
Technical Report
CMU/SEI-96-TR-003
ESC-TR-96-003

Software Architecture: An Executive Overview

Paul C. Clements

Linda M. Northrop

February 1996

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Unlimited distribution subject to the copyright.

Technical Report

CMU/SEI-96-TR-003

ESC-TR-96-003

February 1996

Software Architecture: An Executive Overview

Paul C. Clements

Linda M. Northrop

Product Lines Systems

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright© 1996 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

CMU/SEI-96-TR-003 i

Table of Contents

1. Introduction 1

2. What Is Software Architecture? 3
2.1. Definitions 3
2.2. Roots of Software Architecture 4
2.3. Why Hasn’t the Community Converged? 6

2.3.1 Advocates Bring Their Methodological Biases with Them 6
2.3.2 The Study Is Following Practice, not Leading It 6
2.3.3 The Study Is Quite New 6
2.3.4 The Foundations Have Been Imprecise 6
2.3.5 The Term Is Over-Utilized 8

2.4. The Many Roles of Software Architecture 9

3. Why Is Software Architecture Important? 11
3.1. Architecture Is the Vehicle for Stakeholder Communication 11
3.2. Architecture Embodies the Earliest Set of Design Decisions

About a System 12
3.2.1 Architecture Provides Builders with Constraints on

Implementation 12
3.2.2 The Architecture Dictates Organizational Structure for

Development and Maintenance Projects 12
3.2.3 An Architecture Permits or Precludes the Achievement of a

System’s Targeted Quality Attributes 13
3.2.4 It Is Possible to Predict Certain Qualities About a System by

Studying Its Architecture 13
3.2.5 Architecture Can Be the Basis for Training 14
3.2.6 An Architecture Helps to Reason About and Manage Change 14

3.3. Architecture as a Transferable Model 15
3.3.1 Entire Product Lines Share a Common Architecture 15
3.3.2 Systems Can Be Built by Importing Large Externally-Developed

Components That Are Compatible with a Pre-Defined
Architecture 15

3.3.3 Architecture Permits the Functionality of a Component to be
Separated from Its Component Interconnection Mechanisms 16

3.3.4 Less Is More: It Pays to Restrict the Vocabulary of Design
Alternatives 17

3.3.5 An Architecture Permits Template-Based Component
Development 18

ii CMU/SEI-96-TR-003

4. Architectural Views and Architecture Frameworks 19
4.1. The Need for Multiple Structures or Views 19
4.2. Some Representative Views 20

4.2.1 Conceptual (Logical) View 20
4.2.2 Module (Development) View 20
4.2.3 Process (Coordination) View 22
4.2.4 The Physical View 22
4.2.5 Relating the Views to Each Other 22

4.3. Architecture Frameworks 24
4.3.1 Technical Architecture Framework for Information Management

(TAFIM) 24

5. Architecture-Based Development 27
5.1. Architecture-Based Activities for Software Development 27

5.1.1 Understanding the Domain Requirements 27
5.1.2 Developing (Selecting) the Architecture 28
5.1.3 Representing and Communicating the Architecture 28
5.1.4 Analyzing or Evaluating the Architecture 29
5.1.5 Implementing Based on the Architecture and Assuring

Conformance 29

6. Current and Future Work in Software Architecture 31

References 33

Acknowledgments 37

CMU/SEI-96-TR-003 iii

List of Figures

Figure 1: Typical, but Uninformative, Model of a “Top-Level Architecture” 7

Figure 2: A Layered System [Garlan93] 8

Figure 3: Layers in an Air Traffic Control System [Kruchten 95] 21

Figure 4: Architectural Views 23

iv CMU/SEI-96-TR-003

CMU/SEI-96-TR-003 1

Abstract: Software architecture is an area of growing importance to
practitioners and researchers in government, industry, and academia. Journals
and international workshops are devoted to it. Working groups are formed to
study it. Textbooks are emerging about it. The government is investing in the
development of software architectures as core products in their own right.
Industry is marketing architectural frameworks such as CORBA. Why all the
interest and investment? What is software architecture, and why is it perceived
as providing a solution to the inherent difficulty in designing and developing
large, complex systems? This report will attempt to summarize the concept of
software architecture for an intended audience of mid to senior level
management. The reader is presumed to have some familiarity with common
software engineering terms and concepts, but not to have a deep background
in the field. This report is not intended to be overly-scholarly, nor is it intended
to provide the technical depth necessary for practitioners and technologists.
The intent is to distill some of the technical detail and provide a high level
overview.

1. Introduction

Software architecture is an area of growing importance to practitioners and research-
ers in government, industry, and academia. The April 1995 issue of IEEE Transac-
tions on Software Engineering and the November 1995 issue of IEEE Software were
devoted to software architecture. Industry and government working groups on soft-
ware architecture are becoming more frequent. Workshops and presentations on
software architecture are beginning to populate software engineering conferences.
There is an emerging software architecture research community, meeting and collab-
orating at special-purpose workshops such as the February 1995 International Work-
shop on Software Architectures held in Dagstuhl, Germany, or the April 1995
International Workshop on Architectures for Software Systems held in Seattle, Wash-
ington. The October 1996 ACM Symposium on the Foundations of Software Engi-
neering will focus on software architecture. Textbooks devoted entirely to software
architecture are appearing, such as the one by Shaw and Garlan [Shaw 95b]. The
government is investing in the development of software architectures as core prod-
ucts in their own right; the Technical Architecture Framework for Information Manage-
ment (TAFIM) is an example. The Common Object Request Broker Architecture
(CORBA) and other computer-assisted software engineering environments with
emphasis on architecture-based development are entering the marketplace with pro-
found effect.

Why all the interest and investment? What is software architecture, and why is it per-
ceived as providing a solution to the inherent difficulty in designing and developing
large, complex systems?

2 CMU/SEI-96-TR-003

This report will attempt to summarize the concept of software architecture for an
intended audience of mid to senior level management. The reader is presumed to
have some familiarity with common software engineering terms and concepts, but not
to have a deep background in the field. This report is not intended to be overly-schol-
arly, nor is it intended to provide the technical depth necessary for practitioners and
technologists. Software engineers can refer to the listed references for a more com-
prehensive and technical presentation. The intent here is to distill some of the techni-
cal detail and provide a high level overview.

Because software architecture is still relatively immature from both a research and
practice perspective there is little consensus on terminology, representation or meth-
odology. An accurate yet digested portrayal is difficult to achieve. All of the issues and
all of the ambiguity in the area of software architecture have yet to be addressed. We
have simplified based upon what we believe to be the best current understanding.

While software architecture appears to be an area of great promise, it is also an area
ripe for significant investment in order to reach a level of understanding from which
significant benefits can be reaped and from which a truly simple overview could be
captured.

We invite feedback on the content, presentation, and utility of this report with regard
to the intended audience.

The structure of the report is as follows:

• Section 2 discusses the concept of software architecture—its definition(s), its
history, and its foundational underpinnings. It also suggests why there has
been considerable confusion over the term and why we do not yet have a
precise definition.

• Section 3 asks, and attempts to answer, the question “Why is software
architecture important?” It discusses the importance of the concept of
software architecture in system development from three vantages: as a
medium of communication among a project’s various stakeholders; as the
earliest set of design decisions in a project; and as a high-level abstraction of
the system that can be reused in other systems.

• Section 4 discusses the concept of architectural views—the need for different
views, a description of some accepted views, and the relationship among
views.

• Section 5 explains how the architecture-based model of system development
differs from the traditional programming-oriented development paradigms of
the past.

• Finally, Section 6 lists some of the most promising research areas in software
architecture.

CMU/SEI-96-TR-003 3

2. What Is Software Architecture?

2.1 Definitions

What do we mean by software architecture? Unfortunately, there is yet no single uni-
versally accepted definition. Nor is there a shortage of proposed definition candi-
dates. The term is interpreted and defined in many different ways. At the essence of
all the discussion about software architecture, however, is a focus on reasoning about
the structural issues of a system. And although architecture is sometimes used to
mean a certain architectural style, such as client-server, and sometimes used to refer
to a field of study, it is most often used to describe structural aspects of a particular
system.

