tocomplement this axiomatic approach with a strategic game. This route was followed by Rubinstein[35] who proved that an important bargaining game (the \alternating-o�ers" game) has a unique solu-tion. Binmore [5] then connected the �elds of axiomatic and strategic bargaining by proving that thesolution of Rubinstein's bargaining model coincides with the Nash bargaining solution under specialcircumstances.Binmore et al. observe in a more recent paper [6] that researchers from outside the economiccommunity are becoming more and more interested in game-theoretic work on bargaining. Interest inbargaining is especially surging in the arti�cial intelligence community, see the overview in Section 3of this report.Game theory frequently makes simplifying assumptions to facilitate the mathematical analysis.Common assumptions are for instance: (1) complete knowledge of the circumstances in which thegame is played and (2) full rationality of the players. The �rst assumption implies that the rules ofthe game and the preferences and beliefs of the players are \common knowledge".1 Game theoriststraditionally model incomplete information by specifying a limited number of player \types". Eachtype is then uniquely determined by a set of preferences and beliefs. Players are not completely certainabout the exact type of their opponent. However, the probability that an opponent is of a certain typeis, again, common knowledge for all players. In this manner, a game of incomplete information canbe transformed in a game of \imperfect" information2 (see also Section 3.3).The second assumption relates to the need for common knowledge on how players reason. It isassumed that players maximize their expected payo�s given their beliefs. Players have in�nite com-putational capacity to pursue statements like \if I think that he thinks that I think..." ad in�nitum.Furthermore, players are assumed to have a perfect memory.3 These assumptions limit the practicalapplicability of game-theoretic results. In the �eld of AI, however, assumptions like complete knowl-edge or full rationality are not necessary because the behavior of individual agents can be modeleddirectly. This gives the AI approach an important advantage over more rigorous (but at the sametime more simpli�ed) game-theoretical models.Researchers in the �eld of AI are currently developing software agents which should be able (inthe near future) to negotiate in an intelligent way on behalf of their users. A survey of the potentialof automated negotiation is given in [47, Ch. 9]. A well-known example is the agent-based heatingsystem of the Xerox company. In this climate control system each agent controls an o�ce thermostatand the allocation of resources is market based. Another example of negotiating agents is given in [7].This paper describes a system in which a utility agent (acting on behalf of an electricity company) isnegotiating with consumer agents to prevent excessive peaks in the demand for electricity.An important restriction of the above systems is that they are closed and that agents behave andinteract in a predetermined way. That is, they typically consist of a \�xed" collection of \inexible"agents. In future applications for e-commerce, multi-agent systems will need to be much more open-ended and dynamic, especially for trading, brokering, and pro�ling applications. In particular, itis important for the negotiating agents to be able to adapt their strategies to deal with changingopponents, changing topics and concerns, and changing user preferences. This should lead to muchmore advanced and universal systems.1Common knowledge means that the players know what the other players know, etc., in an in�nite regress.2A game is said to have perfect information if (i) there are no simultaneous moves and (ii) at each decision point itis known which choices have previously been made [44, Ch. 1].3Lately, much research in game theory focuses on the �eld of \bounded" rationality, in which players have limitedcomputational power and/or limited hindsight. An overview of recent work in this �eld can be found in [37]. Binmorealso gives a short discussion of this topic in [3, pp. 478-488].



3Nevertheless, due to this rapidly increasing complexity, the connection between the AI approach anda game-theoretic analysis remains important. Game theory may aid in the di�cult task of choosinga suitable bargaining protocol [6]. Tools and techniques from AI can be used to develop softwareapplications and bargaining protocols which are currently beyond the reach of classical game theory.2. Game-theoretic approaches to bargainingTraditionally, game theory can be divided into two branches: cooperative and non-cooperative gametheory. Cooperative game theory abstracts away from speci�c rules of a game and is mainly concernedwith �nding a solution given a set of possible outcomes. A topic like coalition forming is typicallyanalyzed using cooperative game theory. Often, in real life, companies can gain pro�ts by workingtogether, for example by securing a larger market share or by reducing direct competition with thecompetitors. In such games, a surplus is created when two or more players cooperate and forma coalition. Cooperative game theory can then determine how the surplus is to be divided, givena coalition and a set of assumptions (called \axioms"). Likewise, cooperative bargaining theorydetermines how the surplus is to be divided which results from an agreement.Non-cooperative game theory, on the other hand, is concerned with speci�c games with a well de�nedset of rules and game strategies. All strategies and rules are known beforehand by the players. Non-cooperative game theory uses the notion of an equilibrium strategy to determine \rational" outcomesof a game. Numerous equilibrium concepts (and subsequent re�nements) have been proposed in theliterature (see [44] for an overview). Some widely-used concepts are \dominant" strategies, \Nash"equilibria and \subgame perfect" equilibria. A dominant strategy is optimal in all circumstances, thatis, no matter what the strategies of the other players are. This is obviously a very strong notion of anequilibrium strategy. A slightly weaker, but still very powerful, equilibrium concept is the so-calledNash equilibrium [25, 26]. The strategies chosen by all players are said to be in Nash equilibrium ifno player can bene�t by unilaterally changing his strategy. Nash proved that every �nite game has atleast one equilibrium point (in pure or mixed strategies) [25, 26]. A important re�nement of a Nashequilibrium for extensive-form games (i.e., games with a tree structure) is Selten's subgame-perfectequilibrium [39, 40]. In subgame-perfect equilibrium the strategies for each subgame of the game treeconstitute a Nash equilibrium.An overview of bargaining literature from the �eld of cooperative game theory will be given inSection 2.1. In Section 2.2 several non-cooperative bargaining games are discussed. Particular atten-tion is paid to the most important bargaining protocol: the \alternating-o�ers" game. In Section 2.2bargaining over a single issue is assumed. Section 2.3 covers work on multiple-issue negotiations.As we mentioned before, traditional game theory assumes complete information, implying that theplayer's preferences and beliefs are common knowledge. However, lately many researchers in gametheory have focussed on the consequences of players having private information. Among other things,incomplete information could explain why ine�cient deals are reached or why no deal is reachedat all. For instance, the occurrence of strikes and bargaining impasses, but also the occurrence ofdelays in negotiations can theoretically be addressed when complete information is no longer assumed.Literature related to this topic is discussed in Section 2.4.2.1 Cooperative bargaining theoryCooperative game theory considers the space of possible outcomes of a game, without specifying thegame itself in detail. In case of bargaining, the outcomes are often denoted in terms of utilities[3]. In case of two-player games, the outcomes are then represented by utility pairs. Cooperativebargaining theory is concerned with the question of which outcome will eventually prevail, given theset of all possible utility pairs. A particular set of possible outcomes is also referred to as a \bargainingproblem".A function which maps a bargaining problem to a single outcome is called a \solution concept".Usually, a solution concept is only valid for a certain subset of all possible bargaining problems. Forinstance, the �rst and most famous solution concept, the Nash bargaining solution [24] only applies



