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Abstract

For the problem of tracking vehicles on freeways using ma-
chine wviston, existing systems work well in free-flowing
traffic. Traffic engineers, however, are more interested in
monitoring freeways when there is congestion, and cur-
rent systems break down for congested traffic due to the
problem of partial occlusion. We are developing a feature-
based tracking approach for the task of tracking vehicles
under congestion. Instead of tracking entire vehicles, ve-
hicle sub-features are tracked to make the system robust to
partial occlusion. In order to group together sub-features
that come from the same vehicle, the constraint of com-
mon motion is used. In this paper we describe the system,
a real-time implementation using a network of DSP chips,
and experiments of the system on approrimately 44 lane
hours of video data.

1 Introduction

Traffic management and information systems must rely
on a system of sensors for estimating traffic parameters in
real-time. Currently, the dominant technology for this
purpose is that of magnetic loop detectors, which are
buried underneath highways to count vehicles passing over
them. Video monitoring systems promise a number of
advantages. First, a much larger set of traffic parame-
ters can be estimated in addition to vehicle counts and
speeds. These include vehicle classifications, link travel
times, lane changes, rapid accelerations or decelerations,
queue lengths at urban intersections, etc. Second, cam-
eras are less disruptive and less costly to install than loop
detectors, which require digging up the road surface.

For some years, our group has been developing a proto-
type vision-based traffic surveillance system [11, 12]. The
core idea 1s to have video cameras mounted on poles or
other tall structures looking down at the traffic scene.
Video is captured, digitized, and processed by onsite com-
puters, and then transmitted in summary form to a Trans-
portation Management Center (TMC) for collation and
computation of multi-site statistics such as link travel
times. Processing occurs in three stages:

1. Segmentation of the scene into individual vehicles
and tracking each individual vehicle to refine and
update its position and velocity in 3D world coor-
dinates, until it leaves the tracking zone.
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2. Processing the track data to compute local traffic pa-
rameters including vehicle counts per lane, average
speeds, lane change frequencies, etc. These param-
eters, together with track information (time stamp,
vehicle type, color, shape, position), are communi-
cated to the TMC at regular intervals.

3. At the TMC, local traffic parameters from each site
are collated and displayed as desired, and/or used
in controlling signals, message displays, and other
traffic control devices. Computers at the TMC also
process the track information from neighboring cam-
era sites to compute long-distance parameters such
as link times and origin—destination counts.

In this paper, we focus on the first two stages, the vehicle
segmentation and tracking stage and the computation of
traffic parameters from the tracking data.

2 Tracking Approach

Tracking moving objects in video streams has been a pop-
ular topic in the field of computer vision in the last few
years; earlier contributions to the areas of multi-target
tracking and data association were made by control and
aerospace engineers. Our application entails several strin-
gent requirements for a proposed scheme:

1. Automatic segmentation of a vehicle from the back-
ground and other vehicles so that there can be a
unique track associated with each vehicle.

2. Deal with variety of vehicles — motorcycles, passenger
cars, buses, construction equipment, trucks, etc.

3. Deal with range of traffic conditions — light midday
traffic, rush-hour congestion, varying speeds in dif-
ferent lanes.

4. Deal with variety of lighting conditions — day,
evening, night, sunny, overcast, rainy days.

5. Real-time operation of the system.

Even though a number of commercial systems for traffic
monitoring have been introduced recently, many of these
criteria still cannot be met. In a recent evaluation of
a group of these commercial systems [4], problems were
reported with congestion, long shadows linking together
vehicles, and the transition between night and day.

In the computer vision literature, the different tracking
approaches for video data can be classified as follows.



2.1 3D Model based tracking

Three-dimensional model-based vehicle tracking systems
have previously been investigated by several research
groups, the most prominent being the groups at Karl-
sruhe [10] and at the University of Reading[l, 15]. The
emphasis 1s on recovering trajectories and models with
high accuracy for a small number of vehicles. The most
serious weakness of this approach is the reliance on de-
tailed geometric object models. It 1s unrealistic to expect
to be able to have detailed models for all vehicles that
could be found on the roadway.

2.2 Region based tracking

The idea here is to identify a connected region in the image
—a “blob” — associated with each vehicle and then track
it over time using a cross-correlation measure. Initializa-
tion of the process is most easily done by the background
subtraction technique. A Kalman filter-based adaptive
background model[8, 9] allows the background estimate
to evolve as the weather and time of day affect lighting
conditions. Foreground objects (vehicles) are detected by
subtracting the incoming image from the current back-
ground estimate, looking for pixels where this difference
image is above some threshold and then finding connected
components.