These structural issues are design-related—software architecture is, after all, a form
of software design that occurs earliest in a system’s creation—but at a more abstract
level than algorithms and data structures. According to what has come to be regarded
as a seminal paper on software architecture, Mary Shaw and David Garlan suggest
that these

“Structural issues include gross organization and global control structure; protocols
for communication, synchronization, and data access; assignment of functionality to
design elements; physical distribution; composition of design elements; scaling and
performance; and selection among design alternatives” [Garlan 93].

Each of the various definitions of software architecture emphasizes certain of these
structural issues and corresponding ways to describe them. Each of these positions
can usually be traced to an idea about what the proponent wishes to do with the soft-
ware architecture—analyze it, evolve it, represent it, or develop from it. It is important
to understand that though it may seem confusing to have multiple interpretations,
these different interpretations do not preclude each other, nor do they represent a
fundamental conflict about what software architecture is. We will address these differ-
ent interpretations or views in Section 3. However, at this point it is important to real-
ize that together they represent a spectrum in the software architecture research
community about the emphasis that should be placed on architecture—its constituent
parts, the whole entity, the way it behaves once built, or the building of it. Taken
together, they form a consensus view of software architecture and afford a more com-
plete picture.

As a sufficiently good compromise to the current technical debate, we offer the defini-
tion of software architecture that David Garlan and Dewayne Perry have adopted for
their guest editorial in the April 1995 IEEE Transactions on Software Engineering
devoted to software architecture:

4 CMU/SEI-96-TR-003

The structure of the components of a program/system, their interrelationships,
and principles and guidelines governing their design and evolution over time.

Other definitions can be found in various documents [Perry 92, Garlan 93, Hayes-
Roth 94, Gacek 95, Soni 95]. Diagrams are typically used to illustrate these compo-
nents and their interrelationships. The choice of diagram is by no means standard-
ized.

The bottom line is that software architecture is about structural properties of a sys-
tem. Structural properties can be expressed in terms of components, interrelation-
ships, and principles and guidelines about their use. The exact structural properties to
consider and the ways to represent them vary depending upon what is of structural
interest to the consumer of the architecture.

2.2 Roots of Software Architecture

The study of software architecture is in large part a study of software structure that
began in 1968 when Edsger Dijkstra pointed out that it pays to be concerned with
how software is partitioned and structured, as opposed to simply programming so as
to produce a correct result [Dijkstra 68]. Dijkstra was writing about an operating sys-
tem, and first put forth the notion of a layered structure, in which programs were
grouped into layers, and programs in one layer could only communicate with pro-
grams in adjoining layers. Dijkstra pointed out the elegant conceptual integrity exhib-
ited by such an organization, with the resulting gains in development and
maintenance ease.

David Parnas pressed this line of observation with his contributions concerning infor-
mation-hiding modules [Parnas 72], software structures [Parnas 74], and program
families [Parnas 76].

A program family is a set of programs (not all of which necessarily have been or will
ever be constructed) for which it is profitable or useful to consider as a group. This
avoids ambiguous concepts such as “similar functionality” that sometimes arise when
describing domains. For example, software engineering environments and video
games are not usually considered to be in the same domain, although they might be
considered members of the same program family in a discussion about tools that help
build graphical user interfaces, which both happen to use.1

1.This example illustrates that the members of a program family may include elements of what
are usually considered different domains.

CMU/SEI-96-TR-003 5

Parnas argued that early design decisions should be ones that will most likely remain
constant across members of the program family that one may reasonably expect to
produce. In the context of this discussion, an early design decision is the adoption of
a particular architecture. Late design decisions should represent trivially-changeable
decisions, such as the values of compile-time or even load-time constants.

All of the work in the field of software architecture may be seen as evolving towards a
paradigm of software development based on principles of architecture, and for exactly
the same reasons given by Dijkstra and Parnas: Structure is important, and getting
the structure right carries benefits.

In tandem with this important academic understanding of program and system struc-
ture came a long series of practical experiences working with systems in several
highly populated domains, such as compilers. Throughout the 1970s and 1980s,
compiler design evolved from a series of distinct efforts, each one innovative and
unprecedented, into one with standard, codified pieces and interactions. Today, text-
books about how to build a compiler abound, and the domain has matured to the
point where no one today would think for a moment of building a compiler from
scratch, without re-using and exploiting the codified experience of the hundreds of
prior examples.

What exactly is reused and exploited? Those structural necessities that are common
to all compilers. Compiler writers can talk meaningfully with each other about lexical
scanners, parsers, syntax trees, attribute grammars, target code generators, optimiz-
ers, and call graphs even though the languages being compiled may look nothing at
all alike. So, for instance, two compilers may have completely different parsers, but
what is common is that both compilers have a component called a parser, which per-
forms a function in both that (when viewed under at a high level) is exactly the same.
Reusing the structural decisions and componentry for a system also allows reusing
its work breakdown structures, estimates, team organization, test plans, integration
plans, documentation, and many other labor-intensive assets.

Many other domains now exist that, through practice and repetition and sharing
among the many early members of the family, now exhibit common structure, inter-
connection strategies, allocation of functionality to components, component inter-
faces, and an overall justifying rationale. The current study of software architecture
can be viewed as an ex post facto effort to provide a structured storehouse for this
type of reusable high level family-wide design information. Work in software architec-
ture can be seen as attempting to codify the structural commonality among members
of a program family, so that the high-level design decisions inherent in each member
of a program family need not be re-invented, re-validated, and re-described.

6 CMU/SEI-96-TR-003

2.3 Why Hasn’t the Community Converged?

As noted above, the software engineering community has not settled on a universal
definition for software architecture. The lack of a definition is perhaps not as signifi-
cant as the reasons for lack of convergence. We suggest the following reasons for the
current ambiguity in the term. We list them as issues to be aware of in any discussion
of software architecture.

2.3.1 Advocates Bring Their Methodological Biases with Them

As we have noted, proposed definitions of architecture largely agree at the core, but
differ seriously at the fringes. Some require that architecture must include rationale,
others hold out for process steps for construction. Some require allocation of func-
tionality to components; others contend that simple topology suffices. Each position
depends upon the precise motivation for examining the structural issues in the first
place. It is essential to understand that motivation prior to the study of either a defini-
tion of software architecture or an architecture artifact.

2.3.2 The Study Is Following Practice, not Leading It

The study of software architecture has evolved by observing the design principles
and actions that designers take when working on real systems. It is an attempt to
abstract the commonalities inherent in system design, and as such, it must account
for a wide range of activities, concepts, methods, approaches, and results. This differs
from a more top-down approach that defines software architecture and then maps
compliant ongoing activities to the term. What we see happening is that people
observe designers’ many activities, and try to accommodate those activities by mak-
ing the term software architecture more broad. Because this study is ongoing, the
convergence of the definition hasn’t happened.

2.3.3 The Study Is Quite New

Although it possesses long roots, the field of software architecture is really quite new,
as judged by the recent flurry of books, conferences, workshops, and literature
devoted to it.

2.3.4 The Foundations Have Been Imprecise

Beware: The field has been remarkable for its proliferation of undefined terms that
can be land mines for the unsuspecting. For example, architecture defined as “the
overall structure of the system” adds to rather than reduces confusion because this
implies that a system has but a single “overall structure.” Figure 1, taken from a sys-
tem description for an underwater acoustic simulation system, purports to describe
the top-level architecture of the system. Exactly what can we tell about the system

CMU/SEI-96-TR-003 7

from this diagram? There are four components, three of which might have more in
common with each other (MODP, MODR, and MODN) than with the fourth (CP).

Figure 1: Typical, but Uninformative, Model of a “Top-Level Architecture”

Is this an architecture? Assuming that architecture consists of components (of which
we have four) and connections among them (also present), then this would seem to
suffice according to many definitions. However, even if we accept the most primitive
definition, what can we not tell from the diagram?

