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With the aim of mitigating the possible problem of negativity in the
estimation of the conditional density function, we introduce a
so-called re-weighted Nadaraya-Watson (RNW) estimator. The
proposed RNW estimator is constructed by a slight modification of
the well-known Nadaraya-Watson smoother. With a detailed asymp-
totic analysis, we demonstrate that the RNW smoother preserves the
superior large-sample bias property of the local linear smoother of the
conditional density recently proposed in the literature. As a matter of
independent statistical interest, the limit distribution of the RNW
estimator is also derived.
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1 Introduction

Let {(Xi,Yi); i P 1} be a Rd · R valued strictly stationary process with a common

probability density function f(.,.) as (X,Y). Also assume that X admits a marginal

density g(.). Suppose we are given n observations of (X,Y) denoted by (X1,Y1),…,(X-

n,Yn). Of interest is estimating the conditional density of Y given X ¼ x, i.e.

f ðyjxÞ ¼ f ðx; yÞ
gðxÞ

where g(.) is assumed positive at x. The conditional density can be a useful statistical
tool in several ways. The most obvious need for estimating conditional densities

arises when exploring relationships between a response and potential covariates.

A motivating example: Consider the bivariate data analysed by AZZALINI and

BOWMAN (1990) on the waiting time between the starts of successive eruptions and

the duration of the subsequent eruption for the Old Faithful geyser in Yellowstone

National Park, Wyoming. The data were collected from August 1st until August
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15th, 1985. There are a total of 299 observations. The times are measured in minutes.

In Figure 1 we give a scatter plot of the data. Note that both variables are

transformed to have mean zero and variance one. From the plot it is clear that when

there has been a relatively short waiting time between eruptions, the duration of the

next eruption is relatively long. But, when the waiting time between eruptions is

longer than about )0.17 (or 70 minutes in the scale of the untransformed data), the

duration of the next eruption is more or less a mixture of short and long durations.

This interesting observation can be nicely summarized by the conditional density.

Figure 2 gives the estimated conditional density. Notice that when the waiting time

to eruption is more than )0.17, the conditional density of eruption duration

conditional on waiting time to eruption is bimodal. On the other hand, for waiting

times below )0.17, the conditional density is unimodal. To appreciate visually how

the shape of the conditional density evolves across the various values of the waiting

time to eruption, the estimated conditional densities in Figure 2 are stacked side-

by-side. This stacked conditional density plot is produced using HYNDMAN’s (1996)

S-Plus code which is freely available at the website: www-personal.buseco.

monash.edu.au/hyndman.

Having recognized the role conditional densities could play in data analysis, the

purpose of the present paper is to suggest a nonparametric estimator of the

conditional density, f(y|x). In particular, our suggestion adapts the conditional

distribution smoother of HALL, WOLFF and YAO (1999). CAI (2001, 2002) also

extended the smoother of Hall et al. (1999) to contexts other than the distribution

function mainly to conditional quantiles.

-2 -1 3210

Waiting time

-2

-1

0

1

2

D
ur

at
io

n 
tim

e

Fig. 1. Duration of eruption plotted against waiting time to eruption.
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The plan of the paper is as follows. In Section 2 we introduce the RNW

conditional density smoother. In the same section, two existing smoothers are also

discussed so as to motivate the proposed smoother. In Section 3 we study the

asymptotic behaviour of the suggested smoother. We close in Section 4 with some

concluding remarks. Technical arguments and proofs are collected in the Appendix.

2 Methods

To help motivate the construction of the proposed conditional density estimator, we

first discuss two existing kernel-based smoothers of the conditional density. To

simplify the presentation, we shall consider the case of d ¼ 1 throughout the paper.

2.1 Nadaraya-Watson (NW) and local linear

Let the kernel K(.) be a symmetric density function on R. Let h1,n and h2,n denote
bandwidths (or smoothing parameters). As h1,nfi0, it is easy to see from a standard

Taylor argument that

EfKh1;nðy � Y ÞjX ¼ xg ’ f ðyjxÞ

where Khn
(.) ¼ K(./hn)/hn. This suggests that the estimation of f(y|x) can be viewed as

a nonparametric regression of Khn
(y)Yi) on {Xi}. In fact, it is based on this particular

idea that the well-known Nadaraya-Watson kernel smoother, here denoted by

f̂fNW ðyjxÞ, was first proposed by ROSENBLATT (1969) and later extended by HYND-

MAN, BASHTANNYK and GRUNWALD (1996). According to HYNDMAN et al. (1996),

f̂fNW ðyjxÞ is defined as

W
aiting tim

e

Duration time

Fig. 2. Conditional density estimates of eruption duration conditional on the waiting times to eruption.
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f̂fNW ðyjxÞ ¼
Xn
i¼1

