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1Global Analysis ofRecurrent Neural NetworksAndreas V.M. Herz1ABSTRACT The article reviews recurrent neural networks whose retrievaldynamics have been analyzed on a global level using Lyapunov functions.Discrete-time and continuous-time descriptions are discussed. Special at-tention is given to distributed network dynamics, models with signal delays,and systems with integrate-and-�re neurons. The examples demonstratethat Lyapunov's approach provides powerful tools to study the retrieval of�xed-point memories, the recall of temporal associations, and the synchro-nization of action potentials in networks with spiking neurons.1.1 Global Analysis | Why?Information processing may be de�ned as the systematic manipulation ofexternal data through the internal dynamics of some biological system orarti�cial device. In general, such a manipulation requires a highly nontrivialmapping between input data and output states. Important parts of thistask can be accomplished with recurrent neural networks characterized bymassive nonlinear feedback: triggered by an appropriate external stimulus,such systems relax towards attractors that encode some a priori knowledgeor previously stored memories.Within this approach to associative information processing, understand-ing the computational capabilities of a neural network is equivalent toknowing its complete attractor structure, that is, knowing what kind of in-put drives the network to which of its possibly time-dependent attractors.Understanding the computational properties of a recurrent neural networkthus requires at least three levels of analysis. (i) What can be said aboutthe existence and stability of �xed-point solutions? (ii) Are there staticattractors only or are there also periodic limit cycles and aperiodic attrac-tors, as expected for generic nonlinear systems? (iii) What is the structureof the basins of attraction?Questions about the precise time evolution between the initial networkstate and the �nal output de�ne a forth level of analysis. Though less im-1Department of Zoology, University of Oxford, Oxford, OX1 3PS, England



Andreas V.M. Herz iiportant within the framework of attractor neural networks, these questionsare highly relevant for systems that extract information `en route' withoutwaiting for the arrival at some attractor [1]. At a �fth level of analysis,one might �nally be interested in questions concerning the structural sta-bility of a given network, that is, its robustness under small changes of theevolution equations.With regard to the computational capabilities of a neural network, ques-tions about the type of attractor and the structure of basins of attractionare of paramount importance. These questions deal with global propertiesof the network dynamics. Accordingly, they cannot be answered using localtechniques only: a linear stability analysis of �xed-point solutions, the �rstlevel of analysis, may reveal helpful knowledge about the network behaviorvery close to equilibria, but it can never be used to rule out the existenceof additional time-dependent attractors that may dominate large parts ofthe network's state space. Due to computational constraints, numericalsimulations can o�er limited additional information only.Highly simpli�ed network models provide a partial solution in that theyoften permit the application of global mathematical tools. However, suchformal networks are characterized by bold approximations of biologicalstructures. In the manner of good caricatures, they may nevertheless cap-ture features that are also essential for more detailed descriptions.One of the global mathematical tools is Lyapunov's \direct" or \secondmethod" [2]. In the present context, it may be described as follows. Letthe vector x = (x1; : : : ; xN ) denote the state variables of a neural network.These variables change in time according to some evolution equation, forexample a set of coupled di�erential equations ddtxi = fi(x) if time is mod-eled as a continuous variable t. A solution will be denoted by x(t). If thereexists an auxiliary scalar state function L(x) that is bounded below andnonincreasing along all trajectories, then the network has to approach a so-lution for which L(t) � L(x(t)) does not vary in time.2 The global dynamicscan then be visualized as a down-hill march on an \energy landscape" gen-erated by L. In this picture, every solution approaches the bottom of thevalley in which it was initialized.The asymptotic expression for L(t) and the equation ddtL(t) = 0 con-tain valuable information about the very nature of the attractors | the�rst and second level of analysis. Notice in particular that a solution thatcorresponds to a local minimum of the Lyapunov function has to be asymp-2Special care has to be taken with respect to unbounded solutions and con-tinuous families of solutions with equal L. Let me remark at this point that inthe present article, formal rigor will often be sacri�ced for transparency of pre-sentation. A mathematically rigorous introduction to Lyapunov functions can befound in the monograph of Rouche, Habets and Laloy [3]. It contains | apartfrom a large number of interesting theorems and proofs | also some fascinatingexamples that illuminate possible pitfalls due to imprecise de�nitions.



Andreas V.M. Herz iiitotically stable, that is, it attracts every solution su�ciently close to it.As an example, consider a gradient systemdxidt = �@L(x)@xi : (1.1)Using the chain rule, the time derivative of L is given byddtL(t) = NXi=1 @L@xi dxidt = � NXi=1�dxidt �2 : (1.2)The last expression is negative unless x(t) is a �xed-point solution. It followsthat if L(x) is bounded below, the system has to relax to equilibria.The most important feature of Lyapunov's direct method cannot beoveremphasized: the method does not require any knowledge about theprecise time evolution of the network; the mere existence of a boundedfunction that is nonincreasing along every solution su�ces to character-ize the system's long-time behavior. As a consequence, one can analyzethe long-time dynamics of a feedback network without actually solving itsequations of motion. Furthermore, most Lyapunov functions studied in thisarticle play a role similar to that of the Hamiltonian of a conservative sys-tem: for certain stochastic extensions of the deterministic time evolution,the network dynamics approach a Gibbsian equilibrium distribution gener-ated by the Lyapunov function of the noiseless dynamics. This has allowedthe application of powerful techniques from statistical mechanics and hasled to quantitative results about the performance of recurrent neural net-works far beyond the limits of a local stability analysis. The existence of aLyapunov function is thus of great conceptual as well as technical impor-tance.Lyapunov's method su�ers, however, from one serious 
aw: no systematictechnique is known to decide whether a dynamical system admits a Lya-punov function or not. Finding Lyapunov functions requires experience,intuition, and luck. Fortunately, a wealth of knowledge on both practicaland theoretical issues has been accumulated over the years.The present article is intended as an overview of neural network archi-tectures and dynamics where Lyapunov's method has been successfullyemployed to study the global network behavior. A general framework formodeling the dynamics of biological neural networks is developed in Section1.2. This framework allows for a classi�cation of various dynamical schemesfound in the literature and facilitates the formal analysis presented in latersections.Recurrent networks that relax to �xed-point attractors only have beenused as auto-associative memories for static patterns. Section 1.3 reviewsconvergence criteria for a number of prototypical networks; the Hop�eldmodel [4], the Little model [5], systems with graded-response neurons [6, 7],iterated-map networks [8] and networks with distributed dynamics [9, 10].



Andreas V.M. Herz ivA statistical mechanical analysis of networks with block-sequential dynam-ics and results about the convergence to �xed points in networks with signaldelays conclude the section.Neural networks with signal delays can be trained to learn pattern se-quences. Such systems are analyzed in Section 1.4. It is shown that witha discrete time evolution, these networks can be mapped onto \equiva-lent networks" with block-sequential updating and no time delays. Thisconnection allows for a quantitative analysis of the storage of temporalassociations in time-delay networks. Next, the time evolution of a singleneuron with delayed feedback and continuous-time dynamics is discussed.Two di�erent Lyapunov functions are presented. The �rst shows that un-der certain conditions, all solutions approach special periodic attractors;the second demonstrates that under less restrictive conditions, the systemrelaxes to time-varying solutions that need not be periodic.The pulse-like nature of neural activity has frequently been modeled us-ing (coupled) threshold elements that discharge rapidly when they reacha trigger threshold. With uniform positive couplings, some networks com-posed of such \integrate-and-�re neurons" approach globally synchronizedsolutions where all neurons �re in unison. With more general couplingschemes, the systems approach phase-locked solutions where neurons onlyexhibit locally synchronized pulse activity. Section 1.5 presents Lyapunovfunctions for such a class of integrate-and-�re models. An additional proofshows that the phase-locked solutions are reached in minimal time.1.2 A Framework for Neural DynamicsStarting with a brief description of the anatomy and physiology of singleneurons, this section introduces a general framework for modeling neuraldynamics.1.2.1 Description of Single NeuronsNeurons consist of three distinct structures: dendrites, cell body, and axon.Dendrites are thin nerve �bers and form highly branched structures calleddendritic trees. They extend from the central part of a neuron, the cellbody or soma, which contains the cell nucleus. The axon, a single long�ber, projects from the soma and eventually branches into strands andsubstrands. Located along the axon and at its endings are synapses thatconnect one (\presynaptic") neuron to the dendrites and/or cell bodies ofother (\postsynaptic") neurons [11].Neurons communicate via an exchange of electrochemical signals. At rest,a cell is held at a negative potential relative to the exterior through selectiveion pumps in the cell membrane. If the potential at the soma exceeds a �ringthreshold due to incoming signals, a strong electrical pulse is generated.



Andreas V.M. Herz vThis excitation is called an action potential or spike. It is propagated alongthe axon by an active transport process that results in a soliton-like pulseof almost constant size and duration [12]. Following the generation of aspike, the membrane potential quickly drops to a subthreshold value. Afterthe event, the neuron has to recover for a short time of a few millisecondsbefore it can become active again. This time interval is called the refractoryperiod.At synapses, action potentials trigger the release of neurotransmitters,chemical substances that di�use to the postsynaptic cell where they bind toreceptors. This process leads to changes of the local membrane properties ofthe postsynaptic neuron, causing either an increase or decrease of the localpotential. In the �rst case, the synapse is called an excitatory synapse;in the second case, an inhibitory synapse. Through (di�usive) transportprocesses along the dendritic tree, an incoming signal �nally arrives atthe soma of the postsynaptic neuron where it makes a, usually minute,contribution to the membrane potential.How can one construct a mathematical framework for neural dynamicsthat may be used to analyze large networks of interconnected neurons?Let me begin with the description of neural output activity. A spike isan all-or-none event and may thus be modeled by a binary variable as waspointed out by McCulloch and Pitts [13]. It will be denoted by Si = �1where i enumerates the neurons. This speci�c representation emphasizesthe resemblance between McCulloch-Pitts neurons and Ising spins.3 Fol-lowing the conventional notation, Si = 1 means that cell i is �ring anaction potential, and Si = �1 means that the cell is quiescent.In an alternative formulation, a quiescent cell is denoted by Si = 0. Bothrepresentations are equivalent if the network parameters are transformedappropriately. In the integrate-and-�re models to be discussed in the article,the duration of action potentials is set to zero for simplicity. To obtain anonvanishing pulse integral, a spike is modeled by a Dirac �-function, sothat formally speaking, one is dealing with a 0=1-representation of actionpotentials.An action potential is generated if the membrane potential ui exceeds a�ring threshold uthresh. Since the trigger process operates without signi�-cant time lags, spike generation (in the �1-representation) may be writtenSi(t) = sgn[ui(t)� uthresh] (1.3)where sgn(x) denotes the signum function.3The Ising model [14] provides an extremely simple and elegant description offerromagnets and has become one of the most thoroughly studied models in solid-state physics. The formal similarity between certain extensions of this model,namely spin glasses, and neural networks such as the Hop�eld model has stim-ulated the application of statistical mechanics to neural information processing,see also Section 1.3.6.



Andreas V.M. Herz viIn most models to be analyzed in this article, the membrane potentialui is not reset after the emission of an action potential. An importantexception are networks with integrate-and-�re neurons whose precise resetmechanism is discussed in Section 1.2.3.Some cortical areas exhibit pronounced coherent activity of many neu-rons on the time scale of interspike intervals, that is, 10�100 ms [15, 16, 17].Modeling this phenomenon requires a description of output activity interms of single spikes, for example by using integrate-and-�re neurons.4 Inother cases, the exact timing of individual action potentials does not seemto carry any relevant information. One may then switch to a description interms of a coarse-grained variable, the short-time averaged �ring rate V .Unlike the binary outputs of McCulloch-Pitts neurons, the �ring rate is acontinuous variable. The �ring rate varies between zero and a maximal rateVmax which is determined by the refractory period. Within a �ring-rate de-scription, model neurons are called \analog neurons" or \graded-responseneurons."In such a real-valued representation of output activity, the thresholdoperation (1.3) is replaced by an s-shaped (\sigmoid") transfer function todescribe the graded response of the �ring rate to changes of the membranepotential, Vi(t) = gi[ui(t)] (1.4)with gi : IR ! [0; Vmax]. The functions gi can be obtained from neuro-physiological measurements of the response characteristic of a cell underquasi-stationary conditions.Once generated by a neuron, say neuron j, an action potential travels asa sharp pulse along the axon and arrives at a synapse with neuron i aftersome time lag �ij . The delay depends on the distance traveled by the signaland its propagation speed and may be as long as 10�50 ms. It follows thatthe release of neurotransmitter at time t does not depend on the presentpresynaptic activity but that it should be modeled by some function whoseargument is the earlier activity Sj(t � �ij). Di�usion across the synapticcleft adds a distributed delay which is usually modeled by an integral kernelwith a single hump.What remains in the modeling process is the formalization of the den-dritic and somatic signal processing. The force driving the membrane po-tential ui up or down will be called the local �eld and denoted by hi.Formally, the local �eld can always be written as a power series of thesynaptic input currents. The exact form of the coe�cients depends on themicroscopic cell properties.Dendrites and cell bodies are complex extended objects with intricate4Alternative approaches are discussed in the contribution of Gerstner and vanHemmen in this volume [18].