This approach works fairly well in free-flowing traffic.
However, under congested traffic conditions, vehicles par-
tially occlude one another instead of being spatially iso-
lated, which makes the task of segmenting individual vehi-
cles difficult. Such vehicles will become grouped together
as one large blob in the foreground image.

2.3 Active contour based tracking

A dual to the region based approach is tracking based on
active contour models, or snakes. The idea is to have a
representation of the bounding contour of the object and
keep dynamically updating it. The previous system for ve-
hicle tracking developed in our group [11, 12] was based on
this approach. The advantage of having a contour based
representation instead of a region based representation is
reduced computational complexity.

However, the inability to segment vehicles that are par-
tially occluded remains. If one could initialize a separate
contour for each vehicle, then one could track even in the
presence of partial occlusion[11]. However, initialization
is the difficult part of the problem!

2.4 Feature based tracking

Finally, yet another approach to tracking abandons the
idea of tracking objects as a whole but instead tracks
sub-features such as distinguishable points or lines on the
object. The advantage of this approach is that even in
the presence of partial occlusion, some of the sub-features
of the moving object remain visible. The technology of
tracking points and line features in a Kalman filtering
formalism is well developed in the computer vision com-
munity. Since a vehicle could have multiple sub-features,
the new problem then is that of grouping — what set of
features belong to the same object.

3 Motion-Based Grouping

The grouping of vehicle sub-features will be based on a
common motion constraint, a concept known to Gestalt
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Figure 1: A projective transform H, or homography, is used
to map from image coordinates (z,y) to world coordinates

(X,Y).

psychologists as common fate. Point features that are seen
as moving rigidly together will be grouped together into a
single vehicle. But since there are many vehicles in traf-
fic scenes, there is also an important segmentation aspect
to the problem. One does not want to link together sub-
features from neighboring vehicles. The grouping process
must be sensitive enough to pick up a motion that distin-
guishes a vehicle from its neighbors, a motion such as a
slight acceleration or lane drift.

To make the grouping system robust enough to seg-
ment different vehicles, the spatial information guiding
the grouper will be integrated over a period of time, uti-
lizing as many image frames as possible. Only the sub-
features that are tracked from a detection region at the
bottom of the image to an exit region near the top will
be allowed to participate in the final grouping. Thus, in
order to fool the grouper, two vehicles would have to have
identical motions during the entire time they were be-
ing tracked. In congested traffic, vehicles are constantly
changing their velocity to adjust to nearby traffic, thus
giving the grouper the information it needs to perform
the segmentation. In free-flowing traffic, vehicles may be
more likely to maintain constant spatial headways over
time, thus making the grouping constraint less useful.
But in this scenario, there is more space between vehi-
cles, so a spatial proximity cue is added to aid the group-
ing/segmentation process.

Since most road surfaces are flat, the grouper exploits
an assumption that vehicle motion will be parallel to the
road plane. To describe the road plane, the user simply
specifies four or more line or point correspondences be-
tween the image road and a separate “world” road plane,
as shown in Fig. 1. Based on this off-line step, the system
can compute a projective transform, or homography, be-
tween the image coordinates (z,y) and world coordinates
(X,Y). By writing points in homogeneous coordinates,
this 1s a simple linear transform

X x
uH[y].
1

Y
1
The scaling of H is arbitrary, so H(3,3) is often chosen
to be 1.
The grouper considers sub-feature points in pairs. That
is, the basic grouper computation is whether or not to
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Figure 2: Block diagram of our vehicle tracking and grouping
system.

group together the 2D point features p4(?) and pp(t). The
dependence on time t is written to emphasize that the
grouper is working with sub-feature tracks, and hence has
access to the time history of points. The 3D coordinates
of these points in the real world will be written in upper
case P, (1) and Py(t).

Consider the simple case where P, and P; are at the
same distance to the camera (e.g. both on the back face of
a truck). In this scenario, the grouper only needs to look
at a simple function of the displacement vector pg(t) —
ps(t). Since P, and Py are both at the same distance
from the camera d, po(t) and py(t) are both scaled by
the same scale factor 1/d. Thus, for points on the same
vehicle, p4(t) — ps(t) will be constant over time if we can
simply compensate for the 1/d scaling. Fortunately, the
homography can be used for this compensation. Given a
point (z,y) in the image, we can estimate the scale factor
s that transforms the region around that point to world
coordinates. The difference vector p4(t) — ps(t) can then
simply be scaled by s.

