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Abstract 

Statistical models have frequently been used in highway safety studies. They can be utilized for 
various purposes, including establishing relationships between variables, screening covariates 
and predicting values. Generalized linear models (GLM) and hierarchical Bayes models (HBM) 
have been the most common types of model favored by transportation safety analysts. Over the 
last few years, researchers have proposed the back-propagation neural network (BPNN) model 
for modeling the phenomenon under study. Compared to GLMs and HBMs, BPNNs have 
received much less attention in highway safety modeling. The reasons are attributed to the 
complexity for estimating this kind of model as well as the problem related to “over-fitting” the 
data. To circumvent the latter problem, some statisticians have proposed the use of Bayesian 
neural network (BNN) models. These models have been shown to perform better than BPNN 
models while at the same time reducing the difficulty associated with over-fitting the data. 

The objective of this study is to evaluate the application of BNN models for predicting 
motor vehicle crashes. To accomplish this objective, a series of models was estimated using data 
collected on rural frontage roads in Texas. Three types of models were compared: BPNN, BNN 
and the Negative Binomial (NB) regression models. The results of this study show that in general 
both types of neural network models perform better than the NB regression model in terms of 
data prediction. Although the BPNN model can occasionally provide better or approximately 
equivalent prediction performance compared to the BNN model, in most cases its prediction 
performance is worse than the BNN model. In addition, the data fitting performance of the 
BPNN model is consistently worse than the BNN model, which suggests that the BNN model 
has better generalization abilities than the BPNN model and can effectively alleviate the 
over-fitting problem without significantly compromising the nonlinear approximation ability. 
The results also show that BNNs could be used for other useful analyses in highway safety, 
including the development of accident modification factors and for improving the prediction 
capabilities for evaluating different highway design alternatives.  
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INTRODUCTION 

Statistical or crash prediction models have frequently been used in highway safety studies. They 
can be used to identify major contributing factors or establish relationships between crashes and 
explanatory variables, such as traffic flows, types of traffic control, and highway geometric 
variables, with the aim that effective countermeasures could be implemented to reduce the 
number and severity of motor vehicle collisions occurring on different types of highway entities. 
The models can also be utilized to predict crash frequencies on sites that have not been used for 
estimating the original models or with different traffic flow and highway geometric conditions. 
The predicted results could be used in costs/benefit analyses and, if the predicted values are 
reliably estimated, could greatly help allocate the limited funds available to improve highway 
safety via the proper identification of hazardous sites (Hauer, 1996; Hauer et al., 2004a; Miaou 
and Song, 2005). 

Previous studies that documented the development and application of crash prediction 
models have usually focused on statistical regression techniques. Most of these techniques are 
based on the generalized linear modeling (GLM) framework. GLMs have been very popular 
because they have explicit theoretical foundations and can produce interpretable coefficients for 
each explanatory variable included in the model. In addition, this modeling framework can be 
easily estimated using commercial statistical software programs, such as SAS (SAS, 2002) or 
Genstat (Payne, 2000) among others. Hierarchical Bayes models have also been proposed for 
modeling motor vehicle collisions (Schluter et al., 1997; Tunaru, 2002; Miaou and Lord, 2003; 
Qin et al., 2005; Miaou and Song, 2005). These models have been found to offer superior 
statistical properties compared to GLMs when crash data are subjected to low sample mean 
values and small sample size (Lord, 2006; Lord and Miranda-Moreno, 2006).  

Over the last few years, researchers in various fields of research, including highway 
safety, have proposed the use of neural network models for modeling the phenomenon under 
study (Mussone et al., 1999; Abdelwahab and Abdel-Aty, 2002; Riviere et al., 2006). For the 
application of neural networks, the entire dataset is usually divided into two subsets, defined as 
training and testing sets, respectively. Neural networks are trained using the data included in 
training dataset such that the underlying relationship between crash frequency and explanatory 
variables can be established. The testing dataset is then used to evaluate the performance of the 
trained neural network models. One important criticism that has been raised about these models 
is that although conventional neural network models, such as back-propagation neural networks 
(BPNN), can fit the training data with high precision, when it comes to prediction, they may 
produce predicted values with unacceptable variances (MATLAB, 2006). One of the major 
reasons causing this phenomenon is over-fitting. Neural network models that suffer from the 
over-fitting problem generally have poor generalization ability, which limits their applicability 
for crash predictions, even though they may possess better linear and nonlinear approximation 
abilities than statistical regression methods. 

The objective of this study is to evaluate the application of Bayesian Neural Network 
(BNN) models for predicting motor vehicle crashes. BNN models can effectively reduce the 
over-fitting phenomenon while still keep the strong nonlinear approximation ability of neural 
networks (Marzban and Witt, 2001). To accomplish the objective of this study, a series of 
models is estimated using data collected on rural frontage roads in Texas. Three types of models, 
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BPNN, BNN and the Negative Binomial (NB) (or Poisson-gamma) models, are estimated and 
their performances are compared using criteria employed for assessing the fit and prediction of 
models (Oh et al., 2003). Furthermore, a sensitivity analysis is also performed to illustrate how 
to extract the underlying relationship between crash frequency and explanatory variables from 
the trained neural networks. The results of this study will show that in general both neural 
network models perform better than the NB regression model in terms of data fitting and 
prediction. Although the BPNN model can sometimes provide better predictions than the BNN 
model, in most cases its data fitting and prediction performances are worse than the BNN model, 
which suggests that the BNN model effectively alleviates the over-fitting problem without 
significantly sacrificing its nonlinear approximation ability. The results will also show that 
BNNs could be used for useful analyses in highway safety, including the development of 
accident modification factors (AMFs) and for improving the prediction capabilities for 
evaluating different highway design alternatives. 

