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Global Analysis of
Recurrent Neural Networks

Andreas V.M. Herz!

ABSTRACT The article reviews recurrent neural networks whose retrieval
dynamics have been analyzed on a global level using Lyapunov functions.
Discrete-time and continuous-time descriptions are discussed. Special at-
tention is given to distributed network dynamics, models with signal delays,
and systems with integrate-and-fire neurons. The examples demonstrate
that Lyapunov’s approach provides powerful tools to study the retrieval of
fixed-point memories, the recall of temporal associations, and the synchro-
nization of action potentials in networks with spiking neurons.

1.1 Global Analysis — Why?

Information processing may be defined as the systematic manipulation of
external data through the internal dynamics of some biological system or
artificial device. In general, such a manipulation requires a highly nontrivial
mapping between input data and output states. Important parts of this
task can be accomplished with recurrent neural networks characterized by
massive nonlinear feedback: triggered by an appropriate external stimulus,
such systems relax towards attractors that encode some a priori knowledge
or previously stored memories.

Within this approach to associative information processing, understand-
ing the computational capabilities of a neural network is equivalent to
knowing its complete attractor structure, that is, knowing what kind of in-
put drives the network to which of its possibly time-dependent attractors.
Understanding the computational properties of a recurrent neural network
thus requires at least three levels of analysis. (i) What can be said about
the existence and stability of fixed-point solutions? (ii) Are there static
attractors only or are there also periodic limit cycles and aperiodic attrac-
tors, as expected for generic nonlinear systems? (iii) What is the structure
of the basins of attraction?

Questions about the precise time evolution between the initial network
state and the final output define a forth level of analysis. Though less im-
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portant within the framework of attractor neural networks, these questions
are highly relevant for systems that extract information ‘en route’ without
waiting for the arrival at some attractor [1]. At a fifth level of analysis,
one might finally be interested in questions concerning the structural sta-
bility of a given network, that is, its robustness under small changes of the
evolution equations.

With regard to the computational capabilities of a neural network, ques-
tions about the type of attractor and the structure of basins of attraction
are of paramount importance. These questions deal with global properties
of the network dynamics. Accordingly, they cannot be answered using local
techniques only: a linear stability analysis of fixed-point solutions, the first
level of analysis, may reveal helpful knowledge about the network behavior
very close to equilibria, but it can never be used to rule out the existence
of additional time-dependent attractors that may dominate large parts of
the network’s state space. Due to computational constraints, numerical
simulations can offer limited additional information only.

Highly simplified network models provide a partial solution in that they
often permit the application of global mathematical tools. However, such
formal networks are characterized by bold approximations of biological
structures. In the manner of good caricatures, they may nevertheless cap-
ture features that are also essential for more detailed descriptions.

One of the global mathematical tools is Lyapunov’s “direct” or “second
method” [2]. In the present context, it may be described as follows. Let
the vector © = (x1,...,xN) denote the state variables of a neural network.
These variables change in time according to some evolution equation, for
example a set of coupled differential equations %azz = fi(x) if time is mod-
eled as a continuous variable ¢. A solution will be denoted by z(t). If there
exists an auxiliary scalar state function L(z) that is bounded below and
nonincreasing along all trajectories, then the network has to approach a so-
lution for which L(¢) = L(z(t)) does not vary in time.? The global dynamics
can then be visualized as a down-hill march on an “energy landscape” gen-
erated by L. In this picture, every solution approaches the bottom of the
valley in which it was initialized.

The asymptotic expression for L(t) and the equation £L(t) = 0 con-
tain valuable information about the very nature of the attractors the
first and second level of analysis. Notice in particular that a solution that
corresponds to a local minimum of the Lyapunov function has to be asymp-

2Special care has to be taken with respect to unbounded solutions and con-
tinuous families of solutions with equal L. Let me remark at this point that in
the present article, formal rigor will often be sacrificed for transparency of pre-
sentation. A mathematically rigorous introduction to Lyapunov functions can be
found in the monograph of Rouche, Habets and Laloy [3]. It contains — apart
from a large number of interesting theorems and proofs  also some fascinating
examples that illuminate possible pitfalls due to imprecise definitions.
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totically stable, that is, it attracts every solution sufficiently close to it.
As an example, consider a gradient system

dz; OL(x)
=— . 1.1
Using the chain rule, the time derivative of L is given by
N N
—L(t) = —— = . 1.2
dt *) izlaxi dt ;(dt) (1.2)

The last expression is negative unless z(t) is a fixed-point solution. It follows
that if L(z) is bounded below, the system has to relax to equilibria.

The most important feature of Lyapunov’s direct method cannot be
overemphasized: the method does not require any knowledge about the
precise time evolution of the network; the mere existence of a bounded
function that is nonincreasing along every solution suffices to character-
ize the system’s long-time behavior. As a consequence, one can analyze
the long-time dynamics of a feedback network without actually solving its
equations of motion. Furthermore, most Lyapunov functions studied in this
article play a role similar to that of the Hamiltonian of a conservative sys-
tem: for certain stochastic extensions of the deterministic time evolution,
the network dynamics approach a Gibbsian equilibrium distribution gener-
ated by the Lyapunov function of the noiseless dynamics. This has allowed
the application of powerful techniques from statistical mechanics and has
led to quantitative results about the performance of recurrent neural net-
works far beyond the limits of a local stability analysis. The existence of a
Lyapunov function is thus of great conceptual as well as technical impor-
tance.

Lyapunov’s method suffers, however, from one serious flaw: no systematic
technique is known to decide whether a dynamical system admits a Lya-
punov function or not. Finding Lyapunov functions requires experience,
intuition, and luck. Fortunately, a wealth of knowledge on both practical
and theoretical issues has been accumulated over the years.

The present, article is intended as an overview of neural network archi-
tectures and dynamics where Lyapunov’s method has been successfully
employed to study the global network behavior. A general framework for
modeling the dynamics of biological neural networks is developed in Section
1.2. This framework allows for a classification of various dynamical schemes
found in the literature and facilitates the formal analysis presented in later
sections.

Recurrent networks that relax to fixed-point attractors only have been
used as auto-associative memories for static patterns. Section 1.3 reviews
convergence criteria for a number of prototypical networks; the Hopfield
model [4], the Little model [5], systems with graded-response neurons [6, 7],
iterated-map networks [8] and networks with distributed dynamics [9, 10].
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A statistical mechanical analysis of networks with block-sequential dynam-
ics and results about the convergence to fixed points in networks with signal
delays conclude the section.

Neural networks with signal delays can be trained to learn pattern se-
quences. Such systems are analyzed in Section 1.4. It is shown that with
a discrete time evolution, these networks can be mapped onto “equiva-
lent networks” with block-sequential updating and no time delays. This
connection allows for a quantitative analysis of the storage of temporal
associations in time-delay networks. Next, the time evolution of a single
neuron with delayed feedback and continuous-time dynamics is discussed.
Two different Lyapunov functions are presented. The first shows that un-
der certain conditions, all solutions approach special periodic attractors;
the second demonstrates that under less restrictive conditions, the system
relaxes to time-varying solutions that need not be periodic.

The pulse-like nature of neural activity has frequently been modeled us-
ing (coupled) threshold elements that discharge rapidly when they reach
a trigger threshold. With uniform positive couplings, some networks com-
posed of such “integrate-and-fire neurons” approach globally synchronized
solutions where all neurons fire in unison. With more general coupling
schemes, the systems approach phase-locked solutions where neurons only
exhibit locally synchronized pulse activity. Section 1.5 presents Lyapunov
functions for such a class of integrate-and-fire models. An additional proof
shows that the phase-locked solutions are reached in minimal time.

1.2 A Framework for Neural Dynamics

Starting with a brief description of the anatomy and physiology of single
neurons, this section introduces a general framework for modeling neural
dynamics.

1.2.1 DESCRIPTION OF SINGLE NEURONS

Neurons consist of three distinct structures: dendrites, cell body, and axon.
Dendrites are thin nerve fibers and form highly branched structures called
dendritic trees. They extend from the central part of a neuron, the cell
body or soma, which contains the cell nucleus. The axon, a single long
fiber, projects from the soma and eventually branches into strands and
substrands. Located along the axon and at its endings are synapses that
connect one (“presynaptic”) neuron to the dendrites and/or cell bodies of
other (“postsynaptic”) neurons [11].

Neurons communicate via an exchange of electrochemical signals. At rest,
a cell is held at a negative potential relative to the exterior through selective
ion pumps in the cell membrane. If the potential at the soma exceeds a firing
threshold due to incoming signals, a strong electrical pulse is generated.
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This excitation is called an action potential or spike. It is propagated along
the axon by an active transport process that results in a soliton-like pulse
of almost constant size and duration [12]. Following the generation of a
spike, the membrane potential quickly drops to a subthreshold value. After
the event, the neuron has to recover for a short time of a few milliseconds
before it can become active again. This time interval is called the refractory
period.

At synapses, action potentials trigger the release of neurotransmitters,
chemical substances that diffuse to the postsynaptic cell where they bind to
receptors. This process leads to changes of the local membrane properties of
the postsynaptic neuron, causing either an increase or decrease of the local
potential. In the first case, the synapse is called an excitatory synapse;
in the second case, an inhibitory synapse. Through (diffusive) transport
processes along the dendritic tree, an incoming signal finally arrives at
the soma of the postsynaptic neuron where it makes a, usually minute,
contribution to the membrane potential.

How can one construct a mathematical framework for neural dynamics
that may be used to analyze large networks of interconnected neurons?

Let me begin with the description of neural output activity. A spike is
an all-or-none event and may thus be modeled by a binary variable as was
pointed out by McCulloch and Pitts [13]. It will be denoted by S; = +1
where ¢ enumerates the neurons. This specific representation emphasizes
the resemblance between McCulloch-Pitts neurons and Ising spins.? Fol-
lowing the conventional notation, S; = 1 means that cell 7 is firing an
action potential, and S; = —1 means that the cell is quiescent.

In an alternative formulation, a quiescent cell is denoted by S; = 0. Both
representations are equivalent if the network parameters are transformed
appropriately. In the integrate-and-fire models to be discussed in the article,
the duration of action potentials is set to zero for simplicity. To obtain a
nonvanishing pulse integral, a spike is modeled by a Dirac é-function, so
that formally speaking, one is dealing with a 0/co-representation of action
potentials.

An action potential is generated if the membrane potential u; exceeds a
firing threshold winresh- Since the trigger process operates without signifi-
cant time lags, spike generation (in the +1-representation) may be written

S;(t) = sgn[u;(t) — Ughresh) (1.3)

where sgn(z) denotes the signum function.

3The Tsing model [14] provides an extremely simple and elegant description of
ferromagnets and has become one of the most thoroughly studied models in solid-
state physics. The formal similarity between certain extensions of this model,
namely spin glasses, and neural networks such as the Hopfield model has stim-
ulated the application of statistical mechanics to neural information processing,
see also Section 1.3.6.
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In most models to be analyzed in this article, the membrane potential
u; is not reset after the emission of an action potential. An important
exception are networks with integrate-and-fire neurons whose precise reset
mechanism is discussed in Section 1.2.3.

Some cortical areas exhibit pronounced coherent activity of many neu-
rons on the time scale of interspike intervals, that is, 10—100 ms [15, 16, 17].
Modeling this phenomenon requires a description of output activity in
terms of single spikes, for example by using integrate-and-fire neurons.* In
other cases, the exact timing of individual action potentials does not seem
to carry any relevant information. One may then switch to a description in
terms of a coarse-grained variable, the short-time averaged firing rate V.
Unlike the binary outputs of McCulloch-Pitts neurons, the firing rate is a
continuous variable. The firing rate varies between zero and a maximal rate
Viax which is determined by the refractory period. Within a firing-rate de-
scription, model neurons are called “analog neurons” or “graded-response
neurons.”

In such a real-valued representation of output activity, the threshold
operation (1.3) is replaced by an s-shaped (“sigmoid”) transfer function to
describe the graded response of the firing rate to changes of the membrane
potential,

Vi(t) = gilui(t)] (1.4)

with ¢g; : IR = [0, Vinax]. The functions g; can be obtained from neuro-
physiological measurements of the response characteristic of a cell under
quasi-stationary conditions.

Once generated by a neuron, say neuron j, an action potential travels as
a sharp pulse along the axon and arrives at a synapse with neuron i after
some time lag 7;;. The delay depends on the distance traveled by the signal
and its propagation speed and may be as long as 10 — 50 ms. It follows that
the release of neurotransmitter at time ¢ does not depend on the present
presynaptic activity but that it should be modeled by some function whose
argument is the earlier activity S;(t — 7;;). Diffusion across the synaptic
cleft adds a distributed delay which is usually modeled by an integral kernel
with a single hump.

What remains in the modeling process is the formalization of the den-
dritic and somatic signal processing. The force driving the membrane po-
tential u; up or down will be called the local field and denoted by h;.
Formally, the local field can always be written as a power series of the
synaptic input currents. The exact form of the coefficients depends on the
microscopic cell properties.

