
A Service Sharing Approach to Integrating Program Comprehension
Tools

Dean Jin James R. Cordy

School of Computing
Queen’s University, Kingston, Canada

{jin,cordy}@cs.queensu.ca

Keywords: program comprehension, software under-
standing, tool integration, maintenance, concept sup-
port, service sharing, domain ontology

1. Introduction

Software maintenance is the most time consuming
and costly phase of the software development lifecy-
cle. For every dollar spent on creating a new soft-
ware system, nine dollars is spent on maintaining it
throughout its useful life. By the late 1980s mainte-
nance spending accounted for an estimated US$30 bil-
lion worldwide. Any activity that even minimally re-
duces maintenance efforts would yield significant cost
savings within the software industry [3].

Tool support for maintainers has focused largely on
providing assistance in activities related to program
comprehension. The goal of these tools is to provide a
rapid means for maintainers to understand large scale
software systems. Most program comprehension tools
have a specific strength or specialized application area
[12] but are weak in other areas. No single tool exists
that provides all the functionality and flexibility that
most software maintainers need. For this reason, re-
search attention has been focused on getting program
comprehension tools to integrate with each other.

In this paper we present a novel approach to facili-
tating integration among tools used by maintainers to
assist in program comprehension. We start by showing
that program comprehension tools have many similar
characteristics. Taking full advantage of this fact, we
outline how specially designed adapters and a domain
ontology can be used together to allow these tools to
integrate transparently with each other.

2. Program Comprehension Tools

Program comprehension tools provide a means for
maintainers to understand a software system from a
functional and behavioural perspective [15]. Func-
tional comprehension provides insight into what the
system does. Behavioural comprehension highlights
how a system works. These tools support a variety of
activities carried out by maintainers including:

• Disintegration. Breaking larger systems into sub-
system components.

• Pattern Matching. Identification of instances
within the source code where an identical coding
pattern occurs.

• Program Slicing. Isolation of all code that relates
to or in some way impacts the execution of a spe-
cific point in the source code.

• Dependency Analysis. Evaluation of the reliance
of system components on other internal or exter-
nal components.

• Metrics Evaluation. Measurement of the code ac-
cording to accepted standards for various charac-
teristics such as size, complexity, quality, main-
tainability, etc.

• Exploration. Support for navigation throughout
the source code.

• System Visualization. Generation of views for ex-
amining the system visually.

In many instances, a tool provides assistance but still
requires significant manual intervention on the part of
the user.

A tool service is the functionality provided by a tool
that, when given a set of one or more inputs, gener-
ates a corresponding output that is relevant for main-
tainers. In the case of program comprehension tools
the inputs are typically source code (or facts about the
source code) and the output is typically a report or vi-
sualization.

3. Hypothesis

Previous approaches to program comprehension
tool integration have beendata centric, concentrating
on the exchange of data through rigid standardized for-
mats or specialized hard-coded tool interfaces. This
kind of integration isprescriptive. In essence, it forces
tool developers to conform to an idiomatic standard or
provide a particular functionality to other tools in order
to participate in the integration process.

The hypothesis of our work is that integration
among a set of program comprehension tools can be
accomplished more effectively using external, tool-
independent adapters that make use of a common vo-
cabulary of concepts shared among the tools. This kind
of integration focuses on sharing the services offered
by each tool rather than simply exchanging data among
them.

The novel integration methodology we outline in
this paper is distinctlynon-prescriptive. Instead of
forcing tool conformance, we take advantage of com-
monalities that exist among tools. We do this by focus-
ing on the operational and representational concepts
that each tool exhibits. We demonstrate that working
from this conceptual perspective allows us to fully ex-
ploit the similarities that exist between tools to facili-
tate integration.

We start by observing how program comprehension
tools are similar in terms of their architectural makeup
and operational characteristics.

4. Tool Architecture

Although many program comprehension tools ex-
ist, most feature the same underlying architecture and
functionality [3]. In general, program comprehension
tools consist of the following three interrelated com-
ponents [1, 7, 9, 16]:

1. Fact Extractor. On the front end, program com-
prehension tools typically input source code and
extract facts from it.

2. Repository. The quantity of facts extracted from
source code can be substantial. For this reason,
the facts are typically organized and physically
stored in a structured format such as a database
rather than preserved in memory.

3. Analyzer/Visualizer. The facts in the repository
are processed and analyzed with the results pre-
sented visually or through reports.