This paper is divided into seven sections. The second and third sections provide a 
description on statistical regression techniques, BPNN, and BNN models. The fourth and fifth 
sections cover the data collection activities, and the modeling effort carried out in this work. The 
sixth section presents the results of the model comparison and the sensitivity analysis. The last 
section summarizes the key results and conclusions of the study and provides recommendations 
for further studies. 
 

BACKGROUND 

Most traffic crash prediction models (sometimes referred to as safety performance function or 
SPF) have been based on statistical regression techniques. Initially, linear regression models 
were the model of choice for modeling motor vehicle collisions (Okamoto and Koshi, 1989; 
Miaou and Lum, 1993). Linear models, when not corrected for unequal variance, assume that the 
number of crashes follows a normal distribution. It has been reported in the literature that these 
models are inadequate for modeling count data, since crash data exhibit non-constant variance 
(Miaou et al., 1996).  

Due to the inadequacy of linear regression models for analyzing discrete, nonnegative, 
sporadic, and asymmetrically distributed random events (Miaou and Lum, 1993), GLMs have 
been proposed for modeling crash frequency. Among GLMs, several types of models have been 
used by researchers, including Poisson regression (Miaou and Lum, 1993; Miaou, 1994; Maher 
and Summersgill, 1996; Oh et al., 2004; Lord et al., 2005b; Oh et al., 2006), Poisson-gamma or 
NB regression (Miaou, 1994; Shankar et al., 1995; Maher and Summersgill, 1996; Milton and 
Mannering, 1998; Persaud et al., 2002; Hiselius, 2004; Oh et al., 2004; Lord et al., 2005b; 
Donnell and Mason, 2006; Oh et al., 2006; Lord, 2006), Gamma regression model (Oh et al., 
2006), and other variations of the NB regression model (Chin and Quddus, 2003; Miaou and 
Lord, 2003; Lord at al., 2005a; El-Basyouny and Sayed, 2006).  It is generally agreed that when 
the sample variance is significantly greater than sample mean, NB models should be used in lieu 
of Poisson regression models. On the other hand, if the sample variance is significantly smaller 
than the sample mean, which is defined as underdispersion, Gamma models are the models of 
choice (Oh et al. 2006). Zero-Inflated models (Poisson and NB) have been proposed for 
modeling crash data with an apparent excess of zero observations (Shankar et al., 1997; Lee and 
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Mannering, 2002, Kumara and Chin, 2003), but their application has been discredited when the 
characteristics and the nature of the data do not warrant the application of such models (Lord et 
al., 2005b & 2006; Warton, 2005).  More recently, Bayesian multivariate generalized linear 
mixed model (Song et al., 2006), and multivariate Poisson regression model (Miaou and Song, 
2005; Ma and Kockelman, 2006; Park and Lord, 2006) have also been proposed for modeling 
motor vehicle collisions.  

All regression-based models such as the ones described above share one common 
characteristic: they need a well-defined function relating the dependent variable (crash 
frequencies) to the independent (explanatory) variables. This function is often referred to as the 
“rate function” or “functional form” in the traffic safety literature. The specification of the 
functional form can significantly affect the goodness-of-fit of GLMs (Miaou and Lord, 2003). 
The functional form is usually estimated via a trial and error process based on the transportation 
safety analyst’s experience, and can seldom be completely optimized. Normally, the functional 
form depends on the nature of the data and its selection should be based on the combination of 
statistical and logical properties linking the crash data to the covariates of the model (Miaou and 
Lord, 2003). 

Compared to statistical regression models, the application of neural network models for 
crash data modeling has received much less attention. The primary reason is attributed to the 
complexity for estimating these models. Other criticisms that have impeded on their use include 
the following (Vogt and Bared, 1998): 

1. Over-fitting when the sample size is small; and 
2. Unlike regression models, neural network models essentially work as 

black-boxes and do not generate interpretable parameters for each explanatory 
variable. 

For the first criticism, it has been reported that similar to neural network models many 
regression models also suffer from the over-fitting problem (Marzban and Witt, 2001). To 
respond to the criticism that neural network models work as black-boxes, Fish and Blodgett 
(2003) and Delen et al. (2006) proposed a sensitivity analysis approach to quantify the effect of 
each input variable on the network output.  Despite of these disadvantages, neural network 
models have some significant advantages over statistical regression models. First, neural network 
models do not require the establishment of a functional form. Statistical regression models, on 
the other hand, have to specify an approximate functional form linking the dependent variable 
and independent variables (note: the perfect functional form is unknown). Second, research has 
shown that standard multilayer feed-forward neural network models can approximate any 
continuous function defined on a compact set with arbitrary accuracy given enough hidden 
neurons are used (Hornik et al., 1989), though this strong ability may sometimes lead to 
over-fitting.  