Kh1;nðy � YiÞwNW
i ðxÞ ð1Þ

where

wNW
i ðxÞ ¼

Kh2;nðx� XiÞPn
i¼1 Kh2;nðx� XiÞ

:

Now suppose that the second derivative of f(y|x) exists. Also introduce the short-

hand notation, f(i,j)(y|x) ¼ ¶i+jf(y|x)/¶xi¶yj. In a small neighbourhood of a point x,
we can approximate f(y|z) locally by a linear term

f ðyjzÞ ’ f ðyjxÞ þ f ð1;0ÞðyjxÞðz� xÞ 
 aþ bðz� xÞ:

In this sense, one can also regard the estimation of f(y|x) as a nonparametric weighted
regression of Kh1,n(y)Yi) against (1,(Xi)x)) using weights Kh2,n(x)Xi). Accordingly, FAN,

YAO and TONG (1996) proposed the so-called local linear smoother of f(y|x). The local
linear estimator, here denoted by f̂fLLðyjxÞ, is defined as âaðxÞ, where ðâa; b̂bÞ minimizeXn

i¼1
Kh1;nðy � YiÞ � a� bðXi � xÞ
� �2

Kh2;nðx� XiÞ:

Simple algebra (see FAN and GIJBELS, 1996) shows that f̂fLLðyjxÞ can be expressed as

f̂fLLðyjxÞ ¼
Xn
i¼1

Kh1;nðy � YiÞwLL
i ðxÞ;

where

wLL
i ðxÞ ¼

Kh2;nðx� XiÞfTn;2 � ðXi � xÞTn;1g
ðTn;0Tn;2 � T 2

n;1Þ

with Tn;j ¼
Pn

i¼1 Kh2;nðx� XiÞðXi � xÞj (j ¼ 0, 1, 2).

From the definition of the two estimators, we can see that while f̂fNW ðyjxÞ
approximates f(y|x) locally by a constant, say a, f̂fLLðyjxÞ approximates f(y|x) locally
by a linear model. To appreciate why the extension of the local constant fitting to the

local linear alternative is interesting, we now compare the two estimators via their

respective moments. To keep the presentation simple, we assume in the rest of the

paper, without loss of generality, that h1,n ¼ h2,n ¼ hn. When the process {(Xi,Yi)} is
a-mixing (see Section 3 for a definition of a-mixing), CHEN, LINTON and ROBINSON

(2001) showed the approximate asymptotic bias and variance of f̂fNW ðyjxÞ to be

Biasðf̂fNW ðyjxÞÞ ¼ 1

2
k1h2n f ð2;0ÞðyjxÞ þ f ð0;2ÞðyjxÞ þ 2

g0ðxÞ
gðxÞ f ð1;0ÞðyjxÞ

� �
; ð2Þ

and

Varðf̂fNW ðyjxÞÞ ¼ k22ðnh2nÞ
�1 f ðyjxÞ

gðxÞ ð3Þ

where k1 ¼ �u2K(u)du and k2 ¼ �K2(u)du. Similarly, under q-mixing, FAN et al. (1996)

gave approximate asymptotic bias and variance of f̂fLLðyjxÞ, i.e.
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Biasðf̂fLLðyjxÞÞ ¼
1

2
k1h2n

�
f ð2;0ÞðyjxÞ þ f ð0;2ÞðyjxÞ

�
; ð4Þ

Varðf̂fLLðyjxÞÞ ¼ k22ðnh2nÞ
�1 f ðyjxÞ

gðxÞ : ð5Þ

Some remarks about the above asymptotic bias and variance expressions are in

order. We see that the two variances are identical. Therefore, the difference in the

asymptotic mean squared errors (MSEs) between the two estimators depends only

on their respective biases. Note that the bias of f̂fNW ðyjxÞ has an extra term (g¢(x)/
g(x))f (1,0)(y|x). The bias of f̂fNW ðyjxÞ is large if either |g¢(x)/g(x)| or |f (1,0)(y|x)| is large,
but neither term appears in (4). For example, when the design density is highly

clustered, the term |g¢(x)/g(x)| becomes large. Of course, when g(x) is uniform the

biases of the two estimators are the same. Thus, the fact that f̂fLLðyjxÞ does not

depend on the density of X makes it ‘‘design adaptive’’ (see FAN, 1992). Now, let’s

consider |f (1,0)(y|x)|. For simplicity, suppose that the conditional density of Y
depends on x only through a location parameter, say the conditional mean (denoted

here by m(x)) and hence f(y|x) ¼ f(y)m(x)). Then f (1,0)(y|x) ¼ m(1)(x)f (1,0)(y)m(x)|x)
where m(1)(.) denotes the first derivative of m(.). In this set-up when, for example,

m(x) is linear m(x) ¼ a+bx with large coefficient b, the bias of f̂fNW ðyjxÞ gets large.
But, when m(x) is flat or has maximum or minimum, or inflection point at x, the
biases of the two estimators become the same.