•What is the nature of the components, and what is the significance of their
separation? Do they run on separate processors? Do they run at separate
times? Do the components consist of processes, programs, or both? Do the
components represent ways in which the project labor will be divided, or do
they convey a sense of runtime separation? Are they modules, objects, tasks,
functions, processes, distributed programs, or something else?

•What is the significance of the links? Do the links mean the components
communicate with each other, control each other, send data to each other,
use each other, invoke each other, synchronize with each other, or some
combination of these or other relations?

•What is the significance of the layout? Why is CP on a separate (higher)
level? Does it call the other three components, and are the others not allowed
to call it? Or was there simply not room enough to put all four components on
the same row in the diagram?

We must raise these questions, for without knowing precisely what the components
are, what the links mean, and what significance there is to the position of components
and/or direction of links, diagrams are not much help and should be regarded warily.

Consider one more example, a “layered architecture,” which is also a commonly-rep-
resented architectural paradigm [Garlan 93]:

Control
Process

(CP)

Prop Loss
Model

(MODP)

Reverb
Model

(MODR)

Noise
Model

(MODN)

8 CMU/SEI-96-TR-003

A layered system is organized hierarchically, each layer providing service to the
layer above it and serving as a client to the layer below. In some layered
systems inner layers are hidden from all except the adjacent outer layer, except
for certain functions carefully selected for export. Thus in these systems the
components implement a virtual machine at some layer in the hierarchy... The
connectors are defined by the protocols that determine how the layers will
interact.

Figure 2: A Layered System [Garlan93]

Close examination of this description reveals that it mixes separate concerns. For one
thing, “hidden” is a concept that has no meaning at runtime; it is purely a concept that
applies at program-write time, and specifies what facilities a particular programmer is
or is not allowed to use when writing his or her portion of the system. “Providing ser-
vice” is the runtime interaction mechanism, but it could reasonably mean any of the
following: calls, uses, signals, sends data to. It also fails to capture any notion of con-
currency, real or potential. Can software in different layers run simultaneously, or are
there mutual exclusion constraints between layers? If we are concerned about the
feasibility of fielding our system on a multi-processor environment, shouldn’t we be
able to discern this information as part of the answer to the question “What is the
architecture of a layered system?”

2.3.5 The Term Is Over-Utilized

The meaning of the term architecture as it relates to software engineering is becom-
ing increasingly dilute simply because it seems to be in vogue. It is possible to find
references to the following “kinds” of architectures: domain-specific, megaprogram-
ming, target, systems, information, information systems, functional, software, hard-
ware, network, infrastructure, applications, operations, technical, framework,

Core
level

Basic Utility

Useful Systems

Users

CMU/SEI-96-TR-003 9

conceptual, reference, enterprise, factory, C4I, manufacturing, building, machine-tool,
etc. Often what differs is the nature of the components and connections (e.g., a net-
work architecture specifies connectedness between processors at the endpoints of
hardware communication paths); at other times the distinctions are less clear or the
term “architecture” is simply an inappropriate reference. Some of these terms will be
described in more detail in Section 4.

2.4 The Many Roles of Software Architecture

People often make analogies to other uses of the word architecture about which they
have some intuition. They commonly associate architecture with physical structure
(building, streets, hardware) and physical arrangement. A building architect has a
perspective of architecture that is driven by the need to design a building that as an
entity addresses needs and requirements including accessibility, aesthetics, light,
maintainability, etc. [Alexander 77]. A software architect has a perspective that is
driven by the need to design a system that addresses needs such as concurrency,
portability, evolvability, usability, security, etc. Analogies between buildings and soft-
ware systems should not be taken literally—they break down fairly soon—but rather
used to help understand that perspective is important and structure can have different
meanings depending upon the motivation for examining structure. What to glean from
this discussion is that a precise definition of software architecture is not nearly as
important as the concept and what its investigation allows us to do.

Software architecture usually refers to some combination of structural views of a sys-
tem, with each view a legitimate abstraction of the system with respect to certain cri-
teria, that facilitates a particular type of planning or analysis. This relatively simple
concept has been co-opted by a wide variety of stakeholders and participants in soft-
ware development; architecture has become a concept that represents many things
to many people. In subsequent sections, we will explore some of these views and
viewpoints.

10 CMU/SEI-96-TR-003

CMU/SEI-96-TR-003 11

3. Why Is Software Architecture Important?

If a project has not achieved a system architecture, including its
rationale, the project should not proceed to full-scale system
development. Specifying the architecture as a deliverable enables its
use throughout the development and maintenance process.

— Barry Boehm [Boehm 95]

What is it about software architecture that warrants all the attention it is receiving? In
this section we will suggest some reasons why software architecture is important, and
why the practice of architecture-based development is worthwhile.

Fundamentally, there are three reasons:

1. Mutual communication. Software architecture represents a common high-level
abstraction of the system that most, if not all, of the system’s stakeholders can
use as a basis for creating mutual understanding, forming consensus, and com-
municating with each other.

2. Early design decisions . Software architecture represents the embodiment of
the earliest set of design decisions about a system, and these early bindings
carry weight far out of proportion to their individual gravity with respect to the
system’s remaining development, its service in deployment, and its maintenance
life.

3. Transferable abstraction of a system . Software architecture embodies a
relatively small, intellectually graspable model for how the system is structured
and how its components work together; this model is transferable across
systems; in particular, it can be applied to other systems exhibiting similar
requirements, and can promote large scale reuse.

We will address each in turn.

3.1 Architecture Is the Vehicle for Stakeholder Communication

Each stakeholder of a software system—customer, user, project manager, coder,
tester, etc.—is concerned with different aspects of the system for which architecture
is an important factor; or, they may be concerned with the same aspects, but from dif-
ferent perspectives. For example, the user is concerned that the system meets its
availability and reliability requirements; the customer is concerned that the architec-
ture can be implemented on schedule and to budget; the manager is worried (in addi-
tion to cost and schedule) that the architecture will allow teams to work largely
independently, interacting in disciplined and controlled ways. The developer is worried
about strategies to achieve all of those goals. Architecture provides a common lan-

12 CMU/SEI-96-TR-003

guage in which competing concerns can be expressed, negotiated, and resolved at a
level that is intellectually manageable even for large, complex systems. Without such
a language it is difficult to understand large systems sufficiently to make well informed
early decisions that greatly influence their quality and usefulness.

3.2 Architecture Embodies the Earliest Set of Design Decisions
About a System

Architecture represents the earliest set of design decisions about a system. These
early decisions are the most difficult to get right, are the hardest ones to change, and
have the most far-reaching downstream effects, some of which we describe as fol-
lows.

3.2.1 Architecture Provides Builders with Constraints on Implementation

An architecture defines a set of constraints on an implementation; an implementation
is said to exhibit an architecture if it conforms to the structural design decisions
described by the architecture. The implementation must therefore be divided into the
prescribed components, the components must interact with each other in the pre-
scribed fashion, and each component must fulfill its responsibility to the other compo-
nents as dictated by the architecture.

This constraining of the implementation is made on the basis of system- and/or
project-wide allocation decisions that are invisible to implementors working on individ-
ual components, and permits a separation of concerns that allows management deci-
sions that make best use of personnel. Component builders must be fluent in the
specification of their individual components, but not in system trade-off issues; con-
versely, the architects need not be experts in algorithm design or the intricacies of the
programming language.

3.2.2 The Architecture Dictates Organizational Structure for Development and
Maintenance Projects

Not only does architecture prescribe the structure of the system being developed, but
that structure becomes reflected in the work breakdown structure and hence the
inherent development project structure. Teams communicate with each other in terms
of the interface specifications to the major components. The maintenance activity,
when launched, will also reflect the software structure, with maintenance teams
formed to address specific structural components.

CMU/SEI-96-TR-003 13

3.2.3 An Architecture Permits or Precludes the Achievement of a System’s
Targeted Quality Attributes

Whether or not a system will be able to exhibit its desired (or required) quality
attributes is largely determined by the time the architecture is chosen.

