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Hybrid Opportunistic Scheduling in
Cognitive Radio Networks

Yang Li, Student Member, IEEE, and Aria Nosratinia, Fellow, IEEE

Abstract—In a cognitive (secondary) multiple-access network
which is subject to interference power constraints imposed by
a primary system, it is desirable to mitigate the interference
on the primary and to harvest multiuser diversity gains in
the secondary. To simultaneously achieve these goals, a two-
step (hybrid) scheduling method is proposed that pre-selects
a set of secondary users based on their interference on the
primary, and from among them selects the user(s) that yield
the highest secondary throughput. The optimal number of active
secondary transmitters is characterized as a function of the
primary interference constraint, the secondary transmit power,
and the number of secondary transmitters 𝑛. The secondary sum-
rate (throughput) of the proposed algorithm grows optimally
(proportional to log 𝑛). We investigate the tradeoff between
scaling the secondary throughput and reducing interference on
the primary, and characterize the optimum tradeoff in the regime
of large 𝑛. Finally, we study user scheduling under fairness
constraints, which is necessary when the channel statistics of
secondary nodes are not identical. A modified hybrid scheduling
rule is proposed to ensure user fairness, while still achieving the
optimal growth rate for the secondary throughput.

Index Terms—Spectrum sharing, opportunistic scheduling,
cognitive radio, fairness.

I. INTRODUCTION

UNDER-UTILIZATION of spectrum [1] has motivated
the study of various techniques that allow a set of

secondary users to access the spectrum along with the primary
users. Among different cognitive techniques [2], the underlay
technique (also known as spectrum sharing) has attracted
significant attention [3], [4]. Underlay cognitive radio allows
the secondary users to share the spectrum if the interference
caused on the primary is less than an interference temperature
(threshold).

This paper studies an underlay cognitive multiple-access
(MAC) channel with 𝑛 transmitters, in the presence of a
primary system with 𝑀𝑝 transmitters and 𝑁𝑝 receivers. The
primary and secondary systems are subject to mutual inter-
ference, where the secondary must comply with a set of
interference power constraints imposed by the primary. The
objective is to design a user scheduling method that exploits
multiuser diversity in both cross links and secondary links, so
that the secondary sum-rate (throughput) is maximized, while
the interference induced on the primary is strictly bounded.

A brief overview of the past work is as follows. Zhang et
al. [5] studied the power allocation of a secondary system
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under various power and interference constraints. Multiple
antennas at the secondary transmitter were exploited by [6] to
balance the secondary throughput and the interference on the
primary. Recently, ideas from opportunistic communication [7]
have been applied in underlay cognitive radios. Tajer et al. [8]
analyzed a parallel cognitive network and found a growth
rate of Θ(log log𝑛) for the throughput. The throughput limits
of cognitive broadcast and MAC channel were analyzed by
Li and Nosratinia [9], [10], where [9] randomly activates
multiple secondary transmitters with interference smaller than
a threshold. Jamal et al. [11] and Shen et al. [12] found that
the secondary throughput can be increased by simultaneously
activating as many secondary transmitters as possible. The
multiuser diversity gain in cognitive networks was also studied
by Hong et al. [13], Zhang et al. [14] and Ban et al. [15],
showing that by selecting the secondary user with the highest
signal-to-interference-and-noise ratio (SINR) under the pri-
mary interference constraints, the secondary throughput can
grow as Θ(log log𝑛).

The main results of this paper are as follows.

∙ We propose a two-step (hybrid) opportunistic scheduling
that pre-selects a set of secondary transmitters with small
interference, and from among them activates multiple
transmitters with large secondary-channel gain. The pre-
selection step provides cross-link diversity to minimize
interference, while the second step provides multi-user di-
versity to improve the secondary throughput. The result is
a throughput growing as Θ(log𝑛), which improves on the
growth rate of Θ(log log𝑛) in [13], [14], [15]. Further-
more, a 20-30% throughput gain is obtained compared
with [9] for up to 200 secondary users. The proposed
scheduling method is shown to be optimal asymptotically,
and can reduce the interference on the primary propor-
tionally to 𝑛−𝑞, while the secondary throughput grows
proportionally to 1−𝑞𝑁𝑝

𝑁𝑝+1 log𝑛, for 0 ≤ 𝑞 ≤ 1
𝑁𝑝

.
∙ We characterize the (asymptotically) optimal number of

active secondary transmitters as a function of the primary
interference constraint, the secondary transmit power
and 𝑛. To achieve the asymptotically optimal secondary
throughput, the number of active transmitters must be
proportional to 𝑛

1
𝑁𝑝+1 .

∙ The issue of fairness is studied; this issue arises when
the node channel statistics are not identical. A method
is proposed to ensure user fairness and the effect of a
fairness constraint on asymptotic throughput is analyzed.
It is shown that the modified scheduling method achieves
the same optimal growth rate for the throughput, i.e., the
fairness constraint does not affect the growth rate of the
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Fig. 1. Multiple access cognitive radio.

throughput for this algorithm.

The following asymptotic notations are used in this paper.
For sufficiently large 𝑛,

𝑓(𝑛) = 𝑂
(
𝑔(𝑛)

)
: ∃𝑐1 ∣𝑓(𝑛)∣ < 𝑐1∣𝑔(𝑛)∣

𝑓(𝑛) = Θ
(
𝑔(𝑛)

)
: ∃𝑐1, 𝑐2 𝑐2∣𝑔(𝑛)∣ < ∣𝑓(𝑛)∣ < 𝑐1∣𝑔(𝑛)∣

𝑓(𝑛) = 𝑜
(
𝑔(𝑛)

)
: ∀𝜖 > 0 ∣𝑓(𝑛)∣ < 𝜖∣𝑔(𝑛)∣

II. SYSTEM MODEL

We consider a multiple-access (MAC) secondary system
that coexists with a primary system, as shown in Figure 1.
The primary system consists of 𝑀𝑝 transmitters and 𝑁𝑝

receivers,1 where each transmitter communicates with one or
more receivers, and vice versa. The primary and secondary
are subject to mutual interference from each other which
is treated as noise. The interference from the secondary to
each primary receiver must be smaller than a pre-defined
interference temperature (threshold). For simplicity, all nodes
are assumed to be single-antenna.

A block-fading channel model is assumed where all chan-
nel coefficients are independent, identically distributed (i.i.d.)
circularly-symmetric complex Gaussian with zero mean and
unit variance, denoted by 𝒞𝒩 (0, 1). For each transmission, a
subset of secondary transmitters are activated; the collection
of selected (active) transmitters is denoted by 𝒮. The signal
at the secondary receiver is:

𝑦 =
∑
𝑖∈𝒮

√
𝑃𝑖 ℎ𝑖 𝑥𝑖 +

𝑀𝑝∑
ℓ=1

√
𝑃𝑝 𝑔𝑠,ℓ 𝑥𝑝,ℓ + 𝑤, (1)

where ℎ𝑖 is the channel coefficient from the secondary trans-
mitter 𝑖 to the secondary receiver. The secondary transmitter
𝑖 sends a signal 𝑥𝑖 with power 𝑃𝑖, which is subject to a short
term power constraint, i.e., 𝑃𝑖 ≤ 𝑃 for 1 ≤ 𝑖 ≤ 𝑛. The
cross-channel coefficient from the primary transmitter ℓ to the
secondary receiver is 𝑔𝑠,ℓ. The primary transmitter ℓ sends a
signal 𝑥𝑝,ℓ with power 𝑃𝑝 for 1 ≤ ℓ ≤ 𝑀𝑝. The additive noise
𝑤 has the distribution 𝒞𝒩 (0, 1).