Andreas V.M. Herz viiinternal dynamics. This implies that within any accurate microscopic de-scription, even the dendrites and soma of a single cell have to be repre-sented by a large number of parameters and dynamical variables [19, 20].5However, such a detailed approach cannot be pursued to analyze the timeevolution of large networks of highly interconnected neurons as they arefound in the cerebral cortex where a neuron may be connected with up to10; 000 other cells [21].The theory of formal neural networks o�ers a radical solution to thisfundamental problem. Following a long tradition in statistical physics, thetheory is built upon the premise that detailed properties of single cellsare not essential for an understanding of the collective behavior of largesystems of interacting neurons: \Beyond a certain level complex functionmust be a result of the interaction of large numbers of simple elements,each chosen from a small variety." [22]. This point of view invites a long andcontroversial debate about modeling the brain and, more general, modelingcomplex biological systems. Such a discussion is beyond the scope andintention of the present article. Instead, I will cautiously adopt this positionas a powerful working hypothesis whose neurobiological foundations requirefurther investigation.6 The advantage is obvious: under the assumptionthat the function of large neural networks does not depend on microscopicdetails of single cells, and knowing that in general, many incoming signalsare necessary to trigger an action potential, it is su�cient to consider justthe �rst terms of the power series de�ning the local �eld hi. For the restof this article, I will use the simplest approach and take only linear termsinto account. The local �eld may then be writtenhi(t) = NXj=1 Z �max0 Jij(�)Vj (t� �)d� + Iexti (t) : (1.5)For two-state neurons, the term Vj(t � �) is replaced by Sj(t � �). Theweight Jij(�) describes the in
uence of presynaptic activity of neuron j attime t � � on the local �eld of neuron i at time t. Input currents due toexternal stimuli are denoted by Iexti (t).The temporal details of signal transmission are re
ected in the functionaldependence of Jij(�) upon the delay time � . Axonal signal propagationcorresponds to a discrete time lag, di�usion processes across the synapsesand along the dendrites result in delay distributions with single peaks.Distributed time lags with multiple peaks may be used to include pathways5The argument applies to axons as well, but due to the emergent simplicity ofaxonal signal transport | action potentials are characterized by a dynamicallystabilized, �xed pulse shape | a macroscopic description in terms of all-or-noneevents is justi�ed.6Unexpected support for this viewpoint comes from elaborate computer sim-ulations of the dynamics of single cerebellar Purkinje cells [23].



Andreas V.M. Herz viiivia interneurons that are not explicitly represented in the model. A synapseis excitatory if Jij(�) > 0 and inhibitory if Jij(�) < 0. Self couplingsJii(�) that are strongly negative for small delays may be used to modelrefractoriness [24, 25].7 In network models without synaptic and dendriticdelays, the local �eld hi is identical with the total synaptic input currentto neuron i, often denoted by Ii in the neural network literature.As shown in this section, there are three main variables to describe theactivity of single neurons | the membrane potential ui, the output activityVi or Si, and the local �eld hi. These three variables correspond to the threemain parts of a neuron | soma, axon, and dendritic tree. The stronglynonlinear dependence of Vi or Si upon ui captures the \decision process"of a neuron| to �re or not to �re. This decision is based on some evaluationof the weighted average hi of incoming signals. To close the last gap in thegeneral framework, one has to specify the dynamical relation between themembrane potential ui and the local �eld hi.If there are no transmission delays, equations (1.3) | (1.5) contain onlya single time argument and no time derivatives, that is, they do not de-scribe any dynamical law. It follows that the relation between ui and hihas to be formulated as an evolution equation. If one opts for a descriptionwhere time is treated as a discrete variable, the evolution equation will bea di�erence equation, otherwise a di�erential equation. As a �rst approxi-mation, both types of dynamical description may be linear since the mainsource for nonlinear behavior, namely spike generation, is already describedby equation (1.3) or (1.4).1.2.2 Discrete-Time DynamicsWithin a discrete-time approach, time advances in steps of �xed length,usually taken to be unity. To obtain a consistent description, all signal de-lays should then be nonnegative integers. Accordingly, the temporal integralR �max0 Jij(�)Sj(t� �)d� in (1.5) is replaced by a sumP�max�=0 Jij(�)Sj(t� �).In a discrete-time model, the most straightforward dynamical relationbetween ui and hi is the shift operationui(t+ 1) = hi(t) : (1.6)At a �rst glance, this dynamical relation neglects any inertia of the mem-brane potential caused by a nonzero transmembrane capacitance. Accord-ing to (1.6), the membrane potentials are just time-shifted copies of thelocal �elds. Inertia could be included on the single-neuron level by an ad-ditive term �ui(t) on the right-hand side of (1.6), however, a similar e�ectcan be obtained through a proper choice of the update rule for the overall7In some sense, the same is achieved in integrate-and-�re models where themembrane potential is explicitly reset after spike generation.



Andreas V.M. Herz ixnetwork as will be discussed at the end of this section.For two-state neurons, equations (1.3), (1.5) and (1.6) may be combinedto yield the single-neuron dynamicsSi(t+ 1) = sgn[hi(t)] (1.7)where hi(t) = NXj=1 �maxX�=0 Jij(�)Sj (t� �) + Iexti (t) : (1.8)The term uthresh has been absorbed in Iexti without loss of generality. Inpassing, let me remark that in the exceptional case hi(t) = 0, it is advis-able to supplement (1.7) by the convention Si(t + 1) = Si(t) for (purelytechnical) reasons that will become apparent in Section 1.3.1.For analog neurons, equations (1.7) and (1.8) are replaced byVi(t+ 1) = gi[hi(t)] (1.9)and hi(t) = NXj=1 �maxX�=0 Jij(�)Vj(t� �) + Iexti (t) : (1.10)The membrane potential ui does not appear in equations (1.7) - (1.10)anymore as the single-neuron description has been reduced from three totwo variables | output activity and local �eld. Either one might be usedas a state variable.Neurotransmitters are released in small packages by a stochastic mech-anism that includes spontaneous release at times when no spikes arrive ata synapse [26, 27]. This phenomenon, known as synaptic noise, is the mostimportant source for stochasticity in neural signal transmission.If one takes synaptic noise into account, the local �eld becomes a 
uctu-ating quantity hi + �i where �i denotes the stochastic contributions. Theprobability of spike generation is then equal to the probability that the lo-cal �eld exceeds the �ring threshold. For two-state neurons, this probabilitymay be written as Prob�Si(t+ 1) = +1] = f [hi(t)] (1.11)where Prob denotes probability and f : IR! [0; 1] is a monotone increasingfunction.A careful analysis of synaptic transmission reveals that under the as-sumption of linear dendritic processing, the stochastic variable �i is dis-tributed according to a Gaussian probability distribution [22, 28]. In thatcase equation (1.11) can be approximated byProb�Si(t+ 1) = �1� = 12�1� tanh��hi(t)�	 (1.12)



Andreas V.M. Herz xwhere T � ��1 is a measure of the noise level. In the limit as T ! 0,one recovers the deterministic threshold dynamics (1.7). In the physicsliterature, the update rule (1.12) is known as Glauber dynamics [29]. Itwas invented as a heat-bath algorithm for the Ising model [14] and hasbecome an important tool to analyze the collective properties of many-particle systems.Equations (1.7) { (1.10) describe the time evolution of individual neurons.This leaves a number of options for the updating process at the level of theoverall network [10].First, there is the question of how many neurons may change their stateat a time. Theoretical investigations of recurrent networks with discrete-time dynamics have almost exclusively focused on two cases: parallel dy-namics (PD) and sequential dynamics (SD). In the former case, all neuronsare updated in perfect synchrony which has led to the name \synchronousdynamics." In the latter case, only one neuron is picked at each time toevaluate its new state | \one-at-a-time updating" | while the activi-ties of all other neurons remain constant. Parallel updating and sequentialupdating are two extreme realizations of discrete-time dynamics. Interme-diate schemes will be called distributed dynamics (DD) and include block-sequential iterations where the network is partitioned into �xed clusters ofsimultaneously updated neurons.Next, there is the question how groups (of one or more neurons) areselected at each time step. One may have a �xed partition of the networkor one may choose random samples at each time step. Alternatively one maystudy selective mechanisms such as a maximum-�eld or greedy dynamics[30]. Here, the neuron with the largest local �eld opposite to its own activityis updated.8Network dynamics are said to be fair sampling if on an intermediatetime scale no neuron is skipped for the updating process on average. Theterminology emphasizes the similarity with the idea of \fairness" used bythe computer science community [31]. On a conceptual level, fair samplingassures that all neurons have a chance to explore the part of phase spaceaccessible to them through their single-neuron dynamics. Most computa-tionally useful iteration schemes are of this type. All updating schemes witha �xed partition or a random selection process are fair sampling. Exceptionsmay only occur in pathological situations within selective algorithms.Finally, there is the question whether signal delays may or may not over-lap, as is illustrated in Figure 1. The latter case is of utmost importancefor the storage and retrieval of pattern sequences as will be discussed inSection 1.4.8The network dynamics of integrate-and-�re neurons may also be viewed asa selective update process: only those neurons whose local �elds are larger thenthe threshold are active for the duration of an action potential. After that time,both output Si and membrane potential ui are reset to their rest values.
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FIGURE 1.1. Schematic representation of discrete-time updating schemes. Hor-izontal axes represent time, ticks on the vertical axes label the neurons. Delaysdue to transmission and computation times are indicated by the �nite durationof the updating \event" for a given neuron. Clocked networks have ticks on thetime axis. (a) One-at-a-time or sequential dynamics (SD); (b) Synchronous orparallel dynamics (PD); (c) Distributed dynamics (DD): still clocked, but witharbitrary update groups at each time step; (d) Fully asynchronous dynamics,including overlapping delays.



Andreas V.M. Herz xiiSummarizing the above discussion, updating rules for networks with dis-tributed discrete-time dynamics may be categorized according to the fol-lowing �ve criteria:1. Description of output activity: (a) discrete; (b) continuous.2. Single-neuron dynamics: (a) deterministic; (b) stochastic.3. Size of group to be updated at each time step:(a) all neurons | parallel dynamics (PD);(b) some neurons | distributed dynamics (DD);(c) one neuron | sequential dynamics (SD).4. Selection of the update group at each time step: (a) �xed partition;(b) random sample; (c) selective choice.5. Handling of delays: (a) overlapping not allowed; (b) overlapping al-lowed.Most discrete-time descriptions appearing in the literature can be classi-�ed by these �ve criteria. For instance, Caianiello's model [32] uses McCul-loch-Pitts neurons (rule 1a) and includes a broad distribution of transmis-sion delays (rule 5b). All neurons are updated at the same time (rule 3a and4a) according to a deterministic threshold operation (rule 2a). The Littlemodel [5] di�ers from Caianiello's approach in that it describes single neu-rons as stochastic elements (rule 2b) with instantaneous interactions only(rule 5a). In the Hop�eld model [4], neurons are updated one at a time(rule 3c), again without signal delays (rule 5a).If neurons are picked in a random order, there is a nonzero chance that aneuron is skipped during an elementary cycle of the network dynamics. Onthe level of macroscopic order parameters, this leads to an e�ective inertiacomparable to that generated by an additive term �ui(t) in (1.6).9In closing this section, let me introduce some helpful notation: networkswith deterministic parallel dynamics, continuous neurons and no transmis-sion delays (rule 1b, 2a, 3a, 4a, 5a) will be called iterated-map networks(IM), those with (a broad distribution of) transmission delays and a de-terministic parallel dynamics (rule 2a, 3a, 4a, 5b) will be referred to astime-delay networks (TD).9For a derivation of the evolution equations of macroscopic order parameters,see for example reference [33].



Andreas V.M. Herz xiii1.2.3 Continuous-Time DynamicsThe step size in a discrete-time description is usually identi�ed with theduration of an action potential. This implies on the one hand that such adescription cannot accomodate the time resolution required to study thesynchronization of action potentials.10 On the other hand, the feedbackdelay implicitly built into any discrete-time description may lead to dy-namical artefacts such as spurious oscillations. To avoid both problems,one may alternatively study networks with continuous-time dynamics.Graded-Response NeuronsMembrane potentials of real neurons are subject to leakage currents dueto the �nite resistivity of biological membranes. Once charged by a shortinput current modeled by the local �eld hi(t), the membrane potential ui(t)of cell i relaxes to some rest value which is set to zero for simplicity.The physics of charging and leakage is best captured by the linear �rst-order di�erential equationC ddtui(t) = �R�1ui(t) + hi(t) : (1.13)Here C denotes the input capacitance of a neuron and R is its transmem-brane resistance. Model neurons whose membrane potential changes ac-cording to the di�erential equation (1.13) will be called graded-responseneurons (GR).Inserting equation (1.5) into (1.13), the time evolution of graded-responseneurons may be writtenC ddtui(t) = �R�1ui(t) + NXj=1 Z �max0 Jij(�)Vj (t� �)d� + Iexti (t) (1.14)where, as in Section 1.2.1, the output activity Vj depends on the membranepotential uj through the nonlinear response characteristic (1.4).Similar to the discrete-time dynamics considered in Section 1.2.2, one ofthe original three variables to describe neural activity has become super
u-ous. In Section 1.2.2, the membrane potential ui(t) was expressed throughthe (time-shifted) local �eld hi(t � 1), now the local �eld hi(t) has beenreplaced by the membrane potential ui(t) and its time derivative _ui(t).10Decreasing the step size leads to a complication in the mathematical formula-tion because one is forced to introduce e�ective delayed interactions if one wantsto assure that action potentials last for multiple elementary time steps.