Dendrites and cell bodies are complex extended objects with intricate

* Alternative approaches are discussed in the contribution of Gerstner and van
Hemmen in this volume [18].
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internal dynamics. This implies that within any accurate microscopic de-
scription, even the dendrites and soma of a single cell have to be repre-
sented by a large number of parameters and dynamical variables [19, 20].5
However, such a detailed approach cannot be pursued to analyze the time
evolution of large networks of highly interconnected neurons as they are
found in the cerebral cortex where a neuron may be connected with up to
10,000 other cells [21].

The theory of formal neural networks offers a radical solution to this
fundamental problem. Following a long tradition in statistical physics, the
theory is built upon the premise that detailed properties of single cells
are not essential for an understanding of the collective behavior of large
systems of interacting neurons: “Beyond a certain level complex function
must be a result of the interaction of large numbers of simple elements,
each chosen from a small variety.” [22]. This point of view invites a long and
controversial debate about modeling the brain and, more general, modeling
complex biological systems. Such a discussion is beyond the scope and
intention of the present article. Instead, I will cautiously adopt this position
as a powerful working hypothesis whose neurobiological foundations require
further investigation.® The advantage is obvious: under the assumption
that the function of large neural networks does not depend on microscopic
details of single cells, and knowing that in general, many incoming signals
are necessary to trigger an action potential, it is sufficient to consider just
the first terms of the power series defining the local field h;. For the rest
of this article, I will use the simplest approach and take only linear terms
into account. The local field may then be written

hat) = Z /0 " L (Vi = P 4 T (1.5)

For two-state neurons, the term V;(t — 7) is replaced by S;(t — 7). The
weight J;;(7) describes the influence of presynaptic activity of neuron j at
time ¢t — 7 on the local field of neuron 7 at time . Input currents due to
external stimuli are denoted by I*(¢).

The temporal details of signal transmission are reflected in the functional
dependence of J;;(7) upon the delay time 7. Axonal signal propagation
corresponds to a discrete time lag, diffusion processes across the synapses
and along the dendrites result in delay distributions with single peaks.
Distributed time lags with multiple peaks may be used to include pathways

"The argument applies to axons as well, but due to the emergent simplicity of
axonal signal transport — action potentials are characterized by a dynamically
stabilized, fixed pulse shape  a macroscopic description in terms of all-or-none
events is justified.

SUnexpected support for this viewpoint comes from elaborate computer sim-
ulations of the dynamics of single cerebellar Purkinje cells [23].
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via interneurons that are not explicitly represented in the model. A synapse
is excitatory if J;;(7) > 0 and inhibitory if J;;(7) < 0. Self couplings
Jii(7) that are strongly negative for small delays may be used to model
refractoriness [24, 25].7 In network models without synaptic and dendritic
delays, the local field h; is identical with the total synaptic input current
to neuron 4, often denoted by I; in the neural network literature.

As shown in this section, there are three main variables to describe the
activity of single neurons  the membrane potential u;, the output activity
V; or S;, and the local field h;. These three variables correspond to the three
main parts of a neuron — soma, axon, and dendritic tree. The strongly
nonlinear dependence of V; or S; upon u; captures the “decision process”
of aneuron  to fire or not to fire. This decision is based on some evaluation
of the weighted average h; of incoming signals. To close the last gap in the
general framework, one has to specify the dynamical relation between the
membrane potential u; and the local field h;.

If there are no transmission delays, equations (1.3) — (1.5) contain only
a single time argument and no time derivatives, that is, they do not de-
scribe any dynamical law. It follows that the relation between w; and h;
has to be formulated as an evolution equation. If one opts for a description
where time is treated as a discrete variable, the evolution equation will be
a difference equation, otherwise a differential equation. As a first approxi-
mation, both types of dynamical description may be linear since the main
source for nonlinear behavior, namely spike generation, is already described
by equation (1.3) or (1.4).

1.2.2 DISCRETE-TIME DYNAMICS

Within a discrete-time approach, time advances in steps of fixed length,
usually taken to be unity. To obtain a consistent description, all signal de-
lays should then be nonnegative integers. Accordingly, the temporal integral
S Jij (1) S (t—T)dr in (1.5) is replaced by a sum 7™ Ji;(7)S; (t — 7).

In a discrete-time model, the most straightforward dynamical relation

between u; and h; is the shift operation

wi(t +1) = hy(t) . (1.6)

At a first glance, this dynamical relation neglects any inertia of the mem-
brane potential caused by a nonzero transmembrane capacitance. Accord-
ing to (1.6), the membrane potentials are just time-shifted copies of the
local fields. Inertia could be included on the single-neuron level by an ad-
ditive term awu;(t) on the right-hand side of (1.6), however, a similar effect
can be obtained through a proper choice of the update rule for the overall

"In some sense, the same is achieved in integrate-and-fire models where the
membrane potential is explicitly reset after spike generation.
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network as will be discussed at the end of this section.
For two-state neurons, equations (1.3), (1.5) and (1.6) may be combined
to yield the single-neuron dynamics

Si(t +1) = sgnlhi(1)] (1.7)
where N
hi(t) = 32> TSt =) + 1) (18)

The term wuipresn has been absorbed in If"t without loss of generality. In
passing, let me remark that in the exceptional case h;(t) = 0, it is advis-
able to supplement (1.7) by the convention S;(t + 1) = S;(t) for (purely
technical) reasons that will become apparent in Section 1.3.1.

For analog neurons, equations (1.7) and (1.8) are replaced by

Vi(t +1) = gi[hi(t)] (1.9)
and
N Tmax
hi(t) = Z > T (mVilt —71) + I 1) (1.10)

The membrane potential u; does not appear in equations (1.7) - (1.10)
anymore as the single-neuron description has been reduced from three to
two variables — output activity and local field. Either one might be used
as a state variable.

Neurotransmitters are released in small packages by a stochastic mech-
anism that includes spontaneous release at times when no spikes arrive at
a synapse [26, 27]. This phenomenon, known as synaptic noise, is the most
important source for stochasticity in neural signal transmission.

If one takes synaptic noise into account, the local field becomes a fluctu-
ating quantity h; + v; where v; denotes the stochastic contributions. The
probability of spike generation is then equal to the probability that the lo-
cal field exceeds the firing threshold. For two-state neurons, this probability
may be written as

Prob[S;(t + 1) = +1] = f[hi(t)] (1.11)

where Prob denotes probability and f : IR — [0, 1] is a monotone increasing
function.

A careful analysis of synaptic transmission reveals that under the as-
sumption of linear dendritic processing, the stochastic variable v; is dis-
tributed according to a Gaussian probability distribution [22, 28]. In that
case equation (1.11) can be approximated by

Prob[Si(t + 1) = +1] = {1+ tanh[3hi(1)] } (1.12)
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where T = B! is a measure of the noise level. In the limit as T — 0,
one recovers the deterministic threshold dynamics (1.7). In the physics
literature, the update rule (1.12) is known as Glauber dynamics [29]. It
was invented as a heat-bath algorithm for the Ising model [14] and has
become an important tool to analyze the collective properties of many-
particle systems.

Equations (1.7) (1.10) describe the time evolution of individual neurons.
This leaves a number of options for the updating process at the level of the
overall network [10].

First, there is the question of how many neurons may change their state
at a time. Theoretical investigations of recurrent networks with discrete-
time dynamics have almost exclusively focused on two cases: parallel dy-
namics (PD) and sequential dynamics (SD). In the former case, all neurons
are updated in perfect synchrony which has led to the name “synchronous
dynamics.” In the latter case, only one neuron is picked at each time to
evaluate its new state — “one-at-a-time updating” — while the activi-
ties of all other neurons remain constant. Parallel updating and sequential
updating are two extreme realizations of discrete-time dynamics. Interme-
diate schemes will be called distributed dynamics (DD) and include block-
sequential iterations where the network is partitioned into fixed clusters of
simultaneously updated neurons.

Next, there is the question how groups (of one or more neurons) are
selected at each time step. One may have a fixed partition of the network
or one may choose random samples at each time step. Alternatively one may
study selective mechanisms such as a maximum-field or greedy dynamics
[30]. Here, the neuron with the largest local field opposite to its own activity
is updated.®

Network dynamics are said to be fair sampling if on an intermediate
time scale no neuron is skipped for the updating process on average. The
terminology emphasizes the similarity with the idea of “fairness” used by
the computer science community [31]. On a conceptual level, fair sampling
assures that all neurons have a chance to explore the part of phase space
accessible to them through their single-neuron dynamics. Most computa-
tionally useful iteration schemes are of this type. All updating schemes with
a fixed partition or a random selection process are fair sampling. Exceptions
may only occur in pathological situations within selective algorithms.

Finally, there is the question whether signal delays may or may not over-
lap, as is illustrated in Figure 1. The latter case is of utmost importance
for the storage and retrieval of pattern sequences as will be discussed in
Section 1.4.

8The network dynamics of integrate-and-fire neurons may also be viewed as
a selective update process: only those neurons whose local fields are larger then
the threshold are active for the duration of an action potential. After that time,
both output S; and membrane potential u; are reset to their rest values.
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FIGURE 1.1. Schematic representation of discrete-time updating schemes. Hor-
izontal axes represent time, ticks on the vertical axes label the neurons. Delays
due to transmission and computation times are indicated by the finite duration
of the updating “event” for a given neuron. Clocked networks have ticks on the
time axis. (a) One-at-a-time or sequential dynamics (SD); (b) Synchronous or
parallel dynamics (PD); (c) Distributed dynamics (DD): still clocked, but with
arbitrary update groups at each time step; (d) Fully asynchronous dynamics,
including overlapping delays.
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Summarizing the above discussion, updating rules for networks with dis-
tributed discrete-time dynamics may be categorized according to the fol-
lowing five criteria:

1. Description of output activity: (a) discrete; (b) continuous.
2. Single-neuron dynamics: (a) deterministic; (b) stochastic.
3. Size of group to be updated at each time step:

(a) all neurons  parallel dynamics (PD);
(b) some neurons — distributed dynamics (DD);

(c) one neuron  sequential dynamics (SD).

4. Selection of the update group at each time step: (a) fixed partition;
(b) random sample; (c) selective choice.

5. Handling of delays: (a) overlapping not allowed; (b) overlapping al-
lowed.

Most discrete-time descriptions appearing in the literature can be classi-
fied by these five criteria. For instance, Caianiello’s model [32] uses McCul-
loch-Pitts neurons (rule 1a) and includes a broad distribution of transmis-
sion delays (rule 5b). All neurons are updated at the same time (rule 3a and
4a) according to a deterministic threshold operation (rule 2a). The Little
model [5] differs from Caianiello’s approach in that it describes single neu-
rons as stochastic elements (rule 2b) with instantaneous interactions only
(rule 5a). In the Hopfield model [4], neurons are updated one at a time
(rule 3c), again without signal delays (rule 5a).

If neurons are picked in a random order, there is a nonzero chance that a
neuron is skipped during an elementary cycle of the network dynamics. On
the level of macroscopic order parameters, this leads to an effective inertia
comparable to that generated by an additive term aw;(t) in (1.6).°

In closing this section, let me introduce some helpful notation: networks
with deterministic parallel dynamics, continuous neurons and no transmis-
sion delays (rule 1b, 2a, 3a, 4a, 5a) will be called iterated-map networks
(IM), those with (a broad distribution of) transmission delays and a de-
terministic parallel dynamics (rule 2a, 3a, 4a, 5b) will be referred to as
time-delay networks (TD).

9For a derivation of the evolution equations of macroscopic order parameters,
see for example reference [33].
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1.2.3 ConTINUOUS-TIME DYNAMICS

The step size in a discrete-time description is usually identified with the
duration of an action potential. This implies on the one hand that such a
description cannot accomodate the time resolution required to study the
synchronization of action potentials.'® On the other hand, the feedback
delay implicitly built into any discrete-time description may lead to dy-
namical artefacts such as spurious oscillations. To avoid both problems,
one may alternatively study networks with continuous-time dynamics.

Graded-Response Neurons

Membrane potentials of real neurons are subject to leakage currents due
to the finite resistivity of biological membranes. Once charged by a short
input current modeled by the local field h;(t), the membrane potential u;(¢)
of cell i relaxes to some rest value which is set to zero for simplicity.

The physics of charging and leakage is best captured by the linear first-
order differential equation

d -1
C’Eui(t) = —R u(t) + hi(t) . (1.13)

Here C' denotes the input capacitance of a neuron and R is its transmem-
brane resistance. Model neurons whose membrane potential changes ac-
cording to the differential equation (1.13) will be called graded-response
neurons (GR).

Inserting equation (1.5) into (1.13), the time evolution of graded-response
neurons may be written

Tmax

d 1 al t
C’Eui(t) =—R ‘u(t) + ; ./0 Jij (T)V;(t —T)dr + I7*'(t) (1.14)

where, as in Section 1.2.1, the output activity V; depends on the membrane
potential u; through the nonlinear response characteristic (1.4).