The interference power (caused by the secondary transmit-
ters) on the primary receiver 𝑗 is

𝐼𝑗 =
∑
𝑖∈𝒮

𝑃𝑖∣𝑔𝑗𝑖∣2, (2)

1In this paper, 𝑀𝑝 and 𝑁𝑝 are assumed to be bounded, i.e., not scaling
with 𝑛.

where 𝑔𝑗𝑖 is the cross-channel coefficient from the secondary
transmitter 𝑖 to the primary receiver 𝑗. For clarity of exposi-
tion, all the primary receivers are assumed to tolerate a short-
term interference power Γ; the case of unequal tolerances can
be studied similarly (see Remark 1). We have

𝐼𝑗 ≤ Γ, for 1 ≤ 𝑗 ≤ 𝑁𝑝. (3)

Throughout this paper, we assume the secondary receiver
knows the secondary-channel coefficients {ℎ𝑖} but does not
know any other channels (see Remark 2 for more details).
We refer to the secondary forward channel simply as the
secondary-channel, and the secondary cross-channel to the
primary receiver as the cross-channel.

III. SCHEDULING IN COGNITIVE MAC CHANNEL

A scheduling scheme determines a set of active secondary
transmitters 𝒮 and their power {𝑃𝑖}𝑖∈𝒮 . The corresponding
average secondary sum-rate (throughput) is given by

𝑅𝑚𝑎𝑐 = 𝔼

[
log

(
1 +

𝐺𝑠𝑢𝑚

1 + 𝐼𝑝

)]
, (4)

where

𝐺𝑠𝑢𝑚 =
∑
𝑖∈𝒮

𝑃𝑖∣ℎ𝑖∣2, 𝐼𝑝 = 𝑃𝑝

𝑀𝑝∑
ℓ=1

∣𝑔𝑠,ℓ∣2. (5)

The statistics of 𝐺𝑠𝑢𝑚 depends on the associated scheduling
rule, and are independent of 𝐼𝑝, the interference from the
primary.

A. Hybrid Opportunistic Scheduling

A secondary user scheduling should maximize the (average)
secondary throughput, while satisfying the primary-imposed
interference constraints. However, such two objectives often
conflict. To increase the throughput, we want to activate many
transmitters with large secondary-channel gains, but these
transmissions may violate the interference constraints. Since
the interference from various concurrent transmissions will
add up, the scheduling of secondary transmitters is interde-
pendent. We may choose many transmitters operating at low
power, or a few transmitters at high power. Moreover, even
for a fixed number of transmitters, reducing power from one
transmitter allows increasing power from other transmitters. In
general, the search for the optimal transmitter set and transmit
power is a variation of the knapsack problem, which is NP-
complete. To simplify the problem, we adopt a decoupling
power policy that is shown to be asymptotically optimal later
on. This is an on-off power policy where each transmitter
either operates at maximum power 𝑃 or remains silent. Then,
the scheduling scheme is as follows:

1) Selection of Eligible Transmitters: The scheduling pro-
cess has two parts. In its first part, we concentrate on limiting
the interference, thus favoring transmitters with small cross-
channel gains. Specifically, we only allow transmitters that do
not violate an interference quota 𝛼 on each primary receiver.
The collection of such transmitters is defined as the eligible
transmitter set:

𝒜 =

{
𝑖 : 𝑃 ∣𝑔𝑗𝑖∣2 < 𝛼, ∀ 1 ≤ 𝑗 ≤ 𝑁𝑝

}
. (6)
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This step can be considered as opportunistic interference
avoidance. Recall that each primary receiver can tolerate inter-
ference power Γ. Once the maximum interference generated
by each secondary transmitter is capped, the total interference
at each primary receiver is guaranteed to be tolerable if no
more than 𝑘𝑠 = Γ

𝛼 eligible secondary transmitters are in
operation.2

2) Selection of Active Transmitters: Now we choose from
among the eligible transmitters those who will actually trans-
mit. Up to 𝑘𝑠 secondary transmitters will be chosen that have
high secondary-channel gains (SNRs), therefore producing
multiuser diversity. The ordered channel gains of eligible
transmitters are denoted by:

∣ℎ̃1∣2 ≥ ∣ℎ̃2∣2 ≥ ⋅ ⋅ ⋅ ≥ ∣ℎ̃𝑀 ∣2, (7)

where ∣ℎ̃𝑖∣2 is the 𝑖th largest channel gain of transmitters in
𝒜, and 𝑀 = ∣𝒜∣ is the size of 𝒜. Note that 𝑀 is a random
variable. If 𝑀 > 𝑘𝑠, the first 𝑘𝑠 transmitters in the above
order will be active simultaneously. If 𝑀 ≤ 𝑘𝑠, then all the
𝑀 eligible transmitters will operate.

The above two-step scheme is called Hybrid Opportunistic
Scheduling in the sense that it is driven by a hybrid of two
criteria: Minimizing interference and maximizing throughput.
This selection process requires neither exhaustive search nor
joint power control among secondary transmitters, but it
still guarantees compliance with the pre-defined interference
threshold and captures the multiuser diversity gain. In addition,
this scheduling is simple to design; the only parameter to
consider is the interference quota 𝛼 (thus 𝑘𝑠), which will be
studied in the sequel.

Remark 1: Hybrid Opportunistic Scheduling still applies
when primary receivers tolerate unequal amounts of inter-
ference, e.g., Γ𝑗 for 1 ≤ 𝑗 ≤ 𝑁𝑝. In this case, we design
a separate interference quota for each primary receiver, i.e.,
𝛼𝑗 =

Γ𝑗

𝑘𝑠
, and re-define the eligible transmitter set as

𝒜𝑛𝑒𝑞 =

{
𝑖 : 𝑃 ∣𝑔𝑗𝑖∣2 < 𝛼𝑗 , ∀ 1 ≤ 𝑗 ≤ 𝑁𝑝

}
, (8)

such that the transmission of any 𝑘𝑠 eligible secondary trans-
mitters complies with all the interference constraints. Notice
that the selection of active transmitters is unaffected. One can
show that most of the analysis and results in this paper still
follow in a similar manner.

Remark 2: We briefly discuss the CSI requirement of the
proposed scheme. First, each secondary transmitter compares
its cross-channel gains3 to a threshold to evaluate its eligi-
bility. Then, eligible transmitters each send 1-bit to inform
the secondary receiver. The secondary-channel of eligible
transmitters can be directly estimated at the receiver side.
Therefore, this scheduling method requires little exchange of
CSI. The thresholding operation of our method is essentially a

2For the purposes of analysis 𝛼 is allowed to take any small and positive
value, but for practical purposes it can be limited to the values that make 𝑘𝑠
to be an integer.

3The primary receiver emits packets for, e.g., handshake or ACK/NACK,
which can be overheard by the secondary transmitter and used for cross-
channel gain estimation in a TDD system. Also, under the spectrum leasing
model [16], the primary receivers can be expected to actively promote
spectrum reuse by transmitting pilots that can be used for cross-channel gain
estimation. The latter model applies to both TDD and FDD.

distributed decision making process that significantly reduces
the CSI overhead compared with methods that choose the least
interfering secondary [11], because ranking is by necessity
a centralized process and requires all nodes to communicate
their cross-link to the receiver.