Andreas V.M. Herz xivIntegrate-and-Fire NeuronsBelow the �ring threshold, (leaky) integrate-and-�re neurons operate in thesame way as graded-response neurons (1.13). However, when the membranepotential of a cell reaches the threshold uthresh, the cell produces an actionpotential and resets its potential to ureset. For convenience, units can bechosen such that uthresh = 1 and ureset = 0.Assuming vanishing signal delays and action potentials of negligible du-ration, the local �eld hi(t) of neuron i is then given byhi(t) =Xj Jijfj(t) + Iexti (t) (1.15)where the instantaneous �ring rate fj(t) is a sum of Dirac �-functionsfj(t) =Xn �(t� tnj ) (1.16)and the tnj are the times at which neuron j generates an action poten-tial. Throughout the remaining sections on integrate-and-�re neurons, theexternal input Iexti (t) is assumed to be constant in time, Iexti (t) = Iexti .The general behavior of the system is now as follows. While none of theneurons is producing an action potential, equation (1.13) can be integratedand yieldsui(t) = [ui(t+0 )�RIexti ]e� (t�t0)RC +RIexti for t � t0 (1.17)where t0 denotes the last �ring time. When the potential uj of neuron jreaches 1 (the threshold) it drops instantaneously to 0. At the same time,the potential ui of each neuron i to which j makes a synapse is increasedby Jij .Because the duration of action potentials and of synaptic currents havebeen set equal to zero, the description given so far contains an ambiguity.To which value should neuron i be reset if at time t an action potential isproduced by cell j, if the synapse from j to i is excitatory, Jij > 0, and ifui(t�) > 1�Jij? For in this case, the action potential will raise ui above 1,and cell i should generate its action potential during the 
ow of synapticcurrent produced by the synapse Jij . When synaptic (and dendritic) timeconstants of the nerve cells to be modeled are longer than the duration ofaction potentials, what should actually happen in the model is that cell jshould �re when its potential reaches uthresh = 1, and the synaptic currentfrom synapse Jij which arrives after i �res should be integrated to yield apositive potential (relative to ureset) afterward. Thus, if cell j �res �rst andat time t, and that event evokes a �ring of neuron i, then after both actionpotentials have been generated, the two membrane potentials should beuj(t+) = Jji (1.18)



Andreas V.M. Herz xvand ui(t+) = ui(t�) + Jij � 1 : (1.19)The �rst equation represents the fact that j �red �rst when uj = 1, wasreset to 0, and when subsequently neuron i generated its action potential,this changed the potential of j to Jji. The second equation represents thefact that i �red second, reduced its potential by 1 when it did so, butreceived the synaptic current Jij when neuron j �red.The updating rule can be generalized to a large network of neurons bythe following algorithm. As the potentials all increase with time, a �rstneuron j reaches uj = 1. Reset that potential to zero. Then change thepotential of each neuron i by Jij . If, following this procedure, some ofthe potentials become greater than 1, pick the neuron with the largestpotential, say neuron k, and decrease its potential by 1.11 Then changethe potential of each neuron l by Jlk . Continue the procedure until nomembrane potential is greater than 1. Then \resume the 
ow of time," andagain let each potential ui increase according to equation (1.17).This deterministic algorithm preserves the essence of the idea that �ringan action potential carries a neuron from uthresh to ureset, and e�ectivelyapportions the synaptic current into a part which is necessary to reachthreshold, and a part which raises the potential again afterward. Becausethe �ring of one neuron can set o� the instantaneous �ring of others, thismodel can generate events in which many neurons are active simultane-ously.When synaptic (and dendritic) time constants are shorter than the du-ration of an action potential, all contributions from the synaptic currentthat arrive during spike generation are lost, and equation (1.19) should bereplaced by ui(t+) = Jij . Generalizing from these two extreme cases, (1.19)becomes ui(t+) = ui(t�) + 
(Jij � 1) (1.20)with 0 � 
 � 1.For models with 
 = 1, the order in which the neurons are updated inan event in which several neurons �re at once does not matter as long asJij � 0. For these cases any procedure for choosing the updating sequenceof the neurons at or above threshold will yield the same result becausethe reset is by a �xed negative amount (here: �1) regardless of whetherimmediately prior to reset ui = 1 or ui > 1.If in addition to choosing 
 = 1, the limit R ! 1 is considered, oneis dealing with perfectly integrating cells. For a network of such neurons,the cumulative e�ects of action potentials and slow membrane dynamicscommute if Jij � 0. This makes the model formally equivalent to a class of11If several neurons exhibit the same, maximum potential, one may use some�xed, random, or selective update order to pick one of them.



Andreas V.M. Herz xvi\Abelian avalanche" models [34, 35]. Closely related earthquake models and(discrete-time) \sandpile models" relax to a critical state with 
uctuationson all length-scales, a phenomenon known as \self-organized criticality"[36].The similarity between the microscopic dynamics of such model systemsand networks of integrate-and-�re neurons has led to speculations about apossible biological role of the stationary self-organized critical state [37, 38,39]. However, whereas for earthquakes, avalanches, and sandpiles, the maininterest is in the properties of the stationary state, for neural computation,it is the convergence process itself which does the computation and is thusof particular interest. Furthermore, computational decisions must be takenrapidly, and in any event the assumption of constant input from othercortical areas implicit in all models breaks down at longer times [40, 41].1.2.4 Hebbian LearningThe previous sections focused on the dynamics of neural activity. Synaptice�cacies were treated as time-independent parameters. Real synapses, how-ever, are often modi�able. As postulated by D.O. Hebb [42], their strengthsmay change in response to correlated pre- and postsynaptic activity: \Whenan axon of cell A is near enough to excite cell B and repeatedly or persis-tently takes part in �ring it, some growth process or metabolic change takesplace in one or both cells such that A's e�ciency, as one of the cells �ringB is increased."Hebbian plasticity has long been recognized as a key element for asso-ciative learning [43].12 How should it be implemented in a formal neuralnetwork that might include transmission delays?Hebbian learning is local in both space and time: changes in synaptice�cacies depend only on the activity of the presynaptic neuron and theevoked postsynaptic response. Within the present framework, presynapticactivity is described by the axonal output Vj or Sj . Which neural variableshould be chosen to model the postsynaptic response?Neurophysiological experiments demonstrate that postsynaptic spiking isnot required to induce long-term potentiation (LTP) of synaptic e�cacies| \a critical amount of postsynaptic depolarization is normally required toinduce LTP in active synapses, but sodium spikes do not play an essentialrole in the LTP mechanism" [45]. This result implies that the postsynapticresponse is best described by the local �eld hi | it represents the dendriticpotential and is not in
uenced by the detailed dynamics of the cell body(ui) or the spike generating mechanism (Vi or Si).Let us now study a discrete-time system where delays arise due to the12Various hypotheses about the microscopic mechanisms of synaptic plasticityare the subject of an ongoing discussion [44].



Andreas V.M. Herz xvii�nite propagation speed of axonal signals, and focus on a connection withdelay � between neurons j and i. Originally, Hebb's postulate was formu-lated for excitatory synapses only, but for simplicity, it will be applied toall synapses of the model network.A presynaptic action potential that arrives at the synapse at time twas generated at time t� � . Following the above reasoning, Jij(�) shouldtherefore be altered by an amount that depends on Vj(t � �) and hi(t),most simply their product�Jij(�) / hi(t)Vj(t� �)�t : (1.21)The bilinear expression (1.21) does not cover saturation e�ects. They couldbe modeled by an additional decay term ��Jij(�)�t on the right-hand sideof (1.21).The combined equations (1.3) { (1.5) and (1.21) describe a \double dy-namics" where both neurons and synapses change in time. In general, sucha system of coupled nonlinear evolution equations cannot be analyzed usingLyapunovs' direct method although there are some interesting counterex-amples [46]. To simplify the analysis, one usually splits the network oper-ation in two phases | learning and retrieval. For the learning phase, onefrequently considers a \clamped" scheme where neurons evolve accordingto external inputs only, hi(t) = Iexti (t). Once the learning sessions are overthe Jij(�) are kept �xed.In the following, I focus on deterministic discrete-time McCulloch-Pittsneurons in a clamped scheme with Iexti (t) = �1. This simpli�cation impliesthat Sj(t+1) = Iextj (t). Starting with a tabula rasa, Jij(�) = 0, one obtainsafter P learning sessions, labeled by � and each of duration D�,Jij(�) = "(�)N�1 PX�=1 D�Xt�=1 Iexti (t�)Iextj (t� � 1� �) � "(�) ~Jij(�) : (1.22)The parameters "(�) model morphological characteristics of the axonal de-lay lines; N�1 is a scaling factor useful for the theoretical analysis. Letme mention that an input sequence should be o�ered already �max timesteps before the learning session starts so that all variables in (1.22) arewell de�ned. According to (1.22) synapses act as microscopic feature de-tectors during the learning sessions: they measure and store correlationsof the taught sequences in both space (i; j) and time (�). This leads to aresonance phenomenon where connections with delays that approximatelymatch the time course of the external input receive maximum strength.Note that these connections are also the ones that would support a stablesequence of the same duration. Thus, due to a subtle interplay between ex-ternal stimulus and internal architecture (distribution of � 's), the Hebb rule(1.22), which prima facie appears to be instructive in character, exhibitsin fact pronounced selective characteristics [47].



Andreas V.M. Herz xviiiAn external stimulus encoded in a network with a broad distribution oftransmission delays enjoys a rather multifaceted representation. Synapticcouplings with delays that are short compared to the typical time scaleof single patterns within the taught sequence are almost symmetric in thesense that Jij(�) � Jji(�). These synapses encode the individual patternsof the sequence as unrelated static objects. On the other hand, synapseswith transmission delays of the order of the duration of single patterns ofthe sequence are able to detect the transitions between patterns. The corre-sponding synaptic e�cacies are asymmetric and establish various temporalrelations between the patterns, thereby representing the complete sequenceas one dynamic object.Let me remark that the interplay between neural and synaptic dynamics,and in particular the role of transmission delays, has been a subject ofintensive research [32, 42, 48, 49]. The full consequences for the learningand retrieval of temporal associations have, however, been explored onlyrecently.As a special case of (1.22), consider the Hebbian learning of static pat-terns, Iexti (t�) = ��i , o�ered during learning sessions of equal durationD� = D to a network with a uniform delay distribution. For mathematicalconvenience, the distribution is taken to be "(�) = D�1. In this case, (1.22)yields synaptic strengths that are independent of the delay � ,Jij(�) = Jij = N�1 PX�=1 ��i ��j ; (1.23)and symmetric, Jij = Jji : (1.24)The synaptic symmetry (1.24) plays a key role for the construction of Lya-punov functions as will be shown in the following sections.Another kind of symmetry arises if all input sequences Iexti (t�) are cyclicwith equal periodsD� = D. If one de�nes patterns ��ia by ��ia = Iexti (t� = a)for 0 � a < D, one obtains from (1.22)~Jij(�) = N�1 PX�=1D�1Xa=0 ��ia��i;a�1�� : (1.25)Note that the synaptic strengths are now in general asymmetric. They do,however, obey the symmetry ~Jij(�) = ~Jij(D � (2 + �)). For all networkswhose a priori weights "(�) satisfy "(�) = "(D � (2 + �)), this leads to an\extended synaptic symmetry" [50, 51],Jij(�) = Jij(D � (2 + �)) ; (1.26)extending the previous symmetry (1.24) in a natural way to the tempo-ral domain. This type of synaptic symmetry allows the construction of a



Andreas V.M. Herz xixLyapunov function for time-delay networks as will be explained in Section1.4.1.1.3 Fixed PointsThis section focuses on the storage of static patterns in networks withinstantaneous interactions. It will be shown that under certain conditionsfor the model parameters, various network dynamics exhibit the same long-time behavior: they relax to �xed points only.Feedback networks with �xed-point attractors can be made potentiallyuseful devices for associative computation as soon as on knows how toembed desired activity patterns as attractors of the dynamics. In suchcircumstances, an initial state or \stimulus" lying in the basin of attractionof a stored \memory" will spontaneously evolve towards this attractor.Within a biological context, the arrival at the �xed point may be interpretedas a cognitive event, namely the \recognition of the stimulus."The hypothesis that the brain utilizes �xed-point attractors to performassociative information processing has led to quantitative predictions [52]which are in good agreement with neurophysiological measurements [53].However, even if the hypothesis was refuted in its literal sense, it wouldnevertheless continue to provide an important conceptual tool to thinkabout neural information processing.1.3.1 Sequential Dynamics: Hopfield ModelHop�eld's original approach [4] is based on McCulloch-Pitts neurons withdiscrete-time dynamics, instantaneous interactions and constant externalstimuli. Neurons are updated one at a time, either according to a determin-istic threshold operation (1.7) or probabilistic Glauber dynamics (1.12). Inthe original model, neurons are chosen in a random sequential manner butin simulations, the update order is often �xed in advance, corresponding toa quenched random selection. Within the classi�cation scheme of Section1.2.2, the Hop�eld model is thus characterized by rules 1a, 3c, and 5a.If the single-neuron dynamics are deterministic, the time evolution of thenetwork is a special realization of (1.7),(1.8) and may be writtenSk(t+ 1) = sgn[hk(t)] (1.27)where k is the index of the neuron updated at time t andhk(t) =Xj JkjSj(t) + Iextk : (1.28)All other neurons remain unchanged, Sj(t+ 1) = Sj(t) for j 6= k.