4to convex and compact bargaining sets (see also [3, pp. 180{181]). Only if these requirements aresatis�ed the bargaining problem can properly be called a Nash bargaining problem.An alternative bargaining solution has been proposed by Kalai and Smorodinsky [15]. Their ap-proach is discussed below. Both the Nash and the Kalai and Smorodinsky bargaining solutions areinvariant with respect to the calibration of the players' utility scales. The \utilitarian" solution con-cept di�ers in that respect and does actually depend on how the functions are scaled. For this reason,its application is limited to those situations where inter-personal utility comparison makes any sense.Cooperative theories of bargaining are discussed in more detail in [34].The Nash bargaining solution Nash proposed four properties, now called the \Nash axioms", whichshould be satis�ed by rational bargainers [24],[3, p. 184]:1. The �nal outcome should not depend on how the players' utility scales are calibrated. Thismeans the following. A utility function speci�es a player's preferences. However, di�erentutility functions can be used to model the same preferences. Speci�cally, any strictly increasinga�ne transformation of a utility function models the same preferences as the original function,and should therefore yield the same outcome.2. The agreed payo� pair should always be individually rational4 and Pareto-e�cient5.3. The outcome should be independent of irrelevant alternatives. Stated otherwise, if the playerssometimes agree on the utility pair s when t is also a feasible agreement6, they never agree on twhen s is a feasible agreement.4. In symmetric situations, both players get the same.The solution which satis�es these four properties is characterized by the payo� pair s = (x1; x2) whichmaximizes the so-called Nash product (x1 � d1)(x2 � d2), where d1 and d2 are player 1's and player2's outcomes in case of a disagreement. Nash proved that this is the only solution which satis�es allfour axioms [24]. Given a Nash bargaining problem where the set of individually rational agreementsis not empty, the Nash bargaining solution then leads to a unique outcome. Figure 1 illustrates howto construct the Nash bargaining solution for a given bargaining problem.Due to the fourth axiom, both players are treated symmetrically if the bargaining problem issymmetric as well. In other words, if the players' labels are reversed, each one will still receive thesame payo�. A more general solution attributes so-called \bargaining powers" � and � to player 1and player 2, respectively. In this generalized or asymmetric Nash bargaining solution, the fourthaxiom is abandoned and the bargaining solution comes to depend on the bargaining powers of the twoplayers.7 The generalized Nash bargaining solution corresponding to the bargaining powers � and �can be characterized as above as the pair s which maximizes the product (x1 � d1)�(x2 � d2)� [3, p.189].The Kalai-Smorodinsky bargaining solution The third of the Nash axioms (independence of irrelevantalternatives) has been the source of great controversy (follow the discussion in [18]). Kalai andSmorodinsky therefore proposed an alternative to this axiom, which they refer to as the \axiomof monotonicity" [15]. For a set S of individually-rational and Pareto-e�cient points, let mi(S) =maxfsi j s 2 Sg be player i's maximum feasible utility, for i = 1; 2. The Kalai-Smorodinsky solution4An agreement is individually rational if it assigns each player a utility that is at least as large as a player canguarantee for himself in the absence of an agreement [3, p. 178].5An agreement is Pareto-e�cient if no player can gain without causing a loss for the other player [3, p. 177].6That is, within the set of possible agreements.7What these bargaining powers represent depends on the actual (non-cooperative) game played. For example, incase of negotiating companies the bargaining powers could be determined by the strength of their respective marketpositions. It should be clear however, that the bargaining powers have nothing to do with the bargaining skills of theplayers, since perfect rationality is assumed.
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Figure 1: Construction of the Nash bargaining solution. This �gure shows the Pareto-e�cient frontier(denoted by the solid line) and the Nash bargaining solution for a speci�c bargaining problem. Thebargaining problem is de�ned by the set of feasible utility pairs (denoted by the grey area) andthe disagreement point d which speci�es the players' payo�s in case of a disagreement. To �nd the(symmetric) Nash bargaining solution, one needs to draw a supporting line on the Pareto-e�cientfrontier such that the Nash bargaining solution is halfway between the points r and t. The points rand t are located on respectively the horizontal and the vertical lines drawn from the disagreementpoint d.then selects the maximum element in S on the line that joins the disagreement point (d1; d2) with thepoint (m1(S);m2(S)). An example is given in �gure 2.
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Figure 2: Construction of the Kalai-Smorodinsky solution. m1 and m2 are the maximum feasibleutilities for players 1 and 2, respectively. Point k is the unique solution which satis�es the four axiomsproposed by Kalai and Smorodinsky [15].