B. Throughput Analysis

Now we study the throughput achieved by the proposed
Hybrid Opportunistic Scheduling. We first derive the average
secondary throughput, and then maximize the throughput over
𝛼. Under the proposed scheduling, we have

𝐺𝑠𝑢𝑚 = 𝑃

min(𝑘𝑠,𝑀)∑
𝑖=1

∣ℎ̃𝑖∣2, (9)

which involves a sum of order statistics whose properties are
given by the following lemma.

Lemma 1: Let 𝑎 and 𝑏 be large positive integers with 𝑏 ≥ 𝑎,
and 𝑆𝑎𝑏 (𝜌) be the sum of the highest 𝑎 order statistics out of
𝑏 i.i.d. exponentials with mean 𝜌. For any 0 < 𝜖 < 1,

ℙ

(∣∣𝑆𝑎𝑏 (𝜌)− 𝜌𝜇𝑎𝑏
∣∣ < 𝜖𝜌𝜇𝑎𝑏

)
> 1−𝑂

(
1(

log 𝑏
)2

)
,

𝔼[𝑆𝑎𝑏 (𝜌)] = 𝜌𝜇𝑎𝑏 ,

where 𝜇𝑎𝑏 = 𝑎 log 𝑏
𝑎 + 𝑎+𝑂(1).

Proof: See Appendix A.
Remark 3: In Lemma 1, 𝜇𝑎𝑏 can be considered as the

multiuser diversity gain achieved by selecting the best 𝑎 out
of 𝑏 users in i.i.d. Rayleigh fading channels. For 𝑎 = 1, it
reduces to the case where one transmitter with the highest
channel gain is selected, and we have 𝜇1

𝑏 ≈ log 𝑏, a well
known result [7], [17]. For 𝑎 = 𝑏 (no selection), 𝑆𝑎𝑏 (𝜌) obeys
Gamma(𝑏, 𝜌) distribution, and 𝜌𝜇𝑏𝑏 ≈ 𝜌𝑏.

Based on Lemma 1 and recalling that 𝑘𝑠 = Γ
𝛼 , for suffi-

ciently small 𝛼 (large 𝑘𝑠), we have the following results.
Theorem 1: Consider a secondary MAC with 𝑛 transmit-

ters, each with power 𝑃 . This MAC coexists with a primary
system with 𝑁𝑝 receivers and 𝑀𝑝 transmitters each with power
𝑃𝑝. If each primary receiver tolerates interference power Γ,
then the average secondary throughput 𝑅𝑚𝑎𝑐 satisfies

𝑅𝑚𝑎𝑐 ≥ log

(
log𝑛− (𝑁𝑝 + 1) log 𝑘𝑠 +𝑁𝑝 log(Γ/𝑃 ) + 1

)
1 +𝑀𝑝𝑃𝑝

+ log
𝑃𝑘𝑠

1 +𝑀𝑝𝑃𝑝
+𝑂

( 1

log𝑛

)
, (10)

𝑅𝑚𝑎𝑐 ≤ log

(
log𝑛− (𝑁𝑝 + 1) log 𝑘𝑠 +𝑁𝑝 log(Γ/𝑃 ) + 1

)
1 +𝑀𝑝𝑃𝑝

+ log
𝑃𝑘𝑠

1 +𝑀𝑝𝑃𝑝
+ 𝐶0 +𝑂

( 1

log 𝑛

)
, (11)

for sufficiently large 𝑛 and 𝑘𝑠, where 𝐶0 = log
(
𝔼[1/(1 +

𝐼𝑝)]𝔼[1 + 𝐼𝑝]
)
.

Proof: See Appendix B.
Remark 4: The lower bound (10) has only a constant gap

𝐶0 relative to the upper bound (11) for large 𝑛, therefore,
for given 𝑘𝑠, 𝑅𝑚𝑎𝑐 scales as log log𝑛, similar to the results
in [13], [14], [15]. To achieve this secondary rate, multiuser
decoding is required at the secondary receiver for 𝑘𝑠 > 1,
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which is unlike TDMA scheduling (𝑘𝑠 = 1) where single-
user detection is sufficient. Finally, we note that 𝐶0 depends
only on the statistics of 𝐼𝑝, the interference from the primary
to the secondary (see (5)).

Now, we design the interference quota 𝛼 (equivalently 𝑘𝑠)
to maximize the secondary throughput. Unlike conventional
MAC where 𝑘𝑠 = 𝑛 maximizes the sum throughput, in
spectrum-sharing networks 𝑘𝑠 (thus 𝛼) must be carefully
designed due to the additional primary interference constraints.
If 𝛼 is very small, the number of eligible transmitters is also
small on average, which reduces the multiuser diversity gain
achieved by selecting from among the eligible transmitters. If
𝛼 is very large, Γ

𝛼 will be small and few transmitters can be
activated, thus once again the overall throughput will suffer.
Therefore, it is desirable to optimize 𝛼 (thus 𝑘𝑠), as shown by
the following lemma.

Lemma 2: For sufficiently large 𝑛 the optimal number of
active secondary transmitters 𝑘𝑜𝑝𝑡𝑠 satisfies∣∣∣∣𝑘𝑜𝑝𝑡𝑠

𝑘∗𝑠
− 1

∣∣∣∣ ≤ √
1− 𝜉,

where 𝑘∗𝑠 =
(

Γ
𝑃𝑒

) 𝑁𝑝
𝑁𝑝+1𝑛

1
𝑁𝑝+1 and 𝜉 is given by (52).

Proof: See Appendix C.
Lemma 2 asymptotically bounds the optimal number of

active secondary transmitters as a function of Γ, 𝑃 and 𝑛.
It shows that, essentially, 𝑘𝑜𝑝𝑡𝑠 cannot be too far from 𝑘∗𝑠 .
Motivated by this lemma, we choose 𝑘𝑠 = 𝑘∗𝑠 and in the
following theorem obtain a throughput growth rate that is later
shown to be asymptotically optimal (see Section III-C).

Theorem 2: Consider a secondary MAC with 𝑛 transmitters
each with power 𝑃 . This MAC coexists with a primary system
with 𝑁𝑝 receivers and 𝑀𝑝 transmitters with power 𝑃𝑝. If
each primary receiver tolerates interference power Γ, then the
average secondary throughput 𝑅𝑚𝑎𝑐 satisfies

𝑅𝑚𝑎𝑐 ≥ 1

𝑁𝑝 + 1
log𝑛+ 𝐶1 +𝑂

( 1

log𝑛

)
, (12)

𝑅𝑚𝑎𝑐 ≤ 1

𝑁𝑝 + 1
log𝑛+ 𝐶1 + 𝐶0 +𝑂

( 1

log𝑛

)
, (13)

for sufficiently large 𝑛 by activating 𝑘∗𝑠 transmitters, where
𝐶1 =

𝑁𝑝

𝑁𝑝+1 log
Γ
𝑃𝑒 + log

(𝑁𝑝+1)𝑃
1+𝑀𝑝𝑃𝑝

.
Proof: Notice that the proof of Theorem 1 holds for

𝑘𝑠 = Θ(𝑛1/(𝑁𝑝+1)). The theorem follows by substituting 𝑘∗𝑠
into (10) and (11), respectively.