Similar to the discrete-time dynamics considered in Section 1.2.2, one of
the original three variables to describe neural activity has become superflu-
ous. In Section 1.2.2, the membrane potential u;(t) was expressed through
the (time-shifted) local field h;(t — 1), now the local field h;(t) has been
replaced by the membrane potential u;(¢) and its time derivative 4;(t).

Decreasing the step size leads to a complication in the mathematical formula-
tion because one is forced to introduce effective delayed interactions if one wants
to assure that action potentials last for multiple elementary time steps.
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Integrate-and-Fire Neurons

Below the firing threshold, (leaky) integrate-and-fire neurons operate in the
same way as graded-response neurons (1.13). However, when the membrane
potential of a cell reaches the threshold u¢presn, the cell produces an action
potential and resets its potential to ureser- FOr convenience, units can be
chosen such that tipresn = 1 and Upeget = 0.

Assuming vanishing signal delays and action potentials of negligible du-
ration, the local field h;(t) of neuron i is then given by

hi(t) =Y Jifi () + I (2) (1.15)
J
where the instantaneous firing rate f;(¢) is a sum of Dirac J-functions
£ =36 — ) (1.16)

and the 7 are the times at which neuron j generates an action poten-
tial. Throughout the remaining sections on integrate-and-fire neurons, the
external input I$¥*(¢) is assumed to be constant in time, I¢*t(t) = I$t.

The general behavior of the system is now as follows. While none of the
neurons is producing an action potential, equation (1.13) can be integrated
and yields

(t—tg)

ui(t) = [u;(td) — RIFY e "R + RI*  fort >t (1.17)

where 7y denotes the last firing time. When the potential u; of neuron j
reaches 1 (the threshold) it drops instantaneously to 0. At the same time,
the potential u; of each neuron i to which 57 makes a synapse is increased
by Jij.

Because the duration of action potentials and of synaptic currents have
been set equal to zero, the description given so far contains an ambiguity.
To which value should neuron 7 be reset if at time ¢ an action potential is
produced by cell 7, if the synapse from j to i is excitatory, J;; > 0, and if
u;(t~) > 1—J;;7 For in this case, the action potential will raise u; above 1,
and cell ¢ should generate its action potential during the flow of synaptic
current produced by the synapse J;;. When synaptic (and dendritic) time
constants of the nerve cells to be modeled are longer than the duration of
action potentials, what should actually happen in the model is that cell j
should fire when its potential reaches uhresh = 1, and the synaptic current
from synapse .J;; which arrives after ¢ fires should be integrated to yield a
positive potential (relative to treset) afterward. Thus, if cell j fires first and
at time ¢, and that event evokes a firing of neuron i, then after both action
potentials have been generated, the two membrane potentials should be

ui (t*) = Jji (1.18)



Andreas V.M. Herz XV

and
’Il,,j(t+) = 1l,i(t7) + J,j —1. (119)

The first equation represents the fact that j fired first when u; = 1, was
reset to 0, and when subsequently neuron i generated its action potential,
this changed the potential of j to Jj;. The second equation represents the
fact that ¢ fired second, reduced its potential by 1 when it did so, but
received the synaptic current .J;; when neuron j fired.

The updating rule can be generalized to a large network of neurons by
the following algorithm. As the potentials all increase with time, a first
neuron j reaches u; = 1. Reset that potential to zero. Then change the
potential of each neuron i by J;;. If, following this procedure, some of
the potentials become greater than 1, pick the neuron with the largest
potential, say neuron k, and decrease its potential by 1.'' Then change
the potential of each neuron [ by .Jj;. Continue the procedure until no
membrane potential is greater than 1. Then “resume the flow of time,” and
again let each potential u; increase according to equation (1.17).

This deterministic algorithm preserves the essence of the idea that firing
an action potential carries a neuron from Ugnhresh tO Ureset, and effectively
apportions the synaptic current into a part which is necessary to reach
threshold, and a part which raises the potential again afterward. Because
the firing of one neuron can set off the instantaneous firing of others, this
model can generate events in which many neurons are active simultane-
ously.

When synaptic (and dendritic) time constants are shorter than the du-
ration of an action potential, all contributions from the synaptic current
that arrive during spike generation are lost, and equation (1.19) should be
replaced by u;(t*) = J;;. Generalizing from these two extreme cases, (1.19)
becomes

ui(t+) = ui(tf) + ’}/(Ji]' — 1) (1.20)
with 0 <y < 1.

For models with v = 1, the order in which the neurons are updated in
an event in which several neurons fire at once does not matter as long as
Ji; > 0. For these cases any procedure for choosing the updating sequence
of the neurons at or above threshold will yield the same result because
the reset is by a fixed negative amount (here: —1) regardless of whether
immediately prior to reset u; = 1 or u; > 1.

If in addition to choosing v = 1, the limit R — oo is considered, one
is dealing with perfectly integrating cells. For a network of such neurons,
the cumulative effects of action potentials and slow membrane dynamics
commute if J;; > 0. This makes the model formally equivalent to a class of

11 . . .
If several neurons exhibit the same, maximum potential, one may use some
fixed, random, or selective update order to pick one of them.
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“Abelian avalanche” models [34, 35]. Closely related earthquake models and
(discrete-time) “sandpile models” relax to a critical state with fluctuations
on all length-scales, a phenomenon known as “self-organized criticality”
[36].

The similarity between the microscopic dynamics of such model systems
and networks of integrate-and-fire neurons has led to speculations about a
possible biological role of the stationary self-organized critical state [37, 38,
39]. However, whereas for earthquakes, avalanches, and sandpiles, the main
interest is in the properties of the stationary state, for neural computation,
it is the convergence process itself which does the computation and is thus
of particular interest. Furthermore, computational decisions must be taken
rapidly, and in any event the assumption of constant input from other
cortical areas implicit in all models breaks down at longer times [40, 41].

1.2.4 HEBBIAN LEARNING

The previous sections focused on the dynamics of neural activity. Synaptic
efficacies were treated as time-independent parameters. Real synapses, how-
ever, are often modifiable. As postulated by D.O. Hebb [42], their strengths
may change in response to correlated pre- and postsynaptic activity: “When
an axon of cell A is near enough to excite cell B and repeatedly or persis-
tently takes part in firing it, some growth process or metabolic change takes
place in one or both cells such that A’s efficiency, as one of the cells firing
B is increased.”

Hebbian plasticity has long been recognized as a key element for asso-
ciative learning [43].'> How should it be implemented in a formal neural
network that might include transmission delays?

Hebbian learning is local in both space and time: changes in synaptic
efficacies depend only on the activity of the presynaptic neuron and the
evoked postsynaptic response. Within the present framework, presynaptic
activity is described by the axonal output V; or S;. Which neural variable
should be chosen to model the postsynaptic response?

Neurophysiological experiments demonstrate that postsynaptic spiking is
not required to induce long-term potentiation (LTP) of synaptic efficacies

“a critical amount of postsynaptic depolarization is normally required to
induce LTP in active synapses, but sodium spikes do not play an essential
role in the LTP mechanism” [45]. This result implies that the postsynaptic
response is best described by the local field h; — it represents the dendritic
potential and is not influenced by the detailed dynamics of the cell body
(u;) or the spike generating mechanism (V; or S;).

Let us now study a discrete-time system where delays arise due to the

2Various hypotheses about the microscopic mechanisms of synaptic plasticity
are the subject of an ongoing discussion [44].
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finite propagation speed of axonal signals, and focus on a connection with
delay 7 between neurons j and i. Originally, Hebb’s postulate was formu-
lated for excitatory synapses only, but for simplicity, it will be applied to
all synapses of the model network.

A presynaptic action potential that arrives at the synapse at time ¢t
was generated at time ¢ — 7. Following the above reasoning, J;;(7) should
therefore be altered by an amount that depends on Vj(t — 7) and h;(t),
most simply their product

AJZ']‘(T) X hi(t)Vj(t—T)At . (1.21)
The bilinear expression (1.21) does not cover saturation effects. They could
be modeled by an additional decay term —a.J;;(7) At on the right-hand side
of (1.21).

The combined equations (1.3) (1.5) and (1.21) describe a “double dy-
namics” where both neurons and synapses change in time. In general, such
a system of coupled nonlinear evolution equations cannot be analyzed using
Lyapunovs’ direct method although there are some interesting counterex-
amples [46]. To simplify the analysis, one usually splits the network oper-
ation in two phases learning and retrieval. For the learning phase, one
frequently considers a “clamped” scheme where neurons evolve according
to external inputs only, h;(t) = If*'(¢). Once the learning sessions are over
the J;;(7) are kept fixed.

In the following, I focus on deterministic discrete-time McCulloch-Pitts
neurons in a clamped scheme with I**(#) = +1. This simplification implies
that S;(t+1) = I$**(t). Starting with a tabula rasa, J;;(1) = 0, one obtains
after P learning sessions, labeled by p and each of duration D,

P D,
Tij (1) =e(@NT YN I ) Ity — 1 —7) = e(r)Ji(7) . (1.22)

pn=1t,=1

The parameters £(7) model morphological characteristics of the axonal de-
lay lines; N~! is a scaling factor useful for the theoretical analysis. Let
me mention that an input sequence should be offered already Tpax time
steps before the learning session starts so that all variables in (1.22) are
well defined. According to (1.22) synapses act as microscopic feature de-
tectors during the learning sessions: they measure and store correlations
of the taught sequences in both space (i,j) and time (7). This leads to a
resonance phenomenon where connections with delays that approximately
match the time course of the external input receive maximum strength.
Note that these connections are also the ones that would support a stable
sequence of the same duration. Thus, due to a subtle interplay between ex-
ternal stimulus and internal architecture (distribution of 7’s), the Hebb rule
(1.22), which prima facie appears to be instructive in character, exhibits

3

in fact pronounced selective characteristics [47].
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An external stimulus encoded in a network with a broad distribution of
transmission delays enjoys a rather multifaceted representation. Synaptic
couplings with delays that are short compared to the typical time scale
of single patterns within the taught sequence are almost symmetric in the
sense that J;;(7) = J;j;(7). These synapses encode the individual patterns
of the sequence as unrelated static objects. On the other hand, synapses
with transmission delays of the order of the duration of single patterns of
the sequence are able to detect the transitions between patterns. The corre-
sponding synaptic efficacies are asymmetric and establish various temporal
relations between the patterns, thereby representing the complete sequence
as one dynamic object.

Let me remark that the interplay between neural and synaptic dynamics,
and in particular the role of transmission delays, has been a subject of
intensive research [32, 42, 48, 49]. The full consequences for the learning
and retrieval of temporal associations have, however, been explored only
recently.

As a special case of (1.22), consider the Hebbian learning of static pat-
terns, If*'(t,) = &Y, offered during learning sessions of equal duration
D, = D to a network with a uniform delay distribution. For mathematical
convenience, the distribution is taken to be ¢(r) = D~'. In this case, (1.22)
yields synaptic strengths that are independent of the delay 7,

P
Tij(r) = Ty = N"1Y el (1.23)
p=1

and symmetric,

Jij = Jji - (1.24)

The synaptic symmetry (1.24) plays a key role for the construction of Lya-
punov functions as will be shown in the following sections.

Another kind of symmetry arises if all input sequences I£*'(¢,,) are cyclic
with equal periods D, = D. If one defines patterns &/, by &8 = If*'(t, = a)
for 0 < a < D, one obtains from (1.22)

P D-1

T(r) =Ny el L (1.25)

p=1 a=0

Note that the synaptic strengths are now in general asymmetric. They do,
however, obey the symmetry Ji;(t) = Ji;(D — (2 + 7)). For all networks
whose a priori weights £(7) satisty e(r) = e(D — (2 + 7)), this leads to an
“extended synaptic symmetry” [50, 51]

3

Jij(1) = Jij(D = (24 7)) , (1.26)

extending the previous symmetry (1.24) in a natural way to the tempo-
ral domain. This type of synaptic symmetry allows the construction of a
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Lyapunov function for time-delay networks as will be explained in Section
1.4.1.

1.3 Fixed Points

This section focuses on the storage of static patterns in networks with
instantaneous interactions. It will be shown that under certain conditions
for the model parameters, various network dynamics exhibit the same long-
time behavior: they relax to fixed points only.

Feedback networks with fixed-point attractors can be made potentially
useful devices for associative computation as soon as on knows how to
embed desired activity patterns as attractors of the dynamics. In such
circumstances, an initial state or “stimulus” lying in the basin of attraction
of a stored “memory” will spontaneously evolve towards this attractor.
Within a biological context, the arrival at the fixed point may be interpreted
as a cognitive event, namely the “recognition of the stimulus.”

The hypothesis that the brain utilizes fixed-point attractors to perform
associative information processing has led to quantitative predictions [52]
which are in good agreement with neurophysiological measurements [53].
However, even if the hypothesis was refuted in its literal sense, it would
nevertheless continue to provide an important conceptual tool to think
about neural information processing.