6Utilitarianism A utilitarian policy in philosophy is one which prefers an outcome which maximizesthe total welfare of the individuals in a society [23]. Any bargaining solution which maximizes thesum of utilities is therefore called a utilitarian solution concept. Stated less formally, the utilitarianprinciple asserts that \you should do something for me if it will hurt you less than it will help me".Clearly, a utilitarian solution concept assumes that interpersonal utility comparisons are possible.Therefore, Nash's �rst axiom (independence of utility calibrations) no longer holds in utilitarianmodels.8Conclusions Apparently, many di�erent types of solutions to the bargaining problem exist in co-operative game theory. The choice of a speci�c solution is of course based on norms existing in asociety, or, more speci�cally, on which axioms seem to be \reasonable" in a speci�c bargaining con-text. Certain outcomes might be for instance be considered as \unfair". An example is given in [32,pp. 235{250].Additionally, it is important to consider for which classes of non-cooperative games the solutionconcepts from cooperative game theory are appropriate. For instance, if no non-cooperative gamecan be found which results in a solution speci�ed by cooperative game theory, then the results fromcooperative game theory have little bearing. Fortunately, such a connection between cooperative andnon-cooperative game theory has been observed under special circumstances [5] (more details are givenin Section 2.2).2.2 Bargaining over a single issueFour di�erent negotiation games or \protocols" are described in this section. These protocols can beused by two bargainers to divide a given bargaining \surplus", that is, the total pro�t resulting whenthe players reach an agreement. Without loss of generality, we assume that the bargaining surplus isof size unity in the remainder of this report.The following protocols are considered below: (1) the Nash demand game, (2) the ultimatum game,(3) the alternating-o�ers game and (4) the monotonic concession protocol. The �rst three games arewell-known and widely-used. The fourth game is described in [33] and is an attempt to model a morerealistic negotiation scenario. However, in all games described here analytical solutions are obtainedusing the strong assumption of common knowledge. The extrapolation of results obtained here toreal-world cases is therefore a non-trivial step.The protocols described in this section have been applied mainly to evaluate negotiations over asingle issue. In real life, this issue is often the price of a good to be negotiated. Although this keepsmatters simple, important value-added services such as delivery time, warranty or service are left out.Both the supplier and the consumer could for instance bene�t if negotiations involve multiple issues.Moreover, multiple-issue negotiations can be less competitive because solutions can be sought whichsatisfy both parties. Multiple-issue negotiations are studied in more detail in Section 2.3.The Nash demand game Both players simultaneously demand a certain fraction of the bargainingsurplus in this game, without any knowledge of the other player's demand [3, pp. 299-304]. In case thesum of demands exceeds the surplus, both players only receive their disagreement payo�. Otherwise,the demands are said to be compatible, and both players get what they requested. This game hasan in�nite number of Nash equilibria: all deals which are Pareto-e�cient, but also deals where bothplayers receive their disagreement payo�. For example, if both players ask more than the entiresurplus, no player could ever gain by unilaterally changing his strategy.The concept of a Nash equilibrium thus places few restrictions on the nature of the outcome. Nashtherefore suggested a re�nement for this game which does result in a unique solution. This re�nementof the demand game is called the \perturbed" demand game [29, pp. 77-81]. In this perturbed gamethe players are completely certain about which outcomes are within the bargaining set (i.e., the setof compatible demands) and which outcomes are not. When the degree of uncertainty approaches8Note that the Pareto-e�ciency axiom still holds. The other axioms depend on the speci�c solution concept.



7zero, the Nash equilibrium of the perturbed game approaches the Nash bargaining solution of theregular demand game (without uncertainty).9 The reader is referred to [44] for technical details onthis subject. A more introductory overview is given by Binmore [3].The ultimatum game Playing Nash's demand game, both players could easily receive nothing, orit could occur that some of the surplus is \thrown away". Players would do better by choosing asomewhat less competitive game. If they are unable to reach an agreement using this alternativegame, the demand game still remains an option.A very simple alternative is the so-called \ultimatum" game. In this game, one of the playersproposes a split of the surplus and the other player has only two options: accept or refuse. In case ofa refusal, both players get nothing (or the demand game is played). Although the game again has anin�nite number of Nash equilibria, it has only one subgame perfect equilibrium (in case the bargainingsurplus can be divided with arbitrary precision) where the �rst player demands the whole surplus andthe second player accepts this deal [3, pp. 197-200].The alternating-o�ers game Basically a multiple-stage extension of the ultimatum game, the\alternating-o�ers" game is probably the most elegant bargaining model. As in the ultimatum game,player 1 starts by o�ering a fraction x of the surplus to player 2. If player 2 accepts player 1's o�er, hereceives x and player 1 receives 1� x. Otherwise, player 2 needs to make a counter o�er in the nextround, which player 1 then accepts or rejects (sending the game to the next round). This process isrepeated until one of the players agrees or until a �nite deadline is reached.Bargaining over a single issue in an alternating fashion has been pioneered by Ingolf St�ahl [42]. Ataxonomy and survey of economic literature on bargaining before 1972 is given in this reference. St�ahlanalyzes bargaining games with a �nite number of alternatives. Both games of �nite and of in�nitelength are studied, but he primarily evaluates games of a �nite length. St�ahl uses an assumption of\good-faith bargaining" to simplify the theoretical analysis. Good-faith bargaining prevents playersfrom increasing their demands during play. He then identi�es optimal strategies for rational playerswith perfect information by starting at the last stage of the game and then inductively workingbackwards until the beginning of play. This procedure yields those equilibria which can be found withdynamic programming methods.A straightforward dynamic programming approach can fail in case of imperfect information [44,Ch. 1]. Sensible strategies can then be found by requiring that each player's optimal strategy for theentire game also prescribes an optimal strategy in every subgame. As mentioned before, this conceptof a subgame-perfect equilibrium (SPE) is due to Selten [39, 40]. Rubinstein [35] successfully appliedthis equilibrium concept to identify a unique solution in his variant of the alternating-o�ers game.Rubinstein's game [35] has an in�nite length and there is a continuum of alternatives. To simplify theanalysis, Rubinstein made several assumptions with regard to the players' preferences. An importantdi�erence with St�ahl's model is that time preferences are assumed to be stationary (this means thatthe preferences of getting a part x of the surplus at time t over getting y at t+1 is independent of t).Rubinstein analyzes two speci�c stationary models: one in which each player has a �xed bargainingcost for each period (c1 and c2) and one in which each player has a �xed discounting factor (�1 and�2). These discount factors model how impatient the player is [3, p. 202]. Player i 's utility for gettinga fraction x of the surplus at time t is equal to x(�i)t. If the discount factor is smaller than 1, a dealis therefore worth less if the agreement is reached in the future than if a deal is reached immediately.Using stationarity and other assumptions, Rubinstein �rst demonstrated that the Nash equilibriumconcept is too weak to identify a unique solution by proving that every partitioning of the surpluscan be supported as the outcome of Nash equilibrium play. To overcome this di�culty, Rubinsteinthen applied the concept of a SPE and proved that there exists a unique SPE in the alternating-o�ersbargaining model. For example, if both players have a �xed discounting factor (�1 and �2) the only9Note that only the Nash equilibria which result in solutions within the bargaining set are considered. Nash equilibriain which no agreement is reached still remain [29, p.79].