We have also considered the more general case where
P, and P, are not at the same distance from the cam-
era. Space considerations in these proceedings prevent a
discussion of this case; please see [3] for the details.

4 Algorithm
4.1 Off-line camera definition

Before running the tracking and grouping system, the user
specifies some camera-specific parameters off-line. These
parameters include:

1. line correspondences for the homography (Fig. 1),

2. a detection region near the image bottom and an exit
region near the image top, and

3. a fiducial point for camera stabilization.

4.2 On-line tracking and grouping

A block diagram for our vehicle tracking and grouping
system is shown in Fig. 2. First, the raw camera video
is stabilized by tracking a manually chosen fiducial point
to subpixel accuracy. Next, the stabilized video is sent
to a detection module, which locates corner features in
a detection zone near the bottom of the image. These
corner features are then tracked over time in the tracking
module. Next, sub-feature tracks are grouped into vehi-
cle hypotheses in the grouping module. Finally, traffic
parameters such as flow rate, average speed, and average

Figure 3: Example corner features located by the system.

spatial headway are computed from the vehicle tracks. In
the future, we intend to add a vehicle classification mod-
ule that will identify vehicles as automobiles, motorcycles,
trucks, buses, etc. In this section, we describe the detec-
tion, tracking, and grouping modules.

4.2.1

Vehicle sub-features are detected and tracked in order
to be insensitive to partial occlusion. Even if part of the
vehicle is obscured due to congested traffic, some of the
vehicle’s sub-features should still remain visible.

Corner features are the chosen sub-features since they
can be reliably tracked. Our corner detector computes the
windowed second moment matrix by averaging in a spatial
window the 2x2 matrix, VIVI? where VI is the image
gradient [6]. Corners are declared where the numerical
rank of this matrix is 2 (smaller eigenvalue above thresh-
old). Fig. 3 shows some example corner features detected
by the system. When a corner sub-feature is detected, a
small 9x9 template of the grey level image is extracted
and used for correlation in the tracking module. Also,
while there are some undesirable corners present near the
vehicle boundaries and background, these corners will be
pruned away by the feature tests employed by the tracker.

The tracking module tracks corner sub-features from
the detection region at the bottom of the image to the
exit region near the top. To address the problem of noisy
measurements, we employ Kalman filtering[7] to provide
most likely estimates of the state of a vehicle sub-feature
based on accumulated observations. In our system, the
state vector contains sub-feature positions and velocities
(X,Y, X,Y) in the world coordinate system; vehicle accel-
eration is captured in the system dynamics noise process.

The measurement process in the Kalman filter is based
on normalized correlation. At each time frame, the
Kalman filter predicts where to search for each corner
feature. This prediction is mapped back to the image
plane, and then the template extracted when the corner
was originally detected is correlated in a window around
the prediction. The template 1s scaled down over time to
reflect the fact that vehicles are getting smaller as they
move down the road surface. We can use the position in
world coordinates to predict the proper scale of the tem-
plate. Once we have located the correlation peak, this
measurement is mapped back onto the road plane. Fi-
nally, the standard Kalman filter equations for updating
the state and error variance are employed.

Two tests are used to eliminate bad sub-feature tracks:

Feature Detection and Tracking

1. Kalman filter innovations. The distance between the
Kalman filter prediction and the current measure-
ment is computed and the track is rejected if the



Figure 4: Example tracks of corner features.

distance 1s above a threshold.

2. Imprecise measurement test. If the correlation values
form a broad, undefined peak around the correlation
maximum, then the measurement process is probably
not localizing the sub-feature within the needed pre-
cision. To measure the peak’s curvature, we compute
the number of pixels in the correlation peak that are
within a certain fraction of the peak. The track is
rejected 1f the count is over a threshold.

Fig. 4 shows the time evolution of some example tracks,
plotted as position over time. The image shown is the
frame when the corners were originally detected.

4.2.2 Grouping

The purpose of the grouping module is to group to-
gether sub-features that come from the same vehicle. The
central cue used by the grouper — common motion — was
described already in section 3. In this section, we dis-
cuss the details of how the common motion constraint is
applied to the sub-feature tracks.