The implications of Theorem 2 are as follows. Intuitively,
the secondary throughput is reduced when the number of
primary receivers (constraints) increases. Theorem 2 explic-
itly quantifies this: 𝑅𝑚𝑎𝑐 = 1

𝑁𝑝+1 log𝑛 + 𝑂(1). For small
𝑁𝑝, Hybrid Opportunistic Scheduling achieves a (significant)
fraction of the throughput of an ordinary MAC, if 𝑛 is large
enough. The achieved throughput is proven to be optimal
asymptotically (with 𝑛) in the sequel.

So far we have shown that the multiuser nature of a
secondary system can improve the secondary throughput. In
fact, this multiuser flexibility can also be used to mitigate
the interference on the primary. A tradeoff exists between the
primary interference reduction and the secondary throughput
enhancement under Hybrid Opportunistic Scheduling, which
is described as follows.

Corollary 1: Consider the allowable interference on each
primary receiver being bounded as Θ(𝑛−𝑞). Then, the average
secondary throughput satisfies

𝑅𝑚𝑎𝑐 =
1− 𝑞𝑁𝑝

𝑁𝑝 + 1
log𝑛+𝑂(1), (14)

for sufficiently large 𝑛 under Hybrid Opportunistic Schedul-
ing, where 0 ≤ 𝑞 ≤ 1

𝑁𝑝
.

Proof: Notice that Theorem 2 holds for Γ = Θ(𝑛−𝑞).
The Corollary follows by substituting Γ into the lower and
upper bounds given by (13).

Based on Corollary 1, as 𝑛 increases, Hybrid Opportunistic
Scheduling can mitigate interference (to zero) on the pri-
mary receivers, while the secondary throughput grows as
Θ(log𝑛). The allowable interference Γ is made to decline
as Θ(𝑛−𝑞), which leads 𝑅𝑚𝑎𝑐 to decrease linearly in 𝑞. If
Γ is reduced more slowly, e.g., decreasing as Θ( 1

log𝑛 ), the
secondary throughput can increase at a rate of 1

𝑁𝑝+1 log𝑛.
If we try to mitigate the primary interference faster than
Θ(𝑛−𝑞), i.e., 𝑞 ≥ 1

𝑁𝑝
, the secondary throughput only grows as

𝑜(log 𝑛). Therefore, as 𝑁𝑝 increases, not only the throughput
of the secondary decreases, but also its ability of reducing the
interference on the primary.

Remark 5: The key to the secondary growth rate Θ(log𝑛)
is to activate multiple secondary transmitters while limiting the
interference. This approach is in contrast with [13], [14], [15]
where a single transmitter with the highest SNR was activated.
The main questions to be answered in this work have been:
how many secondary transmitters we should activate, how to
choose the active secondary transmitters in a relatively straight
forward fashion, and how much power should the active
transmitters emit to achieve the growth rate while satisfying
the interference constraint.

C. Optimality of Hybrid Opportunistic Scheduling

We first find an upper bound for the average secondary
throughput that applies regardless of transmission strategies.

Theorem 3: Consider the coexistence of a secondary MAC
with 𝑛 transmitters and a primary system with 𝑁𝑝 receivers.
The maximum average throughput of the secondary, 𝑅𝑜𝑝𝑡

𝑚𝑎𝑐,
satisfies

𝑅𝑜𝑝𝑡
𝑚𝑎𝑐 ≤

1

𝑁𝑝 + 1
log 𝑛+𝑂(log log𝑛). (15)

Proof: See Appendix D. □
The gap between the above upper bound and the through-

put attained by Hybrid Opportunistic Scheduling (shown in
Theorem 2) is only on the order of 𝑂(log log𝑛). This gap is
negligible relative to Θ(log𝑛) for sufficiently large 𝑛, there-
fore, Hybrid Opportunistic Scheduling asymptotically attains
the maximum throughput:

lim
𝑛→∞

𝑅𝑚𝑎𝑐

𝑅𝑜𝑝𝑡
𝑚𝑎𝑐

= 1. (16)

Remark 6: The growth rate Θ(log𝑛) can also be attained
by activating secondary users simply according to the least
interference, i.e., only based on cross-channel gains [9], [18].
The similarity of growth rates may tempt one to say that there
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is no gain in utilizing secondary channel information [18].
However, similarity of growth rates hides 𝑜(log 𝑛) throughput
gains by the two-step (hybrid) approach that are highly non-
trivial and practically important. For instance, our results show
throughput gains of around 20-30% over [9] (see Figure 3) by
selecting the users with large secondary-channel gain.

IV. SCHEDULING UNDER NON-I.I.D. LINK STATISTICS

In this section, we consider a network where neither the
secondary-channels nor cross-channels are identically dis-
tributed. This is a practical scenario due to, e.g., different
path losses for various links. Assuming that the channel gains
obey one out of a finite number of distributions, we enumerate
them with the variable 𝑑 ∈ {1, . . . , 𝐷}. Specifically, each
user has a secondary-channel gain and cross-channel gain that
obeys the exponential distribution with parameter 𝜌𝑑 and 𝜆𝑑,
respectively. The number of users in each of these groups is
𝛽𝑑 𝑛, where

∑𝐷
𝑑=1 𝛽𝑑 = 1.

The secondary transmitters that enjoy larger 𝜌𝑑 and smaller
𝜆𝑑 have a higher probability to be active under Hybrid Oppor-
tunistic Scheduling, so user fairness is no longer guaranteed. In
the following, we extend Hybrid Opportunistic Scheduling to
ensure a (long-term) temporal fairness [19], [20] in the sense
that each secondary transmitter has equal probability (time
fraction) to be active. For clarity of exposition, we consider
𝑀𝑝 = 𝑁𝑝 = 1, i.e., one pair of primary transmitter and
receiver.

Our strategy is to design the interference quota for Group 𝑑
to be proportional to 𝜆𝑑, such that all transmitters have equal
eligible probability. More precisely, the interference quota for
Group 𝑑 is

𝛼𝑑 =
𝜆𝑑Γ

𝑘𝑠
∑𝐷

𝑗=1 𝛽𝑗𝜆𝑗
, for 1 ≤ 𝑑 ≤ 𝐷. (17)

The corresponding eligible transmitter set for Group 𝑑 is

𝒜𝑑 =

{
𝑖 : 𝑃 ∣𝑔𝑗𝑖∣2 < 𝛼𝑑, ∀ 1 ≤ 𝑗 ≤ 𝑁𝑝, 𝑖 ∈ Group 𝑑

}
.

Therefore, the eligible probability of any transmitter is

𝑝′ ≈ Γ

𝑘𝑠𝑃
∑𝐷

𝑑=1 𝛽𝑗𝜆𝑗
. (18)

Then, we separately select (up to) 𝛽𝑑 𝑘𝑠 eligible transmitters
from among each group. One can verify that the above
modifications ensure both the fairness requirement and the
primary interference restriction. We have the following lemma:

Lemma 3: For the network described above, the average
secondary throughput 𝑅𝑚𝑎𝑐 satisfies

𝑅𝑚𝑎𝑐 ≥ log
𝑃𝑘𝑠

(
log 𝑛 𝑝′

𝑘𝑠
+ 1

)
1 + 𝑃𝑝

+ log

𝐷∑
𝑑=1

𝜌𝑑𝛽𝑑 +𝑂(
1

log 𝑛
),

𝑅𝑚𝑎𝑐 ≤ log
𝑃𝑘𝑠

(
log 𝑛 𝑝′

𝑘𝑠
+ 1

)
1 + 𝑃𝑝

+ log
𝐷∑
𝑑=1

𝜌𝑑𝛽𝑑

+ 𝐶0 +𝑂(
1

log 𝑛
),

for sufficiently large 𝑛 under the modified Hybrid Opportunis-
tic Scheduling.