8SPE is one in which player 1 gets (1 � �2)=(1 � �1�2) and player 2 the remainder (of a surplus ofsize 1). Furthermore, if both players use their SPE strategy, agreement will be reached in the �rstround of the game. Notice that Rubinstein's proof assumes that both players have perfect informationabout the other player's preferences (i.e., their bargaining cost or discount factor). Bargaining withimperfect information (i.e., where uncertainty plays a crucial role) is discussed further in Section 2.4.Rubinstein's paper has been very inuential in bargaining theory. At the moment, a vast body ofliterature exists on in�nite-horizon games. An overview is given in [29, 22]. Many pointers to theliterature are given in these references. We will conclude this section by discussing a few key papersin this �eld.An particularly important paper is [5]. In this paper a relation between the SPE outcome of thealternating-o�ers game and the Nash bargaining solution is identi�ed in case of weak player preferences(e.g., discount factors close to unity or small time intervals between rounds). This establishes alink between non-cooperative and cooperative bargaining theory and justi�es the use of the Nashbargaining solution to resolve negotiation problems (at least in case of complete information).Van Damme et al. [45] have investigated the role of a smallest monetary unit (i.e., a �nite numberof alternatives) in the alternating-o�ers game with payo� discounting. They show that in case of a�nite number of alternatives, any partition of the surplus can be supported as the result of a subgame-perfect equilibrium if the time interval between successive rounds becomes very small. This meansthat Rubinstein's assumption of a continuous spectrum of bids is essential in deriving a unique solutionof the alternating-o�ers game under these conditions.Recent theoretical work by Binmore et al. [4] examines an evolutionary variant of Rubinstein's game.In this paper the agents are modeled as (boundedly-rational) automata instead of perfectly-rationalbargainers. In particular, the bargaining agents do not know the other agents' preferences. Binmoreet al. characterize so-called modi�ed evolutionary stable strategies (MESSes). A MESS modi�esMaynard Smith's concept of a neutrally stable strategy [41] by favoring a more simple strategy over amore complex one in case of equal payo�s. Binmore et al. show theoretically that if both agents usea MESS, this constitutes a Nash equilibrium in which immediate agreement is reached. Furthermore,each agent's share of the surplus is bounded between the shares received by the two agents in theSPE of the in�nite-horizon game studied by Rubinstein. These bounds collapse on the SPE partitionswhen the breakdown probability becomes very small, or when the players' discount factors (modelingtheir time preferences) become large.Monotonic concession protocol A more restricted protocol, compared to the alternating-o�ers game,is described in [33]. In this \monotonic concession" protocol the two players announce their proposalssimultaneously. If the o�ers of both agents match or exceed the other agent's demand, an agreementis reached. A coin is tossed to choose one of the o�ers in case they are dissimilar.If no agreement is reached, the players need to make new o�ers in the next round. The o�ers needto be monotonic, that is, the players are not allowed to make o�ers which have a lower utility fortheir counter player compared to the last o�er. Hence, a player can either make the same o�er (tostand �rm) or concede. Negotiations end if both agents stand �rm in the same round. The playersreceive their disagreement payo�s in this case. Because each round at least one of the players has tomake a concession (or a disagreement occurs), the protocol has a �nite execution time if the minimumconcession per round is �xed and larger than zero.Note that in order to make a (monotonic) concession possible, a player needs to have some knowledgeabout the other players' preferences. This knowledge is crucial when several issues are negotiated atthe same time. In this case not only the \sign" of the utility function, but also the relative importanceof the issues becomes important.Rosenschein and Zlotkin discuss which kinds of strategies are stable and e�cient when using thisprotocol (in negotiations over a single issue). A strategy pair is e�cient in this case if an agreementis always reached. Stability is de�ned using the notion of a symmetric Nash equilibrium.10 Note10A strategy s constitutes a symmetric Nash equilibrium if player 1 can do no better than playing s, given that player



