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Abstract 
Mapping of applications on a Multiprocessor System-on-Chip (MP-SoC) is a crucial step to optimize performance, 

energy and memory constraints at the same time. The problem is formulated as finding solutions to a cost function of the 

algorithm performing mapping and scheduling under strict constraints. Our solution is based on simultaneous optimization 

of execution time and memory consumption whereas traditional methods only concentrate on execution time. Applications 

are modeled as static acyclic task graphs that are mapped on MP-SoC with customized simulated annealing. The 

automated mapping in this paper is especially purposed for MP-SoC architecture exploration, which typically requires a 

large number of trials without human interaction. For this reason, a new parameter selection scheme for simulated 

annealing is proposed that sets task mapping specific optimization parameters automatically. The scheme bounds 

optimization iterations to a reasonable limit and defines an annealing schedule that scales up with application and 

architecture complexity. The presented parameter selection scheme compared to extensive optimization achieves 90% 

goodness in results with only 5% optimization time, which helps large-scale architecture exploration where optimization 

time is important. The optimization procedure is analyzed with simulated annealing, group migration and random mapping 

algorithms using test graphs from the Standard Task Graph Set. Simulated annealing is found better than other algorithms 

in terms of both optimization time and the result. Simultaneous time and memory optimization method with simulated 

annealing is shown to speed up execution by 63% without memory buffer size increase. As a comparison, optimizing only 

execution time yields 112% speedup, but also increases memory buffers by 49%. 
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1. Introduction 
The problem being solved is increasing performance and decreasing energy consumption of Multiprocessor System-on-

Chip (MP-SoC). To achieve both goals, the overall computation should be distributed for parallel execution. However, the 

penalty of distribution is often an increased overall memory consumption, since multi-processing requires at least local 

processor caches or data buffers for maintaining efficient computing. Each Processing Element (PE) is responsible for 

performing computations for a subset of application tasks. Smallest memory buffers are achieved by running every task on 

the same PE, but it would not be distributed in that case. Therefore a trade-off between execution time and memory buffers 

is needed. On-chip memory is expensive in terms of area and energy, and thus memory is a new, important optimization 

target. 

Application distribution is a problem of mapping tasks on separate processing elements (PEs) for parallel computation. 

Several proposals have been introduced over the years; the first ones being for the traditional supercomputing domain. An 

optimal solution has been proven to be an NP problem [1], and therefore a practical polynomial time heuristics is needed. 

In extreme cases heuristics are either too greedy to explore non-obvious solutions or not greedy enough to discover 

obvious. Most of the past distribution algorithms are not used to optimize memory consumption. 

In a traditional super-computing domain, optimizing performance means also increasing network usage, which will at 

some point saturate the network capacity and the application performance. For MP-SoC, the interconnect congestion must 

be modeled carefully [2][3] so that the optimization method becomes aware of network capacity and performance, and is 

able to allocate network resources properly for all the distributed tasks. 

Simulated annealing (SA) [4][5] is a widely used meta-algorithm to solve the application distribution problem. 

However, it does not provide a definite answer for the problem. Simulated annealing depends on many parameters, such as 

move heuristics, acceptance probabilities for bad moves, annealing schedule and terminal conditions. Selection of these 

parameters is often ignored in experimental papers. Specializations of the algorithm have been proposed for application 

distribution, but many crucial parameters have been left unexplained and undefined. An automated architecture exploration 
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tool using SA requires a parameter selection method to avoid manual tuning for each architecture and application trial. 

Automated SA parameter selection has not been previously addressed in the context of architecture exploration. 

This paper presents three new contributions. The first is a new optimization method with a cost function containing 

memory consumption and execution time. It selects the annealing schedule, terminal conditions and acceptance 

probabilities to make simulated annealing efficient for the applied case. Second is an automatic parameter selection 

method for SA that scales up with application and system complexity. Third contribution is empirical comparison between 

three mapping algorithms, which are SA, modified group migration (Kernighan-Lin graph partitioning) algorithm and 

random mapping. SA without automatic parameter setting is also compared. 

The outline of the paper is as follows. Section 2 presents the terminology. Section 3 analyzes problems and benefits of 

other systems, and compares them to our method.  Section 4 explains our optimization framework where the method is 

applied. Section 5 presents our optimization method for automatic parameter selection and memory optimization. Section 

6 presents the scheduling system that is used for the optimization method. The experiment that is used to validate and 

compare our method to other algorithms is presented in Section 7 and the results are presented in Section 8. Section 9 

justifies the parameter selection method. And finally, Section 10 concludes the paper.  