1.3.1 SEQUENTIAL DyNAMICS: HOPFIELD MODEL

Hopfield’s original approach [4] is based on McCulloch-Pitts neurons with
discrete-time dynamics, instantaneous interactions and constant external
stimuli. Neurons are updated one at a time, either according to a determin-
istic threshold operation (1.7) or probabilistic Glauber dynamics (1.12). In
the original model, neurons are chosen in a random sequential manner but
in simulations, the update order is often fixed in advance, corresponding to
a quenched random selection. Within the classification scheme of Section
1.2.2; the Hopfield model is thus characterized by rules 1a, 3c, and 5a.

If the single-neuron dynamics are deterministic, the time evolution of the
network is a special realization of (1.7),(1.8) and may be written

3

Sk(t + 1) = sgn[hg(t)] (1.27)

where k is the index of the neuron updated at time ¢ and

hy, (t) = Z kaSj(t) + IZXt . (1.28)

All other neurons remain unchanged, S;(t + 1) = S;(¢) for j # k.
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What can be said about the global dynamics generated by equations
(1.27) and (1.28)? Consider the quantity

1 N N
Lsp = —5 > JiiSiS; Zz;xts,-, : (1.29)

i,j=1

The change of Lgp in a single time step, ALgp(t) = Lsp(t + 1) — Lsp(¢),
is

ALso() = — 5 30 JylSilt 4 DS;(t+1) -~ 5i(0)S; (0]
— D ISt +1) - Si(t)] - (1.30)

Assume again that neuron k is updated at time ¢. The difference AS;(t) =
S;(t+1)—S;(t) equals zero or £2 if j = k and vanishes otherwise. For the
qpemal case where the synaptic efficacies satisfy the symmetry condition
(1.24), one obtains

ALsp(t) = ASk(t) Jur Sk (t) — ASk(t Z Tk S;(t) + 19

_ _%Jkk[Ask(t)]Q — ASk(t)hx(t). (1.31)

According to (1.27) and the remark following (1.8), neuron k does not
change its state if hg(t)Sk(t) > 0. If this condition is not fulfilled, the
neuron flips and ASg(¢t) = 2Si(¢t + 1). The change of Lgp may then be
written

ALgn(t) = =2[Jkk + Sk(t + 1)hg(t)]
=2[ T + [he(8)]] - (1.32)

The last line follows from the evolution equation (1.27) and the identity
|a] = a sgn(a). Equation (1.32) proves that Lsp is nonincreasing along
every solution if the self couplings .J;; are nonnegative.!® As a finite sum
of finite terms, Lgp is bounded. If J; > 0 for all neurons, Lgp(t) has to
approach a limit as ¢ — oco. Furthermore, ALgp(t) vanishes only if the

'3This condition is satisfied in Hopfield’s original model where all self couplings
are set to zero.
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neuron updated at time ¢ does not change its state.!* This proves that the
Hopfield network relaxes to fixed-point solutions only. According to (1.27)
and (1.28) these equilibria satisfy

S; = sgn[z JijSj + I for all i . (1.33)
J
The results obtained may be summarized as follows:

If the synaptic efficacies J;; satisfy the symmetry condition (1.24) and if
the self interactions J;; are nonnegative, then the dynamics of the Hopfield
model (1.27),(1.28) admit the Lyapunov function (1.29) and converge to
fixed points (1.33) only.

Let me clarify a potentially confusing point. For neural networks with
McCulloch-Pitts neurons, the state space consists of the corners of an N-
dimensional hypercube {—1, +1}", also known as Hamming space. In this
discrete space, the smallest state change possible is a single spin flip, S; —
—S;. As a consequence, the system may converge to fixed points that are not
stable with respect to activity changes of single neurons, in the sense that
a single spin flip made to a fixed-point solution could actually lower L. For
instance, consider a network where for some neuron i, the self interaction
J;; dominates possible contributions from other neurons, .J; > Z#i [Ji;l-
In such a case, the initial value of S; will never be changed, independent
of its sign. The earlier results about network convergence continue to hold,
that is, the system evolves towards fixed-point solutions only, but those are
not necessarily local minima of L in the discrete-space sense.

1.3.2 PARALLEL DyNAMICS: LITTLE MODEL

The Little model [5] uses the most simple discrete-time dynamics conceiv-
able: it is a network of McCulloch-Pitts neurons, updated in parallel using
instantaneous interactions only (rule 1a, 3a, 4a, and 5a). Within a deter-
ministic description of single neurons (rule 2a), the time evolution of the
network is given by

Si(t + 1) = sgn[h;(t)] for all i (1.34)

where

hi(t) = JigS;(8) + I (1.35)

Except for the update order, equations (1.34) and (1.35) are identical to
(1.27) and (1.28). Accordingly, the fixed-point solutions of the Little model

"For zero self coupling Jyx, and in the exceptional case hy(t) = 0, ALsp(t)
vanishes for any update rule, even if one chooses Si(t +1) = —Sk(t) if hi(t) = 0.
However, if one sets S (t+1) = Sk (¢) as mentioned in Section 1.2.1, ALsn(t) = 0
implies ASy(t) = 0 as desired.
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are the same as those of the Hopfield model, given by (1.33). Are there
additional time-dependent attractors?

For simplicity, only the case If** = 0 will be analyzed in this section.
Nonzero inputs will be treated in Sections 1.3.4 and 1.3.5. As in Section
1.3.1, let me focus on networks with symmetric couplings and study the
time evolution of a suitable auxiliary function

N N
Lep ==Y |hil = =" hi sgn(h;) . (1.36)
i=1 i=1

If one evaluates this expression along a solution generated by the network
dynamics (1.34) and (1.35), one obtains

Lep(t) = =Y hi(t)Si(t +1)

[
!
=~
n
‘oé
=
+
=

(1.37)
Using the synaptic symmetry (1.24), the last line may also be written

N
Len(t) == Sjt)h;(t+1) . (1.38)

j=

—

The difference ALpp(t) = Lpp(t + 1) — Lpp(t) is then

Mz

ALpp(t) = — \hzt+1\+ZS i(t+1)

i=1

[S;(t+2) — S;(H)]hi(t + 1) (1.39)

I
_MZ

Il
-

(2

where (1.34) has been used to obtain the last equation.

Like Lgp, the function Lpp is bounded. Evaluated along any solution of
(1.34) and (1.35), Lpp is nonincreasing because the right-hand side of (1.39)
is nonpositive; the product S;(¢)h;(t + 1) is £h;(t + 1) and thus smaller or
at most equal to |h;(t + 1)|. Consequently, ALpp(t) has to approach zero
as t — oo. ALpp(t) vanishes only if the system settles into a state with
Si(t 4+ 2) = Si(t) for all i, that is, a fixed-point solution (1.33) or a limit
cycle of period two. In the latter case, some neurons switch between firing
and quiescence at every time step, all other neurons remain in one activity
state:
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Assume that the synaptic couplings J;; satisfy the symmetry condition
(1.24). Then the dynamics of the Little model (1.34),(1.35) admit the Lya-
punov function (1.36) and converge to fixed points (1.33) or period-two
oscillations.

As will be shown in Section 1.3.5, the oscillating solutions can be excluded
under additional assumptions for the synaptic couplings.

1.3.3 ConTINUOUS TIME: GRADED-RESPONSE NEURONS

This section deals with the continuous-time dynamics of neural networks
composed of analog neurons without signal delays. The network dynamics
(1.14) reduce to a set of coupled ordinary differential equations,

N
d — ext
Coui=—R Yug + ; Jii Vi + I (1.40)
where
V;' = gz(ul) . (1.41)

Since the dynamical variables u; and V; in (1.40) are taken at equal times,
all temporal arguments have been omitted.

The input-output relation g; will be called “sigmoid” if it is increasing,
differentiable and grows in magnitude more slowly than linearly for large
positive or negative arguments. The maximum slope of g; will be referred to
as the gain v; of neuron i. The nonlinearity is often modeled by a hyperbolic
tangent, g;(u;) = 3[1 + tanh(v;u;)]. In the high-gain limit 7; — oo, one
obtains a 0/1 representation of neural activity. It can be mapped onto
Ising spins [14] through the identification S; = 2V; — 1.

Cohen and Grossberg [6] and Hopfield [7] studied the global behavior of
networks with graded-response neurons, sigmoid response functions, and
symmetric synapses. They used Lyapunov functions of the form

N N N
1 oxt _
Lor =5 > JiViVj — ;1 W+ Z;R 'Gi(Vh) (1.42)

ij=1

where the functions G;(V;) are given by

Vi
Gi(V;) = /0 g; ' (z)dz . (1.43)

The last expression is well defined because sigmoid nonlinearities are
strictly monotone by definition. Since sigmoid functions grow less than
linearly for large absolute arguments, the functions G;(V;) increase faster
than VZ-2 as V; = *o00. The function Lgr is therefore bounded below.
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Let us compute the time derivative of Lgg along a solution of the network
dynamics. Using the synaptic symmetry (1.24), one obtains

d N N AV
ZLan(t) = - S DTV + I — Ry o
i=1 j=1

_1 du; dV;
dt dt

_1/du;\2dg;
1 7 Yi < ] ]
¢ ( dt ) du; — 0 (1.44)

I
”MZ
Q

q
Il
-

Il
“-

Il
-

(2

The formula proves that the function Lgr is nonincreasing along every
trajectory. The time derivative vanishes only at equilibria, given by

Vi = gi[RY_ Ji;V; + R, (1.45)
J

or at network states, where dg;/du; = 0 for all i. If, however, the latter
states do not satisfy (1.45), the system will continue to evolve according to
(1.40),(1.41). The final result may be stated as follows:

Suppose that the synaptic efficacies in a network of graded-response
neurons (1.40),(1.41) respect the symmetry condition (1.24) and that the
input-output relations are sigmoid. Then the network dynamics admit the
Lyapunov function (1.42) and relax to fixed-point solutions (1.45) only.

A comparison of the Lyapunov function Lggr with the Lyapunov func-
tion Lgp provides some hints about how to construct Lyapunov functions
for systems with sigmoid input-output characteristics: the additional term
> R7'G;(V;) dominates the quadratic term f% Z” J;;ViV; for large V; if
the g; are sigmoid. Consequently, the function Lgg is bounded below even
if the V; are not.'® Furthermore, the term ), R~'G;(V;) is constructed in
such a way that its partial derivative with respect to V; supplies the term
R~'u; which makes it possible to insert the evolution equation (1.40) into
(1.44). Similar ideas will be applied in Sections 1.3.4 and 1.3.5 to analyze
discrete-time networks with sigmoid nonlinearities.

1.3.4 ITERATED-MAP NETWORKS

Feedback networks with deterministic analog elements and synchronous
discrete-time updating have been studied for a long time [32, 48, 49]. For
vanishing signal delays and fixed inputs, the network dynamics (1.9),(1.10)
become

51t should be noted that if a Lyapunov function is not globally bounded below,
it might still be used for a local analysis.
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Vi(t + 1) = g;[hi(t)] for all i (1.46)

where

N
)= JiVi(t) + I (1.47)

Systems described by (1.46) and (1.47) have been called “iterated-map
networks” [8]. Their fixed points coincide with those of graded-response
networks (1.45) once one sets R = 1.

If the input-output functions g; are threshold functions, g;(u;) = sgn(u;),
one recovers the Little model (1.34),(1.35). This connection indicates that
one may find a Lyapunov function for iterated-map networks by combining
appropriate parts of the Lyapunov function for the Little model with that
for networks of graded-response neurons.

Let us follow the approach of Marcus and Westervelt [8] and study the
time evolution of the function

Lim(t Z Ji Vi)Vt — 1) Zlext )+ Vi(t —1)]

+ Z[Gi(vi(t)) + GV =), (1.48)

where G;(V;) is defined as in (1.43).

Apart from a global time shift, the first term in (1.48) corresponds to Lpp
as can be seen from equation (1.37); the other terms should be compared
with the second and third term in (1.42). Notice that unlike Lpp (1.36),
the function Ly is written as an explicitly time-dependent function with
temporal arguments ¢ and ¢ — 1. In principle, one could use the evolution
equations (1.46) and (1.47) and replace V;(t) by gl[z L i Vit —1)+ I8
so as to obtain a description that involves a smgle tlme argument only.
However, since we are mainly interested in the evaluation of Lpy along
trajectories, the shorter definition (1.48) suffices.