Proof: For brevity we only provide an outline. First,
note that the user selection is decoupled among different
groups. Let 𝑀𝑑 be the number of eligible transmitters for
Group 𝑑, then 𝑀𝑑 is binomially distributed with parameter
(𝛽𝑑 𝑛, 𝑝

′) (similar to (27)). In this case, 𝐺𝑠𝑢𝑚 is a mixture of
sums of order statistics described by Lemma 1, i.e., 𝐺𝑠𝑢𝑚 =∑𝐷

𝑑=1 𝑆
𝛽𝑑𝑘𝑠
𝑀𝑑

(𝜌𝑑) in distribution given 𝑀𝑑 sufficiently large.
The rest of the proof is similar to Theorem 1.

With slight modification of Lemma 2, we choose the
number of active secondary transmitters as:

𝑘∗𝑠 =

√
Γ

𝑒𝑃
∑𝐷

𝑑=1 𝛽𝑑𝜆𝑑︸ ︷︷ ︸
𝑐′

(
𝑛
) 1

2 . (19)

The above equation indicates that as the average cross-channel
gain

∑
𝑑 𝛽𝑑𝜆𝑑 increases, fewer secondary transmitters should

be activated simultaneously. Notice that 𝑘∗𝑠 becomes identical
to that given by Lemma 2 (with 𝑁𝑝 = 1) when 𝜆𝑑 = 1 for
1 ≤ 𝑑 ≤ 𝐷. Based this choice of 𝑘𝑠 and Lemma 3, we obtain
the following results.

Theorem 4: For the network described above, the average
secondary throughput 𝑅𝑚𝑎𝑐 satisfies

𝑅𝑚𝑎𝑐 ≥ 1

2
log𝑛+ 𝐶2 +𝑂(

1

log 𝑛
), (20)

𝑅𝑚𝑎𝑐 ≤ 1

2
log𝑛+ 𝐶2 + 𝐶0 +𝑂(

1

log 𝑛
), (21)

for sufficiently large 𝑛 by activating 𝑘𝑠 = 𝑐′
√
𝑛 transmitters,

where 𝐶2 = log
∑

𝑑 𝛽𝑑 𝜌𝑑√∑
𝑑 𝛽𝑑 𝜆𝑑

+ log 2
1+𝑃𝑝

√
Γ𝑃
𝑒 .

Proof: The theorem follows by substituting 𝑘𝑠 = 𝑐′
√
𝑛

into Lemma 3.
Remark 7: From Theorem 4, the growth rate of 𝑅𝑚𝑎𝑐

is 1
2 log𝑛, which is optimal and thus is unaffected due to

the imposition of the fairness constraint. Besides the growth
rate, the impact of channel heterogeneity on the secondary
throughput can also be seen by inspecting 𝐶2: The lower
(upper) bound of the throughput increases with the average
secondary-channel gain,

∑
𝑑 𝛽𝑑 𝜌𝑑, but decreases with the av-

erage cross-channel gain,
∑

𝑑 𝛽𝑑 𝜆𝑑. Intuitively, as
∑

𝑑 𝛽𝑑 𝜆𝑑
increases, statistically, the secondary transmitters more easily
cause interference on the primary, thus fewer of them can
be active simultaneously, which in turn leads to a smaller
secondary throughput. Finally, note that Theorem 4 includes,
as a special case, the results of Theorem 2 when the primary
system simply consists of one transmitter-receiver pair.

V. NUMERICAL RESULTS

In this section, we illustrate our results with simulations. We
use 𝑃𝑝 = 𝑃 = 10. Unless otherwise specified, 𝑀𝑝 = 𝑁𝑝 = 1
and the allowable interference power on the primary receiver
is Γ = 5. All simulations are averaged over 2 × 104 channel
realizations.

Figure 2 shows the (asymptotically) optimal number of
active secondary transmitters characterized by Lemma 2. The

throughput achieved by activating 𝑘∗𝑠 = ⌈
√

Γ
𝑃𝑒𝑛⌉ transmitters

surpasses (or equals) that achieved by activating fixed 𝑘𝑠 trans-
mitters, for 𝑛 from 20 to around 400. Although Lemma 2 only
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Fig. 2. Optimal number of active secondary transmitters.
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Fig. 3. Throughput of Hybrid Opportunistic Scheduling and other schemes.

suggests 𝑘𝑜𝑝𝑡𝑠 cannot be far away from 𝑘∗𝑠 , simulations imply
that 𝑘∗𝑠 may be indeed optimal. Intuitively, as 𝑛 increases, the
number of secondary transmitters that have desirably small
cross-channel gains also increases on average, therefore, more
secondary transmitters should be active simultaneously.

Figure 3 illustrates Theorem 2 and compares Hybrid Oppor-
tunistic Scheduling with several other schemes. The through-
put of the proposed method is bounded by the asymptotic
bounds in Theorem 2, even for small 𝑛. Hybrid Oppor-
tunistic Scheduling attains a throughput higher than that
attained in [9], where the transmitters are selected only based
on cross-channels without considering the secondary-channel
conditions. Also, the achieved throughput is higher than that
achieved in [14], [15] where the (single) secondary transmitter
with the highest SINR is activated. The throughput of the
proposed method scales as Θ(log𝑛), which is faster than
the Θ(log log𝑛) growth achieved in [14], [15]. Figure 4
shows the impact on the secondary throughput of the primary
network (𝑀𝑝 and 𝑁𝑝). As 𝑀𝑝 increases, due to experiencing
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by Theorem 2.
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Fig. 5. Throughput versus transmitter number, vanishing Γ.

more interference from the primary, the secondary throughput
decreases. As 𝑁𝑝 increases, due to more constraints imposed
by the primary, the secondary throughput again decreases.

The results of Corollary 1 are illustrated by Figure 5. The
allowable interference power Γ declines (to zero) as 𝑛−𝑞,
while the throughput still grows logarithmically with 𝑛. In
addition, one can see the tradeoff given by Corollary 1:
For larger 𝑞, the interference power decreases faster but the
secondary throughput increases more slowly, and vice versa.

Figure 6 and Figure 7 show the performance of Hybrid
Opportunistic Scheduling under non-i.i.d. links. Here, 𝑛=50
and 𝑘𝑠 = 4; 𝐷 = 2 and 𝛽1 = 𝛽2 = 0.5, i.e., two groups with
equal number of transmitters. Figure 6 shows the secondary
throughput for the case of 𝜌1 = 𝜆1 = 𝜆2 = 1 and 𝜌2 = 2
(non-i.i.d. secondary-channels), and for the case of 𝜌1=𝜌2=
𝜆1=1 and 𝜆2=2 (non-i.i.d. cross channels). With the fairness
constraint, the modified Hybrid Opportunistic Scheduling still
attains a throughput that is very close to that attained without
any fairness restriction. Figure 7 shows the ratio of average
portion of active time of Group 1 and Group 2. If this ratio
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Fig. 7. Fairness metric for Hybrid Opportunistic Scheduling.

equals 1, each transmitter has an equal portion of active time
and the system is temporally fair [19]. The larger the ratio,
the larger portion of active time of Group 2 relative to that of
Group 1. One can see that user fairness is ensured under the
modified scheduling.