2. Terminology 
Allocation, mapping and scheduling are phases in realizing application distribution on MP-SoC. Allocation determines 

how many and what kind of PEs and other resources there are. Mapping determines how the tasks are assigned to the 

allocated PEs. Task scheduling determines the execution order and timing of tasks on each PE, and communication 

scheduling determines the order and timing of transfers on each interconnect. The result of this process is a schedule, 

which determines execution time and memory consumption. 

For mapping optimization, the application is modeled in this paper with static task graphs (STG). STG is a directed 

acyclic graph (DAG), where each node represents a finite deterministic time computation task. Simulating an application 

modeled as STG means traveling a directed acyclic graph from ancestors to all children unconditionally. Nodes of the 

graph are tasks, and edges present communication and data dependence among tasks. 

Figure 1 shows an example of an STG. Weights of nodes, marked as values inside parenthesis, indicate computation 

costs in terms of execution time. In the example, node E has computational cost of 5. Each edge of the graph indicates a 

data dependency, for example B is data dependent on A. Weights of edges, marked as numbers attached to edges in the 

figure, indicate communication costs associated with the edges. The edge from C to F costs four units, which are data sizes 

for communication. The communication time will be determined by the interconnect bandwidth, its availability and data 

size. STGs are called static because connectivity of the graph, node weights and edge weights are fixed before run-time. 

Communication costs change between runs due to allocation and mapping thus affecting edge weights. 

A relevant factor regarding achievable parallelism is the communication to computation ratio (CCR). It is defined as the 

average task graph edge weight divided by the average node weight (when converted to comparable units). By the 

definition, CCR over 1.0 means that computation resources can not be fully utilized because there is more communication 

than computation to do. 

There is no conditional task execution in STG, but having conditional or probabilistic children (in selecting path in the 

graph) or run-time determined node weights would not change mapping algorithms discussed in this paper. However, a 

more complex application model, such as a probabilistic model, would make the scheduling problem harder and 

comparison of mapping algorithms a very large study. 

 

 

 



Submission to Elsevier Journal of Systems Architecture 3 

A (1)
B (2)1

E (5)

1

F (6)

2

C (3)

4
D (4)

1

1

 

Figure 1. Example of a static task graph. Values in parenthesis inside the nodes represent execution time, and 

values at edges represent communication sizes. The communication time will be determined by the interconnect, its 

availability and data size. 

Despite these limitations, STGs could be used to model, for example, a real-time MPEG4 encoder because real-time 

systems have bounded execution and communication costs for the worst case behavior. Many multimedia applications 

belong to real-time category and therefore applicability of STGs is wide. STGs are also widely used in related work, which 

helps comparisons. 

Memory consumption of the application is partially determined by the STG. It is fully determined after the mapping and 

scheduling have been done. A node, or its associated PE in practice, must preserve its output data until it has been fully 

sent to all its children. Also, a set of nodes on the same PE must preserve input data until computation on all nodes that 

require the data are finished. Results or input data that are stored for a long period of time will increase memory buffer 

usage significantly. An alternative solution for this problem can possibly be found by task duplication or resending results. 

However, task duplication increases PE usage and resending results increases interconnect congestion, for which reason 

we do not consider these techniques in this paper. Results are sent only once and they are preserved on the target PE as 

long as they are needed. The results are discarded immediately when they are not needed. Thus memory consumption 

depends heavily on the mapping and scheduling of the application. 

3. Related Work 
Many existing optimization methods use stochastic algorithms such as SA [4][5] and genetic algorithms [6][7]. These 

algorithms have been applied on wide variety of hard optimization problems, but there is no consensus or common rules 

how to apply them on MP-SoC optimization. SA can be used with any cost function, but it is a meta-algorithm because 

parts of it have to be specialized for any given problem. The relevant mathematical properties for this paper are discussed 

in [19]. SA has been applied to many challenging problems, including traveling salesman problem [4], and mapping and 

scheduling of task graphs [8]. 

Wild et al. [2] compared SA, Tabu Search [9] and various algorithms for task distribution to achieve speedup. Their 

results showed 7.3% advantage for Tabu Search against SA, but they also stated they were not able to control the progress 

of SA. Their paper left many SA parameters undefined, such as initial temperature, final temperature, maximum rejections 

and acceptance function, which raises questions about accuracy of the comparison with respect to SA. Their method uses 

SA with geometric temperature schedule that decreases temperature proportionally between each iteration until a final 

temperature is reached and then optimization is terminated. As a consequence the number of iterations is fixed for a given 

initial temperature, and thus, the method does not scale up with application and system complexity. 