Under the assumption of synaptic symmetry (1.24), the temporal differ-
ence ALy (t) = Liv (t + 1) — L (t) is

ALt Z hi()AxVi(t) + ) [Gi(Vi(t +1)) = Gi(Vi(t = 1))] (1.49)

where

ApVi(t) = Vi(t +1) = Vi(t — 1) (1.50)

is the change of V; over 2 time steps.
The right-hand side of (1.49) is zero if A,V;(t) = 0 for all i. Let us
analyze the case where A,V;(t) # 0 for at least some i. For sigmoid g;,
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g;] is single valued and increasing. Consequently, G; is strictly convex.
Through a Taylor expansion of G;(V;(t — 1)) around V;(¢ + 1), one obtains

Gi(Vi(t+1)) = Gi(Vi(t — 1)) < AVi()G3(Vi(t + 1)) (1.51)

For a graphical illustration of the inequality, see the left part of Figure 2.
Inserting the identity

Gi(Vi(t + 1)) = g; " (Vi(t + 1)) = ha(1) (1.52)
and (1.51) into (1.49), one arrives at the expression
ALm(t) <0 (1.53)

where the strict inequality holds if A;V;(¢) # 0 for at least one neuron.

As demonstrated in the last section, the functions G;(V;) increase faster
than V;? for large |V;|. This result implies that Ly is bounded below. As
shown by (1.53), the function Ly strictly decreases along any solution of
(1.46),(1.47) unless A,V;(t) = 0 for all neurons. The derivation may be
summarized in the following way:

Assume that the synaptic efficacies in an iterated-map network (1.46),
(1.47) are symmetric (1.24) and that the nonlinearities are sigmoid. Then
the network dynamics admit the Lyapunov function (1.48) and relax to
fixed points solutions (1.45) or period-two oscillations.

In closing this section, let me briefly discuss antisymmetric synaptic cou-
plings,

Jij = =Jji - (1.54)

The derivation of Section 1.3.2 for the Little model (with no external input)
shows that if (1.54) holds, one obtains

N
ALpp(t) ==Y [Si(t+2)+ Si(®)]hi(t +1) . (1.55)
i=1
In this case the network approaches solutions that satisfy S;(t+2) = —S;(¢),
that is, special limit cycles with period 4 [54].

It is left as an exercise to verify the same result for iterated maps without
external input. Here, an additional condition is required, namely that the
input-output characteristics have to be odd functions, g;(V;) = —g;(=V3).
The interested reader may also try to construct Lyapunov functions for
more general systems. In particular, he or she could look at two problems.
(i) What kind of time-varying external stimuli can be incorporated into
the Lyapunov function of the Little model if one focuses on antisymmet-
ric couplings? (ii) Are there Lyapunov functions for neural networks with
McCulloch-Pitts neurons, antisymmetric couplings and sequential dynam-
ics with fixed update order?
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FIGURE 1.2. Illustration of the inequalities (1.51) and (1.58) for a sigmoid in-
put-output function g;(V;). The convex function G;(V;) is defined in equation
(1.43). The straight line on the left-hand side and the parabola on the right-hand
side are tangent to Gi(V;). The inequality (1.51) is the statement A < B, the
inequality (1.58) is the statement C' < D.

1.3.5 DISTRIBUTED DYNAMICS

In this section discrete-time updating schemes are considered that gener-
alize beyond the Hopfield and Little models on both the single-neuron and
network levels. Neurons are described by continuous variables with deter-
ministic single-cell dynamics, that is they fall into class 1b and 2a in the
scheme of Section 1.2.2. McCulloch-Pitts neurons with stochastic Glauber
dynamics are discussed in Section 1.3.6. For the network dynamics, all
choices of rules 3 and 4 are allowed that are fair sampling and do not lead
to overlapping delays (rule 5a). The network dynamics are thus defined by
a set of coupled nonlinear discrete-time equations

. N 1. ext ep e e .
Vit + 1) = { i};(zj:] JijVi(t) + IXY)  ifdiisin U(¢),

3(1) otherwise.

(1.56)

Here, U(t) denotes the group of neurons updated at time ¢. The distributed
dynamics (1.56) reduce to block-sequential algorithms studied by Goles-
Chacc et al. [9] if one considers McCulloch-Pitts neurons and fixed update
groups Uy, k=0,1,..., K — 1 with U(t) = Ug(modulo K)-

There are a number of reasons to study partially parallel network dy-
namics such as (1.56). First, one may achieve a better understanding of the
essential ingredients needed to construct feedback networks that possess
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fixed-point attractors only. Second, distributed dynamics map naturally on
the architecture of parallel computers or computer networks. Third, the
evolution equations (1.56) extend iterative methods that have been devel-
oped within the computer-science community to solve nonlinear systems
of equations [55, 56, 57, 58] to systems with noncontracting functions and
multiple solutions.

What can be said about the long-time behavior of neural networks with
distributed dynamics? As in Sections 1.3.1 1.3.4, let us assume that the
synaptic couplings are symmetric (1.24) and that the input-output char-
acteristics are sigmoid. Consider again the Lyapunov function of networks
with graded-response neurons (1.42). The function will now be called Lpp
to distinguish its discrete-time evolution from the continuous-time evolu-
tion of Section 1.3.3.

The only neurons that may change their state at time ¢ belong to the
update group U (t). Accordingly, AV;(t) = V;(t + 1) — V;(t) vanishes for all
other neurons. Using the symmetry (1.24) of the synaptic couplings, the
change ALpp(t) = Lpp(t + 1) — Lpp(¢) is given by

ALpp(t) = - 5 Z > T AVi()AV;(E Z Vi) AV (t)

1EU( ) JEU(t)

= Y AV + Y [GiVi(t + 1)) — ( i(t) - (1.57)

i€U(t) ieU(t)

Since the functions g;(V;) are assumed to be sigmoid, the auxiliary func-
tions G;(V;) are again strictly convex. Expanding G;(V;(t)) to second order
around V;(¢ + 1) and replacing the coefficient of the quadratic term with
the smallest possible value, that is ’y{l, the following upper bound can be
established (see also the right part of Figure 2):

Gi(Vi(t +1)) = Gi(Vi(1)) < AVi(H)G(Vi(t + 1)) — —[AV( Wyt (1.58)
Equality holds if and only if V;(¢ + 1) = V;(¢). Inserting (1.52) and (1.58)
into (1.57) gives

ALoo() < 3 30 0 (i +6u7 DAVOAV (). (159)

zeU( ) jEU(t)

To facilitate the further discussion, let us define W (#) as the number of
neurons in the group U (¢) and symmetric matrices U(t) of dimension W (¢)x
W (t) as submatrices of the connection matrix J, given by the synaptic
strengths of those neurons that are updated at time ¢. For the Hopfield
model (1.27),(1.28), where updating is one-at-a-time, W (¢) = 1 for all ¢,
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and U(t) reduces to the self-interaction term .J;; where i denotes the neuron
being updated at time ¢. For the Little model (1.34),(1.35) or iterated-
map analog networks (1.46),(1.47), the matrix is identical to J itself. As is
obvious from these limiting cases, the structure of the set of matrices U ()
encodes the global dynamics.

The maximum neuron gain in the update group U(t) will be denoted
by () and the minimum eigenvalue of the matrix U(¢) by Amin[U(2)].
Since for arbitrary symmetric matrices A and B, Apin[A + B] > Anin[A]+

Amin[B], a sufficient condition for AL(t) < 0 is given by

Amin[U®#)] > —y(t) L. (1.60)

If the above condition holds for all ¢, Lpp(t) is strictly decreasing as long
as Vi(t + 1) # Vi(t) for at least some i in the update group U(t). As
before, the function Lpp is bounded below. The network therefore relaxes
asymptotically to a state where L does not vary in time if all directions
in the space spanned by the neural activities are explored, that is, if the
updating scheme is fair sampling. Since equality in (1.58) and (1.59) holds
only if V;(t + 1) = V;(t), all solutions of (1.56) with time-independent Lpp
are fixed-point solutions [10]. The result may be stated as follows:

Suppose the following three conditions hold: a) the updating rule is fair
sampling, b) the neuron transfer functions are sigmoid, and c) the sym-
metric connection matrix satisfies (1.60) for all times. Then the distributed
dynamics (1.56) admit the Lyapunov function (1.42) and converge to fixed
points only.

For iterated-map networks, U(¢) is constant in time and equals the set of
all neurons. The criterion A\yin[J] > —7(¢) ™" provides a sufficient condition
to exclude two-cycles that exist in the general case as shown in Section
1.3.4: Lowering the neuron gain eliminates spurious oscillatory modes.

Neural networks with discrete elements correspond to the limit v; — o
where (1.60) reduces to Amin[U(¢)] > 0. This implies in particular that
there are no two cycles possible in the Little model if the whole connection
matrix is nonnegative definite. The general remark from Section 1.3.1 about
the convergence to solutions that are not minima of Lpp still holds in
the discrete-neuron limit. This atypical behavior is, however, only possible
because the g; are piecewise constant functions in models with discrete
neurons. For the generic case of continuous input-output characteristics,
the network will always settle in a minimum as long as the initial conditions
do not coincide with an unstable fixed-point of (1.56).

The convergence criterion (1.60) is less restrictive for smaller update
groups than for larger ones because

Amin[U1] > Amin[U2] if Uy C Us . (1.61)

Note that (1.61) implies that the stability criterion for a fully parallel net-
work where Apmin[J] > —v 71, is a sufficient condition for (1.60), and thus
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sufficient to assure that the system (1.56) will converge to a fixed point for
any fair sampling updating scheme.

Formula (1.61) has direct consequences for possible applications. Con-
sider a high-dimensional optimization task such as the traveling salesman
problem. It may be mapped onto a neural network architecture which then
defines a fixed connection matrix J [59]. The computational time needed
to find a good solution can easily be reduced on a parallel computer by
increasing the size of update groups. However, the bounds given by (1.60)
have to be met in order to assure convergence to fixed points, and will limit
the maximal size of update groups. The goal of large updating groups will
be achieved in an optimal way if one can form update groups of weakly or
non-interacting neurons. All submatrices U(t) will have small off-diagonal
elements in that case, and their eigenvalues will be close or identical to the
diagonal elements, that is, the bounds (1.60) are largely independent of the
size of the update groups. In principle, the search for optimal partitions of
the above kind is itself a difficult optimization problem, but many applica-
tions exhibit an intrinsic structure (for example predominantly short-range
interactions) which naturally leads to good choices for the updating groups.

1.3.6 NETWORK PERFORMANCE

The results obtained thus far demonstrate that the long-time behavior of
neural networks with symmetric synaptic couplings is surprisingly robust
with respect to alterations of model details at both the level of single neu-
rons and the level of the overall network dynamics. All systems studied
relax to fixed-point solutions under appropriate additional conditions on
the synaptic efficacies and the input-output characteristics.

Various prescriptions for the storage of static patterns as fixed-point
attractors have been discussed in the literature [22, 60, 61]. In what follows,
I will focus on the Hebbian learning rule (1.23). A statistical mechanical
analysis of performance measures, such as storage capacity and retrieval
quality, can be carried out most readily for networks with McCulloch-Pitts
neurons and block-sequential dynamics. It will also be assumed that the
network can be partitioned into n fixed update blocks of equal size W such
that there are no interactions within a group [10]. As emphasized before,
such a situation can be arranged for many applications that map onto
diluted or geometrically structured networks. In the limiting case W =1,
one recovers the Hopfield model.

To simplify the analysis, neurons are labeled by a double index S;,. The
first index 1 < 4 < W refers to the position within an update group, the
second 1 < a < n labels the update group. The same notation applies to
stored patterns £! where the additional index p, 1 < pu < p, labels the
patterns. With these conventions, the Hebb rule (1.23) becomes
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u Zp &l el ifa#b,
T = { 0 S el (1.62)

The normalization factor N ! in (1.23) has been changed to [W (n — 1)]~
to guarantee the correct scaling behavior of Lpp in the thermodynamic
limit N — oc.

Statistical mechanics may be used to analyze the emergent properties of
feedback neural networks once it has been shown that under a stochastic
update rule, the network relaxes to a Gibbsian equilibrium distribution
generated by the Lyapunov function of the deterministic dynamics [22, 60,
62]. For Glauber dynamics (1.12) and a one-at-a-time or a parallel updating
scheme such a relation exists as can be shown using the principle of detailed
balance [28].

Although Lpp is identical to Lgp for two-state neurons, a block-sequen-
tial realization of Glauber dynamics need not approach a Gibbsian equi-
librium distribution. However, in the special case of vanishing connection
strength within all update groups (1.62), neurons “do not know” about the
state of other neurons in the same group. Thus there is no formal differ-
ence between the block-sequential rule considered here and serial updating,
where neurons change their state in consecutive order: every set of W suc-
cessive updates of the latter dynamics is identical to one time step in the
former case.