The grouper organizes its task by constructing a graph
over time. The vertices are sub-feature tracks, edges
are grouping relationships between tracks, and connected
components correspond to vehicle hypotheses. When a
new sub-feature is detected and is added to the group-
ing graph, it is initially connected to all neighboring
tracks within a certain radius in the image plane. The
attitude of the grouper is that nearby tracks are com-
patible until they prove otherwise through relative mo-
tion. For all pairs of tracks pe(?) and ps(t) joined by an
edge, the grouper keeps track of the relative displacement
d(?) = pa(t) — ps(t) as scaled by the depth-compensating
factor computed from the homography. Upon each time
frame, another d value is computed for each edge, and the
edge is broken if either

mtaxdx(t) — mtindx(t) > gz threshold, or (1)

mtaxdy (t) — mtin dy(t) > y threshold.

This breaks the link between two tracks if there is enough
relative motion between the two.

In the normal evolution of the graph, vehicles are over-
grouped near the detection region since the graph is lib-
erally connected at first. But as vehicles move down the
road, they are segmented as they perform a distinguishing

Figure 5: Example groups of corner features.

motion such as lane drift or an acceleration. When the
last track of a connected component enters the exit region,
a new vehicle hypothesis is generated and the component
is removed from the grouping graph.

Fig. 5 shows the final groups computed for the vehicles
in the tracking region (which is the middle part of the
image). Corner features are indicated by circles, and there
is an edge drawn between grouped corners.

How are the grouping thresholds in equation (1) deter-
mined? Consider how the median vehicle size changes as
a function of the grouping threshold (Fig. 6). Here, we
assume that the same threshold is used for x and y, and
vehicle size is measured as the maximum distance between
any two points in the group. Empirically, one notices that
the plot of median vehicle size versus threshold exhibits
two linear regimes:

1. Oversegmentation. Below optimum threshold.
Vehicle size increases rapidly as one raises the thresh-
old, as correct groups are still being constructed out
of vehicle fragments.

2. Overgrouping. Above optimum threshold. This
part of the graph has a lower slope, as it is harder to
group together different vehicles than it is to group
a single vehicle’s sub-features.

Given this relationship, our goal is to detect the break-
point between the two regimes. In an off-line step, we
sample the graph by running the grouper at different
thresholds and computing the median vehicle size. Next,
two line segments are fit to the graph by minimizing the
sum of squared error, which locates the breakpoint. We
performed this procedure for all 7 video sequences in sec-
tion 6.2. The thresholds computed led to vehicle recog-
nition rates that were very close to the optimum thresh-
olds (optimum thresholds were computed via exhaustive
search). In the worst case, the computed thresholds led
to a decline of only 3.6% in the recognition rate.

5 Real-time System

We have implemented the tracker on a network of 13 Texas
Instruments C40 DSPs, connected together as shown in
Fig. 7. The computationally heavy operations in the
tracking algorithm — convolution in the feature detector
and correlation in feature tracker — are placed on the C40
network, while the grouper is run on the host PC. Run-
ning the grouper on the PC is necessitated by memory
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Figure 7: The C40 network used for feature tracking, consist-
ing of an NCSC frame-grabber C44 module (C44s are cut-down
C40s with only four communication links); a quad C44 module
(four processors) for corner feature detection; a large memory
module (8M RAM) for maintaining the state of current feature
tracks (track controller); six fast SRAM modules for feature
tracking; and a VGA graphics module for display.

requirements. The grouper needs to store track trajec-
tories, which would quickly exhaust the limited memory
available on the C40 modules. But keeping the grouper
on the PC is also beneficial from a load balancing perspec-
tive, as the PC is a 150MHz Pentium and thus equivalent
to 3 to 4 C40s.

The processors are arranged in two loops, each of which
is operated as a pipeline feeding back to its source. These
two pipelines are controlled by the frame grabber and the
track controller; they compute the corner features and
the track updates respectively. Four C44 processors are
assigned to corner detection, each processing one quarter
of the user-defined detection region. The corners are fed
back to the frame-grabber, which passes them along with
the original image to the track controller. A simple effi-
ciency gain 1s achieved by sending the image first, since
the track controller can then update the existing tracks
while the corners are computed.