Our method increases the number of iterations automatically when application and system complexity grows, which is 

more practical and less error-prone than setting parameters manually for many different scales of problems. The common 

feature for our and Wild et al. is the use of dynamically arbitrated shared bus with multiple PEs, as well as first mapping 

task graphs and then scheduling with a B-level scheduler. Their system is different in having HW accelerators in addition 

to PEs, and they did not present details about HW accelerator performance or CCR values of the graphs they used. Our 

paper focuses on CCR values in the range [0.5, 1.0], because computation resources are not wasted too much in that range, 

and it is also possible to achieve maximum parallelism in some cases. 

Braun et al. [10] compared 11 different optimization algorithms for application distribution. They also compared Tabu 

Search and SA, and in their results, comparing to results from Wild et al., SA was better than Tabu Search in three out of 

six cases. Genetic algorithms gave the best results in their experiment. Their SA method had a benefit of scaling up with 

application complexity in terms of selecting initial temperature with a specific method. Our approach has the same benefit 

implemented with a normalization factor integrated into to acceptance probabilities. 
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The number of iterations in Braun’s method does not scale up correctly because it is not affected by the number of tasks 

in application. As a bad side effect of their initial temperature selection method, the number of iterations for SA is affected 

by the absolute time rather than relative time of application tasks. This is avoided in our method by using a normalized 

temperature scale, which is made possible by the normalization factor in our acceptance probability function. Braun’s 

annealing schedule was a geometric temperature with 10% temperature reduction on each iteration, implying that the 

temperature decreases fast. This has the consequence that one thousandth of initial temperature is reached in just 87 

iterations, after which the optimization is very greedy. Thus, the radical exploration phase in SA, which means high 

temperatures, is not dependent on application complexity, and therefore the exploration phase may be too short for 

complex applications. Their method also lacks application adaptability because the maximum rejections has a fixed value 

of 150 iterations regardless of the application complexity. They used random node (RN) heuristics for randomizing new 

mappings, which is inefficient with small amount of PEs as described in Section 5.2. 

Spinellis [11] showed an interesting SA approach for optimizing production line configurations in industrial 

manufacturing. Obviously the two fields are very different in practice, but theoretical problems and solutions are roughly 

the same. As a special case, both fields examine the task distribution problem to gain efficiency. Spinellis showed an 

automatic method for SA to select the number of iterations required for a given problem. Their method scaled up the 

number of iterations for each temperature level based on the problem size. A similar method is used in our method for task 

distribution. Unfortunately acceptance probabilities, meaning the dynamic temperature range, were not normalized to 

different problems. 

Our paper presents a specialization of the SA meta-algorithm that addresses SA specific problems in previously 

mentioned papers. Initial temperature, final temperature and acceptance probabilities are normalized to standard levels by 

an automatic method that scales up both with application and allocation complexity. Furthermore, the total optimization 

effort is bounded by a polynomial function that depends on application and allocation complexity. 

Group Migration (GM), also known as Kernighan-Lin algorithm, is a very successful algorithm for graph partitioning 

[12]. It has been compared to SA in [22] and suggested to be used for task mapping in [14]. Mapping is done by 

partitioning the task graph into several groups of tasks, each group being one PE. The algorithm was originally designed to 

partition graphs into two groups, but our paper uses a slightly modified version of the algorithm for arbitrary number of 

groups while preserving the old behavior for two groups. The idea to modify the algorithm is presented in [14] and an 

example is presented in [15]. 

Sinnen and Sousa [3] presented an application model that embeds the interconnect structure and contention into the 

optimization process. They presented a method to schedule communication onto a heterogeneous system. Wild et al. [2] 

showed a similar scheduling method to insert communications onto a network to optimize communications. Task graphs in 

their paper had 0.1, 1.0 and 10.0 as CCRs. They concluded that CCR of 10.0 was too challenging to be distributed and that 

effect of communication congestion model is quite visible already in the CCR value of 1.0. These findings support our 

similar experience. Our method also schedules communications based on priorities of tasks that will receive 

communication messages. 

Also, Sinnen and Sousa [16] modeled side-effects of heavy communication in SoCs by adding communication overhead 

for PEs. Most parallel system models are unaware of PE load caused by communication itself. For example TCP/IP 

systems need to copy data buffers from kernel to application memory. Sinnen and Sousas model is insufficient, however, 

because it does not model behavior of interrupt-driven and DMA-driven communication, which are the most common 

mechanisms for high performance computing. Communication overhead should be extended over execution of multiple 

processes in a normal case of interrupt driven communication. In order to avoid bias of specific applications, our model 

does not have processor overhead for communication. Our model assesses potential of various mapping algorithms rather 

than effects of communication model. 

Other approaches for the performance, memory and power optimization include task graph partitioning to automatically 

select system architecture for a given application. Hou et al. [25] presented a method for partitioning task graph onto a 

suitable architecture. The system presented in this paper does not partition task graphs, but the method in [25] is directly 

applicable to our optimization system as well. 