The above theoretical comparisons suggest that the local linear estimator is more

attractive than the local constant alternative because of its better bias performance

and design adaptation. It is also possible to show that both in the interior and near

the boundary of the support of g(.), the asymptotic bias and the variance of f̂fLLðyjxÞ
are of the same order of magnitude. On the other hand, f̂fNW ðyjxÞ has a bias of order
hn for x in the boundary. So, at least in theory, the local linear smoother does not

suffer from boundary effects and hence does not require modifications at the

boundaries.

Although the local linear approach is more efficient in the sense already discussed,

the smoother f̂fLLðyjxÞ may give conditional density function estimates that are

not constrained to be nonnegative. On the other hand, f̂fNW ðyjxÞ always gives

nonnegative estimates. With these remarks in mind, we pass on to the suggestion of

this paper.

2.2 RNW estimator

Now we introduce a simple kernel smoother called RNW which combines the better

sides of the LL and NW smoothers. In other words, while sharing the nice sampling

properties of the LL estimator, it is always nonnegative.

From least squares theory, it is easy to see that the local linear weights wLL
i ðxÞ

satisfy:
Pn

i¼1ðXi � xÞwLL
i ðxÞ ¼ 0. But for the Nadaraya-Watson weights wNW

i ðxÞ, this
moment condition is not fulfilled. It is this observation that motivates the
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introduction of the RNW smoother. Let si(x) denote probability like weights with

properties that si(x) P 0,
Pn

i¼1 siðxÞ ¼ 1, and

Xn
i¼1

siðxÞðXi � xÞKhnðx� XiÞ ¼ 0: ð6Þ

Note how si(x) is introduced to force the Nadaraya-Watson weights wNW
i ðxÞ to

resemble that of wLL
i ðxÞ (see also HALL and PRESNELL, 1999). Following similar

arguments as in OWEN (1988), we look for the unique solution of si(x) by maximizingPn
i¼1 logfsiðxÞg subject to the above constraints via Lagrange multipliers, i.e.

G ¼
Xn
i¼1

logfsiðxÞg þ j 1�
Xn
i¼1

siðxÞ
 !

� nk
Xn
i¼1

siðxÞðXi � xÞKhðx� XiÞ:

Setting ¶G/¶si(x) ¼ 0, one obtains si(x) ¼ 1/{j+nk(Xi)x)Khn
(x)Xi)}. But, just sum-

ming ¶G/¶si(x) and employing (6), we can see that j ¼ n. Hence,

siðxÞ ¼ n�1 1þ kðXi � xÞKhnðx� XiÞf g�1: ð7Þ

Now we show that |k| 6 Op(hn). This is a useful intermediate result in studying the
asymptotic theory of the RNW smoother. Let vi ¼ (Xi)x)Khn

(x)Xi). Then from (6)

and (7),

n�1
Xn
i¼1

vif1þ kvig�1 ¼ 0:

Rewriting this

0 ¼ n�1
Xn
i¼1

fkv2i ð1þ kviÞ�1 � vig

¼ n�1
				Xn

i¼1
fkv2i ð1þ kviÞ�1 � vig

				
Pjkn�1

Xn
i¼1

v2i ð1þ kviÞ�1j � j�vv1j

where �vv1 ¼ n�1
Pn

i¼1 vi. But notice that

j1þ kvij�1Pð1þ jkjmaxðjvijÞÞ�1:

Thus continuing,

0Pjkjð1þ jkjC2Þ�1�vv2 � j�vv1j;

where �vv2 ¼ n�1
Pn

i¼1 v
2
i and C2 denotes the upper bound to vi. Hence,

jkjð1þ C2jkjÞ�1�vv2Oj�vv1j:

This implies,
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jkjO j�vv1j
�vv2 � C2j�vv1j

:

Now, by standard Taylor expansion, it follows easily that

�vv1 ¼ Opðh2nÞ; and �vv2 ¼ OpðhnÞ:

Therefore, |k|6Op(hn).