9that a strategy s in which both players make a concession in the same round is not stable: one ofthe players could do better by standing �rm. On the other hand, a strategy where a player tosses acoin to determine whether to concede or stand still is not e�cient (nor stable): a disagreement willoccur with a probability of one fourth. The interested reader is referred to [33] for more details onthe characteristics of this mechanism.2.3 Bargaining over multiple issuesThe above situations can be described as negotiations about how to divide a surplus. This meansthat the negotiations are distributive: a gain for one player always creates a loss for the other player.These kinds of negotiations are also referred to as \competitive" [13]. When more than a single issueis involved, and players attach di�erent importance to these issues, tradeo�s become an option andnegotiations may become \integrative". The latter kind of negotiations is the main topic of thissection. Results from cooperative game theory are discussed �rst, followed by a overview of resultsfrom non-cooperative game theory.Cooperative game theory An additive scoring system or a multi-attribute utility (MAUT) functioncan be used to represent the relationships or trade-o�s between the issues if several issues are in-volved.11 However, these methods are appropriate only if the issues are preferentially independent,that is, if the contribution of one issue is independent of the values of the other issues.Once the preferences are mapped, for instance onto a MAUT function, the bargaining set canbe determined. The main goal is again to reach a Pareto-e�cient outcome. Previously introducedsolution concepts such as the Nash bargaining solution or the Kalai-Smorodinsky solution can be usedfor this purpose. Several practical considerations (concerning for example fairness of the outcome)and some instructive real-world examples are given by Rai�a in [32].Non-cooperative game theory Four di�erent bargaining procedures can be distinguished for multiple-issue bargaining [31] (see �gure 3). In case of \global" or simultaneous bargaining all issues arenegotiated at once. The second procedure is called \separate" bargaining. In this protocol the issuesare negotiated independently. The �nal two procedures fall under the header of sequential bargainingand are distinguished by their \rules of implementation". These rules specify when the players canstart enjoying the bene�ts of the issues which have been agreed on.12 Three possibilities are consideredin [11]. Here, however, we will only mention the most important two. Using the so-called \independentimplementation" rule, an agreement on an individual issue takes e�ect immediately, that is, the agreedupon issues are no longer discounted. In the \simultaneous implementation" on the other hand, theplayers have to wait until agreement is reached on all issues before they can enjoy the bene�ts of it.The time it takes to agree on the remaining issues also inuences the pro�ts gained on the alreadyagreed upon issues.
global sequential

simultaneous implementation

separate

bargaining procedures

independent implementationFigure 3: Four di�erent bargaining procedures used in multiple-issue bargaining [31].2 also uses s.11See [32, pp.154-155] for a discussion of the di�erences between these methods.12This is relevant in case the payo� is discounted in the course of time.



10When bargaining is sequential an agenda needs to be determined to set the order in which the issueswill be negotiated. Agenda setting is of course only relevant if the issues are of di�erent importance.Another concern is whether the players attach the same importance to each issue or whether di�erentplayers have di�erent evaluations regarding the importance of the issues. The latter is the mostinteresting case since this allows for integrative negotiations. Unfortunately, however, only a limitedliterature exists on this topic in game theory. Usually, either the issues are of equal importance (as in[1]) or the players have identical preferences (as in [8]). In [31] the assumption is made that preferencesare additive over issues, implying that the multi-issue bargaining problem is equal to the sum of thebargaining problems over the separate issues.One of the few papers in game theory on integrative bargaining is [11]. Fershtman considers sequen-tial bargaining over two issues. He states that, when using Rubinstein's alternating-o�ers protocol foreach issue in a sequential order, each player prefers an agenda in which the �rst issue to bargain onis the one which is the least important for him but the most important for his opponent. Notably, itis shown in [11] that the subgame-perfect equilibrium outcome for this problem does not need to bePareto-e�cient.2.4 Bargaining with incomplete informationPrivate information such as reservation prices (i.e. limit values on what the players �nd acceptable),preferences amongst issues, attitudes towards risk or time preferences are often hidden from theopponent in real-life negotiations. In bargaining, for example, it might be bene�cial to be dishonestabout one's attitudes towards risk in order get a greater share of the surplus (as would be the case inRubinstein's alternating-o�ers game). Sometimes, however, a mechanism (or protocol) can be designedwhich gives agents a compelling incentive to be honest to the opponent. Such mechanisms are called\incentive compatible" and are examined in [33]. In an incentive-compatible protocol the agents cansimultaneously declare their private information before the bargaining starts. The negotiations thenproceed as a game of complete information.The Vickrey auction [3, pp. 525-526] is an example of such an incentive-compatible mechanism.Unfortunately, however, only few games have this property. Therefore, it is necessary to analyze gameswith incomplete information. As mentioned in the introduction, games theory frequently assumes thatthe players have complete information. However, in order to analyze situations in which players areunsure of the opponent's type, the notion of imperfect information needs to be introduced.Imperfect information enables us to address important issues as reputation building, signaling andself-selection mechanisms [36]. For example, the fact that players are unsure of the other player'stype might explain the occurrence of (ine�cient) delays in reaching an agreement [29, Ch. 5]. Usingsuch ine�cient strategies may be the only way to signal for instance one's strength (an example isthe outbreak of strikes during wage bargaining situations). Any utterance which is not backed up byactions can be considered as being cheap talk.13 Delays may therefore be required to convey privateinformation credible [16].In a wage negotiation problem, for example, the union is often unsure about the actual value of itsworkers for a �rm. If this value is high, the �rm will be more eager to sign an agreement. In case of alow value however, the �rm will behave credible by bearing the costs of a strike [16]. A �rm could tryto \blu�" by ignoring a strike even in case of a high valuation, and use this strategy to signal a lowervaluation of the union workers than actually is the case. However, such a strategy can potentially bevery harmful.An overview of bargaining with one-sided incomplete information is given in [29, pp. 118-120].More introductory texts on bargaining with private information can be found in [16] and [3, Ch. 11].13In non-cooperative games, nothing anyone says constrains its future behavior. If a player chooses to honor anagreement or threat that has been made, this will only be because it is optimal to do so.