To avoid the over-fitting problem and improve the generalization ability of neural 
network models, a number of approaches have been proposed in the literature. One of these 
approaches includes adding a weight-decay or regularization term in the estimation process 
(Marzban and Witt, 2001; Liang, 2005). However, Marzban and Witt (2001) discussed that this 
improvement of generalization of neural network models impedes on their nonlinear 
approximation ability. On the other hand, they noted that the Bayesian inference method can 
improve the neural networks generalization ability without compromising the nonlinearity 
properties. The development of BNN was first initiated by Mackay (1992) and further developed 
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by Neal (1995).  Based on the previous BNN models, Liang (2005) introduced an improved 
BNN model by incorporating a prior on both the network connections and the weights. This 
modification gives the network more flexibility for choosing hidden neurons and input variables.  
In Liang’s study, the proposed BNN model was trained using an Evolutionary Monte Carlo 
(EMC) algorithm and was compared to a number of popular models such as the BPNN and the 
Box-Jenkins model for nonlinear time series forecasting. The testing results showed that the 
proposed BNN model consistently outperformed other prediction methods. Although BNN 
models began to gain popularity in late 1990s and have been used even more since 2000, only 
one application of BNN models in traffic safety has been identified (Riviere et al., 2006), and so 
far BNN models have not been utilized for modeling crash frequency.  In view of the 
aforementioned advantages of neural network models over statistical regression models 
combined with the improvement made by incorporating Bayesian inference to neural networks, it 
is of valuable interest to investigate whether BNN models can be used to efficiently model motor 
vehicle crashes and whether they perform better than statistical regression models and 
conventional neural network models for predicting values. 

 

METHODOLOGY 

The most widely used statistical model in highway safety remains the NB regression model 
(when the data exhibit over-dispersion), and it has been used as a benchmark by many 
researchers. Consequently, the NB regression model was used in this study and compared with 
the BNN model proposed by Liang (2005).  Besides, a BPNN model was also estimated using 
the same data for comparison purposes as BPNNs are one of the most commonly used neural 
network models. In the following sections, the characteristics of the NB regression, BPNN, and 
BNN models are briefly described. Details on the theory behind the BNN model and its training 
algorithm are presented in Liang (2005). 
 

Negative Binomial Regression Models 

Let { }),(),...,,(),...,,( 11 nnii yxyxyx  be a set of collected accident data. ix  is a vector consisting 
of the accident related characteristics of site i, and iy  represents the number of crashes reported 
at site i . A typical NB regression model is given by the following (Miaou, 1994): 
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where, 

iY  = identically independent variable following a NB distribution; 
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)( ixg  = functional form of the NB regression model; 
ni ,...,2,1= ; 

n  = total number of observations; and, 
φ  = inverse dispersion parameter (assumed to be fixed in this study, see Miaou and 
Lord (2003) and Mitra and Washington (2006) about this assumption). 
 

Although there are numerous NB regression models that have been used to model crash 
frequency, most of them use the same probability density function (Eq. 1) (note: other 
parameterization exists, see Cameron and Trivedi, 1998) and only the functional form varies 
from model to model.  Usually, the functional forms are built empirically and the best one is 
selected using a trial and error process (often based on the judgment of the safety analyst and 
through some statistical tools, such as the goodness-of-fit, etc.). For this study, the following 
functional form was used: 
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where, 

],,,,[ iiiiii offRSLWLFx = ; 

iF  = ADT for segment i  (veh/day); 

iL  = length of segment i  (mile); 

iLW  = lane width of segment i  (ft); 

iRS  = right shoulder width of segment i  (ft);  

ioff  = offset of segment i , describing the number of years during which the accident 
data iy  was collected (in this study, the variable ioff  was equal to 5); and, 

210 ,, βββ  = regression coefficients to be estimated. 
 

BP Neural Networks 

Figure 1 shows the structure of a typical BPNN model that was used for modeling crash 
frequency in this study. The transfer function for the hidden layer, fh, was chosen to be a Tangent 
(tanh) function and a linear function was used as the transfer function for the output layer, fo. 
Again, let { }),(),...,,(),...,,( 11 nnii yxyxyx  be a set of collected accident data. The prediction 

result iy
∧

 using this BPNN structure was given by Equation (5). 
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where, 
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P = number of input neurons; 
M = number of hidden neurons; 
b1(j) and b2 = biases; 
w2(j) = weights connecting hidden layer and output layer; 
w1(j,k) = weights connecting input layer and hidden layer; 

ikx  = the kth element of the ith input; 

ix  = ],...,,...,[ 1 iPiki xxx , the ith input; 
ψ  = a vector contains all the network parameters (b1(j), b2, w1(j,k), and w2(k));  
i = 1, 2,…, n; j = 1, 2,…, M; and k = 1, 2,…, P. 