Definition and computation. The RNW smoother looks very much like that of

NW smoother. The only difference is that it involves re-weighting the NW weights

by si(x). The role of si(x) is to adjust the NW weights such that resulting

conditional density estimates resemble that from the LL smoother. We define the

RNW conditional density estimator as follows

f̂fRNW ðyjxÞ ¼
Xn
i¼1

Khnðy � YiÞwRNW
i ðxÞ ð8Þ

where

wRNW
i ðxÞ ¼ siðxÞKhnðx� XiÞPn

i¼1 siðxÞKhnðx� XiÞ
:

From computational perspective the RNW smoother is easy to implement. To see

that, let’s substitute (7) into (6). Upon doing this, we obtain

0 ¼
Xn
i¼1

ðXi � xÞKhnðx� XiÞ
1þ kðXi � xÞKhnðx� XiÞ


 gðkÞ:

Now notice that )g(.) is just the gradient with respect to k of

LðkÞ ¼ �
Xn
i¼1

logf1þ kðXi � xÞKhnðx� XiÞg:

So a zero of g(.) is a stationary point of L(.). The implication is that, in practice, one

can compute k as the unique minimizer of L(.). Our experience suggests that a line

search algorithm is a suitable choice to compute k. The conditional densities dis-

played in Section 1 are computed via the RNW smoother.

3 Asymptotic behaviour

In this section, our aim is to study the asymptotic properties of the RNW

conditional density estimator f̂fRNW ðyjxÞ under a reasonably weak mixing

condition. In particular, we consider the so-called strong mixing (a-mixing). This
mixing condition ensures an asymptotically vanishing memory of the strictly

stationary process. The a-mixing condition (ROSENBLATT, 1956) is satisfied if there

exists a sequence of nonnegative numbers called mixing coefficients (a(k)) such
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that lim kfi 1 a(k) ¼ 0 and for any A in F n
1 ¼ rfðX1; Y1Þ; . . . ; ðXn; YnÞg and any set

B in F1
nþk ¼ rfðXnþk; YnþkÞ; . . .g, we have |P(A\B))P(A)P(B)|6a(k).

The a-mixing condition is weaker than many other mixing modes and dependence

conditions, for example, m-dependent, /-mixing, absolute regular, and q-mixing.
Further, it is known that a-mixing is fulfilled for many stochastic processes,

including many time series models. For example, under mild assumptions, linear AR

and bilinear time series models are strongly mixing, with mixing coefficients decaying

exponentially. For more details on mixing conditions, we refer the interested reader

to, for example, ROUSSAS and IOANNIDES (1987).

Before we state the results of this paper, we first provide a list of regularity

conditions that are useful in asymptotic theory of the RNW smoother. For brevity,

theoretical results will be given for x in the interior of the support of X. All through
this paper C will denote a generic constant.

A.1 The kernel K(.) is a symmetric and bounded probability density function

such that |u|K(u)fi0 as |u|fi 1 and �u2K(u)du< 1.

A.2

(i) The marginal density g(x) is continuous and is bounded from below by a

positive constant.

(ii) The function f(y|x) has bounded continuous second order derivative with

respect to x at (x,y).
A.3 The joint conditional density f(Y1,Yj)|(X1,Xj)

of (Y1,Yj) given (X1,Xj) satisfies, for

all j>1 and all values of arguments involved,

fðY1;YjÞjðX1;XjÞðy1; yjju; vÞOC < 1:

A.4

As nfi 1 , hnfi0 and nh2n ! 1.

A.5

(i) There exists a sequence of positive integers {dn} such that dnfi 1 and

dnh2n ! 0.

(ii) For some constant d, 0<d<1, and a>d,
P1

j¼1 j
aadðjÞ < 1.

A.6 Assume that there exists a sequence of positive integers, qn such that

qnfi 1 , qn ¼ oððnh2nÞ
1=2Þ, and ðn=h2nÞ

1=2aðqnÞ ! 0 as nfi 1.

Remark 1. We provide a sufficient condition for the mixing coefficient a(n) to

satisfy Conditions A.5(ii) and A.6. Suppose that hn ¼ An)0.5q (0<q<1, A>0),

qn ¼ ðnh2n= log nÞ
1=2 and a(n) ¼ O(n)h) for some h>0. Note that such choice of a(n)

encompasses a large class of strongly mixing random variables with mixing

coefficients decaying moderately fast. Then Condition A.5(ii) is satisfied for

h>(d+1)/d and Condition A.6 is satisfied if h>(1+q)/(1)q). Hence, both

conditions are satisfied if
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aðnÞ ¼ Oðn�hÞ; and h > max
1þ q
1� q

;
d þ 1

d


 �
:

Theorem 1. Assume that Conditions A.1–A.6 are satisfied and suppose that nh6n ! c
for some c 6¼ 0. Then, as nfi 1, we have

(i)

f̂fRNW ðyjxÞ � f ðyjxÞ ¼ Biasðf̂fRNW ðyjxÞÞ þ Opððnh2nÞ
�1=2Þ;

(ii)

ðnh2nÞ
1=2 f̂fRNW ðyjxÞ � f ðyjxÞ � Biasðf̂fRNW ðyjxÞÞ
h i

!D N 0;
k22f ðyjxÞ
gðxÞ

� �

Biasðf̂fRNW ðyjxÞÞ ¼ 1

2
k1h2n½f ð2;0ÞðyjxÞ þ f ð0;2ÞðyjxÞ�: ð9Þ

Remark 2. From Theorem 1 (i), it may be seen that to the first order, the RNW

smoother enjoys the same convergence rates as the LL smoother of FAN et al.