Andreas V.M. Herz xxWhat can be said about the global dynamics generated by equations(1.27) and (1.28)? Consider the quantityLSD = �12 NXi;j=1 JijSiSj � NXi=1 Iexti Si : (1.29)The change of LSD in a single time step, �LSD(t) � LSD(t+ 1)� LSD(t),is �LSD(t) = � 12 NXi;j=1 Jij [Si(t+ 1)Sj(t+ 1)� Si(t)Sj(t)]� NXi=1 Iexti [Si(t+ 1)� Si(t)] : (1.30)Assume again that neuron k is updated at time t. The di�erence �Sj(t) �Sj(t+1)�Sj(t) equals zero or �2 if j = k and vanishes otherwise. For thespecial case where the synaptic e�cacies satisfy the symmetry condition(1.24), one obtains�LSD(t) = �Sk(t)JkkSk(t)��Sk(t)[ NXj=1 JkjSj(t) + Iextk ]= �12Jkk [�Sk(t)]2 ��Sk(t)hk(t): (1.31)According to (1.27) and the remark following (1.8), neuron k does notchange its state if hk(t)Sk(t) � 0. If this condition is not ful�lled, theneuron 
ips and �Sk(t) = 2Sk(t + 1). The change of LSD may then bewritten �LSD(t) = �2[Jkk + Sk(t+ 1)hk(t)]= �2[Jkk + jhk(t)j] : (1.32)The last line follows from the evolution equation (1.27) and the identityjaj = a sgn(a). Equation (1.32) proves that LSD is nonincreasing alongevery solution if the self couplings Jii are nonnegative.13 As a �nite sumof �nite terms, LSD is bounded. If Jii � 0 for all neurons, LSD(t) has toapproach a limit as t ! 1. Furthermore, �LSD(t) vanishes only if the13This condition is satis�ed in Hop�eld's original model where all self couplingsare set to zero.



Andreas V.M. Herz xxineuron updated at time t does not change its state.14 This proves that theHop�eld network relaxes to �xed-point solutions only. According to (1.27)and (1.28) these equilibria satisfySi = sgn[Xj JijSj + Iexti ] for all i : (1.33)The results obtained may be summarized as follows:If the synaptic e�cacies Jij satisfy the symmetry condition (1.24) and ifthe self interactions Jii are nonnegative, then the dynamics of the Hop�eldmodel (1.27),(1.28) admit the Lyapunov function (1.29) and converge to�xed points (1.33) only.Let me clarify a potentially confusing point. For neural networks withMcCulloch-Pitts neurons, the state space consists of the corners of an N -dimensional hypercube f�1;+1gN , also known as Hamming space. In thisdiscrete space, the smallest state change possible is a single spin 
ip, Si !�Si. As a consequence, the system may converge to �xed points that are notstable with respect to activity changes of single neurons, in the sense thata single spin 
ip made to a �xed-point solution could actually lower L. Forinstance, consider a network where for some neuron i, the self interactionJii dominates possible contributions from other neurons, Jii >Pj 6=i jJij j.In such a case, the initial value of Si will never be changed, independentof its sign. The earlier results about network convergence continue to hold,that is, the system evolves towards �xed-point solutions only, but those arenot necessarily local minima of L in the discrete-space sense.1.3.2 Parallel Dynamics: Little ModelThe Little model [5] uses the most simple discrete-time dynamics conceiv-able: it is a network of McCulloch-Pitts neurons, updated in parallel usinginstantaneous interactions only (rule 1a, 3a, 4a, and 5a). Within a deter-ministic description of single neurons (rule 2a), the time evolution of thenetwork is given by Si(t+ 1) = sgn[hi(t)] for all i (1.34)where hi(t) =Xj JijSj(t) + Iexti : (1.35)Except for the update order, equations (1.34) and (1.35) are identical to(1.27) and (1.28). Accordingly, the �xed-point solutions of the Little model14For zero self coupling Jkk, and in the exceptional case hk(t) = 0, �LSD(t)vanishes for any update rule, even if one chooses Sk(t+1) = �Sk(t) if hk(t) = 0.However, if one sets Sk(t+1) = Sk(t) as mentioned in Section 1.2.1, �LSD(t) = 0implies �Sk(t) = 0 as desired.



Andreas V.M. Herz xxiiare the same as those of the Hop�eld model, given by (1.33). Are thereadditional time-dependent attractors?For simplicity, only the case Iexti = 0 will be analyzed in this section.Nonzero inputs will be treated in Sections 1.3.4 and 1.3.5. As in Section1.3.1, let me focus on networks with symmetric couplings and study thetime evolution of a suitable auxiliary functionLPD = � NXi=1 jhij = � NXi=1 hi sgn(hi) : (1.36)If one evaluates this expression along a solution generated by the networkdynamics (1.34) and (1.35), one obtainsLPD(t) = � NXi=1 hi(t)Si(t+ 1)= � NXi;j=1 JijSj(t)Si(t+ 1) : (1.37)Using the synaptic symmetry (1.24), the last line may also be writtenLPD(t) = � NXj=1 Sj(t)hj(t+ 1) : (1.38)The di�erence �LPD(t) � LPD(t+ 1)� LPD(t) is then�LPD(t) = � NXi=1 jhi(t+ 1)j+ NXi=1 Si(t)hi(t+ 1)= � NXi=1 [Si(t+ 2)� Si(t)]hi(t+ 1) (1.39)where (1.34) has been used to obtain the last equation.Like LSD, the function LPD is bounded. Evaluated along any solution of(1.34) and (1.35), LPD is nonincreasing because the right-hand side of (1.39)is nonpositive; the product Si(t)hi(t+1) is �hi(t+1) and thus smaller orat most equal to jhi(t + 1)j. Consequently, �LPD(t) has to approach zeroas t ! 1. �LPD(t) vanishes only if the system settles into a state withSi(t + 2) = Si(t) for all i, that is, a �xed-point solution (1.33) or a limitcycle of period two. In the latter case, some neurons switch between �ringand quiescence at every time step, all other neurons remain in one activitystate:



Andreas V.M. Herz xxiiiAssume that the synaptic couplings Jij satisfy the symmetry condition(1.24). Then the dynamics of the Little model (1.34),(1.35) admit the Lya-punov function (1.36) and converge to �xed points (1.33) or period-twooscillations.As will be shown in Section 1.3.5, the oscillating solutions can be excludedunder additional assumptions for the synaptic couplings.1.3.3 Continuous Time: Graded-Response NeuronsThis section deals with the continuous-time dynamics of neural networkscomposed of analog neurons without signal delays. The network dynamics(1.14) reduce to a set of coupled ordinary di�erential equations,C ddtui = �R�1ui + NXj=1 JijVj + Iexti ; (1.40)where Vi = gi(ui) : (1.41)Since the dynamical variables ui and Vi in (1.40) are taken at equal times,all temporal arguments have been omitted.The input-output relation gi will be called \sigmoid" if it is increasing,di�erentiable and grows in magnitude more slowly than linearly for largepositive or negative arguments. The maximum slope of gi will be referred toas the gain 
i of neuron i. The nonlinearity is often modeled by a hyperbolictangent, gi(ui) = 12 [1 + tanh(
iui)]. In the high-gain limit 
i ! 1, oneobtains a 0=1 representation of neural activity. It can be mapped ontoIsing spins [14] through the identi�cation Si = 2Vi � 1.Cohen and Grossberg [6] and Hop�eld [7] studied the global behavior ofnetworks with graded-response neurons, sigmoid response functions, andsymmetric synapses. They used Lyapunov functions of the formLGR = �12 NXi;j=1 JijViVj � NXi=1 Iexti Vi + NXi=1 R�1Gi(Vi) (1.42)where the functions Gi(Vi) are given byGi(Vi) = Z Vi0 g�1i (x)dx : (1.43)The last expression is well de�ned because sigmoid nonlinearities arestrictly monotone by de�nition. Since sigmoid functions grow less thanlinearly for large absolute arguments, the functions Gi(Vi) increase fasterthan V 2i as Vi ! �1. The function LGR is therefore bounded below.



Andreas V.M. Herz xxivLet us compute the time derivative of LGR along a solution of the networkdynamics. Using the synaptic symmetry (1.24), one obtainsddtLGR(t) = � NXi=1 [ NXj=1 JijVj + Iexti �R�1ui]dVidt= � NXi=1 C�1 duidt dVidt= � NXi=1 C�1�duidt �2 dgidui � 0 : (1.44)The formula proves that the function LGR is nonincreasing along everytrajectory. The time derivative vanishes only at equilibria, given byVi = gi[RXj JijVj +RIexti ]; (1.45)or at network states, where dgi=dui = 0 for all i. If, however, the latterstates do not satisfy (1.45), the system will continue to evolve according to(1.40),(1.41). The �nal result may be stated as follows:Suppose that the synaptic e�cacies in a network of graded-responseneurons (1.40),(1.41) respect the symmetry condition (1.24) and that theinput-output relations are sigmoid. Then the network dynamics admit theLyapunov function (1.42) and relax to �xed-point solutions (1.45) only.A comparison of the Lyapunov function LGR with the Lyapunov func-tion LSD provides some hints about how to construct Lyapunov functionsfor systems with sigmoid input-output characteristics: the additional termPiR�1Gi(Vi) dominates the quadratic term � 12 Pi;j JijViVj for large Vi ifthe gi are sigmoid. Consequently, the function LGR is bounded below evenif the Vi are not.15 Furthermore, the term Pi R�1Gi(Vi) is constructed insuch a way that its partial derivative with respect to Vi supplies the termR�1ui which makes it possible to insert the evolution equation (1.40) into(1.44). Similar ideas will be applied in Sections 1.3.4 and 1.3.5 to analyzediscrete-time networks with sigmoid nonlinearities.1.3.4 Iterated-Map NetworksFeedback networks with deterministic analog elements and synchronousdiscrete-time updating have been studied for a long time [32, 48, 49]. Forvanishing signal delays and �xed inputs, the network dynamics (1.9),(1.10)become15It should be noted that if a Lyapunov function is not globally bounded below,it might still be used for a local analysis.



Andreas V.M. Herz xxvVi(t+ 1) = gi[hi(t)] for all i (1.46)where hi(t) = NXj=1 JijVj(t) + Iexti : (1.47)Systems described by (1.46) and (1.47) have been called \iterated-mapnetworks" [8]. Their �xed points coincide with those of graded-responsenetworks (1.45) once one sets R = 1.If the input-output functions gi are threshold functions, gi(ui) = sgn(ui),one recovers the Little model (1.34),(1.35). This connection indicates thatone may �nd a Lyapunov function for iterated-map networks by combiningappropriate parts of the Lyapunov function for the Little model with thatfor networks of graded-response neurons.Let us follow the approach of Marcus and Westervelt [8] and study thetime evolution of the functionLIM(t) = � NXi;j=1 JijVi(t)Vj(t� 1)� NXi=1 Iexti [Vi(t) + Vi(t� 1)]+ NXi=1 [Gi(Vi(t)) +Gi(Vi(t� 1))] ; (1.48)where Gi(Vi) is de�ned as in (1.43).Apart from a global time shift, the �rst term in (1.48) corresponds to LPDas can be seen from equation (1.37); the other terms should be comparedwith the second and third term in (1.42). Notice that unlike LPD (1.36),the function LIM is written as an explicitly time-dependent function withtemporal arguments t and t � 1. In principle, one could use the evolutionequations (1.46) and (1.47) and replace Vi(t) by gi[PNj=1 JijVj(t�1)+Iexti ]so as to obtain a description that involves a single time argument only.However, since we are mainly interested in the evaluation of LIM alongtrajectories, the shorter de�nition (1.48) su�ces.Under the assumption of synaptic symmetry (1.24), the temporal di�er-ence �LIM(t) � LIM(t+ 1)� LIM(t) is�LIM(t) = �Xi hi(t)�2Vi(t) +Xi [Gi(Vi(t+ 1))�Gi(Vi(t� 1))] (1.49)where �2Vi(t) � Vi(t+ 1)� Vi(t� 1) (1.50)is the change of Vi over 2 time steps.The right-hand side of (1.49) is zero if �2Vi(t) = 0 for all i. Let usanalyze the case where �2Vi(t) 6= 0 for at least some i. For sigmoid gi,