In what follows, I focus on the retrieval of unbiased random patterns
where &8 = :i:l with equal probability and study networks at a finite stor-
age level a = & The case of large cluster size, W — oo, with the number
n of update groups kept finite will be analyzed; n has to be at least equal
to two because according to (1.62), all neurons would be disconnected oth-
erwise. Following the replica-symmetric theory of Amit, Gutfreund and
Sompolinsky [63], a fixed number s of patterns is singled out, and it is
assumed that the network is in a state highly correlated with these “con-
densed” memories. The remaining patterns are described collectively by
a noise term. Notice that for coupling matrices of the form (1.62), both
the overlaps m and spin-glass parameters g have to be defined as order
parameters on the level of the update groups. For retrieval solutions, this
requirement leads to the Ansatz

mh, =W 25“ 87 =md, (1.63)
and

T =W Z SP 8% = 0a[0,5 (1 — q) + ] (1.64)

for a k-fold replicated network, 1 < p,o < k. The resulting fixed-point
equations are
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m = ((tanh[T~"{m + arz}])) (1.65)
and
q = ((tanh®*[T~"{m + Varz}])) (1.66)
where
r= a - aln — 1) . (1.67)

1-T"1-¢P [-1+T'(1-q)

Double angular brackets represent an average with respect to both the
condensed patterns and the normalized Gaussian random variable z[10].

Equations (1.65) — (1.67) closely resemble their counterparts for the Hop-
field model [63] and become identical to them in the limit of large n. On
a formal level, the same holds for n = 1 but as explained before, this case
does not correspond to a physical situation. For a general number of up-
date groups there exists a first-order phase transition at 7' = 0 between the
retrieval state and a spin-glass phase as a is varied. The critical storage
level is denoted by a., the corresponding overlap by m..

The relative information content Ig, measured per synapse and relative
to that of the Hopfield model,

In(n) = I, (block-sequential) n-ae(n)
B = T(random-sequential)  (n — 1) - a.(Hopfield)

(1.68)

is a third performance measure. A comparison between various network
architectures in terms of all three measures is given in Table 1.

The performance of block-sequential updating schemes is quantitatively
similar to that of the Hopfield model where a. = 0.138 and m,. = 0.97
[63]: the capability to retrieve stored random patterns is slightly lower
when measured in terms of patterns per neuron, as indicated in the second
column of Table 1, and slightly higher when measured in terms of patterns
per synapse, as shown in the last column. Notice, in particular, that the
information content increases with decreasing network connectivity, that
is, for small n.

The results demonstrate that feedback networks can be used to store
large amounts of information: the number of patterns (each of size N) that
can be memorized grows linearly with N so that the information stored
per synapse remains at a constant value of roughly 0.1 bits per synapse.'®
Stored patterns can be retrieved from noisy or incomplete data as long as
the storage level remains below the critical level a.. Compared to sequen-
tial or fully synchronous update schemes partially parallel schemes offer a

'S This number is increased significantly by more elaborate learning rules [64].
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potentially large advantage in terms of computational costs when imple-
mented on a parallel computer allowing for a speed-up that may be as large
as the number of processors without sacrificing network stability.

n Qe M Ip
2 0.100 0.93 1.45
3 0.110 0.95 1.20 (1.69)
4 0116 096 1.12

5 0.120 0.96 1.09

TABLE 1.1 Numerical solution of the saddle-point equations at T' = 0.
Displayed are the storage capacity «., the retrieval overlap m., and the
relative information content I'r as functions of the number n of update
groups.

1.3.7 INTERMEZZO:DELAYED GRADED-RESPONSE NEURONS

The dynamical description of section 1.3.3 neglects any time lags due to
finite propagation velocities of neural signals. As a first step towards the
general formulation (1.14), one may study models where the communication
time between neurons is modeled by one fixed delay T,

N
d — ex
Caui(t) = R u,(t) + ]21 JijVi(t — 1) + I (t) (1.70)

with
V;' = gz(ul) . (1.71)

A mathematical analysis of this model is quite complicated. Because of
the discrete delay, the initial condition for each neuron has to be specified
as a function over a time-interval of length 7. Consequently, equations
(1.70),(1.71) describe an infinite-dimensional dynamical system even in the
scalar case (N = 1) which will be discussed in detail in Section 1.4.2.

Obviously, fixed-point solutions of (1.70),(1.71) do not depend on the
time lag and are thus identical with those of the original model without
delays, described by equations (1.40),(1.41). However, equilibria that are
stable without delays may become unstable for large enough time lags as
can been verified through a local stability analysis [65].

Global results about (1.70),(1.71) have been obtained under conditions
that exclude nontrivial fixed-point solutions. A proof based on a Lyapunov
functional shows that in this case there are no limit cycles either [66].

The lack of stronger global analytical results illustrates the limits of Lya-
punov’s direct method. It is often very hard or impossible to find a Lya-

punov function for a given dynamical system under conditions that admit
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interesting applications  multiple fixed points in the present example. On
the other hand, there are many cases where one can find Lyapunov func-
tions as soon as one enlarges the class of systems studied. In the present
case, one could replace the single discrete lag in (1.70) by a distributed
delay as in (1.14). At a first glance, this seems to complicate the analysis
even further. However, there exist nontrivial delay distributions for which
the dynamics generated by (1.14) admit global Lyapunov functionals [67].

The remark applies also to systems with synaptic couplings J;;(7) that
are of the form J;;e(7) where ¢(7) satisfies a linear ordinary differential
equation in 7. For instance, if Tmax = oc and e(7) = exp(—7), one may
rewrite the dynamical equations as a set of 2N ordinary differential equa-
tions. The example demonstrates that unlike networks with discrete time
lags, networks with distributed delays need not represent infinite dimen-
sional dynamical systems. Models with delay distributions that are “re-
ducible” in this sense have been studied extensively in the applied math-
ematics literature [68]. For a neurobiologically motivated system of two
limit-cycle oscillators with reducible signal delay, a Lyapunov function is
given in reference [69].

1.4 Periodic Limit Cycles and Beyond

Natural stimuli provide information in both space and time. Recurrent
neural networks with delayed feedback can be programmed to recognize and
generate such pattern sequences or “temporal associations” [70, 71, 72, 73,
74, 75, 76].'7 Recurrent networks with a broad distribution of signal delays
and a Hebbian learning rule such as (1.22) are well suited to learn pattern
sequences as well. [47, 77, 78, 79, 80, 81]. These systems are characterized
by a high degree of compatibility between the network architecture, the
task of learning spatio-temporal associations, and the learning algorithm.
As in networks with fixed-point attractors, an initial state or “stimulus”
lying in the basin of attraction of a stored “memory” will spontaneously
evolve towards this attractor. In the present context, however, memories
are spatio-temporal patterns of neural activity.

This section demonstrates that one can understand the computation of
certain networks with signal delays as a down-hill march on an abstract
spatio-temporal energy landscape. The result allows the application of tech-
niques developed in the last sections.

'"A detailed discussion can be found in reference [33].
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1.4.1 DISCRETE-TIME DYNAMICS

Let us focus on a synchronous discrete-time dynamics with deterministic
McCulloch-Pitts neurons. For vanishing external inputs, the network dy-
namics (1.7),(1.8) become

Si(t + 1) = sgn[h;(t)] for all i (1.72)
with
N Tmax
M) =32 D Ja(n)Si(t - 7). (1.73)

In the following, it is assumed that the synaptic couplings J;;(7) satisfy
the extended symmetry J;;(7) = J;; (D — (2+7)). As was shown in Section
1.2.4, this symmetry arises if the network is taught cyclic pattern sequences
of equal duration D.

The construction of a Lyapunov function for the retrieval dynamics
(1.72), (1.73) is facilitated by the following consideration: If the network has
learned cyclic associations with common length D, every correct retrieval
solution corresponds to a D-periodic limit cycle. D-periodic oscillatory so-
lutions of a discrete-time network, however, can always be interpreted as
static states in a fictitious system of size D x N [50, 51].

Let us consider such a “D-plicated” network with D columns and N rows.
The neural activities are denoted by S;, where 1 <i < N and 0 < a < D.
To reproduce the synchronous dynamics of the original system, neurons S;,
with @ =t (modulo D) are updated at time ¢.

The time evolution of the new network is block sequential: synchronous
within single columns and sequential with respect to these columns. In
terms of the original variables S;, the new activities S;, are therefore given
by Sia(t) = Si(a + ns) for a < t (modulo D) and S;,(t) = Si(a + ny — D)
for a > ¢t (modulo D), where n; is defined through ¢t = n; + ¢ (modulo D).
The update rule reads

N D-1 14 .
Sia(t+1) = { S?%H[ijl Zb:(]l .]Z-ijjb(t)] if a =t (modulo D),

ia(t) otherwise.
(1.74)
The synaptic couplings .]Z-‘_lib are defined as
I = Jij ((b — a— 1) (modulo D)) . (1.75)

Notice that the time evolution (1.74) of the equivalent fictitious sys-
tem is the same as a block-sequential updating of a network with D x N
McCulloch-Pitts neurons and block size N, as is illustrated in Figure 3. Sec-
tion 1.3.5 shows how to guarantee that such a system relaxes to fixed points
only: through synaptic symmetry together with the condition Apin [U(t)] >
0.
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Synaptic symmetry in the fictitious system, J{Lj” = Jj'-’f, is equivalent
to the extended symmetry (1.26) for the original couplings J;;(7). The
second condition, Apin[U(#)] > 0, is equivalent to Apin[J(D — 1)] > 0. This
condition can be satisfied by setting mnax = D — 2.

It is left as an exercise for the interested reader to show that the Lya-
punov function Lpp, formulated for the equivalent fictitious system, may
be rewritten in terms of the original time-delay network as

Lo(t) =5 Y > Jij(r)Si(t — a)S;(t — (a+ 7+ 1) (modulo D)) .

(1.76)
One may once again calculate the difference ALtp(t) = Lrp(t+1)— Lrp(t)
and arrives, as expected, at

N
ALtp(t) = =Y [Si(t+1) = Si(t+1— D)]hs(t) <0 (L.77)

i=1

The derivation may be summarized as follows:

Suppose that the synaptic efficacies of the time-delay network (1.72),
(1.73) satisfy the extended symmetry condition (1.26). Then the retrieval
dynamics are governed by the Lyapunov function (1.76). The network re-
laxes to a fixed-point solution or a limit cycle with S;(t)=S;(t — D), that
is, an oscillatory solution with the same period as that of the taught cycles
or a period which is equal to an integer fraction of D.

Due to the equivalence of (1.72),(1.73) with a block-sequential update
rule for the fictitious system, one may apply the quantitative analysis of Sec-
tion 1.3.6 to time-delay networks that store temporal associations. There
is, however, a slight technical difficulty that has to be handled properly.
Storing one D-periodic pattern sequence in the original model corresponds
to memorizing D static patterns of size D x N in the equivalent system,
each shifted by one column (modulo D) with respect to the next pattern.
This complication arises because every sequence may be occuring with its
first pattern recalled at some time ¢, or at time ¢t + 1, or at time ¢ + 2, and
so on. In the equivalent D-plicated system, each of these time-shifted cyclic
temporal associations corresponds to a new pattern.

For generic temporal associations, the analysis becomes rather compli-
cated due to nontrivial correlations between shifted copies of the same
pattern. If, however, each pattern of a sequence lasts for one time step
only, all relevant correlations are the same as if one had stored D unre-
lated patterns. This implies that the results of Section 1.3.6 cover also the
storage of pattern sequences where each pattern lasts for one unit of time.

As an example, take D = 2. With the maximal delay Thax set to D — 2,
Tmax 18 zero, and one has recovered the Little model. According to Table
1, 0.100N two-cycles of the form ¥ =k, may be recalled as compared to
0.138N static patterns [82]: a 1.45-fold increase of the information content
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FIGURE 1.3. Schematic drawing of the dynamics of a time-delay network (c and
d) and its equivalent fictitious system with block-sequential time evolution (a and
b). Horizontal axes represent time, vertical axes in (b) and (c¢) denote the index
of neurons. (a) The pattern “Z” is retrieved in the fictitious network with five
update groups that are represented in (b) by five neurons. (¢) Time evolution
of one neuron in a network with signal delays and discrete-time dynamics. The
system recalls the cyclic pattern sequence “BAACH” as shown in (d).
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per synapse. At the same time, the retrieval overlap drops slightly from
0.97 to 0.93.

The performance of networks with distributed delays and D = 4 is dis-
played in Table 2.

r = 0 1 2 3 Q. m. Ig
e(r) = 1/3 1/3 1/3 0 0.116 096 1.12  (1.78)
e(r) = 1/2 0 1/2 0 0.100 0.93 1.45
e(r) = 0 1 0 0 0.050 0.93 1.45

TABLE 1.2. Influence of the weight distribution on the collective network
properties. The storage capacity a., the critical overlap m., and the relative
information content Iz are displayed for some choices of e(7) for D = 4.

As shown in Table 2, the uniform distribution leads to the largest a.
but smallest Ir. The other two networks have the same value of I as the
(unique) D =2 system due to the particular structure of their eigenvalue
spectrum. Furthermore, one obtains Iz = 1.45 independently of D for
all networks with a minimal connectivity where only one synapse links
two neurons.'® Simulation data show slightly higher values of a., possibly
indicating effects of replica symmetry breaking as in the Hopfield model
[63].

In passing, let me remark that each cycle consists of D patterns so that
the storage capacity for single patterns is @, = Da,. During the recognition
process, however, each pattern will trigger the cycle it belongs to and cannot
be retrieved as a static memory.