(1996). However, they employed the q-mixing condition which is stronger than the

a-mixing.

Remark 3. From Theorem 1 (ii), the asymptotic variance is given as

Varðf̂fRNW ðyjxÞÞ ¼ k22ðnh2nÞ
�1 f ðyjxÞ

gðxÞ :

Note that to the first order, f̂fRNW ðyjxÞ matches both the bias and the variance of the

local linear smoother f̂fLLðyjxÞ (see (4)). Thus, the RNW smoother shares the better

bias behaviour of the LL smoother.

Remark 4. If one chooses the optimal bandwidth, say h�n, such that it minimizes the

asymptotic MSE of f̂fRNW ðyjxÞ, it is easy to see that

h�n ¼ Bn�1=6

where B is a function of some unknowns such as f(y|x). In practice, B may be

replaced by consistent estimates in order to construct a feasible, approximately

optimal bandwidth. Unlike the n)1/5 rate familiar from the univariate density

estimation, notice that h�n � n�1=6 as one needs to smooth in both x and y
directions.

Remark 5. As seen in Remark 4, the optimal bandwidth choice under the MSE

criterion gives hn satisfying nh6n ! c. If nh6n ! 0, the bias will be negligible, the
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asymptotic MSE will be dominated by the variance and hence we are not in the

optimal case. So the imposed condition nh6n ! c allows us to give an asymptotic

normality theorem under optimal conditions of convergence.

4 Concluding remarks

In defining the RNW smoother, we have used the same bandwidth hn in both x and
y directions, i.e. h1,n ¼ h2,n ¼ hn. As was mentioned, our use of a single bandwidth

is aimed at simplifying the theoretical results of the paper. In practice there may

indeed arise a need to have different levels of smoothing for each direction. For

example, in the eruption-waiting time illustration, it is not advisable to have the

same bandwidth for both variables because they have different levels of variability.

In fact that was the reason for standardizing the variables before using a single

bandwidth for both. If the approach of pre-standardizing the data is found

inadequate, the RNW smoother can easily be re-defined to involve two

bandwidths.

To help appreciate the value-added of the RNW smoother in practical

applications, studying the finite sample size performance of the RNW smoother

using Monte Carlo methods is crucial. This would include the investigation of the

accuracy (in some sense) of the RNW smoother vis-à-vis existing conditional density

smoothers such as the traditional Nadaraya-Watson, the local linear smoother, and

so on. This paper does not go into such empirical comparison, it remains a likely

topic for future investigations.

In conclusion we like to note that HYNDMAN and YAO (2002) also introduced

two alternative kernel smoothers of the conditional density, both aimed at

removing negativity. Apart from the computation of k, which can be done

independently, the RNW smoother is explicitly defined in terms of data

observations. In this sense, our approach is computationally more feasible than

that of HYNDMAN and YAO (2002).

Appendix: Proofs

Throughout the proof we re-denote f̂fRNW ðyjxÞ by f̂f ðyjxÞ. In the course of the proof of
the theorem, we also derive some auxiliary results which are necessary to establish

the theorem.

Proof of the theorem

The first step in the proof is to get an arbitrary good approximation to the value of k.
Recall that |k|6Op(hn). After replacing si(x) by (7), we Taylor expand (6) about

k ¼ 0. This gives
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k ¼ hnk1g0ðxÞ
k3gðxÞ

þ opðhnÞ ð10Þ

where k3 ¼ �u2K2(u)du. Now substituting (10) into (7),

siðxÞ ¼ n�1biðxÞð1þ opð1ÞÞ ð11Þ

where

biðxÞ ¼ 1þ hnk1g0ðxÞ
k3gðxÞ

ðXi � xÞKhnðx� XiÞ
� ��1

:

Let m(x,y) ¼ E{Khn
(y)Y)|X ¼ x}. Also define ei ¼ Khn

(x)Xi))m(Xi,y). Using (8) and

(11),

f̂f ðyjxÞ�f ðyjxÞ¼n�1
Pn

i¼1½eiþmðXi;yÞ�f ðyjxÞ�biðxÞKhnðx�XiÞ
n�1
Pn

i¼1biðxÞKhnðx�XiÞ



1þopð1Þ

�


fðnh2nÞ
�1=2J1þJ2gJ�1

3 f1þopð1Þg ð12Þ

where

J1 ¼ hnn�1=2
Xn
i¼1

biðxÞeiKhnðx� XiÞ;