Andreas V.M. Herz xxvig�1i is single valued and increasing. Consequently, Gi is strictly convex.Through a Taylor expansion of Gi(Vi(t� 1)) around Vi(t+1), one obtainsGi(Vi(t+ 1))�Gi(Vi(t� 1)) < �2Vi(t)G0i(Vi(t+ 1)) : (1.51)For a graphical illustration of the inequality, see the left part of Figure 2.Inserting the identityG0i(Vi(t+ 1)) = g�1i (Vi(t+ 1)) = hi(t) (1.52)and (1.51) into (1.49), one arrives at the expression�LIM(t) � 0 (1.53)where the strict inequality holds if �2Vi(t) 6= 0 for at least one neuron.As demonstrated in the last section, the functions Gi(Vi) increase fasterthan V 2i for large jVij. This result implies that LIM is bounded below. Asshown by (1.53), the function LIM strictly decreases along any solution of(1.46),(1.47) unless �2Vi(t) = 0 for all neurons. The derivation may besummarized in the following way:Assume that the synaptic e�cacies in an iterated-map network (1.46),(1.47) are symmetric (1.24) and that the nonlinearities are sigmoid. Thenthe network dynamics admit the Lyapunov function (1.48) and relax to�xed points solutions (1.45) or period-two oscillations.In closing this section, let me brie
y discuss antisymmetric synaptic cou-plings, Jij = �Jji : (1.54)The derivation of Section 1.3.2 for the Little model (with no external input)shows that if (1.54) holds, one obtains�LPD(t) = � NXi=1 [Si(t+ 2) + Si(t)]hi(t+ 1) : (1.55)In this case the network approaches solutions that satisfy Si(t+2) = �Si(t),that is, special limit cycles with period 4 [54].It is left as an exercise to verify the same result for iterated maps withoutexternal input. Here, an additional condition is required, namely that theinput-output characteristics have to be odd functions, gi(Vi) = �gi(�Vi).The interested reader may also try to construct Lyapunov functions formore general systems. In particular, he or she could look at two problems.(i) What kind of time-varying external stimuli can be incorporated intothe Lyapunov function of the Little model if one focuses on antisymmet-ric couplings? (ii) Are there Lyapunov functions for neural networks withMcCulloch-Pitts neurons, antisymmetric couplings and sequential dynam-ics with �xed update order?
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FIGURE 1.2. Illustration of the inequalities (1.51) and (1.58) for a sigmoid in-put-output function gi(Vi). The convex function Gi(Vi) is de�ned in equation(1.43). The straight line on the left-hand side and the parabola on the right-handside are tangent to Gi(Vi). The inequality (1.51) is the statement A < B, theinequality (1.58) is the statement C < D.1.3.5 Distributed DynamicsIn this section discrete-time updating schemes are considered that gener-alize beyond the Hop�eld and Little models on both the single-neuron andnetwork levels. Neurons are described by continuous variables with deter-ministic single-cell dynamics, that is they fall into class 1b and 2a in thescheme of Section 1.2.2. McCulloch-Pitts neurons with stochastic Glauberdynamics are discussed in Section 1.3.6. For the network dynamics, allchoices of rules 3 and 4 are allowed that are fair sampling and do not leadto overlapping delays (rule 5a). The network dynamics are thus de�ned bya set of coupled nonlinear discrete-time equationsVi(t+ 1) = � gi(PNj=1 JijVj(t) + Iexti ) if i is in U(t),Vi(t) otherwise. (1.56)Here, U(t) denotes the group of neurons updated at time t. The distributeddynamics (1.56) reduce to block-sequential algorithms studied by Goles-Chacc et al. [9] if one considers McCulloch-Pitts neurons and �xed updategroups Uk, k = 0; 1; : : : ;K � 1 with U(t) = Ut(modulo K).There are a number of reasons to study partially parallel network dy-namics such as (1.56). First, one may achieve a better understanding of theessential ingredients needed to construct feedback networks that possess



Andreas V.M. Herz xxviii�xed-point attractors only. Second, distributed dynamics map naturally onthe architecture of parallel computers or computer networks. Third, theevolution equations (1.56) extend iterative methods that have been devel-oped within the computer-science community to solve nonlinear systemsof equations [55, 56, 57, 58] to systems with noncontracting functions andmultiple solutions.What can be said about the long-time behavior of neural networks withdistributed dynamics? As in Sections 1.3.1 { 1.3.4, let us assume that thesynaptic couplings are symmetric (1.24) and that the input-output char-acteristics are sigmoid. Consider again the Lyapunov function of networkswith graded-response neurons (1.42). The function will now be called LDDto distinguish its discrete-time evolution from the continuous-time evolu-tion of Section 1.3.3.The only neurons that may change their state at time t belong to theupdate group U(t). Accordingly, �Vi(t) � Vi(t+1)� Vi(t) vanishes for allother neurons. Using the symmetry (1.24) of the synaptic couplings, thechange �LDD(t) = LDD(t+ 1)� LDD(t) is given by�LDD(t) = � 12 Xi2U(t) Xj2U(t) Jij�Vi(t)�Vj(t)� NXj=1 Xi2U(t) JijVj(t)�Vi(t)� Xi2U(t) Iexti �Vi(t) + Xi2U(t)[Gi(Vi(t+ 1))�Gi(Vi(t)) : (1.57)Since the functions gi(Vi) are assumed to be sigmoid, the auxiliary func-tions Gi(Vi) are again strictly convex. Expanding Gi(Vi(t)) to second orderaround Vi(t + 1) and replacing the coe�cient of the quadratic term withthe smallest possible value, that is 
�1i , the following upper bound can beestablished (see also the right part of Figure 2):Gi(Vi(t+ 1))�Gi(Vi(t)) � �Vi(t)G0i(Vi(t+ 1))� 12 [�Vi(t)]2
�1i : (1.58)Equality holds if and only if Vi(t + 1) = Vi(t). Inserting (1.52) and (1.58)into (1.57) gives�LDD(t) � �12 Xi2U(t) Xj2U(t)(Jij + �ij
�1i )�Vi(t)�Vj(t): (1.59)To facilitate the further discussion, let us de�ne W (t) as the number ofneurons in the group U(t) and symmetric matricesU(t) of dimensionW (t)�W (t) as submatrices of the connection matrix J, given by the synapticstrengths of those neurons that are updated at time t. For the Hop�eldmodel (1.27),(1.28), where updating is one-at-a-time, W (t) = 1 for all t,



Andreas V.M. Herz xxixandU(t) reduces to the self-interaction term Jii where i denotes the neuronbeing updated at time t. For the Little model (1.34),(1.35) or iterated-map analog networks (1.46),(1.47), the matrix is identical to J itself. As isobvious from these limiting cases, the structure of the set of matrices U(t)encodes the global dynamics.The maximum neuron gain in the update group U(t) will be denotedby 
(t) and the minimum eigenvalue of the matrix U(t) by �min[U(t)].Since for arbitrary symmetric matrices A and B, �min[A+B] � �min[A]+�min[B], a su�cient condition for �L(t) � 0 is given by�min[U(t)] � �
(t)�1 : (1.60)If the above condition holds for all t, LDD(t) is strictly decreasing as longas Vi(t + 1) 6= Vi(t) for at least some i in the update group U(t). Asbefore, the function LDD is bounded below. The network therefore relaxesasymptotically to a state where L does not vary in time if all directionsin the space spanned by the neural activities are explored, that is, if theupdating scheme is fair sampling. Since equality in (1.58) and (1.59) holdsonly if Vi(t+1) = Vi(t), all solutions of (1.56) with time-independent LDDare �xed-point solutions [10]. The result may be stated as follows:Suppose the following three conditions hold: a) the updating rule is fairsampling, b) the neuron transfer functions are sigmoid, and c) the sym-metric connection matrix satis�es (1.60) for all times. Then the distributeddynamics (1.56) admit the Lyapunov function (1.42) and converge to �xedpoints only.For iterated-map networks,U(t) is constant in time and equals the set ofall neurons. The criterion �min[J] � �
(t)�1 provides a su�cient conditionto exclude two-cycles that exist in the general case as shown in Section1.3.4: Lowering the neuron gain eliminates spurious oscillatory modes.Neural networks with discrete elements correspond to the limit 
i !1where (1.60) reduces to �min[U(t)] � 0. This implies in particular thatthere are no two cycles possible in the Little model if the whole connectionmatrix is nonnegative de�nite. The general remark from Section 1.3.1 aboutthe convergence to solutions that are not minima of LDD still holds inthe discrete-neuron limit. This atypical behavior is, however, only possiblebecause the gi are piecewise constant functions in models with discreteneurons. For the generic case of continuous input-output characteristics,the network will always settle in a minimum as long as the initial conditionsdo not coincide with an unstable �xed-point of (1.56).The convergence criterion (1.60) is less restrictive for smaller updategroups than for larger ones because�min[U1] � �min[U2] if U1 � U2 : (1.61)Note that (1.61) implies that the stability criterion for a fully parallel net-work where �min[J] � �
�1, is a su�cient condition for (1.60), and thus



Andreas V.M. Herz xxxsu�cient to assure that the system (1.56) will converge to a �xed point forany fair sampling updating scheme.Formula (1.61) has direct consequences for possible applications. Con-sider a high-dimensional optimization task such as the traveling salesmanproblem. It may be mapped onto a neural network architecture which thende�nes a �xed connection matrix J [59]. The computational time neededto �nd a good solution can easily be reduced on a parallel computer byincreasing the size of update groups. However, the bounds given by (1.60)have to be met in order to assure convergence to �xed points, and will limitthe maximal size of update groups. The goal of large updating groups willbe achieved in an optimal way if one can form update groups of weakly ornon-interacting neurons. All submatrices U(t) will have small o�-diagonalelements in that case, and their eigenvalues will be close or identical to thediagonal elements, that is, the bounds (1.60) are largely independent of thesize of the update groups. In principle, the search for optimal partitions ofthe above kind is itself a di�cult optimization problem, but many applica-tions exhibit an intrinsic structure (for example predominantly short-rangeinteractions) which naturally leads to good choices for the updating groups.1.3.6 Network PerformanceThe results obtained thus far demonstrate that the long-time behavior ofneural networks with symmetric synaptic couplings is surprisingly robustwith respect to alterations of model details at both the level of single neu-rons and the level of the overall network dynamics. All systems studiedrelax to �xed-point solutions under appropriate additional conditions onthe synaptic e�cacies and the input-output characteristics.Various prescriptions for the storage of static patterns as �xed-pointattractors have been discussed in the literature [22, 60, 61]. In what follows,I will focus on the Hebbian learning rule (1.23). A statistical mechanicalanalysis of performance measures, such as storage capacity and retrievalquality, can be carried out most readily for networks with McCulloch-Pittsneurons and block-sequential dynamics. It will also be assumed that thenetwork can be partitioned into n �xed update blocks of equal sizeW suchthat there are no interactions within a group [10]. As emphasized before,such a situation can be arranged for many applications that map ontodiluted or geometrically structured networks. In the limiting case W = 1,one recovers the Hop�eld model.To simplify the analysis, neurons are labeled by a double index Sia. The�rst index 1 � i � W refers to the position within an update group, thesecond 1 � a � n labels the update group. The same notation applies tostored patterns ��ia where the additional index �, 1 � � � p, labels thepatterns. With these conventions, the Hebb rule (1.23) becomes