5. Operational Characteristics

Elmasri and Navathe [6] define a database as a col-
lection of related, recordable facts with implicit mean-
ing. This collection, along with software that manages
and manipulates the collection make up adatabase
system. Considering the architecture of program com-
prehension tools outlined in Section 4, it is readily
apparent that they are in fact database systems spe-
cially tailored to store, manipulate and analyze soft-
ware facts.

From this database systems perspective we can ab-
stract the operational characteristics of program com-
prehension tools into three distinct layers:

1. Transactions. The queries and updates that
extract, process and analyze the software facts
stored in the database.

2. Schema. A definition for the entity types, rela-
tions and constraints that make up the informa-
tion model used by the tool to represent software.
Similar to database systems, most program com-
prehension tools useEntity-Relationship (ER) [2]
models to define their schemata.

3. Instance. Software facts stored in the database
in a form defined by the schema on which the
tool transactions operate. For the purpose of our
discussion, we refer to a program comprehension
tool database populated with software facts as a
factbase. The instance for a given program com-
prehension tool is simply the factbase that the tool
populates, manipulates and maintains.

An example of a small factbase is shown in Fig-
ure 1. This factbase stores facts about a fileprint.c
in TA [8] format. With TA, the factbase schema
is stored along with the instance data itself. The
SCHEME TUPLE and SCHEME ATTRIBUTE sec-
tions define the allowable representation and the con-
straints put on it. The instance data is shown in the
FACT TUPLE andFACT ATTRIBUTE sections.

Although readable, this factbase is much easier
to understand when presented visually, as an ex-
ample shows in Figure 2. Here it is easily ob-
served that the fileprint.c contains a procedure
calledset_printer that makes use of the variable
printer_ID on line 54.

6. Service Sharing

The similarities among program comprehension
tools in terms of architecture and operational charac-
teristics provide a significant advantage from an in-
tegration perspective. Typical integration efforts in-
volve the resolution of broadly different operational

SCHEME TUPLE :
Contains File Procedure
UsesVar Procedure Variable
SCHEME ATTRIBUTE :
UsesVar { linenum }
FACT TUPLE :
$INSTANCE print.c File
$INSTANCE set_printer Procedure
$INSTANCE printer_ID Variable
Contains print.c set_printer
UsesVar set_printer printer_ID
FACT ATTRIBUTE :
(UsesVar set_printer printer_ID)

{ linenum = 54}

Figure 1. A Small Sample Factbase

Figure 2. A Visualization of the Small Factbase

paradigms. Within the restricted domain of program
comprehension tools, the very difficult problem of rec-
onciling operational differences is largely nonexistent.
This leaves service sharing as the remaining integra-
tion challenge to be dealt with.

Three issues relate directly to sharing services
among program comprehension tools:concept sup-
port, transaction application andrepresentational di-
versity. We now discuss each of these issues in more
detail.

6.1. Concept Support

The notion ofconcept as it relates to factbases is
an important part of our discussion on service shar-
ing. Maintainers use program comprehension tools to
extract knowledge about software from its representa-
tion stored in a factbase. The knowledge that a given
factbase can provide depends on the concepts that the
representation supports. We call thisconcept support.

In another paper [10] we provide a detailed discus-
sion of concept support among program comprehen-
sion tools. We classify concept support in a given fact-
base as follows:

• Native. The factbase explicitly supports the rep-
resentation of the concept. Other than possible
differences in the names used, a complete repre-
sentation for the concept exists in the factbase.

• Derived. The factbase supports the representa-
tion of the concept, but it must be derived or in-
ferred from the facts represented. A query can be
constructed that extracts an equivalent represen-
tation from the factbase.

• Undefined. The factbase is fundamentally inca-
pable of representing the concept. This means
that no information content for the concept is
available in the factbase. Provided the absence
of certain facts related to the concept can be tol-
erated, a partial representation may be available.

A program comprehension tool factbase can sup-
port any number of concepts. Nevertheless, it is im-
portant to keep in mind that not all concepts are sup-
ported in all factbases. For integration based on ser-
vice sharing to work, all factbases participating in the
integration must include some kind of support for the
concepts that a particular service operates on.

6.2. Transaction Application

A program comprehension tool provides a service
to maintainers by executing one or more transactions
on software facts stored in their factbase. The actual
implementation of each of these transactions depends
completely on the factbase structure. Since the struc-
ture of the factbase is itself dictated by the schema,
the implementation of each transaction completely de-
pends on the schema as well.

In order to share tool services, we must find a way
of applying transactions (whose implementations are
specific to a particular tool) to factbases from other
tools. Two methods can be considered:

1. Transaction Translation. This is the ‘bring the
transaction to the data’ method. Each transac-
tion implementation is translated into a new im-
plementation that works with the factbase for an-
other tool.