 

 

Figure 1. A typical single-output BPNN with single hidden layer 

 
To render the BPNN model comparable to the NB regression model, the input 

dimension to the BPNN model was set to four, which describes the ADT, segment length, lane 
width, and right shoulder width of each site, respectively. The number of neurons in the output 
layers was set to one and the output is the predicted number of crashes for each site. The BPNN 
was built and trained using the MATLAB neural network toolbox (MATLAB, 2006). A standard 
method for training BPNNs is to minimize the error term shown in Equation (6). 
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As discussed in the background section, a regularization or weight-decay term is often added to 
Equation (6) to improve the generalization ability of BPNNs. In this study, the BPNN model was 
trained by minimizing Equation (7) (MATLAB, 2006). 
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where, 

pn  = number of network parameters, including weights and bias; 

iψ  = the ith element in the network parameter vector; and, 
η  = performance ratio. 

 

Bayesian Neural Networks 

The BNN model used in this study was initially proposed by Liang (2003 & 2005).  In the BNN 
model, Dr. Liang used a fully connected multilayer feed-forward network structure with one 
hidden layer. The simplified network structure is illustrated in Figure 2. For the BNN model, the 
transfer functions used in the hidden layer and the output layer are the same as those used in the 
BPNN model. 
 

 
Figure 2. A fully connected multilayer feed-forward neural network 
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Although the network structure of the proposed BNN model is very similar to the 

BPNN structure, they are different in the prediction mechanism and the training process. First, an 
example is given to illustrate the differences in the prediction mechanism. Assume there are n 
sets of accident data { }),(),...,,(),...,,( 11 nnii yxyxyx , where the definitions of ix  and iy  are the 
same as what we used for the NB regression and BPNN models. Let θ  denote all the network 
parameters or weights, jβ , kα , and jkγ  (j=1,…,M; k=0,…,P), in Figure 2. The predicted 
number of accidents for site i using BNNs is given by Equation (8) (Neal, 1995). 
 

    ( ) ( ) θθθ dyxyxPxfy nniBi ),(),...,,(|, 11
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where ( )θ,iB xf  is defined as 
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( )),(),...,,(| 11 nn yxyxP θ  in Equation (8) is the posterior distribution of θ  given observed data 

{ }),(),...,,( 11 nn yxyx . One can see the main difference between BNNs and BPNNs is that for 
BPNNs the network parameter ψ  is fixed; while for BNNs the network parameter θ  follows a 
certain probability distribution, and the prediction process for BNNs is to evaluate the integral of  

( ) ( )),(),...,,(|, 11 nniB yxyxPxf θθ ×  over all possible values of θ  as shown in Equation (8). 
The actual BNN model is more complicated than the example given above. Readers 

are referred to Liang (2003 & 2005) for a more detailed description of the BNN model and its 
EMC training algorithm. For the curious readers, Appendix A provides a brief summary of the 
theory behind the BNN model proposed by Liang (2005). 
 

CHARACTERISTICS OF DATA 

In order to compare the models evaluated in this work, data collected for a research project 
related to estimating the safety performance of rural frontage roads in Texas was used in this 
study (Lord and Bonneson, 2006). In this dataset, there were 88 sites consisting of rural two-way 
frontage roads located in central Texas. During the five-year period, 122 crashes occurred on the 
study sites (all severities). Figure 3 illustrates the distribution of the crash counts for the 88 sites. 
This figure shows that no crash occurred at 28 sites (nearly 32%) during the 5-year period. The 
mean and standard deviation of the sample crash data are 1.39 and 1.28, respectively. This 
implies that a NB regression model is more suitable than a Poisson regression model. Table 1 
summarizes the descriptive statistics for the explanatory variables. 
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Figure 3. Crash count distribution for the 88 rural frontage road segments in Texas 

 

Table 1. Descriptive statistics of the explanatory variables 

 
Length 
(mile) 

ADT 
(vpd) 

Right shoulder 
width (ft) 

Lane width 
(ft) 

# of crash 
in 5 years 

Min 0.69 110 0 9 0 
Max 5.34 6400 9 13 6 
Mean 2.16 939 1.38 10.67 1.39 

Std Dev 0.99 1186 2.12 0.84 1.28 

 

IMPLEMENTATION OF MODELS  

The NB model was estimated using SAS (SAS, 2002). To implement the BPNN and BNN 
models, the number of hidden neurons (M) needs to be decided. For the BPNN model, the 
performance ratio (η ) also needs to be specified. A commonly used method to choose the two 
parameters is cross-validation, which was used in this study. The data was randomly separated 
into two parts, one is for training and the other is for testing. The training part consists of 
approximately 3/4 of the total data. Different numbers of hidden neurons and performance ratios 
were tested, and those correspond to the lowest testing errors (defined similarly as Eq. 6) were 
chosen.  

For the BPNN model, M=3, 4, …, 9, 10 and η =0.05, 0.1, 0.15, …, 0.9, 0.95 were 
tested, and the best number of hidden neurons and performance ratio were chosen to be 8 and 
0.75, respectively. For the BNN model, M=3, 4, …, 9, 10 were tried, and the best number of 
hidden neurons was chosen to be 5. 