Andreas V.M. Herz xxxiJabij = � 1W (n�1) Pp�=1 ��ia��jb if a 6= b ,0 if a = b . (1.62)The normalization factor N�1 in (1.23) has been changed to [W (n� 1)]�1to guarantee the correct scaling behavior of LDD in the thermodynamiclimit N !1.Statistical mechanics may be used to analyze the emergent properties offeedback neural networks once it has been shown that under a stochasticupdate rule, the network relaxes to a Gibbsian equilibrium distributiongenerated by the Lyapunov function of the deterministic dynamics [22, 60,62]. For Glauber dynamics (1.12) and a one-at-a-time or a parallel updatingscheme such a relation exists as can be shown using the principle of detailedbalance [28].Although LDD is identical to LSD for two-state neurons, a block-sequen-tial realization of Glauber dynamics need not approach a Gibbsian equi-librium distribution. However, in the special case of vanishing connectionstrength within all update groups (1.62), neurons \do not know" about thestate of other neurons in the same group. Thus there is no formal di�er-ence between the block-sequential rule considered here and serial updating,where neurons change their state in consecutive order: every set of W suc-cessive updates of the latter dynamics is identical to one time step in theformer case.In what follows, I focus on the retrieval of unbiased random patternswhere ��ia = �1 with equal probability and study networks at a �nite stor-age level � � pN . The case of large cluster size, W !1, with the numbern of update groups kept �nite will be analyzed; n has to be at least equalto two because according to (1.62), all neurons would be disconnected oth-erwise. Following the replica-symmetric theory of Amit, Gutfreund andSompolinsky [63], a �xed number s of patterns is singled out, and it isassumed that the network is in a state highly correlated with these \con-densed" memories. The remaining patterns are described collectively bya noise term. Notice that for coupling matrices of the form (1.62), boththe overlaps m and spin-glass parameters q have to be de�ned as orderparameters on the level of the update groups. For retrieval solutions, thisrequirement leads to the Ansatzm��a �W�1 WXi=1 ��iaS�ia = m��;1 (1.63)and q��ab �W�1 WXi=1 S�iaS�ib = �ab[���(1� q) + q] (1.64)for a k-fold replicated network, 1 � �; � � k. The resulting �xed-pointequations are
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tanh[T�1fm+p�rzg]�� (1.65)and q = 

tanh2[T�1fm+p�rzg]�� (1.66)where r � q[1� T�1(1� q)]2 � q(n� 1)[n� 1 + T�1(1� q)]2 : (1.67)Double angular brackets represent an average with respect to both thecondensed patterns and the normalized Gaussian random variable z[10].Equations (1.65) { (1.67) closely resemble their counterparts for the Hop-�eld model [63] and become identical to them in the limit of large n. Ona formal level, the same holds for n = 1 but as explained before, this casedoes not correspond to a physical situation. For a general number of up-date groups there exists a �rst-order phase transition at T = 0 between theretrieval state and a spin-glass phase as � is varied. The critical storagelevel is denoted by �c, the corresponding overlap by mc.The relative information content IR, measured per synapse and relativeto that of the Hop�eld model,IR(n) � In(block-sequential)I(random-sequential) = n � �c(n)(n� 1) � �c(Hop�eld) ; (1.68)is a third performance measure. A comparison between various networkarchitectures in terms of all three measures is given in Table 1.The performance of block-sequential updating schemes is quantitativelysimilar to that of the Hop�eld model where �c = 0:138 and mc = 0:97[63]: the capability to retrieve stored random patterns is slightly lowerwhen measured in terms of patterns per neuron, as indicated in the secondcolumn of Table 1, and slightly higher when measured in terms of patternsper synapse, as shown in the last column. Notice, in particular, that theinformation content increases with decreasing network connectivity, thatis, for small n.The results demonstrate that feedback networks can be used to storelarge amounts of information: the number of patterns (each of size N) thatcan be memorized grows linearly with N so that the information storedper synapse remains at a constant value of roughly 0:1 bits per synapse.16Stored patterns can be retrieved from noisy or incomplete data as long asthe storage level remains below the critical level �c. Compared to sequen-tial or fully synchronous update schemes partially parallel schemes o�er a16This number is increased signi�cantly by more elaborate learning rules [64].



Andreas V.M. Herz xxxiiipotentially large advantage in terms of computational costs when imple-mented on a parallel computer allowing for a speed-up that may be as largeas the number of processors without sacri�cing network stability.n �c mc IR2 0.100 0.93 1.453 0.110 0.95 1.204 0.116 0.96 1.125 0.120 0.96 1.09 (1.69)TABLE 1.1 Numerical solution of the saddle-point equations at T = 0.Displayed are the storage capacity �c, the retrieval overlap mc, and therelative information content IR as functions of the number n of updategroups.1.3.7 Intermezzo:DelayedGraded-ResponseNeuronsThe dynamical description of section 1.3.3 neglects any time lags due to�nite propagation velocities of neural signals. As a �rst step towards thegeneral formulation (1.14), one may study models where the communicationtime between neurons is modeled by one �xed delay � ,C ddtui(t) = �R�1ui(t) + NXj=1 JijVj(t� �) + Iexti (t) (1.70)with Vi = gi(ui) : (1.71)A mathematical analysis of this model is quite complicated. Because ofthe discrete delay, the initial condition for each neuron has to be speci�edas a function over a time-interval of length � . Consequently, equations(1.70),(1.71) describe an in�nite-dimensional dynamical system even in thescalar case (N = 1) which will be discussed in detail in Section 1.4.2.Obviously, �xed-point solutions of (1.70),(1.71) do not depend on thetime lag and are thus identical with those of the original model withoutdelays, described by equations (1.40),(1.41). However, equilibria that arestable without delays may become unstable for large enough time lags ascan been veri�ed through a local stability analysis [65].Global results about (1.70),(1.71) have been obtained under conditionsthat exclude nontrivial �xed-point solutions. A proof based on a Lyapunovfunctional shows that in this case there are no limit cycles either [66].The lack of stronger global analytical results illustrates the limits of Lya-punov's direct method. It is often very hard or impossible to �nd a Lya-punov function for a given dynamical system under conditions that admit



Andreas V.M. Herz xxxivinteresting applications | multiple �xed points in the present example. Onthe other hand, there are many cases where one can �nd Lyapunov func-tions as soon as one enlarges the class of systems studied. In the presentcase, one could replace the single discrete lag in (1.70) by a distributeddelay as in (1.14). At a �rst glance, this seems to complicate the analysiseven further. However, there exist nontrivial delay distributions for whichthe dynamics generated by (1.14) admit global Lyapunov functionals [67].The remark applies also to systems with synaptic couplings Jij(�) thatare of the form Jij"(�) where "(�) satis�es a linear ordinary di�erentialequation in � . For instance, if �max = 1 and "(�) = exp(��), one mayrewrite the dynamical equations as a set of 2N ordinary di�erential equa-tions. The example demonstrates that unlike networks with discrete timelags, networks with distributed delays need not represent in�nite dimen-sional dynamical systems. Models with delay distributions that are \re-ducible" in this sense have been studied extensively in the applied math-ematics literature [68]. For a neurobiologically motivated system of twolimit-cycle oscillators with reducible signal delay, a Lyapunov function isgiven in reference [69].1.4 Periodic Limit Cycles and BeyondNatural stimuli provide information in both space and time. Recurrentneural networks with delayed feedback can be programmed to recognize andgenerate such pattern sequences or \temporal associations" [70, 71, 72, 73,74, 75, 76].17 Recurrent networks with a broad distribution of signal delaysand a Hebbian learning rule such as (1.22) are well suited to learn patternsequences as well. [47, 77, 78, 79, 80, 81]. These systems are characterizedby a high degree of compatibility between the network architecture, thetask of learning spatio-temporal associations, and the learning algorithm.As in networks with �xed-point attractors, an initial state or \stimulus"lying in the basin of attraction of a stored \memory" will spontaneouslyevolve towards this attractor. In the present context, however, memoriesare spatio-temporal patterns of neural activity.This section demonstrates that one can understand the computation ofcertain networks with signal delays as a down-hill march on an abstractspatio-temporal energy landscape. The result allows the application of tech-niques developed in the last sections.17A detailed discussion can be found in reference [33].



Andreas V.M. Herz xxxv1.4.1 Discrete-Time DynamicsLet us focus on a synchronous discrete-time dynamics with deterministicMcCulloch-Pitts neurons. For vanishing external inputs, the network dy-namics (1.7),(1.8) becomeSi(t+ 1) = sgn[hi(t)] for all i (1.72)with hi(t) = NXj=1 �maxX�=0 Jij(�)Sj(t� �) : (1.73)In the following, it is assumed that the synaptic couplings Jij(�) satisfythe extended symmetry Jij(�) = Jij(D� (2+ �)). As was shown in Section1.2.4, this symmetry arises if the network is taught cyclic pattern sequencesof equal duration D.The construction of a Lyapunov function for the retrieval dynamics(1.72), (1.73) is facilitated by the following consideration: If the network haslearned cyclic associations with common length D, every correct retrievalsolution corresponds to a D-periodic limit cycle. D-periodic oscillatory so-lutions of a discrete-time network, however, can always be interpreted asstatic states in a �ctitious system of size D �N [50, 51].Let us consider such a \D-plicated" network with D columns andN rows.The neural activities are denoted by Sia where 1 � i � N and 0 � a < D.To reproduce the synchronous dynamics of the original system, neurons Siawith a = t (modulo D) are updated at time t.The time evolution of the new network is block sequential: synchronouswithin single columns and sequential with respect to these columns. Interms of the original variables Si, the new activities Sia are therefore givenby Sia(t) � Si(a+ nt) for a � t (modulo D) and Sia(t) � Si(a+ nt �D)for a > t (modulo D), where nt is de�ned through t � nt + t (modulo D).The update rule readsSia(t+ 1) = � sgn[PNj=1PD�1b=0 Jabij Sjb(t)] if a = t (modulo D),Sia(t) otherwise. (1.74)The synaptic couplings Jabij are de�ned asJabij = Jij�(b� a� 1) (modulo D)� : (1.75)Notice that the time evolution (1.74) of the equivalent �ctitious sys-tem is the same as a block-sequential updating of a network with D �NMcCulloch-Pitts neurons and block sizeN , as is illustrated in Figure 3. Sec-tion 1.3.5 shows how to guarantee that such a system relaxes to �xed pointsonly: through synaptic symmetry together with the condition �min[U(t)] �0.



Andreas V.M. Herz xxxviSynaptic symmetry in the �ctitious system, Jabij = Jbaji , is equivalentto the extended symmetry (1.26) for the original couplings Jij(�). Thesecond condition, �min[U(t)] � 0, is equivalent to �min[J(D� 1)] � 0. Thiscondition can be satis�ed by setting �max = D � 2.It is left as an exercise for the interested reader to show that the Lya-punov function LDD, formulated for the equivalent �ctitious system, maybe rewritten in terms of the original time-delay network asLTD(t) = �12 NXi;j=1 D�1Xa;�=0Jij(�)Si(t� a)Sj�t� (a+ � + 1) (modulo D)� :(1.76)One may once again calculate the di�erence �LTD(t) � LTD(t+1)�LTD(t)and arrives, as expected, at�LTD(t) = � NXi=1�Si(t+ 1)� Si(t+ 1�D)�hi(t) � 0 : (1.77)The derivation may be summarized as follows:Suppose that the synaptic e�cacies of the time-delay network (1.72),(1.73) satisfy the extended symmetry condition (1.26). Then the retrievaldynamics are governed by the Lyapunov function (1.76). The network re-laxes to a �xed-point solution or a limit cycle with Si(t)=Si(t�D), thatis, an oscillatory solution with the same period as that of the taught cyclesor a period which is equal to an integer fraction of D.Due to the equivalence of (1.72),(1.73) with a block-sequential updaterule for the �ctitious system, one may apply the quantitative analysis of Sec-tion 1.3.6 to time-delay networks that store temporal associations. Thereis, however, a slight technical di�culty that has to be handled properly.Storing one D-periodic pattern sequence in the original model correspondsto memorizing D static patterns of size D � N in the equivalent system,each shifted by one column (modulo D) with respect to the next pattern.This complication arises because every sequence may be occuring with its�rst pattern recalled at some time t, or at time t+1, or at time t+2, andso on. In the equivalent D-plicated system, each of these time-shifted cyclictemporal associations corresponds to a new pattern.For generic temporal associations, the analysis becomes rather compli-cated due to nontrivial correlations between shifted copies of the samepattern. If, however, each pattern of a sequence lasts for one time steponly, all relevant correlations are the same as if one had stored D unre-lated patterns. This implies that the results of Section 1.3.6 cover also thestorage of pattern sequences where each pattern lasts for one unit of time.As an example, take D = 2. With the maximal delay �max set to D � 2,�max is zero, and one has recovered the Little model. According to Table1, 0:100N two-cycles of the form  �i1*) �i2 may be recalled as compared to0:138N static patterns [82]: a 1:45-fold increase of the information content
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FIGURE 1.3. Schematic drawing of the dynamics of a time-delay network (c andd) and its equivalent �ctitious system with block-sequential time evolution (a andb). Horizontal axes represent time, vertical axes in (b) and (c) denote the indexof neurons. (a) The pattern \Z" is retrieved in the �ctitious network with �veupdate groups that are represented in (b) by �ve neurons. (c) Time evolutionof one neuron in a network with signal delays and discrete-time dynamics. Thesystem recalls the cyclic pattern sequence \BAACH" as shown in (d).



Andreas V.M. Herz xxxviiiper synapse. At the same time, the retrieval overlap drops slightly from0:97 to 0:93.The performance of networks with distributed delays and D = 4 is dis-played in Table 2.� = 0 1 2 3 �c mc IR"(�) = 1/3 1/3 1/3 0 0.116 0.96 1.12"(�) = 1/2 0 1/2 0 0.100 0.93 1.45"(�) = 0 1 0 0 0.050 0.93 1.45 (1.78)TABLE 1.2. In
uence of the weight distribution on the collective networkproperties. The storage capacity �c, the critical overlapmc, and the relativeinformation content IR are displayed for some choices of "(�) for D = 4.As shown in Table 2, the uniform distribution leads to the largest �cbut smallest IR. The other two networks have the same value of IR as the(unique) D=2 system due to the particular structure of their eigenvaluespectrum. Furthermore, one obtains IR = 1:45 independently of D forall networks with a minimal connectivity where only one synapse linkstwo neurons.18 Simulation data show slightly higher values of �c, possiblyindicating e�ects of replica symmetry breaking as in the Hop�eld model[63].In passing, let me remark that each cycle consists of D patterns so thatthe storage capacity for single patterns is ��c = D�c. During the recognitionprocess, however, each pattern will trigger the cycle it belongs to and cannotbe retrieved as a static memory.If static patterns instead of temporal associations are learned, the synap-tic strengths do not depend on the delay, see also equation (1.23). Thesynaptic couplings still satisfy the extended symmetry, and with �max =D � 2 one recovers the Lyapunov function for networks with McCulloch-Pitts neurons and \multiple-time-step parallel dynamics" [83],LMTS(t) = �12 NXi;j=1 Jij D�2Xa=0 Si(t� a)D�2Xb=0 Sj(t� b) : (1.79)The evolution equations (1.72),(1.73) may be generalized to analog sys-tems with periodic external inputs. Using the \cooking recipes" of Sections1.3.1 { 1.3.4, it is possible to construct a Lyapunov function for that caseas well [84].The learning rule (1.26) may also be utilized to store cycles of correlatedreal-valued pattern sequences. Numerical studies have been performed for18This case is possible if D is an even number.