2. Fact Provision. This is the ‘bring the data to the
transaction’ method. The required facts are ex-
tracted from another factbase, appropriately for-
matted and provided as input to an existing trans-
action implementation.

Deciding which approach to use for transaction ap-
plication is a matter of evaluating the tradeoffs be-
tween transaction implementation complexity and the
work involved in extracting, formatting and working
with existing transaction implementations.

6.3. Representational Diversity

A real challenge in sharing tool services relates to
reconciling the diversities that exist in the representa-
tion of software knowledge that each tool maintains.
These differences relate to issues ofsyntax andseman-
tics.

Syntax

Differences in the physical representation of soft-
ware facts account for the syntactic divergencies that
exist between tools. In relation to integration, we
are concerned with transforming software facts repre-
sented in one form to a corresponding form acceptable
by another tool. This transformation must be “logi-
cally equivalent” [13]. Nothing is added to or taken
away from the facts. Only the physical characteristics

of the facts (i.e. theform of the facts) can be changed.
For the most part, syntactic differences are easily rec-
onciled through representational mapping and transla-
tion operations.

Semantics

The most difficult aspect of integration that must be
addressed is how to deal withsemantics or differences
in meaning among the software facts maintained by
each of the program comprehension tools.

No single information model captures all the views
of software supported by all program comprehension
tools currently available [5]. This is because a myr-
iad of semantic differences exist between models for
programming languages [4]. For example, in object-
oriented languages such as Java all entities are orga-
nized within a hierarchy of classes. Instantiation out-
side the class hierarchy is not possible. In contrast,
modular languages such as COBOL allow the creation
of global external variables and records; entities which
are nonexistent in object-oriented programming lan-
guages.

In addition, many semantic differences stem from
the use of program comprehension tools in various ap-
plication domains. For example, software that sup-
ports financial systems, user interface systems and sci-
entific computing systems all have unique characteris-
tics whose meaning is represented differently, depend-
ing on the program comprehension tool being used.

Despite these differences, concepts about software,
such as ‘containment’ or ‘reference’, transcend any
programming language or application domain con-
straints. Tools that manipulate these concepts can be
integrated independently of these constraints. Our ap-
proach to integration takes advantage of correspon-
dences that exist between the concepts program com-
prehension tools manipulate.

7. Design Decisions

The goal of service sharing is to facilitate integra-
tion among program comprehension tools in a trans-
parent manner that capitalizes on the similarities be-
tween them. To accomplish this, we make use of a
domain ontology to organize the various services, con-
cepts and syntactic characteristics that each tool offers
to the integration.

To keep our solution as simple as possible we keep
the integration components separate from the tool im-
plementation and instead adopt a ‘plug-in’ approach
to participation. Our intention is to allow develop-
ers complete autonomy in their tool creation efforts.
We believe the best way to promote integration is to
make it as easy as possible to plug into an existing in-
tegration environment rather than try to build one from
scratch.

One way to maximize the effectiveness of the inte-
gration and minimize the effort involved in construct-

ing the domain ontology is to apply our methodology
only to program comprehension tools. This allows us
to confidently exploit the the similarities among pro-
gram comprehension tools in terms of architecture and
operational characteristics that we discussed in Sec-
tions 4 and 5. It also allows us to make a fundamental
assumption: Although there may be vast differences
in the way each factbase is structured, there is likely
a significant amount of equivalence among the con-
cepts supported by tools participating in the integra-
tion. There is likely a limit to the variation in concept
support that tools in the same application domain ex-
hibit. This means that once the domain ontology is
initially built, it should be easier to add participants to
the integration at a later date.

The design of our integration methodology was
driven by the need to address each of the issues re-
lated to service sharing. For instance, we originally
chose to make use of a domain ontology to keep track
of concept support for each tool participating in the in-
tegration. It soon became apparent that the ontology
could be used to manage all the knowledge about ser-
vices, concepts and syntactic characteristics that are
required to facilitate integration. This ontology pro-
vides a common vocabulary for tool adapters that op-
erate very much like software agents in the way they
to carry out integration tasks.

An assessment of the complexities involved in
translating transactions for the tools we wanted to in-
tegrate led to our decision to use fact provision as op-
posed to transaction translation.

Our solution also addresses the issue of syntax
in relation to representational diversity. Integration
adapters use the knowledge of syntax maintained in
the domain ontology to apply syntactic converters in
situations where there is a structural difference in facts
represented by tools in the integration.