Quality attributes may be divided into two categories. The first includes those that can
be measured by running the software and observing its effects; performance, secu-
rity, reliability, and functionality all fall into this category. The second includes those
that cannot be measured by observing the system, but rather by observing the devel-
opment or maintenance activities. This category includes maintainability in all of its
various flavors: adaptability, portability, reusability, and the like.

Modifiability, for example, depends extensively on the system’s modularization, which
reflects the encapsulation strategies. Reusability of components depends on how
strongly coupled they are with other components in the system. Performance
depends largely upon the volume and complexity of inter-component communication
and coordination, especially if the components are physically distributed processes.

It is important to understand, however, that an architecture alone cannot guarantee
the functionality or quality required of a system. Poor downstream design or imple-
mentation decisions can always undermine an architectural framework. Decisions at
all stages of the life cycle—from high level design to coding and implementa-
tion—affect system quality. Therefore, quality is not completely a function of an archi-
tectural design. A good architecture is necessary, but not sufficient, to ensure quality.

3.2.4 It Is Possible to Predict Certain Qualities About a System by Studying Its
Architecture

If the architecture allows or precludes a system’s quality attributes (but cannot ensure
them), is it possible to tell that the appropriate architectural decisions have been
made without waiting until the system is developed and deployed? If the answer were
“no,” then choosing an architecture would be a fairly hopeless task. Random architec-
ture selection would perform as well as any other method. Fortunately, it is possible to
make quality predictions about a system based solely on an evaluation of its architec-
ture.

Architecture evaluation techniques such as the Software Architecture Analysis
Method (SAAM), proposed at the Software Engineering Institute (SEI), obtain top
down insight into the attributes of software product quality that are enabled (and con-
strained) by specific software architectures. SAAM proceeds from construction of a
set of domain derived scenarios that reflect qualities of interest in the end-product
software. This set includes direct scenarios (which exercise required software func-
tionality) and indirect scenarios (which reflect non functional qualities). Mappings are

14 CMU/SEI-96-TR-003

made between these domain scenarios and candidate architectures, and a score is
assigned to the degree by which a candidate architecture satisfies the expectations of
each scenario. Candidate architectures can then be contrasted in terms of their fulfill-
ment of scenario-based expectations of them [Abowd 94, Clements 95a, Kazman
95].

3.2.5 Architecture Can Be the Basis for Training

The structure, plus a high-level description of how the components interact with each
other to carry out the required behavior, often serves as the high-level introduction to
the system for new project members.

3.2.6 An Architecture Helps to Reason About and Manage Change

The software development community is finally coming to grips with the fact that
roughly 80% of a software system’s cost may occur after initial deployment, in what is
usually called the maintenance phase. Software systems change over their lifetimes;
they do so often, and often with difficulty. Change may come from various quarters,
including:

• The need to enhance the system’s capabilities. Software-intensive systems
tend to use software as the means to achieve additional or modified
functionality for the system as a whole. Systems such as the Joint Stars
battlefield surveillance radar and the MILSTAR network of telecommunication
satellites are examples of systems that have achieved enhanced capability
through software upgrades. However, with each successive change, the
complexity of the system software has increased dramatically.

• The need to incorporate new technology, whose adoption can provide
increased efficiency, operational robustness, and maintainability.

Deciding when changes are essential, determining which change paths have least
risk, assessing the consequences of proposed changes, and arbitrating sequences
and priorities for requested changes all require broad insight into relationships,
dependencies, performance, and behavioral aspects of system software compo-
nents. Reasoning at an architecture level can provide the insight necessary to make
decisions and plans related to change.

More fundamentally, however, an architecture partitions possible changes into three
categories: local, non-local, and architectural. A local change can be accomplished
by modifying a single component. A non-local change requires multiple component
modifications, but leaves the underlying architecture intact. An architectural change
affects the ways in which the components interact with each other, and will probably
require changes all over the system. Obviously, local changes are the most desirable,

CMU/SEI-96-TR-003 15

and so the architecture carries the burden of making sure that the most likely
changes are also the easiest to make.

3.3 Architecture as a Transferable Model

Greater benefit can be achieved from reuse the earlier in the life cycle it is applied.
While code reuse provides a benefit, reuse at the architectural level provides a tre-
mendous leverage for systems with similar requirements. When architectural deci-
sions can be reused across multiple systems all of the early decision impacts we just
described above are also transferred.

3.3.1 Entire Product Lines Share a Common Architecture

Product lines are derived from what Parnas referred to in 1976 as program families
[Parnas 76]. It pays to carefully order the design decisions one makes, so that those
most likely to be changed occur latest in the process. In an architecture-based devel-
opment of a product line, the architecture is in fact the sum of those early design deci-
sions, and one chooses an architecture (or a family of closely-related architectures)
that will serve all envisioned members of the product line by making design decisions
that apply across the family early, and by making others that apply only to individual
members late. The architecture defines what is fixed for all members of the product
line and what is variable.

A family-wide design solution may not be optimal for all derived systems, but it is a
corporate decision that the quality known to be associated with the architecture and
the savings in labor earned through architectural-level reuse compensates for the
loss of optimality in particular areas. The architecture for a product line becomes a
developing organization’s core asset, much the same as other capital investments.

The term domain-specific software architectures applies to architectures designed to
address the known architectural abstractions specific to given problem domains.
Examples of published domain-specific software architectures come from the ARPA
Domain-Specific Software Architecture (DSSA) program [Hayes-Roth 94].

3.3.2 Systems Can Be Built by Importing Large Externally-Developed
Components That Are Compatible with a Pre-Defined Architecture

Whereas former software paradigms have focused on programming as the prime
activity, with progress measured in lines of code, architecture-based development
often focuses on composing or assembling components that are likely to have been
developed separately, even independently, from each other. This composition is pos-
sible because the architecture defines the set of components that can be incorpo-
rated into the system. The architecture constrains possible replacement (or additions)

16 CMU/SEI-96-TR-003

in the way in which they interact with their environment, how they receive and relin-
quish control, the data that they work on and produce and how they access it, and the
protocols they use for communication and resource sharing.

One key aspect of architecture is its organization of component structure, interfaces,
and operating concepts. One essential value of this organization is the idea of inter-
changeability. In 1793, Eli Whitney’s mass production of muskets, based on the princi-
ple of interchangeable parts, announced the dawn of the industrial age. In the days
before physical measurements were reliable, this was a daunting notion. Today in
software, until abstractions can be reliably delimited, the notion of structural inter-
changeability is just as daunting, and just as significant. Commercial off-the-shelf
components, subsystems, and compatible communications interfaces all depend on
the idea of interchangeability.

There are still some significant unresolved issues, however, related to software devel-
opment through composition. When the components that are candidates for importa-
tion and reuse are distinct subsystems that have been built with conflicting
architectural assumptions, unanticipated complications may increase the effort
required to integrate their functions. David Garlan has coined the term “architectural
mismatch” to describe this situation [Garlan 95]. Symptoms of architectural mismatch
are the serious integration problems that occur when developers of independent sub-
systems have made architectural assumptions that differed from the assumptions of
those who would employ these subsystems.

To resolve these differences, Garlan identifies the need to make explicit the architec-
tural contexts for potentially reusable subsystems. Some design practices, such as
information hiding, are particularly important for architectural consistency. Techniques
and tools for developing wrappers1 to bridge mismatches, and principles for composi-
tion of software are also needed. The most elemental need is for improved documen-
tation practices, the inclusion of detailed pre-conditions for the use of interfaces, and
conventions for describing typical architectural assumptions.

3.3.3 Architecture Permits the Functionality of a Component to be Separated
from Its Component Interconnection Mechanisms

Traditional design approaches have been primarily concerned with the functionality of
components. Architecture work seeks to elevate component relationships to the same

1. A wrapper is a small piece of software that provides a more usable or appropriate interface for a software com-
ponent. Users of the component invoke it through the wrapper, which translates the invocation into the form
required by the component. The wrapper “hides” the (less desirable) interface of the component, so that only
the wrapper software has to deal with it.