The BPNN was built and trained using the MATLAB neural network toolbox 
(MATLAB, 2006). The number of training epochs was set to be 10,000; the learning rate was 
0.05; and the training goal was set to be 0.0001. Default settings were used for the remaining 
parameters. The training of the BNN model is quite different from the BPNN model, and 

88 
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parameters suggested in Liang (2005) were used.  It is well known that for neural network 
models multiple runs may produce different results. Thus for each scenario in this study, the 
neural network models were run 10 independent times, and their average performances were 
used for comparison. 
 

RESULTS OF ANALYSIS 

This section is divided into two parts. The first part describes the results of the analyses for the 
prediction performance of the three models. The second part presents the results of the sensitivity 
analyses for the BNN model. 
 

Comparison of Predictive Performance 

To evaluate the effects of sample sizes of the training datasets on model performances, three 
scenarios were evaluated. Table 2 shows the characteristics of the three scenarios; the data were 
divided into training and testing subsets. It should be pointed out that the sites were randomly 
selected in each dataset.  
 

Table 2. Sample size of training and testing datasets 
Scenarios # Training Set Size Testing Set Size 

1 60 28 
2 70 18 
3 80 8 

 
Two evaluation criteria as proposed by Oh et al. (2003) were adopted to compare both the 
prediction and fitting performances of the three models. These evaluation criteria are described 
in Equations (10) and (11). 
 

    Mean Absolute Deviation (MAD) ∑
=

−=
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i
ii yy

n 1

^1       (10) 

    Mean Squared Prediction Error (MSPE) ∑
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⎞

⎜
⎝
⎛ −=

n

i
ii yy

n 1

2^1     (11) 

 

In these equations, iy
^

 and iy  are the predicted and observed values, respectively, 
and n  is the size of training or testing subsets. Values closer to zero indicate better model 
performance for both evaluation criteria. MAD is used to estimate the prediction deviation. 
MSPE is employed for determining the variance of the difference between predicted and 
observed results. 

Table 3 shows the modeling results for the NB regression model. This table shows that 
most of the estimated coefficients have large p-values that are insignificant; the magnitude of the 
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coefficients varies significantly (note: all the coefficients have the proper sign, e.g., larger 
shoulder widths are usually associated with a reduction in run-off-the-road collisions, see 
Hughes et al., 2004) between different training set sizes, for example, from training set size 70 to 
80, the estimated coefficients for lane width and intercept have more than doubled. This 
instability is attributed to the problems associated with low sample mean (LSM) values and small 
sample size (SSS). These problems affect the dispersion parameter and, consequently, the 
estimation of the confidence intervals (i.e., standard errors) for each coefficient in the model (see 
Lord, 2006; Lord and Miranda-Moreno, 2006; Zhang et al., 2006). 

 

Table 3. Modeling results of the NB regression models 
Training 
Set Size 

Parameter Estimate 
Standard 

Error 
Wald 95% Confidence 

Limits 
Pr > 

ChiSq 
Log 

Likelihood 
Intercept 0.5781 1.7987 -2.9473 4.1034 0.7479 

Lane Width -0.1020 0.1732 -0.4413 0.2374 0.5560 
Right Shoulder -0.1742 0.0719 -0.3152 -0.0332 0.0154 60 

Dispersion 
Parameter1 

0.1367 0.1541 -0.1653 0.4387 -- 

-54.8055 

Intercept 0.3078 1.5454 -2.7210 3.3367 0.8421 
Lane Width -0.0795 0.1489 -0.3714 0.2124 0.5935 

Right Shoulder -0.1585 0.0640 -0.2838 -0.0331 0.0133 70 

Dispersion 
Parameter1 

0.0890 0.1259 -0.1578 0.3358 -- 

-63.1060 

Intercept 1.3469 1.5450 -1.6812 4.3750 0.3833 
Lane Width -0.1760 0.1483 -0.4668 0.1147 0.2353 

Right Shoulder -0.1228 0.0629 -0.2461 0.0005 0.0509 80 

Dispersion 
Parameter1 

0.1748 0.1412 -0.1019 0.4516 -- 

-77.7407 

Note: 1 The dispersion parameter is shown as non-significant. This is caused by the problems associated with small 
sample size and low sample mean. In reality, there should be a dispersion parameter given the characteristics of the 
data which clearly showed overdispersion, but cannot be captured by the model. See Lord (2006) for a detailed 
discussion about the characteristics associated with these two issues.  

 
The training and testing performances of the three models are summarized in Table 4. 

For all training set sizes, the training and testing performances of the NB models did not perform 
very well compared to the other two models. This seems to support that neural network models 
can better approximate nonlinear functions.  In addition, the output of the NB regression model 
shows that it may also suffers from over-fitting problem especially for the training size equal to 
70 and 80. This is consistent with the discussions in a previous work by Marzban and Witt 
(2001).  

Table 4 also shows that for the training process, the MAD and MSPE are consistently 
the lowest for all training sizes for the BNN model. This means that the BPNN model has the 
best training performance. Both the BPNN and BNN models outperform the NB model when the 
MAD and MSPE values are evaluated for all testing data sets.  For training set size equal to 60, 
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the BNN model performs better than the BPNN model for both training and testing. While for 
training set size equal to 70, the BNN model slightly underperforms the BPNN model in terms of 
testing performance. When the training set size is equal to 80, both neural network models 
perform approximately the same in terms of testing MAD and MSPE values, but the BNN model 
has better training performance.  
 