Our integration methodology cannot directly ad-
dress the issue of semantics as it relates to represen-
tational diversity. This requires the skill and knowl-
edge of a human being. Nevertheless, our use of a do-
main ontology and the separation of integration com-
ponents from tool implementation details emphasizes
efficiency and simplicity. This should make it easier to
construct the domain ontology and maintain the inte-
gration environment.

8. An Ontological Approach

Figure 3 provides an architectural view of our
shared service integration methodology. Here we see
two participant toolsT1 andT2 involved in an integra-
tion. Each tool has a set of transactions (Q1 andQ2), a
schema (S1 andS2) and a correspondingly structured
factbase instance (I1 andI2). Our implementation in-
volves the creation of two types of components:

1. Domain Ontology (O). All the knowledge re-
quired to support service sharing among each of

Figure 3. An architecture for sharing services among two program comprehension tools

the tools participating in the integration is stored
here. It is essentially a tabularized, cross refer-
enced compilation of shared services, concepts
and syntactic characteristics supported by each
tool. Only one domain ontology is required for
the implementation.

2. Conceptual Service Adapters (A1, A2). These
operate as an integration facilitators for tools par-
ticipating in the integration. One adapter is af-
filiated with each integration participant. The
adapters make extensive use of the domain on-
tology to get the information they need to fa-
cilitate interoperability among integration partic-
ipants. Each adapter performs the following four
main functions:

(a) Shared Service and Concept Support Iden-
tification. Making use of the knowledge
of services stored in the domain ontology,
each adapter identifies requests for shared
services and determines the concept support
each service requires.

(b) Information Extraction. Using knowledge
of concepts stored in the ontology, each
adapter extracts facts related to the concepts
required for the shared service from the fact-
base.

(c) Syntax Conversion. Making use of the syn-
tactic knowledge stored in the domain on-
tology, each adapter looks after structuring
facts so that they conform to the schema for
the tool where the service being shared is
implemented. They also look after convert-
ing the results returned back from the shared
service.

(d) Shared Service Execution. Each adapter
manages requests from other conceptual

service adapters for the execution of shared
services on the tool they are associated with.

The domain ontology is instrumental in providing
the conceptual service adapters with the knowledge
they need to facilitate interoperability among tools par-
ticipating in the integration. For this reason it is impor-
tant that the greatest care be taken to ensure that the on-
tology constructed is as comprehensive and complete
as possible. In another paper [10] we describe the con-
struction of the domain ontology in greater detail. The
long term benefits of using the ontology far outweighs
the short term pain involved in creating it.

A key attribute of each conceptual service adapter
is transparency. In essence, each adapter tricks their
associated tool into thinking it is performing a service
on its own factbase. In reality, the facts provided are
from a factbase from one of the other participants in
the integration. Neither tool is aware that the adapters
are acting as liaisons between them. Successfully im-
plemented, the conceptual service adapters provide
shared services among all participants in the integra-
tion in a seamless, completely transparent manner.

9. How It Works

Consider two program comprehension toolsT1 and
T2 as shown in Figure 3.T2 offers a shared service
V which we would like to apply to the factbase ofT1.
The domain ontologyO has been constructed based
on the services, concepts and syntactic characteris-
tics supported byT1 andT2. The conceptual service
adaptersA1 andA2 are now ready to facilitate the in-
teroperability we need to achieve our goal.

The request for serviceV invoked fromT1 is re-
ceived byA1. The adapter uses the domain ontology
to identifyV as a shared service offered byT2. It also
learns thatV requires a factbase that supports three
concepts known asc3, c21 andc44 in the ontology.A1

accessesO again and verifies thatT1 supports these
required concepts. It then extracts the facts fromI1

that correspond to conceptsc3, c21 andc44 and syn-
tactically converts them into a form compliant withS2

using the syntax information provided byO.
A1 then sends a request toA2 asking it to execute

shared serviceV on theS2 compliant facts.A2 returns
the results of the execution of shared serviceV back
to A1. The results are syntactically converted from the
S2 compliant form back to theS1 compliant form and
returned toT1.

The integration facilitated by the conceptual service
adapters is completely transparent. We have applied
shared serviceV to facts from theI1 factbase just as
though they were facts fromI2.

10. Implementation Progress

Work on this project is a continuing effort leading
toward the implementation of an integration of four
program comprehension tools. We are interested in
demonstrating small-scale integration to help with the
initial construction of a domain ontology that we hope
to make available in a later publication.