CMU/SEI-96-TR-003 17

level of concern. How components interact (coordinate, cooperate, communicate)
becomes a first class design decision where the stated goal is to recognize the differ-
ent fundamental qualities imparted to systems by these various interconnection strat-
egies, and to encourage informed choices. The result is a separation of concerns,
which introduces the possibility of building architectural infrastructure to automatically
implement the architect’s eventual choice of mechanism. The binding of this decision
may be delayed and/or easily changed. Thus, prototyping and large-scale system
evolution are both supported. Although proponents of this view speak of “first-class
connectors” [Shaw 95c], they are actually making it possible for the question of con-
nectors to be ignored in many cases. This contrasts to the programming paradigm,
where connection mechanisms are chosen very early in the design cycle, are not
given much thought, and are nearly impossible to change. Areas addressing this
aspect include architecture description languages that embody connection abstrac-
tions, as opposed to mechanisms.

3.3.4 Less Is More: It Pays to Restrict the Vocabulary of Design Alternatives

Garlan and Shaw’s work in identifying architectural styles [Garlan 93] teaches us that
although computer programs may be combined in more or less infinite ways, there is
something to be gained by voluntarily restricting ourselves to a relatively small set of
choices when it comes to program cooperation and interaction. Advantages include
enhanced reuse, more capable analysis, shorter selection time, and greater interop-
erability.

Properties of software design follow from the choice of architectural style. Architec-
tural styles are patterns or design idioms that guide the organization of modules and
subsystems into complete systems. Those styles that are more desirable for a partic-
ular problem should improve implementation of the resulting design solution, perhaps
by enabling easier arbitration of conflicting design constraints, by increasing insight
into poorly understood design contexts, and/or by helping to surface inconsistencies
in requirements specifications. Client-server1 and pipe-filter2 are example of architec-
tural styles.

1. “Client-server” refers to two software components, usually implemented as separate processes, that serve as
requestor and provider, respectively, of specific information or services.

2. A pipe is a mechanism for transporting data, unchanged, from one program to another. A filter is a program
that applies a data transformation to a data set. This is a familiar style to programmers who use the Unix oper-
ating system; commands such as “cat data | grep ‘keyword’ | sort | fmt -80” are pipe-and-filter programs.

18 CMU/SEI-96-TR-003

3.3.5 An Architecture Permits Template-Based Component Development

An architecture embodies design decisions about how components interact that,
while reflected in each component at the code level, can be localized and written just
once. Templates may be used to capture in one place the interaction mechanisms at
the component level. For example, a template may encode the declarations for a
component’s public area where results will be left, or encode the protocols that the
component uses to engage with the system executive. An example of a set of firm
architectural decisions enabling template-based component development may be
found in the Structural Modeling approach to software [Abowd 93].

CMU/SEI-96-TR-003 19

4. Architectural Views and Architecture Frameworks

4.1 The Need for Multiple Structures or Views

The contractor, the architect, the interior designer, the landscaper, and the electrician
all have a different architectural view of a building. These views are pictured differ-
ently, but all are inherently related and together describe the building’s architecture.

In Section 2 we said that software architecture is about software structure, but we
also explained that defining “the overall structure” of a system was an inherently
ambiguous concept. So, just as the “structure of a building” has many meanings
depending upon one’s motive and viewpoint, software exhibits many structures and
we cannot communicate meaningfully about a piece of software unless it is clear
which structure we are describing.

Moreover, when designing the software for a large, complex system, it will be neces-
sary to consider more than one structural perspective as well as the relationships
among them. Though one often thinks about structure in terms of system functional-
ity, there are system properties in addition to functionality, such as physical distribu-
tion, process communication, and synchronization, that must be reasoned about at
an architectural level. These other properties are addressed in multiple structures
often referred to as architectural views. They are also sometimes referred to as archi-
tectural models, but again the terminology has not settled enough yet to be depend-
able.

Each different view reflects a specific set of concerns that are of interest to a given
group of stakeholders in the system. Views are therefore abstractions, each with
respect to different criteria. Each abstraction “boils away” details about the software
that are independent of the concern addressed by the abstraction. Each view can be
considered to be a software blueprint and each can use its own notation, can reflect
its own choice of architectural style, and can define what is meant in its case by com-
ponents, interrelationships, rationale, principles, and guidelines.

Views are not fully independent, however. Elements in one can relate to elements in
another so while it is helpful to consider each separately, it is also necessary to rea-
son rigorously about the interrelations of these views. Views may be categorized as
follows:

•Whether or not the structures they represent are discernible at system
runtime. For example, programs exist at runtime; one can determine the calls
structure of a system by observing the execution of the system. Modules,
however, disappear; modules are a purely static (pre-runtime) phenomenon.

20 CMU/SEI-96-TR-003

•Whether the structures describe the product, the process of building the
product, or the process of using the product to solve a problem. All the views
discussed in this section are of the product. A model of the user interaction
presents another view of the architecture of the system, and is typically
represented via entity-relation diagrams. Still other views model the problem
area or domain.

Some authors differentiate views by what kind of information they show. For instance,
Budgen distinguishes between functional, behavioral, structural, and data-modeling
viewpoints [Budgen 93]. These all map, more or less, to the previous two categories.

Note that each view may be interpreted either as a description of the system that has
been built, or a prescription that is engineered to achieve the relevant quality
attributes.

4.2 Some Representative Views

There is not yet agreement on a standard set of views or terms to refer to views. In
this section we list a typical and useful set. It should be noted that these views are
given different names by various technologists. The perspective they represent is
more important than the associated name.

4.2.1 Conceptual (Logical) View

The conceptual, or logical, architectural view includes the set of abstractions neces-
sary to depict the functional requirements of a system at an abstract level. This view
is tightly connected to the problem domain and is a useful communication vehicle
when the architect interacts with the domain expert. The conceptual view is indepen-
dent of implementation decisions and instead emphasizes interaction between enti-
ties in the problem space. This view is usually described by an informal block
diagram, but in the case where object technology is utilized it may be expressed
using class diagrams and class templates or in complex systems class categories.

Frameworks are similar to conceptual views but target not just systems but specific
domains or problem classes. Frameworks are therefore close in nature to domain-
specific architectures, to CORBA-based architecture models, and to domain-specific
component repositories such as PRISM.

4.2.2 Module (Development) View

The module, or development, view is a frequently developed architectural structure. It
focuses on the organization of actual software modules. Depending on how the mod-
ules are organized in the system, this view can take different forms. One form groups
modules into identifiable subsystems, reflecting the software’s organization into

CMU/SEI-96-TR-003 21

chunks of related code in the system, and often the basis for allocating development
or maintenance work to project teams. For example, a module view might use the
principle of information-hiding as the grouping criterion to facilitate maintainability
[Clements 85]. A much different grouping would result by collecting modules together
that interact with each other heavily at runtime to perform related tasks.

Another form groups the modules into a hierarchy of layers that reflect design deci-
sions about which modules can communicate as well as predictions about the gener-
ality or application speciality of each module. In a layered system, modules within a
given layer can communicate with each other. Modules in different layers can commu-
nicate with each other only if their respective layers are adjacent1. In this way each
layer has a well defined and narrowly scoped interface to the software that makes use
of it. In addition, traversing down the hierarchy shows modules of greater generality
that are less likely to change in response to an application-specific requirements
change. Layered systems are often comprised of four to six layers.

Figure 3 shows the five layers of an air traffic control system [Kruchten 95].

Figure 3: Layers in an Air Traffic Control System [Kruchten 95]

The module or layered organizations may or may not reflect the organization of the
code as the compiler sees it in program libraries or compilation units. If not, then this
compile-time structure is yet another view, which facilitates planning about the system
build procedures.

1. In some systems, the rule is that a module can only access modules in the same or lower layers. In other sys-
tems, the communication is limited to the same or immediately lower layer.

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Human-computer interface
External systems

ATC functional areas: flight manage-
ment, sector management, and so on.