VI. CONCLUSION

In this paper, we investigate user scheduling in cognitive
MAC networks and propose Hybrid Opportunistic Scheduling,
which is driven by two objectives: Maximizing the secondary
throughput and minimizing the primary interference. The
proposed scheme strictly controls the primary interference
by opportunistic interference avoidance, and enhances the
secondary throughput by activating transmitters with large
secondary-channel gain. We characterize the optimal number
of active secondary transmitters and a tradeoff between the
secondary throughput enhancement and the primary interfer-
ence reduction. Finally, we study user scheduling under a
fairness constraint when links have non-i.i.d. statistics.

APPENDIX A
PROOF OF LEMMA 1

Proof: Let 𝑍1, ⋅ ⋅ ⋅ , 𝑍𝑏 be i.i.d. exponentials with mean
𝜌. From [17], we know that 𝑆𝑎𝑏 (𝜌) has the same distribution
as

𝑏−𝑎∑
𝑖=1

𝑎

𝑏− 𝑖+ 1
𝑍𝑖 + 𝑍𝑏−𝑎+1 + ⋅ ⋅ ⋅+ 𝑍𝑏 . (22)

Therefore we can calculate its expectation:

𝔼[𝑆𝑎𝑏 (𝜌)]
Δ
= 𝜌𝜇𝑎𝑏 = 𝜌𝑎

( 𝑏∑
𝑖=1

1

𝑖
−

𝑎∑
𝑖=1

1

𝑖

)
+ 𝜌𝑎. (23)

It is known [21] that, for any positive integer 𝑘,

log 𝑘 + 𝛾 +
1

2(𝑘 + 1)
<

𝑘∑
𝑖=1

1

𝑖
< log 𝑘 + 𝛾 +

1

2𝑘
, (24)

where 𝛾 is the Euler constant. Hence, for sufficiently large 𝑏
and 𝑎 (𝑏 ≥ 𝑎), we obtain

𝜇𝑎𝑏 = 𝑎 log
𝑏

𝑎
+ 𝑎+𝑂(1). (25)

Now, we calculate the variance of 𝑆𝑎𝑏 (𝜌). From (22), we
have:

𝑉 𝑎𝑟[𝑆𝑎𝑏 (𝜌)] < (𝜌𝑎)2
𝑏∑

𝑖=𝑎+1

1

(𝑖− 1)𝑖
+ 𝜌2𝑎 < 2𝜌2𝑎. (26)

Applying the Chebyshev inequality, for any 0 < 𝜖 < 1, we
have

ℙ

(∣∣𝑆𝑎𝑏 (𝜌)− 𝜌𝜇𝑎𝑏
∣∣ > 𝜖𝜌𝜇𝑎𝑏

)
<

𝑉 𝑎𝑟[𝑆𝑎𝑏 (𝜌)](
𝜖𝜌𝜇𝑎𝑏

)2 < 𝑂

(
1

(log 𝑏)2

)
.

The above second inequality holds for any 𝑎 = 𝑂(𝑏𝛿) and
𝛿 < 1. The lemma follows by taking the complement of the
random event in inequality.

APPENDIX B
PROOF OF THEOREM 1

Proof: To begin with, note that 𝑀 (the size of 𝒜) is
binomially distributed with parameter

𝑝 =
(
1− 𝑒−

𝛼
𝑃

)𝑁𝑝
, (27)

since {∣𝑔𝑗𝑖∣2} are i.i.d. exponentials with unit mean. For any
0 < 𝜖1 < 1, we have

ℙ

(
∣𝑀 − 𝑛𝑝∣ > 𝜖1𝑛𝑝

)
<

(1− 𝑝)

𝜖21𝑝 𝑛
= 𝑂

( 1
𝑛

)
(28)

based on the Chebyshev inequality. For convenience, we
denote

𝑛1 = ⌊(1− 𝜖1)𝑛𝑝⌋, 𝑛2 = ⌈(1 + 𝜖1)𝑛𝑝⌉. (29)

Then, from (28), we have

ℙ(𝑀 ≥ 𝑛1) > 1−𝑂(
1

𝑛
), ℙ(𝑀 ≥ 𝑛2) < 𝑂(

1

𝑛
). (30)

Now, we establish a lower bound. Based on (4), 𝑅𝑚𝑎𝑐 de-
pends two independent random variables 𝐼𝑝 and 𝐺𝑠𝑢𝑚, where
𝐼𝑝 is distributed as Gamma(𝑀𝑝, 𝑃𝑝), and given 𝑀 = 𝑚,
𝐺𝑠𝑢𝑚 has the same distribution as 𝑆𝑘𝑠𝑚 (𝑃 ) for 𝑚 ≥ 𝑘𝑠 (see
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Lemma 1). Condition on 𝐼𝑝 = 𝑥 and expand the conditional
throughput 𝑅𝑚𝑎𝑐∣𝐼𝑝(𝑥):

𝑅𝑚𝑎𝑐∣𝐼𝑝(𝑥)=
𝑛∑

𝑚=1

𝔼

[
log

(
1 +

𝐺𝑠𝑢𝑚

1 + 𝑥

)∣∣∣∣𝑀 = 𝑚

]
ℙ
(
𝑀 = 𝑚

)
≥

𝑛∑
𝑚=𝑛1

𝔼

[
log

(
1 +

𝑆𝑘𝑠𝑚 (𝑃 )

1 + 𝑥

)]
ℙ
(
𝑀 = 𝑚

)
,

(31)

where the inequality holds since we discard non-negative
terms associated with 𝑚 < 𝑛1 in the summation and 𝑛1 > 𝑘𝑠
for sufficiently large 𝑛. For any 0 < 𝜖 < 1, we further
expand (31) by conditioning on the event 𝒞𝑚 = {𝑆𝑘𝑠𝑚 (𝑃 ) >
(1− 𝜖)𝑃𝜇𝑘𝑠𝑚 }:
𝑅𝑚𝑎𝑐∣𝐼𝑝(𝑥)

≥
𝑛∑

𝑚=𝑛1

𝔼

[
log

(
1 +

𝑆𝑘𝑠𝑚 (𝑃 )

1 + 𝑥

) ∣∣∣∣ 𝒞𝑚
]
ℙ
(
𝑀 = 𝑚

)
ℙ
(𝒞𝑚)

>

𝑛∑
𝑚=𝑛1

log

(
1 +

(1− 𝜖)𝑃𝜇𝑘𝑠𝑚
1 + 𝑥

)
ℙ
(
𝑀 = 𝑚

)
×
(
1−𝑂

( 1

(log 𝑛)2
))

(32)

> log

(
1 +

(1− 𝜖)𝑃𝜇𝑘𝑠𝑛1

1 + 𝑥

)
ℙ
(
𝑀 ≥ 𝑛1

)(
1−𝑂

( 1

(log 𝑛)2
))

(33)

> log

(
1 +

(1− 𝜖)𝑃𝜇𝑘𝑠𝑛1

1 + 𝑥

)(
1−𝑂(

1

𝑛
)
)(

1−𝑂
( 1

(log 𝑛)2
))

.