The job of the track controller is to maintain the state
of the complete list of current tracks. It does this by
receiving updates for existing tracks from its pipeline of
six C40s, and creating new tracks at positions indicated
by the corner detector. The tracker C40s each update
one sixth of the tracks. Since track updates are fairly
homogeneous tasks, this achieves good load balancing.

The performance of the tracker is 7.5Hz in uncongested
traffic, dropping to 2Hz in congested traffic, where many
more tracks are in progress at any given time. This reduc-
tion in speed does not of itself lead to a reduction in per-
formance of the tracker, since vehicle speeds in congested
traffic are reduced, and so the requirement for tracking

Sequence Description Length N G
Highway 55 heavy congestion 2:46 238 203
Florimn Rd 1 free flow & congestion 2:46 244 260
Mac Rd 1 free flow & congestion 1:00 69 68
Florin Rd 2 night 1:20 58 64
San Jose urban intersection 1:45 34 34
Mac Rd 2 free flow & congestion 3:36 249 265
Florin Rd 3  free flow & congestion 3:36 317 342

Table 1: Video sequences for laboratory testing. Length is
in min:sec, N is the number of actual vehicles (counted by a
human) and G is the number of reported vehicle groups.

rate 1s naturally reduced.

6 Results

Our tracking and grouping system has gone through two
major phases of testing. First, we tested a software-only,
off-line version of the system in terms of its ability to de-
tect vehicles. This testing gave us a “microscopic” view
of the system, allowing us to analyze errors such as false
detections, false negatives, and overgroupings. Second,
the real-time system was tested on a substantial amount
of data — 44 lane hours worth — to see if the system could
accurately measure the aggregate parameters of flow, ve-
locity, vehicle density, and average spacing.

6.1 Off-line testing of vehicle detection

In order to analyze the behavior of the system at the
vehicle level, we tested the system’s vehicle detection rate
for a set of videotapes covering a range of scene condi-
tions: congestion, free-flow, night, and an urban intersec-
tion (see Table 1). Since we wanted to measure errors
such as vehicle oversegmentation and overgrouping, vehi-
cle ground truth was manually defined for each sequence.
For a particular vehicle, ground truth is a binary mask
outlining the vehicle in one or two frames. The number of
ground truths is denoted as N in Table 1, and the number
of reported groups is G.

Table 2 shows the performance of our system using au-
tomatically computed grouping thresholds, as well as the
distribution of errors. A separate automatic evaluation
program compares the vehicle ground truths against the
groups reported by the tracker/grouper and tallies the
following events:

1. True match. A one-to-one matching between a
ground truth and a group.

2. False negative. An unmatched ground truth.

3. Oversegmentation. A ground truth that matches
more than one group.

4. False positive. An unmatched group.

5. Quergrouping. A group that matches more than one
ground truth.

In analyzing the results, it should be said that the High-
way bb sequence is a difficult one because of a poor cam-
era position and a number of large trucks that sometimes
completely occlude automobiles. In terms of trading off
the different error conditions, we have noticed that over-
segmentation and overgrouping can be traded off by ad-
justing the grouping thresholds.



true false over- false  over-
Sequence match neg. seg pos.  group
Highway 55 73.0% 185%  6.1% 4.9% 0.4%
Florin Rd 1 88.5% 1.6% 6.9% 1.9% 1.5%
Mac Rd 1 94.2% 1.5% 1.5% 2.8% 1.4%
Florin Rd 2 89.6% 6.9% 3.4% 20.0% 0.0%
San Jose 85.3% 2.9% 5.9% 0.0% 2.9%
Mac Rd 2 80.3% 6.0% 10.4% 2.3% 1.5%
Florin Rd 3 84.5% 2.2%  10.1% 0.3% 1.8%

Table 2: Performance of the tracking/grouping system on the
off-line test sequences. When computing rates, the first three
columns divide the number of true matches, false negatives,
etc., by N; the final two columns divide by G.

As the first three sequences have long shadows, the ex-
perimental results show that the system can handle shad-
ows — shadow sub-features tend to be unstable over time,
especially in congestion.

6.2 On-line testing of traffic parameters

Our second phase of testing evaluated the on-line system’s
ability to estimate aggregate traffic parameters. The pa-
rameters typically used by traffic engineers to monitor the
freeways include:

1. Flow. Number of vehicles per hour.

2. Velocity. Average vehicle velocity.

3. Density. Number of vehicles per unit distance.
4. Headway. Average spacing between vehicles.

These parameters are computed separately for each lane
of traffic and are averaged over a period of time (taken
to be 5 minutes in our experiments). Also, it should be
apparent that these are not independent variables; we use
the methodology from Edie[5] to compute these parame-
ters from the vehicle track data.