Table 4. Performances comparison of NB, BPNN, BNN models 

Training (Fitting) Testing (Predicting) Training 
Set Size 

MOEs 
NB BPNN BNN NB BPNN BNN 

MAD 0.99 0.85 0.82 1.28 1.00 0.97 
60 

MSPE 1.76 1.17 1.05 2.96 1.42 1.35 
MAD 0.96 0.82 0.78 1.58 1.15 1.18 

70 
MSPE 1.63 1.10 0.95 4.24 1.75 1.79 
MAD 1.04 0.85 0.80 1.86 1.41 1.42 

80 
MSPE 2.04 1.12 0.98 6.53 2.52 2.48 

 
To further compare the BPNN and BNN models, the previous test was repeated 

independently for another three times based on three randomly selected training data. For 
simplicity, the parameter estimation results of the NB model were omitted. Only the MAD and 
MSPE values of the three models are shown in Table 5.  It can be seen that for almost all cases 
the neural network models perform better than the NB model for both training and testing. The 
only exception is the training set size 80 for the additional data set 1, where the BPNN model 
underperforms the NB model in terms of testing MAD and MSPE. This again suggests that in 
general neural networks have better nonlinear approximation ability.  The values in Table 5 also 
show that in all cases the BNN model produces better training and testing results than the BPNN 
model. Although in some cases the testing MADs of the BPNN and BNN models are the same 
(e.g., training set size 60 for the additional data sets 2 and 3), the corresponding MSPE and 
training MAD values of the BNN model are smaller than those of the BPNN model. This finding 
is consistent with the discussions in Marzban and Witt (2001). They argued that the inclusion of 
a regularization term into the BPNN models can impede on their nonlinear approximation (data 
fitting) ability. In our case, the better testing performance of the BPNN model is achieved at the 
cost of training or fitting performance. Marzban and Witt (2001) further noted that Bayesian 
inference has the potential to improve the generalization ability of neural networks without 
compromising their nonlinear approximation ability. This conclusion is supported by the training 
and testing performances of the BNN model shown in Tables 4 and 5. 
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Table 5. Additional performances comparison of NB, BPNN, BNN models 

Training (Fitting) Testing (Predicting) Additional 
Data Set 

Training 
Set Size 

MOEs 
NB BPNN BNN NB BPNN BNN 

MAD 1.20 0.94 0.91 0.98 0.87 0.84 
60 

MSPE 2.89 1.34 1.23 1.82 1.00 0.96 

MAD 1.16 0.92 0.89 0.85 0.79 0.75 
70 

MSPE 2.68 1.33 1.20 0.94 0.83 0.77 

MAD 1.14 0.92 0.88 0.80 0.86 0.73 

1 

80 
MSPE 2.56 1.28 1.14 0.87 1.02 0.80 

MAD 1.19 0.91 0.88 1.05 0.87 0.87 
60 

MSPE 2.90 1.23 1.13 2.00 1.20 1.15 

MAD 1.14 0.88 0.84 1.11 0.99 0.95 
70 

MSPE 2.70 1.17 1.06 1.81 1.49 1.36 

MAD 1.14 0.88 0.84 1.40 1.17 1.04 

2 

80 
MSPE 2.73 1.17 1.06 2.57 2.05 1.74 

MAD 1.21 0.94 0.91 1.42 0.86 0.86 
60 

MSPE 2.90 1.33 1.20 4.94 1.07 1.05 

MAD 1.22 0.93 0.89 1.32 0.90 0.83 
70 

MSPE 2.99 1.29 1.16 4.33 1.26 1.05 

MAD 1.10 0.91 0.87 1.35 0.84 0.76 

3 

80 
MSPE 2.22 1.26 1.12 5.26 1.15 0.96 

 
The computation times of each model were also compared. All the computations were 

carried out on a desktop computer with Pentium(R) 3.00 GHz CPU and 512MB memory. For the 
NB model, the computation time for any single run was less than 1 second; for the BPNN model, 
the average computation time for a single run was approximately 26 seconds; and for the BNN 
model, the average computation time for a single run is around 28 seconds. Although both neural 
network models require significantly more computation resources than the NB model, this 
computation requirement can be handled easily by an ordinary desktop computer. Taking into 
account of the better fitting and predicting ability of neural network models, it is feasible and 
desirable to apply neural network models, especially the BNN models, to traffic safety 
forecasting studies. 
 

Sensitivity Analysis of the BNN Model 

Neural network models have been long criticized for not being able to generate interpretable 
parameters for each explanatory variable, and this is one of the major reasons that few neural 
network models have been used for modeling crash frequency. To minimize this problem, a 
method proposed by Fish and Blodgett (2003) was adopted in this study to analyze the sensitivity 
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of each explanatory variable. This method has also been used by Delen et al. (2006) in their 
application of neural network models in accident injury severity study. 