If static patterns instead of temporal associations are learned, the synap-
tic strengths do not depend on the delay, see also equation (1.23). The
synaptic couplings still satisfy the extended symmetry, and with 7, =
D — 2 one recovers the Lyapunov function for networks with McCulloch-
Pitts neurons and “multiple-time-step parallel dynamics” [83],

1 N D—2 D—2
Lyrs(t) = —3 ST > Sit—a) > Si(t—b). (1.79)
ij=1 a=0 b=0

The evolution equations (1.72),(1.73) may be generalized to analog sys-
tems with periodic external inputs. Using the “cooking recipes” of Sections
1.3.1 — 1.3.4, it is possible to construct a Lyapunov function for that case
as well [84].

The learning rule (1.26) may also be utilized to store cycles of correlated
real-valued pattern sequences. Numerical studies have been performed for

18This case is possible if D is an even number.
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low-dimensional trajectories (small N) with high numbers of data points
(large D). For many examples, good retrieval could be obtained without
any need for highly time-consuming supervised learning schemes. How-
ever, algorithms of the latter kind facilitate the learning of more sophis-
ticated real-world tasks. Here Lyapunov functions are of great help since
they permit the application of mean-field techniques [85] to a wide class
of supervised learning strategies such as spatio-temporal extensions of the
“Boltzmann Machine” concept [86] and contrastive-learning schemes [87].

In closing this section, let me mention that an analysis of the storage
capacity along Gardner’s approach [88] has been given in reference [89].
Analytical results on highly diluted systems with time lags have also been
obtained [90].

1.4.2 CoNTINUOUS-TIME DYNAMICS

The global dynamics of certain networks with graded-response neurons
and delayed interactions may be studied in a manner similar to that of
Section 1.4.1 [67]. In the following, I will focus on the simplest case, a single
neuron (or a homogeneous assembly of neurons) coupled to itself through
one inhibitory feedback loop with delay 7. Equation (1.14) reduces to

d
Cau(t) =R 'u(t) — glu(t — 1)), (1.80)
where g satisfies the condition
ug(u) >0 foru#0 and g(0)=0. (1.81)

Solutions of this seemingly simple scalar equation include a fixed point
u(t) = 0 and, depending on the graph of g, periodic limit cycles and chaotic
trajectories [91]. Such a diversity of temporal phenomena is possible since
due to the discrete delay, equation (1.80) describes an infinite dimensional
dynamical system as was already mentioned in Section 1.3.7.

Various aspects of the scalar delay differential equation (1.80) have been
discussed in the mathematics literature. Most articles have concentrated
on periodic solutions, in particular on those that are “slowly oscillating,”
that is, periodic solutions with zeros spaced at distances larger than the
time lag 7. Results about their existence, uniqueness and local stability
have been obtained by Kaplan and Yorke [92], Nussbaum [93], and Chow
and Walther [94], respectively.

The global analysis of (1.80) is simplified significantly if one neglects
the transmembrane current R~ 'u(t) and if ¢ is an odd sigmoid function.
Without loss of generality, one may set C = 7 = 1 and study the evolution

equation

%u(t) = —glu(t —1)] . (1.82)
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Consider the auxiliary function Lppg(t),

Lppg(t) = - %/0] /ti]] u(s)u(s —7) ds dr

t+
1 2 t+1 ) )
+ 5/1 /t+T1u(s)u(s —7)ds dr
7 Gm@»ds+imu+1y+mt7nﬁ (1.83)

where G(z) is defined as in (1.43).1% For bounded nonlinearities g, all solu-
tions of (1.82) are bounded. They are differentiable for ¢ > 1. Consequently,
Lppg(t) is bounded below for ¢ > 2. It follows that for ¢ > 1, the time
derivative of Lppgr(t) along a solution of (1.82) is well defined and given
by
d . . 1 1
ELDDE(t) =[a(t+ 1)+ a(t — 1)][u(t) — iu(t +1)— iu(t —-1)]
+G(a(t+1)) — Gla(t — 1))

—l—%[u(t + 1) +ult— D]t +1) +at—1))
=u(t)[a(t+1) +a(t—-1)]+ G(a(t+1)) — G(a(t—1)) . (1.84)

Because the input-output characteristic is assumed to be an odd sig-
moid function, g~! is odd, single valued and monotone increasing. Con-
sequently, the function G is even and strictly convex. In particular, the
equality G(u(t — 1)) = G(—u(t — 1)) holds. Performing a Taylor expansion
as in (1.51), one therefore obtains

< [a(t+ 1) +at —1)]g (a(t + 1))
< —[a(t + 1) + @t — D]u(t) . (1.85)

Equality in (1.85) holds if and only if @(¢t + 1) = —a(t — 1). Taking the
evolution equation (1.82) and the strict monotonicity of g into account, the
last equation may also be written u(t) = —u(t — 2).

Inserting (1.85) into (1.84), one finally arrives at

d
ELDDE(t) S 0 fort 2 2 (186)

9 nbr has been introduced as an explicitly time-dependent function for sim-
plicity and has been written in terms of both u and @ for the same reason. The
initial function may, however, not be differentiable. This (purely technical) dif-
ficulty can be avoided if u(s) is replaced by —g(u(s — 1)). Lppr may then be
properly defined as a functional in the space of continuous functions from the
interval [—2, 0] to the real numbers [95].
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FIGURE 1.4. Time evolution of a single neuron with delayed feedback ac-

cording to the evolution equation (1.82).

The input-output characteristic is

g(u) = tanh(5u). The state variable u is plotted as a solid line, its derivative

tion Lppr as a dotted line. Notice

approaches a constant value as required for a Lyapunov function

u as a dashed line, and the Lyapunov func

that LDDE(t)

whereas u relaxes towards a periodic oscillatory solution with period 4.
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where equaility holds if and only if u(t) = —u(t — 2).2° An illustration is
given in Figure 4. According to (1.86), Lppgr(t) is nonincreasing along every
solution for ¢ > 2. The overall result may be summarized in the following
way:

Suppose that the function g is odd, bounded and sigmoid. Then the
evolution equation (1.82) admits the Lyapunov function (1.83). Solutions
of (1.82) converge either to the trivial fixed point u = 0 or to a periodic
limit cycle that satisfies

u(t) = —u(t—2) . (1.87)

Notice that the period P of the limit cycles does mot depend on the
graph of g; according to (1.87), it is always given by P = ﬁ where k is
a nonnegative integer.?’ On the other hand, it is well known that for the
general equation (1.80), the period of a periodic solution is influenced by
the ratio of RC' to 7 and the shape of g [96]. This fact implies that the
above methods can probably not be extended to study delay differential
equations of the type (1.80). There is, however, another way to analyze
this equation [97]. To facilitate the discussion, let ¢;, i € IN with t; < t;41
denote the times of consecutive zero crossings u(t) = 0 of a solution of
(1.80). One may then prove the following proposition:

Assume that the function g is bounded and satisfies the condition (1.81).
For every solution u(t) of (1.80), the number n(i) of zero crossings in the
interval [t; — T, t;) is a nonincreasing function of i.

This result means that a solution of (1.80) oscillates more and more
slowly around zero as time proceeds. For long times it approaches a solution
with constant n = n(i), possibly n = 0. In particular, if the system is
initialized with a solution that has n zero crossings in the interval [—7,0) it
can never reach an oscillation with more than n zero crossings in any one
of the intervals [t; — 7,¢;).

Let me briefly sketch the proof. The reader is also referred to Figure 5.
If g is bounded and satisfies the condition (1.81), solutions of (1.80) exist
for all positive ¢ and are continuous [98]. Assume without loss of generality
that at time #;, Lu(t;) > 0. According to (1.80) and (1.81), this means
that u(t; — 7) < 0 because u(t;) = 0 by definition. The same argument
may be used at time ¢;41 where it implies that u(t;41 — 7) > 0 because

20The curious reader is invited to compare this result and its derivation with
that for the Little model with antisymmetric couplings (1.54).

2! Further results derived with the help of Lppg can be found in reference [95].
One proof is well suited to highlight the potential of Lyapunov functions — once
they are found: It can be shown that for large enough g'(0), the global minimum
of Lppr is always achieved on a slowly oscillating solution (otherwise on the
trivial fixed point u(#) = 0). This immediately implies that those solutions have
to be asymptotically stable (except for global phase shifts), a conclusion that
previously required elaborate analytical techniques.
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FIGURE 1.5. Time evolution of a single graded-response neuron with delayed
self inhibition modeled by the delay differential equation (1.80). There are zero
crossings of the solution u(t) at time ¢;, ¢;4+1, and at various earlier (and later)
times. In the interval [t; — 7,%;41 — 7) two possible solutions are drawn. They
have one and three zero crossings, respectively.

u(tjt1) = 0 and Zu(tj;1) < 0. Together with the continuity of u(t), this
implies that there is an odd number £(j) > 1 of zero crossings in the interval
[t =7 tjp — 7).

Denote the number of zero crossings in the interval [t; 11 —7,¢;) by 1(j).*?
It follows that n(j) = I+ k(j) and n(j + 1) = 1(j) + 1. Since k(j) > 1, both
relations may be combined to the statement n(j) > n(j + 1) which proves
the proposition.

The number of zero crossings in any interval is nonnegative — the func-
tion n(i) is bounded below. Since it is nonincreasing along every solution of
(1.80), it is an integer-valued Lyapunov function. Accordingly, solutions of
(1.80) relax to solutions with constant n(i). Notice that those solutions may
be periodic but could — at least in principle — also be aperiodic. This is a
surprising result. It highlights the generality of Lyapunov’s second method
in a rather illuminating way.

21t is understood that I(j) = 0 if tj41 — 7 > ¢;.
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1.5 Synchronization of Action Potentials

While it may frequently be the case that mean firing rates are an adequate
description of neural information, there are many instances where the de-
tailed timing and organization of action potentials matters. An important
example is given by the stimulus-dependent synchronization of action po-
tentials [15, 16, 17].

Due to the inherent limitations of descriptions based on discrete-time
dynamics or mean-firing rates, realistic synchronization processes are not
captured by the networks discussed in Sections 1.3 and 1.4. They may,
however, be studied using networks with integrate-and-fire neurons, whose
time evolution has been introduced in section 1.2.3.

Networks of that type often show globally synchronized neurons when all-
to-all couplings are used.?® Note that throughout this section, terms such
as “synchronized neurons” always refer to the time of spike generation.
According to this definition, a periodic network state (also called a “phase-
locked solution”) may or may not be “globally synchronized.” A global
analysis for networks described by (1.13), (1.18), and (1.20) has been given
in reference [102]. With excitatory all-to-all couplings of equal strength,
nonzero leakage currents, uniform external inputs, and a reset to zero after
spike generation (y = 0), the size of synchronized clusters is a nondecreasing
function of time — a (discrete-valued) Lyapunov function! The proof then
shows that such systems indeed approach a globally synchronized solution
where all neurons fire in unison.

Networks with more general nonuniform interaction admit richer dy-
namical behaviour [25, 103, 104]. Equipped with excitatory finite-range
couplings, one class of networks relaxes to phase-locked clusters of (locally)
synchronized neurons [105, 106]. The shapes and relative phases of the
clusters encode information about the initial stimulus. This result is in ac-
cordance with the hypothesis that synchronized cortical neurons are used
to bind stimulus features together [107].

1.5.1 PHASE LOCKING

Global results for locally coupled networks with integrate-and-fire neurons
have been obtained in the limiting case R — oo of perfectly integrating
cells and uniform positive input currents If** = I > 0. In this situation,
external information is encoded in the initial conditions wu;(t = 0), not in
the input currents. This choice is reminiscent of the experimental paradigm
of “stimulus induced oscillations” [15]. Due to the constant positive input

current, I, each model cell fires regularly if there is no further synaptic

Z2Doubts about the structural stability of simple integrate-and-fire models have
been raised because some model variants do not exhibit system-wide synchroniza-
tion with all-to-all couplings [99, 100, 101].
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input from other cells. Thus I~! represents the spontaneous firing rate of
an isolated neuron. By rescaling time, the capacitance C' and input [ in
(1.13) can be taken as unity. The overall dynamics may then be summarized
by the following update rules:

(i) Initialize the u;(t = 0) in [0, 1] according to the external stimulus.

(ii) If u; > 1 and if neuron i is next in the update scheme then

wi = up = y(u; — 1) (1.88)

and

uj = uly = uj+ Jji . (1.89)
(iii) Repeat step (ii) until u; < 1 for all i.

(iv) If the condition of step (ii) does not apply then

d

P 1 foralli. (1.90)
Under the condition that all neurons have the same total incoming synap-

tic strength,

S Jiy=A, (1.91)
J
and the same total outgoing synaptic synaptic strength,
S Jiy=A, (1.92)
1
one may proof that the simple function Liay,

LIAF = — Zui 5 (193)
2
that is, the (negative) total membrane potential, plays the role of a Lya-
punov function for the system defined by (i)—(iv) as shown in reference
[106]:

Assume that v = 1 and that the synapses satistfy J;; > 0 and the con-
straints (1.91) and (1.92) with A < 1. Then the dynamics generated by
(1.88) — (1.90) admit the Lyapunov function (1.93) and converge to cyclic
attractors with period Piar = 1 — A. On the limit cycle, each neuron fires
exactly once in a period.