Aeronautical classes
ATC classes

Support mechanisms:
communication, time, storage, resource
management, and so on

Bindings
Common utilities

Low-level services

22 CMU/SEI-96-TR-003

Unlike the conceptual view, the module view is closely tied to the implementation. It is
usually represented by module and subsystem diagrams that show interface imports
and exports. As an architecture, this view has components that are either modules,
subsystems, or layers, and the interrelationships are determined by import/export
relations between modules, subsystems, or layers, respectively.

4.2.3 Process (Coordination) View

While the conceptual and module views we’ve seen so far deal with static aspects of
the system, the process, or coordination, view takes an orthogonal perspective; it
focuses on the runtime behavior of the system. As such, the process view is not as
much concerned with functionality as it is with how entities are created, with commu-
nications mechanisms such as concurrency and synchronization. Clearly the process
view deals with the system’s dynamic aspects.

The structural components in the process view are usually processes. A process is a
sequence of instructions (statements) with its own thread of control. During system
execution, a process can be started, shut down, recovered, reconfigured, etc., and
can communicate and synchronize as necessary with other processes.

This view facilitates reasoning about a system’s performance and runtime scheduling
based on inter-process communication patterns.

4.2.4 The Physical View

The physical view shows the mapping of software onto hardware. Software that exe-
cutes on a network of computers must be partitioned into processes that are distrib-
uted across these computers. That distribution scheme is a structure that affects (and
allows reasoning about) system availability, reliability, performance, and scalability.

This mapping of the software on to the hardware needs to be flexible and have as lit-
tle impact on the actual code as possible since physical configurations can actually
vary depending upon whether or not the system is in test or deployment and depend-
ing on the exact deployment environment.

4.2.5 Relating the Views to Each Other

Each one of these views provides a different structure of a system, each valid and
useful in its own right. The conceptual and module views show the static system
structure while the process and physical views give us the dynamic or runtime system
structure. The conceptual and module views, though very close, address very differ-
ent concerns as described above. Some argue that the process and physical view
should be combined [Soni 95]. Further, there is no requirement or implication that
these structures bear any topological resemblance to each other.

CMU/SEI-96-TR-003 23

While the views give different system structural perspectives they are not fully inde-
pendent. Elements of one view will be “connected” to elements of other views, and
one needs to reason about those connections. Scenarios, as described below, are
useful for exercising a given view as well as these inter-view connections.

All systems do not warrant multiple architectural views. Experience has shown that
the larger the system, the more dramatic the difference between these views
[Kruchten 95], but for very small systems the conceptual and module views may be
so similar that they can be described together. If there is only one process or program
there is clearly no need for the process view. If there is to be no distribution (that is, if
there is just one processor) there is no need for the physical view. However, in the
case of most systems of significant size and difficulty, if we were to attempt to com-
bine these views into one structure we would limit evolvability, and reconfigurability,
and add detailed complexity that would cripple the usefulness of the architecture as
an artifact. This separation of concerns afforded by multiple views proves extremely
beneficial in managing the complexity of large systems.

Figure 4 illustrates the views we have described, as well as their primary intended
audiences and issues. It was adapted from a similar diagram shown in Kruchten
[Kruchten 95].

Figure 4: Architectural Views

Scenarios

Scenarios are scripts of individual pieces of a system’s functionality. Scenarios are
useful in analyzing a given view [Clements 95a] or in showing that the elements of
multiple views work together properly [Kruchten 95]. We can think about the scenar-

End Users
• functionality

Programmers
• software management

System integrators
• performance
• scalability
• throughput

System engineers
• system topology
• delivery
• installation
• telecommunication

Conceptual view Module view

Process view Physical view

24 CMU/SEI-96-TR-003

ios as an abstraction of the most important system requirements. Scenarios are
described in text using what is called a script and are sometimes described in pic-
tures, for example object interaction diagrams. Scenarios are an important tool to
relate different architectural views, because walking through a scenario can show
how parts of different architectural views are related to each other.

4.3 Architecture Frameworks

While the conceptual view is often generalized for a problem domain into what was
described as a framework, there has been some effort to actually make frameworks
for architectures of systems from a given broad domain. The Technical Architecture
Framework for Information Management (TAFIM) described below is one such effort.

4.3.1 Technical Architecture Framework for Information Management (TAFIM)

The context for the management, use, and evolution of an information system is today
rarely a collection of manual activities as was the case forty years ago. Current infor-
mation systems function as entities within larger systems of related automated pro-
cesses; they support the operations of independent, but interoperating mission
critical systems; they are intrinsic elements of embedded computer systems that con-
trol, assimilate, distribute, activate, and/or monitor the operations of complex hybrids
of digital and electronic hardware. Partly as a result of this increasing integration with
other mechanical, digital and electronic systems, it is increasingly important to recog-
nize the common elements shared by all information systems. Whether an informa-
tion system accumulates stand-alone data on financial trends, provides interactive
feedback to process control systems developers on the performance of their designs,
interprets and recognizes patterns as part of a distributed surveillance system, calcu-
lates navigation and guidance parameters as an embedded subsystem of a military
weapons platform, or computes and distributes robotic machine control instructions
at the heart of a factory automation system, it typically has three kinds of elements,
each with its own typical life cycle of management and technology decisions. The
three typical elements of any information system are (a) its data; (b) its mission-spe-
cific applications; and (c) its infrastructure of support applications, computing plat-
forms and communications networks.

The TAFIM [DoD 94], being developed by the Department of Defense (DoD)
advances a descriptive pattern for information systems architectures (ISA). This pat-
tern recognizes the pervasiveness of the above three information systems elements.
It thereby provides a means for tailoring common life cycle management and technol-
ogy decisions appropriately for different kinds of information systems applications.

CMU/SEI-96-TR-003 25

A technical architecture such as TAFIM is not a complete architecture in that it does
not fully specify components and the connections between them. Rather it is a speci-
fication that constrains the architectural choices that can be made. Often it does this
by specifying consensus-based standards to which the system and its architecture
must adhere. Thus, the TAFIM expresses a pattern for describing an ISA, and recog-
nizes that there are necessary and proper variations in the content of ISAs within dif-
ferent types of information systems applications, enterprises, mission areas,
computing communities, etc. For instance, an ISA that is tailored for information sys-
tems supporting weather processing, where parallel processing computations are
intrinsic and essential, will have unique content and features. However, its overall
form will be intelligible to systems managers and executives via its consonance with
the TAFIM pattern for describing ISAs. This pattern is the so-called technical architec-
tural “framework.”

26 CMU/SEI-96-TR-003

CMU/SEI-96-TR-003 27

5. Architecture-Based Development

5.1 Architecture-Based Activities for Software Development

What activities are involved in taking an architecture-based approach to software
development? At the high level, they include the following that are in addition to the
normal design-program-and-test activities in conventional small-scale development
projects:

• understanding the domain requirements

• developing or selecting the architecture

• representing and communicating the architecture

• analyzing or evaluating the architecture

• implementing the system based on the architecture

• ensuring that the implementation conforms to the architecture

Each of these activities is briefly discussed below.

5.1.1 Understanding the Domain Requirements

Since a primary advantage of architectures is the insight they lend across whole fam-
ilies of systems, it is prudent to invest up front time in the life cycle to conduct an in
depth study of requirements not just for the specific system but for the whole family of
systems of which it is or will be a part. These families can be:

• a set of related systems, all fielded simultaneously, that differ incrementally
by small changes

• a single system that exists in many versions over time, the versions differing
from each other incrementally by small changes

In either case domain analysis is recommended. Domain analysis is an independent
investigation of requirements during which changes, variations, and similarities for a
given domain are anticipated, enumerated, and recorded for review by domain
experts. An example of a domain is command and control. The result of domain anal-
ysis is a domain model which identifies the commonalities and variations among dif-
ferent instantiations of the system, whether fielded together or sequentially.
Architectures based on domain models will yield the full advantage of architecture-
based development because domain analysis can identify the potential migration
paths that the architecture will have to support.