The experiences gained from a prototype integra-
tion between the toolsASDT [11] and Rigi [14] has
contributed significantly to our understanding of the
requirements for each adapter. We expect the cur-
rent ‘separate adapter’ architecture to move towards
a ‘common layer adapter’ architecture as we benefit
from reuse opportunities and other implementation ef-
ficiencies.

A tentative ontology has been designed and the de-
velopment of adapters to make use of the ontology is
an ongoing effort. In the coming months we hope to
have an integration completed that fully demonstrates
the methodology outlined in this paper.

11. Conclusion

Diversity among program comprehension tools is
good thing because it leads to the development of new
and innovative solutions to problems that are directly
relevant to software maintainers. The main barrier
to more widespread application of tools that support
maintenance tasks is the lack of integration that exists
between them. In this paper we have presented a new
integration methodology that that focuses on concep-
tual commonalities that exist among program compre-
hension tools.

Acknowledgements

This work was supported by the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC) as part of the Consortium for Software En-
gineering Research (CSER).

References

[1] I. T. Bowman, M. W. Godfrey, and R. C. Holt. “Con-
necting Architecture Reconstruction Frameworks”. In
Proceedings of the 1st International Symposium on
Constructing Software Engineering Tools (CoSET’99),
pages 43–54, Los Angeles, CA, May 1999.

[2] P. Chen. “The Entity Relationship Model – Toward
a Unified View of Data”. ACM Transactions on
Database Systems, 1(1):9–36, 1976.

[3] E. J. Chikofsky and J. H. Cross II. “Reverse Engi-
neering and Design Recovery: A Taxonomy”.IEEE
Software, 7(1):13–17, January/February 1990.

[4] S. Demeyer, S. Ducasse, and S. Tichelaar. “Why
FAMIX and not UML?”. In Proceedings of UML’99,
LNCS 1723. Springer-Verlag, 1999.

[5] J. Ebert, B. Kullbach, and A. Winter. “GraX: Graph
Exchange Format”. InProceedings of the Workshop
on Standard Exchange Formats (WoSEF) at ICSE’00,
Limerick, Ireland, 2000.

[6] R. Elmasri and S. B. Navathe. Fundamentals of
Database Systems. 3rd. Ed., Addison-Wesley, 2000.

[7] M. W. Godfrey. “Practical Data Exchange for Reverse
Engineering Frameworks: Some Requirements, Some
Experience, Some Headaches”.Software Engineering
Notes, 26(1):50–52, January 2001.

[8] R. Holt. TA: The Tuple Attribute Language.
URL: http://plg.uwaterloo.ca/˜holt/
papers/ta-intro.htm, Updated July 2002.

[9] R. C. Holt, A. Winter, and A. Scḧurr. “GXL: To-
ward a Standard Exchange Format”. InProceedings of
the 7th Working Conference on Reverse Engineering
(WCRE’00) Panel on Reengineering Exchange For-
mats. IEEE Computer Society Press, November 2000.

[10] D. Jin, J. R. Cordy, and T. R. Dean. “Transparent Re-
verse Engineering Tool Integration Using a Concep-
tual Transaction Adapter”. InProceedings of the 7th
European Conference on Software Maintenance and
Reengineering (CSMR 2003), pages 399–408, Ben-
evento, Italy, March 2003.

[11] D. A. Lamb and K. A. Schneider. “Formalization of
Information Hiding Design Methods”. InProceedings
of CASCON’92, Toronto, Canada, November 1992.

[12] T. C. Lethbridge. Requirements and Proposal
for a Software Information Exchange For-
mat (SIEF) Standard, November 1998. URL:
http://www.site.uottawa.ca/˜tcl/
papers/sief/standardProposalv1.html.

[13] J. F. Sowa. Knowledge Representation: Logi-
cal, Philosophical, and Computational Foundations.
Brooks/Cole, Pacific Grove, California, 2000. p. 19.

[14] M.-A. D. Storey, K. Wong, and H. A. M̈uller. “Rigi: a
visualization environment for reverse engineering”. In
Proceedings of the 19th International Conference on
Software Engineering (ICSE’97), Boston, MA 1997.

[15] S. R. Tilley, S. Paul, and D. B. Smith. “Towards a
Framework for Program Understanding”. InProceed-
ings of the 4th International Workshop on Program
Comprehension (IWPC’96), pages 19–28, Berlin, Ger-
many, March 1996.

[16] S. Woods, L. O’Brien, T. Lin, K. Gallagher, and
A. Quilici. “An Architecture For Interoperable Pro-
gram Understanding Tools”. InProceedings of the 6th
International Workshop on Program Comprehension
(IWPC’98), pages 54–63, 1998.