(34)

To obtain (32), we use the result from Lemma 1 by noting
𝑚 = Θ(𝑛) for 𝑚 ≥ 𝑛1:

ℙ
(𝒞𝑚) ≥ 1−𝑂

( 1

(log 𝑛)2
)
. (35)

We have (33), since 𝜇𝑘𝑠𝑛1
≤ 𝜇𝑘𝑠𝑚 , ∀ 𝑚 ≥ 𝑛1. Finally, (34)

uses (30).
From Lemma 1 and the fact that 𝑛1 = Θ(𝑛), we have

𝜇𝑘𝑠𝑛1
= 𝑂(log 𝑛). Since log(1 + 𝑧) = log 𝑧 + log(1 + 1

𝑧 ) for
𝑧 > 0, we expand the right hand side of (34):

𝑅𝑚𝑎𝑐∣𝐼𝑝(𝑥) > log
𝑃 (1− 𝜖)𝜇𝑘𝑠𝑛1

1 + 𝑥
+𝑂(

1

log 𝑛
). (36)

Take expectation with respect to 𝐼𝑝 and use the convexity of
ℎ(𝑧) = log

(
1 + 𝑐1

𝑐2+𝑧

)
:

𝔼
[
𝑅𝑚𝑎𝑐∣𝐼𝑝(𝑥)

]
> log

𝑃 (1− 𝜖)𝜇𝑘𝑠𝑛1

1 + 𝔼[𝐼𝑝]
+𝑂

( 1

log𝑛

)
= log

𝑃𝜇𝑘𝑠𝑛1

1 + 𝑃𝑝𝑀𝑝
+ log(1− 𝜖) +𝑂

( 1

log𝑛

)
.

(37)

Finally, we calculate 𝜇𝑘𝑠𝑛1
. Since 𝛼 = Γ

𝑘𝑠
, from (27), we

have 𝑝 ≈ (
Γ
𝑘𝑠𝑃

)𝑁𝑝 for large 𝑘𝑠. From Lemma 1, we have

𝜇𝑘𝑠𝑛1
= 𝑘𝑠

(
log

𝑛Γ𝑁𝑝

𝑃𝑁𝑝 𝑘
𝑁𝑝+1
𝑠

+ 1

)
+𝑂(1). (38)

Substituting (38) into (37), and with some calculation, we have
the desired lower bound in (10).

Now, we find an upper bound. Let 𝑇 = 1
1+𝐼𝑝

and 𝑅𝑚𝑎𝑐∣𝑇 (𝑡)
be the conditional throughput. Expand 𝑅𝑚𝑎𝑐∣𝑇 (𝑡) based on the
event {𝑀 ≤ 𝑛2} and its complement:

𝑅𝑚𝑎𝑐∣𝑇 (𝑡) = 𝔼

[
log(1 + 𝑡𝐺𝑠𝑢𝑚)

∣∣𝑀 ≤ 𝑛2

]
ℙ
(
𝑀 ≤ 𝑛2

)

+ 𝔼

[
log(1 + 𝑡𝐺𝑠𝑢𝑚)

∣∣𝑀 > 𝑛2

]
ℙ
(
𝑀 > 𝑛2

)

≤ log

(
1 + 𝑡𝔼

[
𝐺𝑠𝑢𝑚

∣∣𝑀 ≤ 𝑛2

])

+ log

(
1 + 𝑡𝔼

[
𝐺𝑠𝑢𝑚

∣∣𝑀 > 𝑛2

])
ℙ
(
𝑀 > 𝑛2

)
, (39)

where (39) uses the Jensen inequality. Since 𝔼[𝐺𝑠𝑢𝑚∣𝑀 = 𝑖]
is a non-decreasing function of 𝑖, we have

𝑅𝑚𝑎𝑐∣𝑇 (𝑡) ≤ log
(
1 + 𝑡𝔼[𝑆𝑘𝑠𝑛2

(𝑃 )]
)

+ log
(
1 + 𝑡𝔼[𝑆𝑘𝑠𝑛 (𝑃 )]

)
ℙ
(
𝑀 > 𝑛2

)
< log

(
1 + 𝑡𝑃𝜇𝑘𝑠𝑛2

)
+ log

(
1 + 𝑡𝑃𝜇𝑘𝑠𝑛

)
𝑂
( 1
𝑛

)
,

(40)

where (40) uses (30). Take expectation with respect to 𝑇 .

𝔼
[
𝑅𝑚𝑎𝑐∣𝑇 (𝑡)

] ≤ log
(
1 + 𝑃𝜇𝑘𝑠𝑛2

𝔼[𝑇 ]
)

+ log
(
1 + 𝑃𝜇𝑘𝑠𝑛 𝔼[𝑇 ]

)
𝑂
( 1
𝑛

)
(41)

< log

(
1 + 𝑃𝜇𝑘𝑠𝑛2

𝜇𝑇

)
+𝑂

( log log𝑛
𝑛

)
(42)

= log𝑃𝜇𝑘𝑠𝑛2
+ log𝜇𝑇

+ log
(
1 +𝑂(1/𝜇𝑘𝑠𝑛2

)
)
+𝑂

( log log𝑛
𝑛

)
,

(43)

where 𝜇𝑇 = 𝔼[𝑇 ]. The Jensen inequality is used in (41) and
the identity log(1+ 𝑧) = log 𝑧+ log(1+ 1

𝑧 ) for 𝑧 > 0 is used
in (43). Similar to (38), we have

𝜇𝑘𝑠𝑛2
= 𝑘𝑠

(
log

𝑛Γ𝑁𝑝

𝑃𝑁𝑝 𝑘
𝑁𝑝+1
𝑠

+ 1

)
+𝑂(1). (44)

Substituting (44) into (43), we obtain the desired upper bound
in (11) with 𝐶0 = log

(
𝜇𝑇 (1 +𝑀𝑝𝑃𝑝)

)
. Notice that 𝐶0 ≥ 0,

because

𝜇𝑇 (1 +𝑀𝑝𝑃𝑝) = 𝔼[1/(1 + 𝐼𝑝)]𝔼[1 + 𝐼𝑝] ≥ 1, (45)

where the equality holds if and only if 𝐼𝑝 is a constant.

APPENDIX C
PROOF OF LEMMA 2

Proof: The exact expression of 𝑅𝑚𝑎𝑐 as a function of
𝑘𝑠 is unknown in Theorem 1, thus a direct maximization
of 𝑅𝑚𝑎𝑐(𝑘𝑠) is impossible. The idea of this proof is to
(approximately) optimize bounds on 𝑅𝑚𝑎𝑐 and show that the
resulting answer is sufficient for our purposes. We begin with
the lower and upper bounds in Theorem 1, denoted as 𝐿(𝑘𝑠)
and 𝑈(𝑘𝑠), which can be written as (ignoring vanishing terms):

𝐿(𝑘𝑠) = log 𝑟(𝑘𝑠) + log
𝑃

1 +𝑀𝑝𝑃𝑝
, (46)

𝑈(𝑘𝑠) = log 𝑟(𝑘𝑠) + log
𝑃

1 +𝑀𝑝𝑃𝑝
+ 𝐶0, (47)
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where

𝑟(𝑘𝑠) = 𝑘𝑠

(
− (𝑁𝑝 +1) log 𝑘𝑠 + log𝑛

(
Γ/𝑃

)𝑁𝑝
+1

)
. (48)

Notice that 𝐿(𝑘𝑠) and 𝑈(𝑘𝑠) are identical function of 𝑘𝑠
except a constant gap 𝐶0. Intuitively, the value of 𝑘𝑠 that
maximizes 𝐿(𝑘𝑠) (or 𝑈(𝑘𝑠)), denoted by 𝑘∗𝑠 , should also
(almost) maximize 𝑅𝑚𝑎𝑐(𝑘𝑠). We justify this intuition in the
rest of the proof.