J2 ¼ n�1
Xn
i¼1

½mðXi; yÞ � f ðyjxÞ�biðxÞKhnðx� XiÞ; and

J3 ¼ n�1
Xn
i¼1

biðxÞKhnðx� XiÞ:

By Condition A.2(ii) and (A.6) as well as the Taylor expansion, J2 becomes

J2 ¼
1

2
k1h2ngðxÞ



f ð2;0ÞðyjxÞ þ f ð0;2ÞðyjxÞ

�
þ opðh2nÞ:

Similar manipulation applied to J3 gives J3 ¼ g(x)+op(1). Substituting the evaluated
J2 and J3, (12) becomes

ðnh2nÞ
1=2

�
f̂f ðyjxÞ � f ðyjxÞ � Biasðf̂f ðyjxÞÞ þ opðh2nÞ

�
¼ g�1ðxÞJ1 þ opð1Þ ð13Þ

where Biasðf̂f ðyjxÞÞ is as defined in (9). Note that since the condition nh6n ! c implies
ðnh2nÞ

1=2opðh2nÞ ¼ opð1Þ, (13) reduces to

ðnh2nÞ
1=2

�
f̂f ðyjxÞ � f ðyjxÞ � Biasðf̂f ðyjxÞÞ

�
¼ g�1ðxÞJ1 þ opð1Þ: ð14Þ

To deal with J1, we evaluate E(J1) and Var(J1). Set Di ¼ hneibi(x)Khn
(x)Xi), then
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J1 ¼ n�1=2
Xn
i¼1

Di:

Note that E(Di) ¼ 0. Thus E(J1) ¼ 0. Exploiting stationarity

VarðJ1Þ ¼ EðD2
1Þ þ 2

Xn
j¼2

�
1� j� 1

n

�
EðD1DjÞ: ð15Þ

From routine calculations, it follows that EðD2
1Þ ¼ gðxÞk22f ðyjxÞ þ opð1Þ. It remains to

evaluate the second term of (15). For notational convenience, we shall denote this

term by B. We follow the technique by Masry (MASRY, 1986). Namely, define the sets

S1, and S2 by

S1 ¼ fð1; jÞ : j 2 f1; . . . ; ng; 1Oj� 1Odng
S2 ¼ fð1; jÞ : j 2 f1; . . . ; ng; dn þ 1Oj� 1On� 1g

where {dn} is as defined in Condition A.5(i). From the above splitting, notice that

B ¼ 2
X
j2S1

1� j� 1

n

� �
EðD1DjÞ þ 2

X
j2S2

1� j� 1

n

� �
EðD1DjÞ: ð16Þ

Consider the first term on the right-hand side of B (or (16)), i.e.

2
X
j2S1

1�j�1

n

� �
EðD1DjÞO

Xdn
j¼1

jEðD1DjÞj

O
Xdn
j¼1

Ch2n; byLemma1ðiiÞ ðin theAuxiliary resultsÞ

¼Cdnh2n¼oð1Þ: ð17Þ

The last step follows from Condition A.5(i). For the second term on the right-hand

side of (16), note that

2
X
j2S2

�
1� j� 1

n

�
EðD1DjÞO

X
j2S2

jEðD1DjÞj:

Applying DAVYDOV’s (1970) inequality, we have that

X
j2S2

jEðD1DjÞjO
X
j2S2

8adðj� 1ÞE1=sðjD1jsÞE1=tðjD1jtÞ

where s>1, t>1 and 1/s+1/t ¼ 1)d with d is as defined in Condition A.5(ii). Now

setting s ¼ t ¼ ‘,
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X
j2S2

jEðD1DjÞjO
X
j2S2

8adðj�1ÞEð1�dÞðjD1j‘Þ

O8
X
j2S2

adðj�1ÞðChnÞ1�d; byLemma1ðiÞ ðin theAuxiliary resultsÞ

OCh1�d
n d�a

n

X1
j¼dn

jaadðjÞ:

Let’s choose dn such that hd
nd

a
n ¼OðhnÞ. Then, using Condition A.5(ii), we haveP

j2S2|E(D1Dj)|¼o(1). Observe that under the above choice of dn, the condition

dnh2n!0 is satisfied. Substituting the above evaluated terms into (15), we can see that

VarðJ1Þ ! gðxÞk22f ðyjxÞ: ð18Þ

Finally, recalling (14),

f̂f ðyjxÞ � f ðyjxÞ ¼ Biasðf̂f ðyjxÞÞ þ Opððnh2nÞ
�1=2Þ:

This completes the proof of the first part of the theorem.