28 CMU/SEI-96-TR-003

5.1.2 Developing (Selecting) the Architecture

While some advocate a phased approach to architectural design [Witt 94], experience
has shown that architecture development is highly iterative and requires some proto-
typing, testing, measurement and analysis [Kruchten 95].

Ongoing work at the Software Engineering Institute posits that architects are influ-
enced by factors in three areas [Clements 95b]:

• requirements (including required quality attributes) of the system or systems
under development

• requirements imposed (perhaps implicitly) by the organization performing the
development. For example, there may be requirements, or encouragement,
to utilize a component repository, object-oriented environment, or previous
designs in which the organization has significantly invested.

• experience of the architect. The results of previous decisions, whether wildly
successful, utterly disastrous, or somewhere in between, will affect whether
the architect reuses those strategies.

Brooks argues forcefully and eloquently that conceptual integrity is the key to sound
system design, and that conceptual integrity can only be had by a very small number
of minds coming together to design the system’s architecture [Brooks 75].

5.1.3 Representing and Communicating the Architecture

In order for the architecture to be effective as the backbone of the project’s design, it
must be communicated clearly and unambiguously to all of the stakeholders. Devel-
opers must understand the work assignments it requires of them; testers must under-
stand the task structure it imposes on them; management must understand the
scheduling implications it suggests. The representation medium should therefore be
informative and unambiguous, and should be readable by many people with varied
backgrounds.

The architects themselves must make sure that the architecture will meet the behav-
ioral, performance, and quality requirements of the system(s) to be built from the
architecture. Therefore, there is an advantage if the representation medium can serve
as input to formal analysis techniques such as model-building, simulation, verifica-
tion, or even rapid prototyping. Towards this end, the representation medium should
be formal and complete.

The field of architecture description languages (ADLs) is young but growing prolifi-
cally [Clements 96a].

CMU/SEI-96-TR-003 29

5.1.4 Analyzing or Evaluating the Architecture

The analysis capabilities that many ADLs bring to the table are valuable, but tend to
concentrate on the runtime properties of the system—its performance, its behavior,
its communication patterns, and the like. Less represented are analysis techniques to
evaluate an architecture from the point of view of non-runtime quality attributes that it
imparts to a system. Chief among these is maintainability, the ability to support
change. Maintainability has many variations: portability, reusability, adaptability,
extensibility; all are special perspectives of a system’s ability to support change.
There is emerging a consensus on the value of scenario-based evaluation to judge
an architecture with respect to non-runtime quality attributes [Kazman 95], [Kruchten
95].

5.1.5 Implementing Based on the Architecture and Assuring Conformance

This activity is concerned with ensuring that the developers adhere to the structures
and interaction protocols dictated by the architecture. An architectural environment or
infrastructure would be beneficial here. However, work in this area is still quite imma-
ture.

30 CMU/SEI-96-TR-003

CMU/SEI-96-TR-003 31

6. Current and Future Work in Software Architecture

As has been the sub-theme of this report, the study and practice of software architec-
ture is still immature. Rigorous techniques need to be developed to describe software
architecture so that they can be analyzed to predict and assume nonfunctional sys-
tem properties. Moreover, architecture-based activities need to be more precisely
defined and supported with processes and tools, and need to be smoothly incorpo-
rated into existing development processes.

There is an active research community working on technologies related to software
architecture. This section examines ongoing technology work in software architecture
and predicts areas of the most promising work that will bear fruit over the next five to
ten years.

Problem areas in architecture and work that addresses them tend to be clustered
around the following themes, arranged in terms of how and when the architecture is
used during a system’s life cycle:

• Creation/selection: How to choose, create, or select an architecture, based
on a set of functional, performance, and quality requirements.

• Representation: How to communicate an architecture. This problem has
manifested itself as one of representing architectures with linguistic facilities,
but the problem also includes selecting the set of information to be
communicated (i.e., represented with a language).

• Analysis: How to analyze an architecture to predict qualities about systems
that manifest it, or how to evaluate an architecture for fitness. A similar
problem is how to compare and choose between competing architectures.

• Development: How to build a system given a representation of its
architecture.

• Evolution: How to evolve a legacy system when changes may affect its
architecture; for systems lacking trustworthy architectural documentation, this
will first involve “architectural archaeology” to extract its architecture.

See the Clements report1 for a discussion of research opportunities in these areas.

1. The pending SEI technical report authored by Paul Clements, Coming Attractions in Software Architecture,
should be available by April 1996.

32 CMU/SEI-96-TR-003

CMU/SEI-96-TR-003 33

References

[Abowd 93] Abowd, G.; Bass, L.; Howard, L.; & Northrop, L. Structural
Modeling: An Application Framework and Development Pro-
cess for Flight Simulators. (CMU/SEI-93-TR-14, ADA 271348)
Pittsburgh, PA: Software Engineering Institute, Carnegie Mel-
lon University, 1993.

[Abowd 94] Abowd, G.; Bass, L.; Kazman, R.; & Webb, M. “SAAM: A
Method for Analyzing the Properties of Software Architec-
tures,” 81-90. Proceedings of the 16th International Confer-
ence on Software Engineering. Sorrento, Italy, May 16-21,
1994. Los Alamitos, CA: IEEE Computer Society Press, 1994.

[Alexander 77] Alexander, Christopher; Ishikawa, Sara; & Silverstein, Murray.
A Pattern Language. New York City: Oxford University Press,
1977.

[Batory 92] Batory, D. & O’Malley, S. “The Design and Implementation of
Hierarchical Software Systems with Reusable Components.”
ACM Transactions on Software Engineering and Methodology
2, 4 (1992): 355-398.

[Beck 94] Beck, K. & Johnson, R. “Patterns Generate Architectures,”
139-49. European Conference on Object-Oriented Program-
ming. Bologna, Italy, July 4-8, 1994. Berlin, Germany: Spring-
er-Verlag, 1994.

[Boehm 95] Boehm, B. “Engineering Context (for Software Architecture).”
Invited talk, First International Workshop on Architecture for
Software Systems. Seattle, Washington, April 1995.

[Brooks 75] Brooks, F. The Mythical Man-Month—Essays on Software
Engineering. Reading, MA: Addison-Wesley, 1975.

[Brooks 95] Brooks, F. The Mythical Man-Month—Essays on Software
Engineering(20th Anniversary Edition). Reading, MA: Addi-
son-Wesley, 1995.

34 CMU/SEI-96-TR-003

[Brown 95] Brown, A.; Carney, D.; & Clements, P. “A Case Study in As-
sessing the Maintainability of Large, Software-Intensive Sys-
tems,” 240-247. Proceedings, International Symposium and
Workshop on Systems Engineering of Computer Based Sys-
tems. Tucson, AZ, March 6-9, 1995. Salem, MA: IEEE Com-
puter Society Press, 1995.

[Budgen 95] Budgen, David. Software Design. Reading, MA: Addison-
Wesley, 1993.

[Clements 85] Clements, P.; Parnas, D.; & Weiss, D. “The Modular Structure
of Complex Systems.” IEEE Transactions on Software Engi-
neering SE-11, 1 (1985): 259-266.

[Clements 95a] Clements, P.; Bass, L.; Kazman, F; & Abowd, G. “Predicting
Software Quality by Architecture-Level Evaluation,” 485-
498.Proceedings, Fifth International Conference on Software
Quality. Austin, TX, Oct. 23-26, 1995. Austin, TX: American
Society for Quality Control, Software Division, 1995.

[Clements 95b] Clements, P. “Understanding Architectural Influences and De-
cisions in Large-System Projects.” Invited talk, First Interna-
tional Workshop on Architectures for Software Systems. Seat-
tle, WA, April 1995.

[Clements 96a] Clements, P. “A Survey of Architectural Description Languag-
es,” Proceedings of the Eighth International Workshop on
Software Specification and Design. Paderborn, Germany,
March 1996.

[Dijkstra 68] Dijkstra, E.W. “The Structure of the ‘T.H.E.’ Mulitprogramming
System.” Communications of the ACM 18, 8 (1968): 453-457.