113. Negotiation and learningSeveral aspects of learning are potentially important during negotiation processes. First, a bargainingagent needs to have a strategy which speci�es his actions during the course of play. On the basis of theagent's experiences in previous bargaining games, he can learn that it might be pro�table to adjust hisstrategy in order to achieve better deals. Second, it might even be useful to update a strategy duringplay. This may be the case if the agent is initially unsure about the \type" of his opponent. Afterplaying a bargaining game for a number of rounds, the agent may form a belief about his opponent'stype and �ne-tune his behavior accordingly. Third, in automated negotiation settings (where agentsbargain on behalf of their owners) an agent might need to learn the preferences of his owner �rst. Inthis report attention is focussed on the �rst two kinds of learning.This section is organized as follows. First, several AI learning techniques are introduced brieyin Section 3.1. Next, Section 3.2 shows how e�cient bargaining strategies can be obtained usingevolutionary algorithms (EAs). Section 3.3 approaches learning during the negotiation process usingBayesian beliefs. Section 3.4 considers an alternative approach by viewing negotiations as a constraintsatisfaction problem. Here, the emphasis lies more on �nding acceptable rather than optimal solutions.3.1 Learning methodsSeveral learning methods developed in the �eld of AI are introduced in this section: decision trees,Q-learning, evolutionary techniques and Bayesian beliefs. This list is by no means exhaustive butgives an good impression of the di�erent types of methods that can be relevant in this context.Two important kinds of learning methods are studied in more detail in subsequent sections. Evo-lutionary approaches are discussed in Section 3.2. Bayesian beliefs are considered further in Section3.3.Decision trees Decision tree induction is one of the simplest supervised learning algorithms [38, Ch.18]. The inputs of a decision tree are values for a set of attributes (such as the current income of acustomer in a bank). The output of a decision tree is usually an action or a decision, usually in theform of a \yes/no" classi�cation (such as, \grant or deny a loan"). Each node in the tree contains anattribute, and the arcs represent di�erent ranges of the value domain for the attribute. Learning isdone by adapting the tree in such a way that it remains consistent with the examples presented. Theexamples contain both the input and the desired output. When a negative example is presented (i.e.,when the desired output is not obtained) a node is split and a new attribute is added to the tree. Dueto noise negative examples could remain even if all attributes are already used. A simple solution isthen to use a majority vote.In general, a set of training examples can agree with many di�erent decision trees, having a di�erentdegree of complexity. Using \Ockham's razor", smaller (i.e., simpler) decision trees are often preferredover larger ones. Unfortunately, the problem of �nding the smallest decision tree is an intractableproblem [38, p. 535].Many di�erent learning algorithms have been proposed for solving problems such as e�ciency,noise and overtraining. Examples include ID3, C4.5, EPAM, CLS and genetic programming. For anoverview see [38, pp. 559-560].Q-Learning An agent receives feedback each time it performs an action in case of supervised learning.However, in many practical cases feedback is only received at the end of a (long) sequence of actions.A good example is a game like chess: only at the end of play the players know with certainty howwell their strategy performs. In learning models like Q-learning, agents also try to evaluate the e�ectof intermediate actions. Q-learning is a reinforcement learning algorithm [38, p. 528] which learns anaction-value function yielding the expected utility of a given action in a given state [38, p. 599].This algorithm maintains a list of so-called Q-values Q(a; i), which denote the expected utility ofperforming an action a at state i. The action which maximizes the expected utility is selected, andthe system moves to a new state j. The Q-value is then updated depending on the Q-value of the



12new state and the received reward (if available). The following equation can be used [38, p. 613] forupdating the Q-value in case of a transition from state i to j by taking action a:Q(a; i) Q(a; i) + �(R(i) + maxa0 Q(a0; j)�Q(a; i)); (3.1)where R(i) is the actual reward received in state i and � is the learning rate. The value maxa0 Q(a0; j)represents the expected utility of state j. For example, if the current state i has a relatively lowexpected utility and the next state j has a high expected utility, the Q-value Q(a; i) is updated insuch a way that the di�erence between these states is reduced. In this way rewards which are givenat the terminal state are passed to the other states in the sequence.As we mentioned before, selecting an action in the current state depends on the expected utility ofeach action. Hence, a trade-o� needs to be made between \exploitation" and \exploration". In otherwords, should an action be chosen which has already proven itself or do we prefer to try out new actionswhich might produce even better results? This question of �nding an optimal exploration policy hasbeen studied extensively in the sub�eld of statistical theory that deals with so-called \bandit" problems[38, pp. 610-611]. An application of Q-learning techniques is given in [27].Q-learning is closely related to learning in classi�er systems [14]. Classi�ers are rules, which, onceactivated, activate other rules creating a chain of activations. The last rule in the sequence receives anexternal reward, which is backpropagated (using a so-called \bucket-brigade" algorithm) to all ruleswhich caused its activation. In addition, new rules are created replacing poorly performing rules (i.e.,which generate low rewards). Exploration of new rules is done using a \genetic" algorithm. Thislearning method is introduced below.Evolutionary algorithms Evolutionary algorithms (EAs) apply the principles of natural evolution,�rst discovered by Darwin and Mendel, in a computational setting. The cornerstones of evolution innature are \survival of the �ttest" together with the transfer (with some variation) of genetic materialfrom parents to their children. Transfer of genetic material (DNA) from parents to o�spring typicallyoccurs in two steps. During the recombination phase the parental chromosomes are paired two-by-twoand \crossed over". Errors in this recombination process or external factors like radiation or chemicalprocesses can lead to additional mutations of the chromosomes.The survival and future reproduction of o�spring is depending on their \�tness", that is, their abilityto gather scarce resources. This process of evolution causes good traits to remain in the populationand bad traits to die out in the long run.Evolutionary algorithms mimic some aspects of these biological processes in a computer [14, 21, 2].EAs typically use a population of individuals. The individuals are not living organisms in this case,but for instance solutions for a optimization problem or strategies of agents playing a game. Thesesolutions are encoded on a \chromosome", most often consisting of a sequence of binary or real-codednumbers. As in natural ecosystems, the survival of these individuals depends on their �tness. Asuitable �tness measure in arti�cial ecosystems depends on the problem domain. It can for instancebe an objective function in case of an optimization problem, or the mean utility obtained by a strategyin a game.Genetic algorithms (GAs) are a special class of evolutionary algorithms, �rst developed by Holland[14]. Here, the chromosomes of the individuals are encoded using bit strings. The genetic crossover andmutation operators are used to create new individuals not yet present in the population. Additionally,a selection operator is used to select the �ttest (i.e., closest to the optimal solution) individualswhich are then allowed to produce o�spring. Other classes of evolutionary algorithms include geneticprogramming, evolution strategies, and evolutionary programming [2].Bayesian beliefs The meaning of the general term \belief" is depending on the problem domain. Ina multi-agent context, beliefs may for instance represent contingent statements (i.e., they could beincorrect) about an agent's environment. To avoid confusion at this point, we therefore continue witha discussion of \Bayesian" beliefs, de�ned as in the �eld of probabilistic reasoning.