Denoting Var(J1) by r2(x,y), we now move to the second part of the theorem, i.e. to

show that the left-hand side of (14) is asymptotically normally distributed. To

achieve this, it is sufficient to establish that J1 is N(0,r2(x,y)) distributed. For the
proof we make use of Doob’s technique (see DOOB, 1953, pp. 228–232) according to

which the sum
Pn

i¼1 Di is split into large and small blocks. Specifically, we partition

{1,…,n} into 2rn+1 subsets with large block of size pn and small block of size qn. Set

rn ¼
�

n
pn þ qn

�

where [.] denotes the integer part. Thus, we can write J1 as,

J1 ¼ n�1=2
Xn
i¼1

Di ¼ n�1=2fS1;n þ S2;n þ S3;ng

where

S1;n ¼
Xrn
j¼1

gj; S2;n ¼
Xrn
j¼1

�j; S3;n ¼ xrn

with

gj ¼
Xkjþpn�1

i¼kj

Di; where kj ¼ ðj� 1Þðpn þ qnÞ þ 1;

�j ¼
Xljþqn�1

i¼lj

Di; where lj ¼ ðj� 1Þðpn þ qnÞ þ pn þ 1;

xrn ¼
Xn

i¼rnðpnþqnÞþ1
Di:

Before continuing with the proof, we first show some consequences of Condition

A.6. This condition implies that there is a sequence of positive constants bnfi0 such that
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bnqn ¼ oððnh2Þ1=2Þ and bnðn=h2Þ
1=2aðqnÞ ! 0: ð19Þ

Now define pn by pn ¼ [(nh2)1/2/bn]. Then it follows easily from (19) that as nfi 1 ,

qn=pn ! 0; pn=n ! 0; pnðnh2Þ�1=2 ! 0; and ðn=pnÞaðqnÞ ! 0:

ð20Þ

Now we exploit Lemma 2. This Lemma tells us that S2,n and S3,n are

asymptotically negligible. Then showing the asymptotic normality of J1 reduces to
proving that n)1/2S1,n converges to N(0,r2(x,y)). The main idea of the proof is to

approximate n)1/2S1,n by a sum of independent random variables (r.v.’s). For each n,
let zn,1,…,zn,r denote independent r.v.’s with the distribution that of

n�1=2g1 ¼ n�1=2
Xpn
j¼1

Dj:

Then, the characteristic function (cf.) of
Pr

m¼1 zn;m is Urn
pnðtn

�1=2Þ, where Upn
(tn)1/2) is

the cf. of n)1/2g1. Notice that ga is F ja
ia -measurable with ia ¼ (a)1)(pn+qn)+1 and

ja ¼ ia+pn)1. Let Vj ¼ expðitgj=
ffiffiffi
n

p Þ, then using Lemma 4,

		E½expðitn�1=2S1;nÞ� � Ur
pðtn�1=2Þ

		 ¼ 		E½expðitn�1=2S1;nÞ� �Yr
j¼1

E½expðitn�1=2gjÞ�
		

O16raðqn þ 1Þ ! 0:

The last step follows from (20), i.e. rna(qn)6(n/pn)a(qn)fi0. Therefore, it suffices to

establish that Urn
pnðtn

�1=2Þ converges to the cf. of the N(0,r2(x,y)). Equivalently, it
would suffice to show that

Prn
m¼1 Zn;m is asymptotically N(0,1), where

Zn;m ¼ zn;m=sn; s2n ¼
Xrn
m¼1

Eðz2n;mÞ ¼
rn
n
Eðg21Þ:

Now
Prn

m¼1 Zn;m will converge to N(0,1) provided that, for every e>0,

gnðeÞ ¼
Xrn
m¼1

Z
jxj>e

x2dFn;mðxÞ ! 0; as n ! 1;

where Fn,m(.) is the distribution function of Zn,m. This is the well-known Lindeberg

condition. But, since Fn,m(.) is the same for m ¼ 1,…,rn,

gnðeÞ ¼ rnE
�
Z2
n;11fjZn;1jPeg

�
;

O
rnp2nC

2

ns2n
P ðjg1jPe

ffiffiffi
n

p
snÞ since jg1jO pnC;

O
C2

e2
p2n
n
1

s2n
:

By Lemma 3, below, Eðg21Þ ! pnr2ðx; yÞ. Further, from (20), it is easy to see that
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pnrn/nfi1 (see the proof of Lemma 2, below). Thus, s2n ! r2ðx; yÞ 6¼ 0. Again from

(20), p2n=n ! 0. Therefore, gn(e)fi0. Hence
Prn

m¼1 Zn;m will converge to N(0,1), or
equivalently

Prn
m¼1 zn;m will converge to N(0,r2(x,y)). This completes the proof of the

theorem.

Auxiliary results

Lemma 1. Under the conditions of Theorem 1,

(i) E(|D1|
‘)6Chn;

(ii) jEðD1DjÞjOCh2n.