[DoD 94] DoD Technical Architecture Framework for Information Man-
agement (TAFIM), Defense Information Systems Agency
(DISA) Center for Information Management (CIM), Vol I (Con-
cept) and Vol II (Guidance), V2.0. Reston, VA, October 1992.

[Gaycek 95] Gaycek, C.; Abd-Allah, A.; Clark, B.; & Boehm, B. “On the Def-
inition of Software System Architecture.” Invited talk, First In-
ternational Workshop on Architectures for Software Systems.
Seattle, WA, April 1995.

CMU/SEI-96-TR-003 35

[Gamma 95] Gamma, E.; Helm, R.; Johnson, R.; & Vlissides, J. Design Pat-
terns, Elements of Object-Oriented Software. Reading, MA:
Addison-Wesley, 1995.

[Garlan 93] Garlan, D. & Shaw, M. “An Introduction to Software Architec-
ture.” Advances in Software Engineering and Knowledge En-
gineering. Vol 1. River Edge, NJ: World Scientific Publishing
Company, 1993.

[Garlan 95] Garlan, D. et al. “Architectural Mismatch (Why It’s Hard to
Build Systems Out of Existing Parts),” 170-185. Proceedings,
17th International Conference on Software Engineering. Seat-
tle, WA, April 23-30, 1995. New York: Association for Comput-
ing Machinery, 1995.

[Hayes-Roth 94] Hayes-Roth. Architecture-Based Acquisition and Develop-
ment of Software: Guidelines and Recommendations from the
ARPA Domain-Specific Software Architecture (DSSA) Pro-
gram [online]. Available WWW <URL:ht-
tp://www.sei.cmu.edu/arpa/dssa/dssa-adage/dssa.ht-
ml>(1994).

[Kazman 95] Kazman, F.; Basas, l.; Abowd, G.; & Clements, P. “An Archi-
tectural Analysis Case Study: Internet Information Systems.”
Invited talk, First International Workshop on Architectures for
Software Systems. Seattle, WA, April 1995.

[Kruchten 95] Kruchten, Philippe B. “The 4+1 View Model of Architecture.”
IEEE Software 12, 6 (November 1995): 42-50.

[Martin 92] Martin, C.; Hefley, W. et al. “Team-Based Incremental Acqui-
sition of Larger Scale Unprecedented Systems.” Policy Sci-
ences. Vol 25. The Netherlands: Kluwer Publishing, 1992.

[McMahon 95] McMahon, P. “Pattern-Based Architecture: Bridging Software
Reuse and Cost Management.” CROSSTALK 8, 3 (March
1995): 10-16.

[OMG 91] Object Management Group. Common Object Request Broker:
Architecture and Specification. Document 91.12.1. Framing-
ham, MA, 1991.

36 CMU/SEI-96-TR-003

[Parnas 72] Parnas, D. “On the Criteria for Decomposing Systems into
Modules.” Communications of the ACM 15, 12 (December
1972): 1053-1058.

[Parnas 74] Parnas, D. “On a ’Buzzword’: Hierarchical Structure.” 336-
3390. Proceedings IFIP Congress 74. North Holland Publish-
ing Company, 1974.

[Parnas 76] Parnas, D. “On the Design and Development of Program
Families.” IEEE Transactions on Software Engineering SE-2,
1 (1976): 1-9.

[Parnas 79] Parnas, D. “Designing Software for Ease of Extension and
Contraction.” IEEE Transactions on Software Engineering
SE-5, 2 (1979): 128-137.

[Perry 92] Perry, D.E. & Wolf, A.L. “Foundations for the Study of Soft-
ware Architecture.” Software Engineering Notes, ACM SIG-
SOFT 17, 4 (October 1992): 40-52.

[Saunders 92] Saunders, T.F. et al. A New Process for Acquiring Software
Architecture. MITRE Corporation Paper, M92B-126. Bedford,
MA, November 1992.

[Schultz 95] Schultz, Charles. “Rome Laboratory Experience with Stan-
dards Based Architecture (SBA) Process.” Presentation at 7th
Annual Software Technology Conference. Software Technol-
ogy Systems Center (STSC), Hill AFB, UT, April 1995.

[Shaw 94] Shaw, M. “Making Choices: A Comparison of Styles for Soft-
ware Architecture.” IEEE Software 12, 6 (November 1995):27-
41.

[Shaw 95a] Shaw, M. “Conceptual Basis for Software Architecture.” Invit-
ed talk, First International Workshop on Architecture for Soft-
ware Systems. Seattle, WA, April 1995.

[Shaw 95b] Shaw, M. & Garlan, D. Software Architectures. Englewood
Cliffs, NJ: Prentice-Hall, 1995.

CMU/SEI-96-TR-003 37

Acknowledgments

This study and report were funded by the Office of the Assistant Secretary of Defense
for Command, Control, Communications, and Intelligence. John Leary was a contrib-
utor to an earlier version of this document. Our thanks go to Nelson Weiderman, who
provided excellent comments.

[Shaw 95c] Shaw, M. Procedure Calls Are the Assembly Language of
Software Interconnection; Connectors Deserve First-class
Status. (CMU-CS-94-107) Pittsburgh, PA: Carnegie Mellon
University, 1994.

[Soni 95] Soni, D.; Nord, R.; & Hofmeister, C. “Software Architecture in
Industrial Applications.” 196-210. Proceedings, 17th Interna-
tional Conference on Software Engineering. Seattle, WA, April
23-30, 1995. New York: Association for Computing Machin-
ery, 1995.

[Witt 94] Witt, B.I.; Baker, F.T.; & Merritt, E.W. Software Architecture
and Design Principles, Models and Methods. New York, New
York: Van Nostrand Reinholt, 1994.

38 CMU/SEI-96-TR-003

13a. TYPE OF REPORT

Final

UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

15. PAGE COUNT13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

11. TITLE (Include Security Classification)

1a. REPORT SECURITY CLASSIFICATION

Unclassified

5. MONITORING ORGANIZATION REPORT NUMBER(S)4. PERFORMING ORGANIZATION REPORT NUMBER(S)

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

1b. RESTRICTIVE MARKINGS

None

10. SOURCE OF FUNDING NOS.

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office
6b. OFFICE SYMBOL
(if applicable)

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute

7b. ADDRESS (city, state, and zip code)

HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-95-C-0003
8b. OFFICE SYMBOL
(if applicable)

8a. NAME OFFUNDING/SPONSORING
 ORGANIZATION

SEI Joint Program Office

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF

16. SUPPLEMENTARY NOTATION

12. PERSONAL AUTHOR(S)

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO

WORK UNIT
NO.

19. ABSTRACT (continue on reverse if necessary and identify by block number)

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

FIELD SUB. GR.GROUP

22c. OFFICE SYMBOL

ESC/ENS (SEI)
22b. TELEPHONE NUMBER (include area code)

(412) 268-7631

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

SEI

ESC/ENS

REPORT DOCUMENTATION PAGE

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

63756E N/A N/A N/A

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

(please turn over)

CMU/SEI-96-TR-003 ESC-TR-96-003

Software Architecture: An Executive Overview

February 1996 38

software architecture, architecture, architecture framework, framework,
TAFIM, product lines, Technical Architecture Framework for Information
Management

Software architecture is an area of growing importance to practitioners and researchers in government, industry,
and academia. Journals and international workshops are devoted to it. Working groups are formed to study it.
Textbooks are emerging about it. The government is investing in the development of software architectures as
core products in their own right. Industry is marketing architectural frameworks such as CORBA.

Why all the interest and investment? What is software architecture, and why is it perceived as providing a solution
to the inherent difficulty in designing and developing large, complex systems? This report will attempt to summa-
rize the concept of software architecture for an intended audience of mid- to senior-level management. The

Paul C. Clements, Linda M. Northrop

ABSTRACT — continued from page one, block 19

reader is presumed to have some familiarity with common software engineering terms and concepts, but not
to have a deep background in the field. This report is not intended to be overly-scholarly, nor is it intended to
provide the technical depth necessary for practitioners and technologists. The intent is to distill some of the
technical detail and provide a high level overview.