The basic idea of this method is that for each explanatory variable, one keeps all other 
explanatory variables unchanged and perturbs the current variable’s value within a reasonable 
interval. At the same time, the corresponding variation of network output is recorded, and from 
this variation, one can find the effect of changing single explanatory variable on the network 
output.  The idea of this method is simple, but it can be useful to minimize the black-box 
problem and help illustrate the training result of neural networks. It should be pointed out that 
the explanatory variables may not be independent of each other. Due to the complicated 
relationship between crash frequency and all explanatory variables, if one changes the value of 
any of the remaining explanatory variables, the relationship between crash frequency and the 
current explanatory variable may change accordingly. 

Two sites were chosen for the sensitivity analysis as shown in Table 6.  These two 
sites have different segment lengths, ADTs, right shoulder and lane widths. In this case, one can 
analyze the sensitivity of each explanatory variable under different conditions and compare them 
accordingly. The BNN model was estimated using an 80-observation training sample.  
 

Table 6. Data used for the sensitivity analysis 
Site 
ID 

Length 
(mile) 

ADT 
(vpd) 

Right Shoulder 
Width (feet) 

Lane 
Width (feet) 

Crash 
Count 

14 2.40 6168 4 11 3 

88 1.15 428 0 10 1 

 
Figures 4 through 7 show the results of the sensitivity analysis, from which the 

following observations can be drawn: 
1. From Figure 4, one can see that there is an approximate linear relationship between 

crash frequency and segment length. The slopes of these two linear relationships 
are very similar, but site 14 has a significantly larger intercept that can probably be 
explained by its higher ADT. This outcome shows that segment length can be used 
as an offset variable rather than as an explanatory variable; 

2. Figure 5 shows that the relationship between crash frequency and ADT can be 
established using a polynomial function. The two polynomial functions shown in 
Figure 5 are almost the same except for the constant term; this relationship is 
similar to what has been reported in the literature (see Hauer, 1997). A reasonable 
explanation for the difference in the constant term is that site 14 is longer than site 
88. Thus, for the same ADT, site 14 has higher crash exposure than site 88; 

3. Figure 6 shows an interesting difference in the relationship between crash 
frequency and lane width. Site 14 has a near linear relationship while site 88 has a 
polynomial relationship. The figure suggests that increasing the lane width of site 
88 from 10 ft to 11 ft may not be as useful as increasing the lane width for the same 
values at site 14. In addition, it shows that widening lanes at site 88 from 9 ft to 10 
ft may not be desirable. This result appears to be counterintuitive, but may not be 
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unusual given the wide variety relationships found by Hauer (2000) on this topic; 
and, 

4. Figure 7 shows the relationship between right shoulder width and crash frequency. 
Both sites have similar polynomial relationships. 

An interesting point about the sensitivity analysis is that it could also be used to 
develop AMFs. With BNN models, an AMF could be developed for each site individually or 
could be estimated for the entire dataset. The sensitivity analysis shows that the relationship 
between crashes and some explanatory variables follows a nonlinear function. With statistical 
regression models, the relationship between these variables can only follow an exponential 
function (e.g., i ixeβ  in GLMs) (Lord and Bonneson, 2006; Bonneson et al., 2006). However, the 
relationship could, in fact, possibly follow a nonlinear function without any specified form. As 
reported by Hauer et al. (2004b), a nonlinear function was established between crashes and 
different explanatory variables included in the statistical models they produced for estimating the 
safety performance of four-lane urban highways. Another potential application of the sensitivity 
analysis is to help transportation safety analyst find appropriate functional forms to be used in 
NB models. Despite the initial findings described above, further work is needed to examine 
potential avenues for developing AMFs using BNN models.   

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Sensitivity analysis for the variable segment length for sites 14 and 88 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 5. Sensitivity analysis for the variable ADT for sites 14 and 88 
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Figure 6. Sensitivity analysis for the variable lane width for sites 14 and 88 

 
  
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Sensitivity analysis for the variable right shoulder width for sites 14 and 88 

 

SUMMARY AND CONCLUSIONS 

The objective of this study was to evaluate the application of BNN models for predicting motor 
vehicle crashes on transportation networks. This paper first described the fundamental principles 
of NB regression models commonly used in highway safety and the characteristics of neural 
network models. The review has shown that although neural network models have excellent 
function approximation abilities and do not require specifying a functional form linking the 
dependent variable to the explanatory variables, the over-fitting problem has significantly limited 
their application in highway safety. By incorporating the Bayesian inference theory into neural 
network models, the over-fitting problem can technically be reduced, which makes them more 
suitable for modeling crash data. 

In this study, the BNN and BPNN models were compared to the NB regression model. 
The models were applied to crash data collected on rural two-lane frontage roads located in 
central Texas. The dataset included 88 highway sections. Three sizes were used for training the 
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three types of models: 60, 70, and 80, and the remaining data were used to evaluate the 
prediction capabilities.  The MAD and MSPE were used to measure the performance of the 
three types of models.  