Proof: (i) Recall that D1 ¼ hne1b1(x)Khn
(x)X1). Note that

EðjD1j‘Þ ¼ h‘n

Z
R

Z
R

je1b1ðxÞKhnðx� X1Þj‘f ðX1; Y1ÞdX1dY1:

Now conditioning on X1 ¼ u, and using Conditions A.1 and A.2(i), we can see that

EðjD1j‘ÞOCh‘n

Z
R

jb1ðxÞKhnðx� uÞj‘duOChn:

(ii) Clearly

EðD1DjÞ ¼ h2n

Z
R

Z
R

Z
R

Z
R

�1b1ðxÞKhnðx� X1Þej

� bjðxÞKhðx� XjÞfðX1;Y1;Xj;YjÞðx1; y1; xj; yjÞdx1dy1dxjdyj:

Conditioning on (X1,Xj) ¼ (u,v) and using Condition A.3,

jEðD1DjÞjOCh2n

Z
R

Z
R

je1b1ðxÞKhnðx� uÞejbjðxÞKhnðx� vÞjfðX1;XjÞðu; vÞdudv

OCh2n

�Z
R

jb1ðxÞKhnðx� uÞjdu
�2

OCh2n:

Lemma 2. Under conditions of Theorem 1, n�1EðS22;nÞ ¼ oð1Þ and n�1EðS23;nÞ ¼ oð1Þ.

Proof: Here we only prove n�1EðS2n;2Þ ¼ oð1Þ. The proof of n�1EðS2n;3Þ ¼ oð1Þ can be
done along the same lines. Observe that

EðS2n;2Þ ¼
Xrn
j¼1

Eð�2j Þ þ 2
X

1Ou<jOrn

Eð�u�jÞ: ð21Þ
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Consider the first term on the right-hand side of (21). In the rest of the proof, the

stationarity property will be repeatedly used. We can see that

Xrn
j¼1

Eð�2j Þ ¼
Xrn
j¼1

� X‘jþqn�1

i¼‘j

EðD2
i Þ þ 2

X
‘jOm<iO‘jþqn�1

EðDmDiÞ
�

¼
Xrn
j¼1

� X‘jþqn�1

i¼‘j

EðD2
i Þ þ 2qn

Xqn

i¼2
1� i

qn

� �
EðD1DiÞ

�

O
Xrn
j¼1

�
qnEðD2

1Þ þ 2qn

Xqn

i¼2
1� i

qn

� �
jEðD1DiÞj

�

O
Xrn
j¼1

�
qnEðD2

1Þ þ 2qn

Xqn

i¼2
jEðD1DiÞj

�

Ornqn

�
EðD2

1Þ þ oð1Þ
�
: ð22Þ

The last step follows from applying similar arguments used in deriving the variance

of J1. Now we deal with the second term of (21). When u 6¼ k,

X
1Ou<jOrn

Eð�u�jÞ ¼
Xrn
u¼1

Xrn
k¼1

Xqn
i¼1

Xqn

j¼1
EðDuðpnþqnÞþpnþiDkðpnþqnÞþpnþjÞ:

But since, |u(pn+qn)+pn+i)(k(pn+qn)+pn+j)|Ppn,

2
X

1Ou<jOrn

Eð�u�jÞO2
Xn�pn

i¼1

Xn
j¼iþpn

jEðDiDjÞj

O2n
Xn

j¼1þpn

jEðD1DjÞj

¼ oðnÞ: ð23Þ

Note that
Pn

j¼1þpn jEðD1DjÞj ¼ oð1Þ. Now combining (22) and (23),

n�1EðS2n;2ÞOn�1
�
rnqnEðD2

1Þ þ oð1Þ þ oðnÞ
�
:

But from (19) rnqn/n6qn/(pn+qn). Further, from (20), qn/pnfi0. Therefore,

rnqn/nfi0. Thus the proof of the lemma is complete.

Lemma 3. Under conditions of Theorem 1,

Eðg21Þ ! pnr2ðx; yÞ:

Proof: Recall that g1 ¼
Ppn

j¼1 Dj. Then
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Eðg21Þ ¼
Xpn
j¼1

EðD2
j Þ þ 2

X
1Oj<mOpn

EðDmDjÞ:

Proceeding in a similar fashion as in deriving the variance of J1, the lemma follows.

Lemma 4. (Volkonskii and Rozanov, 1959) Let V1,…,VL be strongly mixing random
variables with respect to the r-algebras F j1

i1 ; . . . ;F
jL
iL respectively with

16i1<j1<i2<…<jL6n, il+1)jlPwP1 and |Vj|61 for j ¼ 1,…,L.
Then 				E YL

j¼1
Vj

 !
�
YL
j¼1

EðVjÞ
				O16ðL� 1ÞaðwÞ

where a(w) is the strongly mixing coefficient.
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