Notice that synaptic symmetry has not been required! This distinguishes
the present model from the networks discussed in the previous sections.



Andreas V.M. Herz xlvi

Depending on the initial conditions, the limit cycles can contain events
in which one neuron fires alone, and others in which many neurons fire
in synchrony. In networks with excitatory short-range connections only,
regions with small variability of the initial conditions are smoothed out
and represented by locally synchronized clusters of neurons whose firing
times encode the stimulus quality. Regions with high variability, on the
other hand, give rise to spatially uncorrelated firing patterns. Through
appropriate choice of coupling strengths, more complex computations can
be preformed as demonstrated by numerical simulations [106].

In order to proof the proposition, let us first show that no neuron fires
more than once in any interval of length Piap.

Lemma: Let n;(t,t') denote the number of times neuron i fires in [t,t').
If the conditions of the proposition hold then n;(t,t + Piar) < 1.

Starting at time ¢, if some neuron fires twice before ¢t + Piar, then some
neuron k must first fire twice, and at time ¢’ < t+ Pjar. For that to happen,
the total change in uy from ¢ to ' due to the synaptic currents and the

external input must be greater than 1. Thus one requires that for neuron
k

)

(1-4)
Piaw

t —t) + 3 Jigmi(tt) > 1. (1.94)

However, by hypothesis (¢ —t) < Piar , and since k is the first neuron to
fire twice, the number n;(¢,t') of firings of each of the other neurons up
to ¢’ is less than or equal to 1. For J;; nonnegative the left-hand side of
equation (1.94) is less then (1 — A) + A = 1. The contradiction shows that
k cannot have fired twice.

Returning to the proof of the proposition, let us consider the change of
Liar in a time interval of length Piay, ALiap (f) = LiaF (t+P1AF)7L1AF (f)
It is

AL]AF(t) = —(1—A)N — Z JZ']‘TL]' (t, t+P]AF) + Z ni(t, t+P]AF) . (195)

i, i

The first term comes from the constant input current, the second term from
the effect of the firing of other neurons, and the third term comes from i
itself firing. Using the condition (1.91), one finds

ALap(t) = —(1— AN — > ni(t,t + Piar)] (1.96)

Due to the lemma, n;(t,t + Piap) < 1 for all t. The change of Liap
in each time interval Piar is thus nonpositive. Since Liar is bounded, the
system performs a downhill march on the energy landscape generated by the
Lyapunov function Liar — if the function is measured after time steps of
length Piar. The difference ALiar(t) vanishes if and only if n;(¢, t+ Piar) =



Andreas V.M. Herz xlvii

1 for all 4, that is, on periodic limit cycles where every neurons fires exactly
once in a time interval of length Piap [106].24

To avoid the unfamiliar evaluation of the Lyapunov function Liar at the
discrete times t + kPjar, k € IN, one may alternatively use the functional

5 Piar
Liaw = / Liar(s)ds . (1.97)
0

Along solutions, Liar is differentiable with %LIAF(t) = ALjar(t) for all
t > 0, so that the previous conclusions are reached again. For an illustra-
tion, see Figure 6.

1.5.2 RAPID CONVERGENCE

The results of the previous section prove that specific networks of integrate-
and-fire neurons approach phase-locked solutions. Numerical simulations
of these and more general networks [102, 106, 108, 109, 110, 111] indicate
that the convergence process takes place in a very short time see also
Figure 6.2° This observation can be substantiated under certain conditions
[105, 106]:

Assume that the synapses satisfy J;; > 0 and the condition (1.91) with
A < 1. Then all solutions of (1.88) — (1.90) converge to cyclic attractors
with period Piap = 1 — A. The limit cycles are reached as soon as every
neuron has fired once. On the limit cycle, each neuron fires exactly once in
a period.

Notice that although the conditions on v and on the sum of outgoing
synaptic strength have been dropped, the conclusions are now stronger
than in the previous proposition. However, the proof given is not based on
a Lyapunov function so that the concept of a down-hill march on an energy
landscape generated by the Lyapunov function is not available anymore.
The lack of a Lyapunov function might also be a drawback when stochastic
extensions are considered in the future.?%

Let tmax denote the first time where every neuron has fired at least
once. Some cells may have fired repeatedly before ¢,,.x, depending on the

24 A related proof has been given in reference [35].

%5In general, clusters of locally synchronized neurons will slowly reorganize.
The models analyzed in this article are an exception in that they do not show
such slow relaxation phenomena.

26The sentence reflects the author’s hope that it might be possible to construct
simple stochastic dynamics of integrate-and-fire neurons such that the Lyapunov
function of the noiseless dynamics determines a Gibbs distribution for the stochas-
tic extension. Equilibrium statistical mechanics could then be applied to analyze
the collective phenomena in networks of integrate-and-fire neurons in the same
spirit as this has been done for neural network models discussed in Sections 1.3
and 1.4. Regrettably, such evolution equations have not been found yet.
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FIGURE 1.6. Rapid local synchronization of action potentials. Shown are results
from numerical simulations of a planar network with 40 x 40 integrate-and-fire
neurons (R™! = 0, v = 1), periodic boundary conditions and nearest-neighbor
interactions of strength Jn, = 0.24. Each dot in the upper trace represents the
number of simultaneous action potentials as a function of time. The lower trace
depicts the time evolution of the Lyapunov function Liar (solid line) and the
Lyapunov functional Liar (dashed line). The inset verifies that, as predicted, the
latter approaches a constant value.
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parameter values and initial conditions. Let #; denote the last time when
neuron i fires before tyax, tmin the minimum of all these times ¢;, and &k a
cell that fires at t.,;, for the last time.

By definition, every cell discharges at least once in the interval [¢min,tmax]-
This implies in particular that every neuron j from which cell k receives
synaptic input emits one or more action potentials in that interval. Each
spike adds Ji; to uj. The total change of uy in [tmin, tmax] is thus equal or
greater than A+ t,,¢ — tmin. This number has to be smaller than 1 because
otherwise, neuron k would fire a second time in the interval [tmin, tmax] in
contradiction to the assumption. It follows that tax — tmin < PiAF.

Going back to Section 1.5.1, one notices that the condition on the sum
of outgoing synaptic strengths (1.92), although essential for the proof of
the main proposition, is not required for the proof of the lemma: The
lemma, is also valid under the weaker conditions of the present section.
Evaluated at time ¢ = t,,,x — Piar and combined with the previous results,
the lemma implies that every cell fires exactly once in [tmin, tmax] and no
cell fires in (tmax — PIAF, tmin)- Since tmax < 1, the last result proves that
in finite time ¢, — PiaF, all limit cycles are approached in the sense that
u;i(t) = u;(t+ Piar) for t > tmax — Piar. The argument also shows that the
attractors are reached as soon as every neuron has fired once.

The proof does not depend on the details of the reset mechanism. This
means that it covers not only the present model with arbitrary 0 <y <1
but also all schemes where a neuron i firing at time ¢ is relaxed to some
value between 0 and wu;(¢~) — 1. Perhaps surprisingly, this allows stochastic
updatings during the transient phase.

In all model variants except from the limiting case v = 1 limit cycles
with period Piar and one spike per cycle cannot occur if a neuron is driven
above threshold. In events with multiple neurons firing “at the same time,”
the potentials have to be fine-tuned such that if neuron i is triggered by
neuron j, u;(t~) = 1—J;;. This implies that although every firing sequence
of the model with v = 1 can be realized in these models, the volume of all
attractors is greatly reduced when measured in the space of the dynamical
variables u;.

1.6 Conclusions

The examples presented in this article demonstrate that Lyapunov’s direct
method has widespread applications within the theory of recurrent neural
networks. With respect to the list of levels of analysis sketched in the
Introduction, it has been shown that Lyapunov’s method is most helpful
on the second level which deals with questions about the type of attractors
possible in a neural network.

Combined with powerful techniques from statistical mechanics, Lyapu-
nov’s approach allows not only for a qualitative understanding of the global
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dynamics but also for quantitative results about the collective network be-
havior. As shown in Sections 1.3, 1.4, and 1.5, Lyapunov’s method applies
to the retrieval of static patterns in networks with instantaneous interac-
tions, to the recall of spatio-temporal associations in networks with signal
delays, and to synchronization processes in networks of integrate-and-fire
neurons.

There remain numerous interesting questions about the global dynamics
of feedback neural networks. These include questions concerning the conver-
gence of network models with discrete-time dynamics, symmetric couplings
and overlapping delays (see Figure 1d). Numerical simulations suggest that
such systems relax to fixed-point solutions [112] but the analytic results
from the computer-science literature [55, 56, 57, 58] only cover the case
where a single pattern is stored in the network.

With regard to networks with transmission delays, it would be inter-
esting to know more about the global dynamics generated by equations
(1.70),(1.71) under conditions that admit multiple fixed-point attractors.
With a similar interest in mind, one could try to perform a statistical me-
chanical analysis of the system (1.72),(1.73) with delay-independent sym-
metric couplings (1.23) to study the influence of signal delays on the col-
lective properties of networks that store static patterns.

In the proofs concerning integrate-and-fire neurons, synaptic strengths
were assumed to be excitatory. There is, however, strong numerical evidence
that inhibition does not change the overall results [106]. If the synaptic cou-
plings continue to satisfy the condition (1.91) with A < 1 and if the network
parameters are chosen such that there are no run-away solutions and no
solutions with neurons that are permanently below threshold, then all sim-
ulations of the dynamics generated by (1.88) — (1.90) approach periodic
limit cycles of period Piap = 1 — A. For leaky integrate-and-fire models
(finite R), the same is true but the period is given by the period Ppiap of
the globally synchronized solution in such a system,

Piiar = RC[In(RI — A) — In(RI — 1)] . (1.98)

This observation gives hope that further understanding of integrate-and-
fire models is possible although the mathematical situation is more com-
plicated than in the cases discussed in Section 1.5. A convergence proof
based on Lyapunov functions such as (1.93) is possible because every pe-
riodic solution of the model has the same period. This is not the case for
models for finite R as shown by the following counterexample. Consider
a spatio-temporal “checkerboard” pattern, where the “black” sites fire at
even multiples of A/2, the “white” sites at odd multiples of A/2. A self-
consistent calculation of the firing pattern leads to an implicit equation for
A,

Ae 7rc 4+ RI[1—e 70| =1. (1.99)
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Except from the limiting case R — oo, A differs from the period of the
globally synchronized solution. A linear stability analysis verifies that the
checkerboard pattern is unstable but its mere existence indicates that it will
be difficult to find Lyapunov functions for leaky integrate-and-fire models.

More generally, one may ask which conditions in the proofs of Sections
1.3, 1.4, and 1.5 can be violated without changing the desired emergent net-
work behavior. These questions deal with the structural stability of neural
networks, the fifth level of analysis, and have to be answered if one wants to
evaluate the biological relevance of specific networks. In order to keep the
article within reasonable bounds, this topic has not been discussed here. A
particularly important issue, the convergence of “conventional” recurrent
neural networks (of the type studied in Section 1.3) without synaptic sym-
metry, has been studied extensively in the literature [113, 114]. In passing
let me note that one may always generate specific asymmetric networks
through appropriate transformations of both the coupling matrix and dy-
namical variables of systems with symmetric interactions.

There are a number of other topics related to the main theme of this
article that could not be included. Let me briefly list two of these issues.

First, one may design dynamical systems such that they perform a down-
hill march on an energy landscape that encodes some optimization task [59].
Various biologically motivated examples can be found in the computer-
vision literature [115, 116].

Second, one may construct feedback networks that possess desired at-
tractors but no spurious stable states [117, 118]. The construction of such
artificial associative memories is greatly facilitated if one deliberately lifts
modeling restrictions that would otherwise be naturally imposed by bio-
logical constraints.

Let me close with a general comment: “associative computation” means
that many different inputs are mapped onto few output states. The time
evolution of a dynamical system that performs such a computation is char-
acterized by a contraction in its state space, that is, it is dissipative.?” This
observation suggests that many dynamical systems that have been used
as models for associative computation may admit Lyapunov functions. As
emphasized in Section 1.3.7, minor modifications of the models may be
needed to satisfy technical requirements.

In view of the many Lyapunov functions already found, I would like to
conclude with a remark from the monograph of Rouche, Habets and Laloy
[3]: “Lyapunov’s second method has the undeserved reputation of being
mainly of theoretical interest, because auxiliary functions are so difficult to
construct. We feel this is the opinion of those people who have not really
tried ...”

*"The threshold operation of a two-state neuron might be interpreted as a
special realization of this contraction process.
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