13Bayesian beliefs are used to model an agent's (probabilistic) knowledge of an uncertain environment.Suppose the agent has some a priori knowledge about the likelihood of a set of hypotheses Hi, withi = 1; :::; n. Furthermore, the agent has some conditional knowledge about the probability that anevent e will occur, given that one of the hypotheses is true. If event e then occurs, the beliefs aboutthe hypotheses are updated using the Bayesian update rule [50]:P (Hije) = P (Hi)P (ejHi)Pnk=1 P (ejHk)P (Hk) ; (3.2)where P (Hije) is the a posteriori probability of Hi and P (Hi) the a priori probability. P (ejHi) is theconditional probability that event e occurs given hypothesis Hi.Other techniques Other learning algorithms include classi�er systems, neural networks and cellularautomata. For a short overview on these techniques, see [9, pp. 13-21]. Moreover, there are mixedapproaches, e.g., evolving decision trees using genetic programming and evolving a classi�er systemusing GAs.3.2 The evolutionary approachMost of today's automated negotiation systems for e-commerce on the Internet use simple and staticnegotiation rules. Examples are Kasbah14 and AuctionBot15.16 These examples show that at themoment few systems use techniques from the �eld of machine learning. Below we will discuss somekey papers which address the important question of how to make negotiation systems adaptive. Thebasic technique used in these papers is the evolutionary approach.Oliver [28] was the �rst to demonstrate that a system of adaptive agents can learn e�ective nego-tiation strategies. Computer simulations of both distributive (i.e., single issue) and integrative (i.e.,multiple issue) \alternating-o�ers" negotiations are presented in [28]. Binary coded strings representthe agents' strategies. Two parameters are encoded for each negotiation round: a threshold whichdetermines whether an o�er should be accepted or not and a counter o�er in case the opponent'so�er is rejected (and the deadline has not yet been reached). These elementary strategies were thenupdated in successive generations by a genetic algorithm (GA). A similar model has been investigatedin [12, 43]More elaborate strategy representations are proposed in [20]. O�ers and counter o�ers are gener-ated in this model by a linear combination of simple bargaining tactics (time-dependent, resource-dependent, or behavior-dependent tactics). As in [28], the parameters of these di�erent negotiationtactics and their relative importance weightings are encoded in a string of numbers. Competitionswere then held between two separate populations of agents, which were simultaneously evolved by aGA.Dworman et. al [10] studied negotiations between three players. If two players decide to form acoalition, a surplus is created which needs to be divided among them. The third party gets nothing.Of course, all three players want to be part of the coalition in this case. Moreover, they also want toreceive the largest share of the bargaining surplus. Genetic programming was used in this paper toadapt the o�ers and to decide whether to form a coalition or not. A comparison with game theoreticpredictions and human experiments was made.3.3 Using Bayesian beliefsWhen agents have incomplete information about one another, it becomes important to learn aboutthe other agent by observing his behaviour during the negotiation process. Bayesian beliefs are oftenused to make assumptions about the opponent such as his \type" [17] or his reservation price [49],[50].These beliefs are updated depending on the opponent's moves.14http://kasbah.media.mit.edu/.15http://auction.eecs.umich.edu/.16An overview of agent-based e-commerce applications is given in [19, 13].