Andreas V.M. Herz xxxixlow-dimensional trajectories (small N) with high numbers of data points(large D). For many examples, good retrieval could be obtained withoutany need for highly time-consuming supervised learning schemes. How-ever, algorithms of the latter kind facilitate the learning of more sophis-ticated real-world tasks. Here Lyapunov functions are of great help sincethey permit the application of mean-�eld techniques [85] to a wide classof supervised learning strategies such as spatio-temporal extensions of the\Boltzmann Machine" concept [86] and contrastive-learning schemes [87].In closing this section, let me mention that an analysis of the storagecapacity along Gardner's approach [88] has been given in reference [89].Analytical results on highly diluted systems with time lags have also beenobtained [90].1.4.2 Continuous-Time DynamicsThe global dynamics of certain networks with graded-response neuronsand delayed interactions may be studied in a manner similar to that ofSection 1.4.1 [67]. In the following, I will focus on the simplest case, a singleneuron (or a homogeneous assembly of neurons) coupled to itself throughone inhibitory feedback loop with delay � . Equation (1.14) reduces toC ddtu(t) = �R�1u(t)� g[u(t� �)] ; (1.80)where g satis�es the conditionug(u) > 0 for u 6= 0 and g(0) = 0 : (1.81)Solutions of this seemingly simple scalar equation include a �xed pointu(t) = 0 and, depending on the graph of g, periodic limit cycles and chaotictrajectories [91]. Such a diversity of temporal phenomena is possible sincedue to the discrete delay, equation (1.80) describes an in�nite dimensionaldynamical system as was already mentioned in Section 1.3.7.Various aspects of the scalar delay di�erential equation (1.80) have beendiscussed in the mathematics literature. Most articles have concentratedon periodic solutions, in particular on those that are \slowly oscillating,"that is, periodic solutions with zeros spaced at distances larger than thetime lag � . Results about their existence, uniqueness and local stabilityhave been obtained by Kaplan and Yorke [92], Nussbaum [93], and Chowand Walther [94], respectively.The global analysis of (1.80) is simpli�ed signi�cantly if one neglectsthe transmembrane current R�1u(t) and if g is an odd sigmoid function.Without loss of generality, one may set C = � = 1 and study the evolutionequation ddtu(t) = �g[u(t� 1)] : (1.82)



Andreas V.M. Herz xlConsider the auxiliary function LDDE(t),LDDE(t) = � 12 Z 10 Z t+1t+��1 _u(s) _u(s� �) ds d�+ 12 Z 21 Z t+1t+��1 _u(s) _u(s� �) ds d�+ Z t+1t�1 G( _u(s)) ds+ 14[u(t+ 1) + u(t� 1)]2 (1.83)where G(x) is de�ned as in (1.43).19 For bounded nonlinearities g, all solu-tions of (1.82) are bounded. They are di�erentiable for t > 1. Consequently,LDDE(t) is bounded below for t > 2. It follows that for t > 1, the timederivative of LDDE(t) along a solution of (1.82) is well de�ned and givenby ddtLDDE(t)= [ _u(t+ 1) + _u(t� 1)][u(t)� 12u(t+ 1)� 12u(t� 1)]+G( _u(t+ 1))�G( _u(t� 1))+12[u(t+ 1) + u(t� 1)][ _u(t+ 1) + _u(t� 1)]=u(t)[ _u(t+1) + _u(t�1)] +G( _u(t+1))�G( _u(t�1)) : (1.84)Because the input-output characteristic is assumed to be an odd sig-moid function, g�1 is odd, single valued and monotone increasing. Con-sequently, the function G is even and strictly convex. In particular, theequality G( _u(t� 1)) = G(� _u(t� 1)) holds. Performing a Taylor expansionas in (1.51), one therefore obtainsG( _u(t+ 1))�G( _u(t� 1)) � [ _u(t+ 1) + _u(t� 1)]g�1( _u(t+ 1))� �[ _u(t+ 1) + _u(t� 1)]u(t) : (1.85)Equality in (1.85) holds if and only if _u(t + 1) = � _u(t � 1). Taking theevolution equation (1.82) and the strict monotonicity of g into account, thelast equation may also be written u(t) = �u(t� 2).Inserting (1.85) into (1.84), one �nally arrives atddtLDDE(t) � 0 for t � 2 (1.86)19LDDE has been introduced as an explicitly time-dependent function for sim-plicity and has been written in terms of both u and _u for the same reason. Theinitial function may, however, not be di�erentiable. This (purely technical) dif-�culty can be avoided if _u(s) is replaced by �g(u(s � 1)). LDDE may then beproperly de�ned as a functional in the space of continuous functions from theinterval [�2; 0] to the real numbers [95].



Andreas V.M. Herz xli

-1.5

-1

-0.5

0

0.5

1

50 52 54 56 58 60

u
u
.

L

FIGURE 1.4. Time evolution of a single neuron with delayed feedback ac-cording to the evolution equation (1.82). The input-output characteristic isg(u) = tanh(5u). The state variable u is plotted as a solid line, its derivative_u as a dashed line, and the Lyapunov function LDDE as a dotted line. Noticethat LDDE(t) approaches a constant value as required for a Lyapunov functionwhereas u relaxes towards a periodic oscillatory solution with period 4.



Andreas V.M. Herz xliiwhere equaility holds if and only if u(t) = �u(t � 2).20 An illustration isgiven in Figure 4. According to (1.86), LDDE(t) is nonincreasing along everysolution for t > 2. The overall result may be summarized in the followingway:Suppose that the function g is odd, bounded and sigmoid. Then theevolution equation (1.82) admits the Lyapunov function (1.83). Solutionsof (1.82) converge either to the trivial �xed point u = 0 or to a periodiclimit cycle that satis�es u(t) = �u(t� 2) : (1.87)Notice that the period P of the limit cycles does not depend on thegraph of g; according to (1.87), it is always given by P = 44k+1 where k isa nonnegative integer.21 On the other hand, it is well known that for thegeneral equation (1.80), the period of a periodic solution is in
uenced bythe ratio of RC to � and the shape of g [96]. This fact implies that theabove methods can probably not be extended to study delay di�erentialequations of the type (1.80). There is, however, another way to analyzethis equation [97]. To facilitate the discussion, let ti, i 2 IN with ti < ti+1denote the times of consecutive zero crossings u(t) = 0 of a solution of(1.80). One may then prove the following proposition:Assume that the function g is bounded and satis�es the condition (1.81).For every solution u(t) of (1.80), the number n(i) of zero crossings in theinterval [ti � �; ti) is a nonincreasing function of i.This result means that a solution of (1.80) oscillates more and moreslowly around zero as time proceeds. For long times it approaches a solutionwith constant n = n(i), possibly n = 0. In particular, if the system isinitialized with a solution that has n zero crossings in the interval [��; 0) itcan never reach an oscillation with more than n zero crossings in any oneof the intervals [ti � �; ti).Let me brie
y sketch the proof. The reader is also referred to Figure 5.If g is bounded and satis�es the condition (1.81), solutions of (1.80) existfor all positive t and are continuous [98]. Assume without loss of generalitythat at time tj , ddtu(tj) > 0. According to (1.80) and (1.81), this meansthat u(tj � �) < 0 because u(tj) = 0 by de�nition. The same argumentmay be used at time tj+1 where it implies that u(tj+1 � �) > 0 because20The curious reader is invited to compare this result and its derivation withthat for the Little model with antisymmetric couplings (1.54).21Further results derived with the help of LDDE can be found in reference [95].One proof is well suited to highlight the potential of Lyapunov functions | oncethey are found: It can be shown that for large enough g0(0), the global minimumof LDDE is always achieved on a slowly oscillating solution (otherwise on thetrivial �xed point u(t) = 0). This immediately implies that those solutions haveto be asymptotically stable (except for global phase shifts), a conclusion thatpreviously required elaborate analytical techniques.
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FIGURE 1.5. Time evolution of a single graded-response neuron with delayedself inhibition modeled by the delay di�erential equation (1.80). There are zerocrossings of the solution u(t) at time tj , tj+1, and at various earlier (and later)times. In the interval [tj � �; tj+1 � �) two possible solutions are drawn. Theyhave one and three zero crossings, respectively.u(tj+1) = 0 and ddtu(tj+1) < 0. Together with the continuity of u(t), thisimplies that there is an odd number k(j) � 1 of zero crossings in the interval[tj � �; tj+1 � �).Denote the number of zero crossings in the interval [tj+1��; tj) by l(j).22It follows that n(j) = l+ k(j) and n(j+1) = l(j)+1. Since k(j) � 1, bothrelations may be combined to the statement n(j) � n(j + 1) which provesthe proposition.The number of zero crossings in any interval is nonnegative | the func-tion n(i) is bounded below. Since it is nonincreasing along every solution of(1.80), it is an integer-valued Lyapunov function. Accordingly, solutions of(1.80) relax to solutions with constant n(i). Notice that those solutions maybe periodic but could | at least in principle { also be aperiodic. This is asurprising result. It highlights the generality of Lyapunov's second methodin a rather illuminating way.22It is understood that l(j) = 0 if tj+1 � � � tj .



Andreas V.M. Herz xliv1.5 Synchronization of Action PotentialsWhile it may frequently be the case that mean �ring rates are an adequatedescription of neural information, there are many instances where the de-tailed timing and organization of action potentials matters. An importantexample is given by the stimulus-dependent synchronization of action po-tentials [15, 16, 17].Due to the inherent limitations of descriptions based on discrete-timedynamics or mean-�ring rates, realistic synchronization processes are notcaptured by the networks discussed in Sections 1.3 and 1.4. They may,however, be studied using networks with integrate-and-�re neurons, whosetime evolution has been introduced in section 1.2.3.Networks of that type often show globally synchronized neurons when all-to-all couplings are used.23 Note that throughout this section, terms suchas \synchronized neurons" always refer to the time of spike generation.According to this de�nition, a periodic network state (also called a \phase-locked solution") may or may not be \globally synchronized." A globalanalysis for networks described by (1.13), (1.18), and (1.20) has been givenin reference [102]. With excitatory all-to-all couplings of equal strength,nonzero leakage currents, uniform external inputs, and a reset to zero afterspike generation (
 = 0), the size of synchronized clusters is a nondecreasingfunction of time | a (discrete-valued) Lyapunov function! The proof thenshows that such systems indeed approach a globally synchronized solutionwhere all neurons �re in unison.Networks with more general nonuniform interaction admit richer dy-namical behaviour [25, 103, 104]. Equipped with excitatory �nite-rangecouplings, one class of networks relaxes to phase-locked clusters of (locally)synchronized neurons [105, 106]. The shapes and relative phases of theclusters encode information about the initial stimulus. This result is in ac-cordance with the hypothesis that synchronized cortical neurons are usedto bind stimulus features together [107].1.5.1 Phase LockingGlobal results for locally coupled networks with integrate-and-�re neuronshave been obtained in the limiting case R ! 1 of perfectly integratingcells and uniform positive input currents Iexti = I > 0. In this situation,external information is encoded in the initial conditions ui(t = 0), not inthe input currents. This choice is reminiscent of the experimental paradigmof \stimulus induced oscillations" [15]. Due to the constant positive inputcurrent I , each model cell �res regularly if there is no further synaptic23Doubts about the structural stability of simple integrate-and-�re models havebeen raised because some model variants do not exhibit system-wide synchroniza-tion with all-to-all couplings [99, 100, 101].



Andreas V.M. Herz xlvinput from other cells. Thus I�1 represents the spontaneous �ring rate ofan isolated neuron. By rescaling time, the capacitance C and input I in(1.13) can be taken as unity. The overall dynamics may then be summarizedby the following update rules:(i) Initialize the ui(t = 0) in [0; 1] according to the external stimulus.(ii) If ui � 1 and if neuron i is next in the update scheme thenui ! u0i = 
(ui � 1) (1.88)and uj ! u0j = uj + Jji : (1.89)(iii) Repeat step (ii) until ui < 1 for all i.(iv) If the condition of step (ii) does not apply thenddtui = 1 for all i : (1.90)Under the condition that all neurons have the same total incoming synap-tic strength, Xj Jij = A ; (1.91)and the same total outgoing synaptic synaptic strength,Xi Jij = A ; (1.92)one may proof that the simple function LIAF,LIAF = �Xi ui ; (1.93)that is, the (negative) total membrane potential, plays the role of a Lya-punov function for the system de�ned by (i){(iv) as shown in reference[106]:Assume that 
 = 1 and that the synapses satisfy Jij � 0 and the con-straints (1.91) and (1.92) with A < 1. Then the dynamics generated by(1.88) { (1.90) admit the Lyapunov function (1.93) and converge to cyclicattractors with period PIAF = 1�A. On the limit cycle, each neuron �resexactly once in a period.Notice that synaptic symmetry has not been required! This distinguishesthe present model from the networks discussed in the previous sections.