First, we find 𝑘∗𝑠 . Since log(⋅) is a monotonic-increasing
function, we maximize 𝑟(𝑘𝑠) instead. For the asymptotic
analysis, 𝑘𝑠 can be considered as a continuous variable. So,
solving 𝑟′(⋅) = 0, we obtain:

𝑘∗𝑠 =
( Γ

𝑃𝑒

) 𝑁𝑝
𝑁𝑝+1𝑛

1
𝑁𝑝+1 . (49)

Now, consider 𝑘𝑠 = 𝑘1𝑠 such that log 𝑟(𝑘1𝑠 ) + 𝐶0 <
log 𝑟(𝑘∗𝑠 ). Then, 𝑘1𝑠 is not the maximizer of 𝑅𝑚𝑎𝑐(𝑘𝑠), because
in this case 𝑈(𝑘1𝑠) < 𝐿(𝑘∗𝑠 ), which implies 𝑅𝑚𝑎𝑐(𝑘

1
𝑠) <

𝑅𝑚𝑎𝑐(𝑘
∗
𝑠 ). Therefore, 𝑘𝑜𝑝𝑡𝑠 , the true maximizer of 𝑅𝑚𝑎𝑐(𝑘𝑠),

must satisfy

log 𝑟(𝑘𝑜𝑝𝑡𝑠 ) + 𝐶0 ≥ log 𝑟(𝑘∗𝑠 ). (50)

Let 𝑘𝑜𝑝𝑡𝑠 = 𝑘∗𝑠 +Δ𝑘. From (50), with some algebra, we have:

∣Δ𝑘∣ ≤
√
1− 𝜉 𝑘∗𝑠 , (51)

where
𝜉 = exp(−𝐶0) =

(
𝜇𝑇 (1 + 𝑃𝑝𝑀𝑝)

)−1
. (52)

Numerically, one can see that 𝜉 ≈ 1 and thus Δ𝑘 ≈ 0. For
example, if 𝑃𝑝 = 10, 𝜉 ≈ 0.8 for 𝑀𝑝 = 4 and 𝜉 ≈ 0.9 for
𝑀𝑝 = 8.

APPENDIX D
PROOF OF THEOREM 3

Proof: Consider an arbitrary 𝒮 and {𝑃𝑖}𝑖∈𝒮 that comply
with the interference constraints imposed by the primary.
We first enlarge the secondary throughput by assuming zero
interference from the primary:

𝑅𝑚𝑎𝑐 ≤ log
(
1 +

∑
𝑖∈𝒮

𝑃𝑖∣ℎ𝑖∣2
)

(53)

≤ log
(
1 +𝐺𝑚𝑎𝑥𝑃𝑠𝑢𝑚

)
, (54)

where

𝑃𝑠𝑢𝑚 =
∑
𝑖∈𝒮

𝑃𝑖, 𝐺𝑚𝑎𝑥 = max
1≤𝑖≤𝑛

∣ℎ𝑖∣2. (55)

Now we find an upper bound for 𝑅𝑚𝑎𝑐 regardless of
transmission strategies. First, we bound 𝑃𝑠𝑢𝑚 and formulate
an optimization problem:

max
𝒮, {𝑃𝑖}

𝑃𝑠𝑢𝑚

𝑠.𝑡. :
∑
𝑖∈𝒮

𝑃𝑖∣𝑔𝑗𝑖∣2 ≤ Γ for 1 ≤ 𝑗 ≤ 𝑁𝑝, and 𝑃𝑖 ≤ 𝑃. (56)

which is a standard linear programming whose solution is
denoted by 𝑃 ∗

𝑠𝑢𝑚. Here, 𝑃 ∗
𝑠𝑢𝑚 is a random variable depending

on the channel realizations. A direct solution requires joint
optimization over 𝒮 and {𝑃𝑖}, but a simpler analysis exists
for upper bounds. We relax the set of interference constraints

in (56) to a single sum constraint, which never decreases
𝑃 ∗
𝑠𝑢𝑚: ∑

𝑖∈𝒮
𝑃𝑖𝐼𝑠𝑢𝑚,𝑖 ≤ 𝑁𝑝Γ, (57)

where

𝐼𝑠𝑢𝑚,𝑖 =

𝑁𝑝∑
𝑗=1

∣𝑔𝑗𝑖∣2 (58)

is the total cross-channel gains from the secondary transmitter
𝑖 to all the primary receivers. Thus, {𝐼𝑠𝑢𝑚,𝑖}𝑛𝑖=1 are i.i.d.
Gamma(𝑁𝑝, 1). We order 𝐼𝑠𝑢𝑚,𝑖 among all the secondary
transmitters:

𝐼𝑠𝑢𝑚,1 ≤ ⋅ ⋅ ⋅ ≤ 𝐼𝑠𝑢𝑚,𝑛. (59)

Then, we construct the following problem by further relaxing
the constraint of (57):

max
𝒮, {𝑃𝑖}

𝑃𝑠𝑢𝑚

𝑠.𝑡. :

∣𝒮∣∑
𝑖=1

𝑃𝑖𝐼𝑠𝑢𝑚,𝑖 ≤ 𝑁𝑝Γ and 𝑃𝑖 ≤ 𝑃. (60)

The solution for the above problem, denoted by 𝑃 ∗
𝑠𝑢𝑚,1, is

always greater than or equal to 𝑃 ∗
𝑠𝑢𝑚. The corresponding {𝑃𝑖}

achieves 𝑃 ∗
𝑠𝑢𝑚,1 are in form of 𝑃𝑖 ≥ 𝑃𝑗 for 𝑖 ≤ 𝑗. Thus, we

have
𝑃 ∗
𝑠𝑢𝑚,1 ≤ 𝑃𝑁𝑠𝑚𝑎𝑥 (61)

where 𝑁𝑠𝑚𝑎𝑥 is the maximum possible value of ∣𝒮∣ that
satisfies

𝑃

∣𝒮∣−1∑
𝑖=1

𝐼𝑠𝑢𝑚,𝑖 ≤ 𝑁𝑝Γ . (62)

For brevity, we outline the rest of the proof. It can be shown
that 𝑁𝑠𝑚𝑎𝑥 converges to Θ(𝑛

1
𝑁𝑝+1 ) in probability. Because

𝑃 ∗
𝑠𝑢𝑚 ≤ 𝑃𝑁𝑠 and 𝐺𝑚𝑎𝑥 (the maxima of 𝑛 i.i.d. exponentials)

scales as log𝑛 [17], [7], we have (see (54)):

𝑅𝑜𝑝𝑡
𝑚𝑎𝑐 ≤ log

(
Θ(𝑛

1
𝑁𝑝+1 ) log 𝑛

)
(63)

=
1

𝑁𝑝 + 1
log𝑛+𝑂(log log𝑛) . (64)
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