14However, once both agents use beliefs to determine their strategies, they also need beliefs abouttheir opponent's beliefs, and so on. This is known as the problem of \outguessing regress" [50]. Ingame theory this problem is solved by having a limited number of di�erent types of players. Thebeliefs and preferences of each type are common knowledge, but there is uncertainty about whichplayer is of which type. This theory, suggested by Harsanyi, is a technique for transforming a gameof incomplete information into a game of imperfect (but complete) information (see [3], pp. 501-510).In reality however, the number of di�erent types is usually very large, and, moreover, it is not alwaysrealistic to assume that the preferences and beliefs of the di�erent types are common knowledge. Inmore practical applications (such as [17] and [49]), the problem of outguessing regress is circumventedby assuming bounded rationality.3.4 Distributed constraint satisfaction problem solvingInstead of quantatively encoding the preferences of the negotiating parties one might also use a morequalitative model. Guttman and Maes [13] propose the use of distributed constraint satisfactionproblem solving techniques (DCSPs) as an alternative approach to the quantitative multi-attributeutility theory. Concepts like reservation prices can be modeled within this framework using hardconstraints. Additionally, this model can in principle incorporate \soft" constraints, which modelother preferences such as inter-issue relationships (e.g. \availability is more important to me than alow price"). In the latter case, not all constraints need to be satis�ed [13]. Below, DCSP techniquesare briey described. In this \classical" version, only hard constraints are taken into account. Then,an application of these techniques in an e-commerce context is discussed. Finally, we discuss a closelyrelated technique which uses argumentation to resolve conicts.Principles of DCSPs Each agent is associated with a variable and a set of domain values for thatvariable in DCSPs, as well as a set of constraints for certain combination of values. For example, in ane-commerce context a variable might simply be the price, and the reservation values of the agents formconstraints on this variable. The goal is then to �nd assignments of values to all the variables suchthat all constraints are satis�ed [48]. Communication between agents is done by sending messages.An agent can propose an assignment, and the other agent can reply by either con�rming or sendinga \no good" message. In case of a no good message the set of assignments which violate one or moreconstraints is also communicated. This mechanism allows asynchronous activities of the agents, thatis, there is no need for a central control mechanism.Negotiations involving multiple parties This approach was used by Oliveira and Rocha [27] forthe formation of virtual organizations in an e-commerce environment. The idea is that in order tosatisfy some user's need, often a combination of services is needed, which is provided by di�erentcompanies. The agent representing the user (called the \market agent") negotiates with severalorganization agents, after which a selection of these organizations is made and a virtual organizationis created. During the negotiations process, the bilateral constraints between the market agent andthe organizations need to be resolved. After the selection processes, remaining inter-organizationalconstraints must be resolved. A solution is obtained in this phase by interaction between the selectedorganizations, using a distributed constraint based algorithm and without any interference of themarket agent.The protocol used during the negotiation phase is as follows. First, each participating organizationgenerates a bid, based on previous experience, and sends this bid to the market agent. A Q-learningtechnique is then used to determine which bid to make. The actions (i.e., the bids) made are thenevaluated using the feedback given by the market agent. The market agent compares the bids using amulti-criteria evaluation method based on qualitative measures (in which only the preference orderingis assumed to be important). The market agent selects the organization which either proposes asatisfactory evaluation, or he chooses the highest evaluation when a deadline is reached. Organizationsnot selected are given feedback as to which attributes were not satisfactory (i.e., which constraints



15were not resolved). Negotiations take several rounds, and each round an organization is selected.Although the basic idea seems to be promising, there are some hooks and eyes to this approach.First, as pointed out in [13], the approach assumes \cooperation" in the sense that the agents do nothave any incentive to hide information. The agents negotiate over several attributes, thereby creatinga mutually bene�cially outcome. This should be a su�cient incentive for the agents to reveal thenecessary information. However, we believe that in several cases the individual agents could gain bylying (about for example their valuation of various o�ers). In particular, this may be the case in theconstraint process solving phase. In this phase, an inter-personal utility comparison is made in orderto select the best global solution.Another problem is the evaluation of qualitative constraints. In [27], the constraints are transformedinto a quantitative evaluation function, which is needed for the comparison of the various o�ers. Thistransformation seems rather arbitrary. Moreover, it remains unclear whether a distinction is madebetween soft and hard constraints.Argumentation-based conict resolution When negotiations involve several issues and the playersdi�er in their evaluations of the issues, a mutually bene�cially situation can be achieved and e�ciencycomes to play an important role in the negotiation process (as described above). However, when agentshave incomplete information about each others' preferences negotiations often result in ine�cient deals(see Section 2.4). This problem can be resolved using argumentation. This approach resembles thecommunication between agents in a DCSP setting. The idea is that the agents are able to providemeta-information on why they have a particular objection to a proposal. This way information isexchanged, but without fully disclosing each others' preferences.A negotiation architecture using this kind of meta-information is described in [30]. This approachwas also used in MIT's Tête-�a-Tête system17, a bilateral integrative negotiation system for onlineshopping [19]. Agents within this framework can: (1) make a new proposal, (2) accept the proposalof the counter agent, (3) criticize a proposal or (4) withdraw from the negotiations. This system usesthe notion of a \critique" to enable agents to criticize a particular proposal. A critique is a commentof an agent specifying which part of the proposal he dislikes. In case of a new proposal or critique, theagent can also send additional information. For instance, a proposal may include conditions underwhich it holds (e.g., I will provide you with X if you provide me with Y).4. Concluding remarksThe �rst part of this report reviewed literature on bargaining from the �eld of game theory. Thisoverview shows that game theory is a very useful tool to analyze bargaining situations in a mathemat-ical fashion. Such a rigorous analysis is only tractable, however, if many details of human interaction,for instance emotions or irrational behavior, are abstracted away. This may undermine the capabilityof game-theoretical models to explain or predict human behavior.This aspect may be less problematic when we consider systems in which arti�cial agents interactwith each other, because these agents are often designed to behave (in good approximation) in arational fashion. Game theory may therefore yield fundamental insights in the design of e�cientnegotiation protocols for automated trading. Furthermore, given a negotiation protocol and undercertain assumptions, optimal strategies can sometimes be derived.Nevertheless, game-theoretical assumptions like common knowledge and perfect rationality oftenappear to be too strong in modeling practical situations. The issue of common knowledge has beensolved only partially in game theory by introducing a theory for players with \imperfect" informa-tion. The development of game-theoretic models for boundedly-rational players is only just starting.Our survey shows that techniques from the �eld of arti�cial intelligence are potentially very powerfulin situations of incomplete information and boundedly-rational players. Learning techniques devel-oped within the AI community can for instance be used to adapt the agents' behavior in complex17http://ecommerce.media.mit.edu/Tete-a-Tete/.



16environments and to construct accurate models of the other agents' preferences.A variety of learning techniques and state-of-the-art applications have been discussed in this report,some of which seem to be very promising for the use in automated negotiations. Hence, we concludethat combining techniques and ideas from game theory and the �eld of arti�cial intelligence opensprospects to create robust, stable and intelligent negotiation systems in the near future.
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