Andreas V.M. Herz xlviDepending on the initial conditions, the limit cycles can contain eventsin which one neuron �res alone, and others in which many neurons �rein synchrony. In networks with excitatory short-range connections only,regions with small variability of the initial conditions are smoothed outand represented by locally synchronized clusters of neurons whose �ringtimes encode the stimulus quality. Regions with high variability, on theother hand, give rise to spatially uncorrelated �ring patterns. Throughappropriate choice of coupling strengths, more complex computations canbe preformed as demonstrated by numerical simulations [106].In order to proof the proposition, let us �rst show that no neuron �resmore than once in any interval of length PIAF.Lemma: Let ni(t; t0) denote the number of times neuron i �res in [t; t0).If the conditions of the proposition hold then ni(t; t+ PIAF) � 1.Starting at time t, if some neuron �res twice before t+ PIAF, then someneuron k must �rst �re twice, and at time t0 < t+PIAF. For that to happen,the total change in uk from t to t0 due to the synaptic currents and theexternal input must be greater than 1. Thus one requires that for neuronk, (t0 � t) (1�A)PIAF +Xj Jkjnj(t; t0) > 1 : (1.94)However, by hypothesis (t0 � t) < PIAF , and since k is the �rst neuron to�re twice, the number nj(t; t0) of �rings of each of the other neurons upto t0 is less than or equal to 1. For Jij nonnegative the left-hand side ofequation (1.94) is less then (1�A) +A = 1. The contradiction shows thatk cannot have �red twice.Returning to the proof of the proposition, let us consider the change ofLIAF in a time interval of length PIAF, �LIAF(t) � LIAF(t+PIAF)�LIAF(t).It is�LIAF(t) = �(1�A)N �Xi;j Jijnj(t; t+PIAF)+Xi ni(t; t+PIAF) : (1.95)The �rst term comes from the constant input current, the second term fromthe e�ect of the �ring of other neurons, and the third term comes from iitself �ring. Using the condition (1.91), one �nds�LIAF(t) = �(1�A)[N �Xi ni(t; t+ PIAF)] (1.96)Due to the lemma, ni(t; t + PIAF) � 1 for all t. The change of LIAFin each time interval PIAF is thus nonpositive. Since LIAF is bounded, thesystem performs a downhill march on the energy landscape generated by theLyapunov function LIAF | if the function is measured after time steps oflength PIAF. The di�erence �LIAF(t) vanishes if and only if ni(t; t+PIAF) =



Andreas V.M. Herz xlvii1 for all i, that is, on periodic limit cycles where every neurons �res exactlyonce in a time interval of length PIAF [106].24To avoid the unfamiliar evaluation of the Lyapunov function LIAF at thediscrete times t+ kPIAF, k 2 IN , one may alternatively use the functional~LIAF = Z PIAF0 LIAF(s)ds : (1.97)Along solutions, ~LIAF is di�erentiable with ddtLIAF(t) = �LIAF(t) for allt � 0, so that the previous conclusions are reached again. For an illustra-tion, see Figure 6.1.5.2 Rapid ConvergenceThe results of the previous section prove that speci�c networks of integrate-and-�re neurons approach phase-locked solutions. Numerical simulationsof these and more general networks [102, 106, 108, 109, 110, 111] indicatethat the convergence process takes place in a very short time | see alsoFigure 6.25 This observation can be substantiated under certain conditions[105, 106]:Assume that the synapses satisfy Jij � 0 and the condition (1.91) withA < 1. Then all solutions of (1.88) { (1.90) converge to cyclic attractorswith period PIAF = 1 � A. The limit cycles are reached as soon as everyneuron has �red once. On the limit cycle, each neuron �res exactly once ina period.Notice that although the conditions on 
 and on the sum of outgoingsynaptic strength have been dropped, the conclusions are now strongerthan in the previous proposition. However, the proof given is not based ona Lyapunov function so that the concept of a down-hill march on an energylandscape generated by the Lyapunov function is not available anymore.The lack of a Lyapunov function might also be a drawback when stochasticextensions are considered in the future.26Let tmax denote the �rst time where every neuron has �red at leastonce. Some cells may have �red repeatedly before tmax, depending on the24A related proof has been given in reference [35].25In general, clusters of locally synchronized neurons will slowly reorganize.The models analyzed in this article are an exception in that they do not showsuch slow relaxation phenomena.26The sentence re
ects the author's hope that it might be possible to constructsimple stochastic dynamics of integrate-and-�re neurons such that the Lyapunovfunction of the noiseless dynamics determines a Gibbs distribution for the stochas-tic extension. Equilibrium statistical mechanics could then be applied to analyzethe collective phenomena in networks of integrate-and-�re neurons in the samespirit as this has been done for neural network models discussed in Sections 1.3and 1.4. Regrettably, such evolution equations have not been found yet.
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FIGURE 1.6. Rapid local synchronization of action potentials. Shown are resultsfrom numerical simulations of a planar network with 40 � 40 integrate-and-�reneurons (R�1 = 0, 
 = 1), periodic boundary conditions and nearest-neighborinteractions of strength Jnn = 0:24. Each dot in the upper trace represents thenumber of simultaneous action potentials as a function of time. The lower tracedepicts the time evolution of the Lyapunov function LIAF (solid line) and theLyapunov functional ~LIAF (dashed line). The inset veri�es that, as predicted, thelatter approaches a constant value.



Andreas V.M. Herz xlixparameter values and initial conditions. Let ti denote the last time whenneuron i �res before tmax, tmin the minimum of all these times ti, and k acell that �res at tmin for the last time.By de�nition, every cell discharges at least once in the interval [tmin;tmax].This implies in particular that every neuron j from which cell k receivessynaptic input emits one or more action potentials in that interval. Eachspike adds Jkj to uk. The total change of uk in [tmin; tmax] is thus equal orgreater than A+tmax�tmin. This number has to be smaller than 1 becauseotherwise, neuron k would �re a second time in the interval [tmin; tmax] incontradiction to the assumption. It follows that tmax � tmin < PIAF.Going back to Section 1.5.1, one notices that the condition on the sumof outgoing synaptic strengths (1.92), although essential for the proof ofthe main proposition, is not required for the proof of the lemma: Thelemma is also valid under the weaker conditions of the present section.Evaluated at time t = tmax�PIAF and combined with the previous results,the lemma implies that every cell �res exactly once in [tmin; tmax] and nocell �res in (tmax � PIAF; tmin). Since tmax � 1, the last result proves thatin �nite time tmax�PIAF, all limit cycles are approached in the sense thatui(t) = ui(t+PIAF) for t � tmax�PIAF. The argument also shows that theattractors are reached as soon as every neuron has �red once.The proof does not depend on the details of the reset mechanism. Thismeans that it covers not only the present model with arbitrary 0 � 
 � 1but also all schemes where a neuron i �ring at time t is relaxed to somevalue between 0 and ui(t�)�1. Perhaps surprisingly, this allows stochasticupdatings during the transient phase.In all model variants except from the limiting case 
 = 1 limit cycleswith period PIAF and one spike per cycle cannot occur if a neuron is drivenabove threshold. In events with multiple neurons �ring \at the same time,"the potentials have to be �ne-tuned such that if neuron i is triggered byneuron j, ui(t�) = 1�Jij . This implies that although every �ring sequenceof the model with 
 = 1 can be realized in these models, the volume of allattractors is greatly reduced when measured in the space of the dynamicalvariables ui.1.6 ConclusionsThe examples presented in this article demonstrate that Lyapunov's directmethod has widespread applications within the theory of recurrent neuralnetworks. With respect to the list of levels of analysis sketched in theIntroduction, it has been shown that Lyapunov's method is most helpfulon the second level which deals with questions about the type of attractorspossible in a neural network.Combined with powerful techniques from statistical mechanics, Lyapu-nov's approach allows not only for a qualitative understanding of the global



Andreas V.M. Herz ldynamics but also for quantitative results about the collective network be-havior. As shown in Sections 1.3, 1.4, and 1.5, Lyapunov's method appliesto the retrieval of static patterns in networks with instantaneous interac-tions, to the recall of spatio-temporal associations in networks with signaldelays, and to synchronization processes in networks of integrate-and-�reneurons.There remain numerous interesting questions about the global dynamicsof feedback neural networks. These include questions concerning the conver-gence of network models with discrete-time dynamics, symmetric couplingsand overlapping delays (see Figure 1d). Numerical simulations suggest thatsuch systems relax to �xed-point solutions [112] but the analytic resultsfrom the computer-science literature [55, 56, 57, 58] only cover the casewhere a single pattern is stored in the network.With regard to networks with transmission delays, it would be inter-esting to know more about the global dynamics generated by equations(1.70),(1.71) under conditions that admit multiple �xed-point attractors.With a similar interest in mind, one could try to perform a statistical me-chanical analysis of the system (1.72),(1.73) with delay-independent sym-metric couplings (1.23) to study the in
uence of signal delays on the col-lective properties of networks that store static patterns.In the proofs concerning integrate-and-�re neurons, synaptic strengthswere assumed to be excitatory. There is, however, strong numerical evidencethat inhibition does not change the overall results [106]. If the synaptic cou-plings continue to satisfy the condition (1.91) with A < 1 and if the networkparameters are chosen such that there are no run-away solutions and nosolutions with neurons that are permanently below threshold, then all sim-ulations of the dynamics generated by (1.88) { (1.90) approach periodiclimit cycles of period PIAF = 1 � A. For leaky integrate-and-�re models(�nite R), the same is true but the period is given by the period PLIAF ofthe globally synchronized solution in such a system,PLIAF = RC[ln(RI �A)� ln(RI � 1)] : (1.98)This observation gives hope that further understanding of integrate-and-�re models is possible although the mathematical situation is more com-plicated than in the cases discussed in Section 1.5. A convergence proofbased on Lyapunov functions such as (1.93) is possible because every pe-riodic solution of the model has the same period. This is not the case formodels for �nite R as shown by the following counterexample. Considera spatio-temporal \checkerboard" pattern, where the \black" sites �re ateven multiples of �=2, the \white" sites at odd multiples of �=2. A self-consistent calculation of the �ring pattern leads to an implicit equation for�, Ae� �2RC +RI [1� e� �RC ] = 1 : (1.99)



Andreas V.M. Herz liExcept from the limiting case R ! 1, � di�ers from the period of theglobally synchronized solution. A linear stability analysis veri�es that thecheckerboard pattern is unstable but its mere existence indicates that it willbe di�cult to �nd Lyapunov functions for leaky integrate-and-�re models.More generally, one may ask which conditions in the proofs of Sections1.3, 1.4, and 1.5 can be violated without changing the desired emergent net-work behavior. These questions deal with the structural stability of neuralnetworks, the �fth level of analysis, and have to be answered if one wants toevaluate the biological relevance of speci�c networks. In order to keep thearticle within reasonable bounds, this topic has not been discussed here. Aparticularly important issue, the convergence of \conventional" recurrentneural networks (of the type studied in Section 1.3) without synaptic sym-metry, has been studied extensively in the literature [113, 114]. In passinglet me note that one may always generate speci�c asymmetric networksthrough appropriate transformations of both the coupling matrix and dy-namical variables of systems with symmetric interactions.There are a number of other topics related to the main theme of thisarticle that could not be included. Let me brie
y list two of these issues.First, one may design dynamical systems such that they perform a down-hill march on an energy landscape that encodes some optimization task [59].Various biologically motivated examples can be found in the computer-vision literature [115, 116].Second, one may construct feedback networks that possess desired at-tractors but no spurious stable states [117, 118]. The construction of sucharti�cial associative memories is greatly facilitated if one deliberately liftsmodeling restrictions that would otherwise be naturally imposed by bio-logical constraints.Let me close with a general comment: \associative computation" meansthat many di�erent inputs are mapped onto few output states. The timeevolution of a dynamical system that performs such a computation is char-acterized by a contraction in its state space, that is, it is dissipative.27 Thisobservation suggests that many dynamical systems that have been usedas models for associative computation may admit Lyapunov functions. Asemphasized in Section 1.3.7, minor modi�cations of the models may beneeded to satisfy technical requirements.In view of the many Lyapunov functions already found, I would like toconclude with a remark from the monograph of Rouche, Habets and Laloy[3]: \Lyapunov's second method has the undeserved reputation of beingmainly of theoretical interest, because auxiliary functions are so di�cult toconstruct. We feel this is the opinion of those people who have not reallytried . . . "27The threshold operation of a two-state neuron might be interpreted as aspecial realization of this contraction process.
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