Ground truth is provided from inductive loop data that
was collected concurrently with the video data. Each lane
of traffic has two loops separated by 20 feet, giving us an
effective speed trap for measuring velocity.

Our system was tested on approximately 44 lane hours
of video from the Florin Road interchange along Highway
99 in Sacramento, Calif. (see Fig. 9 for an example shot).
The data includes all observed operating conditions: day,
night, twilight, long shadows and rain; congestion and
free flow. Lane 1, on the left, is carpool (HOV) lane and
exhibited little if any congestion. Lane 3, on the right, ex-
hibited some degree of congestion for approximately 20%
of the time. Finally, the loops in lane 2 were bad so it
was excluded from the final analysis. The video data was
divided into 5 minute aggregation periods, yielding 514
samples for the traffic parameters. Overall, there were
roughly 40,000 vehicles in the final video data set.

The vehicle track data from the real-time system can
then be compared with the loop data over the 20 foot re-
gion of overlap between the tracks and loop data. Fig. 8
shows scatter plots of the flow and velocity estimates pro-
vided by the loop and vision data, and Table 3 summarizes
the error distribution for velocity, flow, density, and head-
way. As one would expect from a feature based tracker,
the measured velocity is very accurate. Even if the tracker
overgroups or oversegments vehicles, the erroneous blobs
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Figure 8: Scatter plots comparing flow ¢ and velocity v to
ground truth for the 44 lane hours of data used to test the
real-time system.

still move at the prevailing speed. The errors in flow,
density and spacing are due to missed or over counted
vehicles. Often, an error of two or three vehicles in one
sample can be very significant. For example, one missed
vehicle in a five minute sample at 1,000 veh/hr results in
a 2% error. At the mean flow for the data, 910 veh/hr,
the error per missed vehicle is slightly higher, at 2.2%.
Another way to examine estimated traffic parameters
is as a time series. To demonstrate the performance of
our system during a dramatic change in lighting condi-
tions from night to day, in Fig. 10 we show flow ¢ and
velocity v for a two hour stretch of continuous video. The
video starts at night (5:30 AM, see Fig. 9, left), progresses

% error % vel % flow % dens % headway

less than | samples samples samples samples
2.5% 86% 18% 19% 19%
5% 95% 31% 33% 34%
10% 100% 60% 59% 60%
15% 100% 79% 79% 81%
20% 100% 91% 90% 89%
25% 100% 96% 96% 94%

Table 3: Error distribution for velocity, flow, density, and

headway.



Figure 9: Two images from the start and end of a two hour
run of the real-time system.
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Figure 10: Flow and velocity as a function of time. The
sequence begins at 5:30 AM (night lighting conditions) and
finishes at daytime.

through sunrise and long shadows, and ends with day
(7:30 AM, see Fig. 9, right). In the plot of flow and veloc-
ity, there are 48 samples of 5 minute periods and roughly
4 600 vehicles. Note that the morning rush hour peak
starts during the sequence and approximately 30 minutes
of data from lane three are under light congestion, and
thus, frequent occlusions.

In addition, since the primary design goal in develop-
ing our system was to deal with congestion, we close the
results section with an example of a “shockwave”. Fig. 11
plots vehicle tracks as the distance along the lane as a
function of time. In this case, ground truth was entered
manually at a number of points along each vehicle’s tra-
jectory. In the regions of the graph where the slope goes
to zero, one notices that vehicles continue to be tracked
even when traffic has come to a complete stop.

7 Summary

We have presented a vehicle detection and tracking sys-
tem that is designed to operate in congested traffic. In-
stead of tracking entire vehicles, vehicle sub-features are
tracked, which makes the system less sensitive to the prob-
lem of partial occlusion. In order to group sub-features
that come from the same vehicle, the constraint of com-
mon motion over trajectory lifetimes is used. A real-time
version of the system has been implemented using a net-
work of C40 DSP chips connected to a host PC. The sys-
tem has been tested on approximately 44 lane hours of
data and has demonstrated good performance not only in
congested traffic, but also on free-flowing, nighttime, and
urban intersection traffic.
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Figure 11: Vehicle tracks for the real-time system during a
shockwave. When the slope is zero, the vehicle is completely
stopped.
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