The results of this study show that in most cases the NB model produced inferior 
prediction capabilities than the two neural network models according to the MAD and MSPE 
evaluation criteria, and its performance to fit the training data was also the poorest according to 
the MAD and MSPE criteria.  Although the BPNN model sometimes can provide better 
prediction performance than the BNN model, in most cases its prediction performance was 
inferior to the BNN model based on the MAD and MSPE evaluation criteria. In addition, the 
fitting performance of the BPNN model was consistently worse than the BNN model, which 
suggests that the BNN model has better nonlinear approximation and generalization abilities than 
the BPNN model, and the over-fitting phenomenon has been alleviated without significantly 
compromising the nonlinear approximation ability. Based on the data and results from this study, 
BNN could be used effectively for predicting crash data. 

In response to the criticism that neural network models are black-boxes and cannot 
produce interpretable parameters for each explanatory variable, the sensitivity analysis carried 
out in this study demonstrated how to extract the underlying relationship between crash 
frequency and explanatory variables from the trained neural networks. Although the sensitivity 
analysis method is empirical in nature and cannot be used equivalently as the statistical inference 
in NB models, it still is a useful tool that could be used for developing AMFs and helping 
transportation safety analysts find the best functional forms in regression modeling. 

While the application of BNN models in this work offered positive results, it is 
suggested to apply this type of model to other datasets to validate the results obtained in this 
study. It is possible that when the training data size is large, the advantages of the BNN model 
over the BPNN model may be less significant. This is because large training data can generally 
better represent population characteristics. Thus, the chance of over-fitting may be reduced. 
However, for many transportation safety studies, it is difficult and costly to obtain large sample 
data. Therefore, BNNs still have a great potential to be widely used. Further work also includes 
evaluating these models when the data are characterized by both small sample mean values and 
small sample size (in terms of stability), the development of AMFs, and for comparing the safety 
performance of different highway design alternatives when the predictive accuracy is a 
controlling factor in the decision making process. The last two topics are closely tied to the 
upcoming Highway Safety Manual (Hughes et al., 2004). Finally, it is hoped that the outcome of 
this research will foster new research ideas for applying BNNs in highway safety.  
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APPENDIX A: Bayesian Neural Networks and Evolutionary Monte Carlo 
Algorithm 

In the BNN model proposed by Liang (2005), a prior is used on both network connections and 
network parameters (weights). This means that both parameters are subject to certain probability 
distributions.  Given the previous n samples, for certain network connection Λ  and parameter 
θ , the output of the network, shown in Figure 2 of the paper, can be defined as follows 
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Where 0=ζI  if the network link ζ  is not connected, otherwise, 1=ζI  ( ζI  represents 

0αI , kIα , jI β , 0jIγ  and jkIγ  in Equation (A1)). Λ  denotes all the indicator functions ζI ; 

),0(~ 2
αα sNk , Pk ,...,0=  are the weights between the input layer, the bias, and the output 

layer with normal prior distribution; ),0(~ 2
ββ sNj , 1,...,j M= are the weights between hidden 

layer and output layer; MjandPkNjk ,...,1  ,...,0 ),,0(~ 2 ==γσγ  are the weights between the 
input layer, the bias, and the hidden layer; P is the input dimension, and M is the maximum 
number of hidden neurons specified by the user. In addition, Liang (2005) assumed that 
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⎛ − , in which 2σ  is assumed to follow an Inverse Gamma distribution 

),( 21 vvIG .  Based on the number of hidden neurons specified by the user, M, the number of 
connections for a fully connected network is given by U=(M+1)*(P+1)+M.  In the BNN 
proposed by Liang (2005), the number of connections is subject to a truncated Poisson prior 
distribution as shown in Equation (A2): 
 

    
otherwise

Um
mZP

m

,...,3
        

,0

,
!

1
)(

=

⎪⎩

⎪
⎨
⎧

=Λ
λ

          (A2) 

    Where ∑
=

=
U

m

m

m
Z

3 !
λ  

 
Let θ  denote the following parameters { }2,,, σγβα jkjk . Liang (2005) again assumed 

that all prior distributions are independent. It can be shown that for given network connection Λ  
and parameter θ  the prior distribution is 
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And from Equation (A3) it is easy to obtain the log-posterior distribution of θ  and Λ  as 
proposed by Liang (2005) 
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Since the log-posterior distribution of θ  and Λ  is now known, the prediction results based on 
this BNN model can be theoretically calculated using an equation similar to Equation (8) in the 
main text. However, this requires the evaluation of an integral over all possible parameter θ  
and Λ , which can require extensive computer resources.  In practice, some algorithms are used 
to obtain samples ( ) ( )SS ΛΛ ,,...,, 11 θθ  from the log-posterior distribution shown in Equation 
(A4), and based on these samples an unbiased estimation of iy  is calculated using Equation 
(A5). 
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The goal for training BNN models is to obtain ( ) ( )SS ΛΛ ,,...,, 11 θθ . Various 

algorithms can be used to train BNNs, such as the hybrid Monte Carlo (Neal, 1995), the 
tempered reversible jump MCMC (Liang, 2003), and the sequential Monte Carlo and the EMC 
(Liang, 2005 and references therein).  Most of these algorithms are based on the Monte Carlo 
simulation method. In this study, an EMC algorithm was used to sample from the log-posterior 
distribution shown in Equation (A4).  The EMC algorithm is fairly complicated and will not be 
described here. Interested readers are referred to Liang and Wong (2001) and Liang (2005) for a 
detailed description of this algorithm. 