Szymanek et al. [17] presented an algorithm to simultaneously speedup executing and optimize memory consumption 

of SoC applications. Their method keeps track of data and program memory requirements for different PEs to achieve the 

goal. It is based on constraint programming that sets hard limits on memory and time requirements, whereas our method 

only places relative cost on memory and time but allows all solutions. 

Panda et al. [24] optimized the memory architecture to fit a given application. This paper’s approach penalizes using 

memory on the application level while optimizing for performance. Methods discussed in [24] could be applied to the 

system presented in this paper as well. Their method operates on the system level and ours on the application level. 
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Kwok et al. did a benchmark on various scheduling algorithms [13] and they explained methods and theory of the same 

algorithms in [18]. We chose B-level scheduling policy for our method, because it was a common element in well 

performing scheduling algorithms. The MPC algorithm was the best scheduling policy in their benchmark on the bounded 

number of processors case, and it is based on the B-level scheduling. 

Ascia et al. [23] used genetic algorithms to map applications onto a SoC obtaining a pareto-front of solutions for 

multiple cost functions. Their system allows the designer to choose the best solution from multiple controversial design 

goals. Their goal is however different than ours, because our system needs to pick a single good solution as part of an 

automated CAD system [26]. Other than that, multi-objective optimization and genetic algorithms would fit well into the 

system presented in this paper. 

4. MP-SoC Application Distribution Framework 
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Figure 2. MP-SoC Application Distribution Framework. 

Our MP-SoC application distribution framework is shown in Figure 2. The optimization process starts by selecting an 

allocation and an application, which are target hardware and a task graph. Allocation and the application are passed to a 

mapping algorithm. The mapping algorithm is chosen between group migration, random mapping or SA. The algorithm 

starts with an initial solution in which all task graph nodes are mapped to a single PE and then iterates through various 

mapping candidates to find a better solution. The mapping candidates are scheduled with a B-level scheduler to determine 

the execution time and memory usage. The B-level scheduler decides the execution order for each task on each PE to 

optimize execution time. The goodness of the candidate is evaluated by a cost function that depends on the execution time 

and memory consumption. At some point mapping algorithm stops and returns the final mapping solution. 

In many optimization systems mapping and scheduling are dependent on each other [18], but in this system allocation, 

mapping and scheduling algorithms can be changed independently of each other to speedup prototyping of new 

optimization algorithms. The current system allows optimization of any task-based system where tasks are mapped onto 

PEs of a SoC consisting of arbitrary interconnection networks. Therefore dynamic graphs and complex application models 

can be optimized as well. Communication delays and the interconnection network can vary significantly and thus 

scheduling is separated from mapping. Communication delays for both shared and distributed memory architectures can be 

modeled as well. 

The system uses a single cost function, but multi-objective systems analyzing pareto-fronts of multiple solutions [23] 

could implemented without affecting the optimization algorithms presented here. 
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5. Mapping Algorithms 

5.1. Simulated Annealing Algorithm 

The pseudo-code of the SA algorithm is presented in Figure 3, and explanations of symbols are given in Table 1. SA 

can not be used for task mapping without specializing it. The following parameters need to be chosen for a complete 

algorithm: annealing schedule, move heuristics, cost function, acceptance probability and the terminal condition. 

The Cost function in Figure 3 evaluates the cost for any given state of the optimization space. Each point in the 

optimization space defines a mapping for the application. The optimization loop is terminated after 
max

R  amount of 

consecutive moves that do not result into improvement in cost. The  Temperature-Cooling function on Line 7 determines 

the annealing rate of the method which gets two parameters: 
0

T  is the initial temperature, and i  is the iteration number. 

The Move function on Line 8 is a move heuristics to alter current mapping. It depends on the current state S and 

temperature T. The Random function returns a random number from the uniform probability distribution in range [0, 1). 

The Prob function determines the probability for accepting a move to a worse state. It depends on the current temperature 

and the increase of cost between old and new state. 

Simulated-Annealing(S0, T0)
1 S ← S0

2 C ← Cost(S0)
3 Sbest ← S

4 Cbest ← C

5 R← 0
6 for i← 1 to ∞

7 do T ← Temperature-Cooling(T0, i)
8 Snew ←Move(S, T )
9 Cnew ← Cost(Snew)

10 r← Random()
11 p← Prob(Cnew − C, T )
12 if Cnew < C or r < p

13 then if Cnew < Cbest

14 then Sbest ← Snew

15 Cbest ← Cnew

16 S ← Snew

17 C ← Cnew

18 R← 0
19 else if T ≤ Tf

20 then R← R + 1
21 if R ≥ Rmax

22 then break

23 return Sbest
 

Figure 3. Simulated annealing algorithm. 

 



Submission to Elsevier Journal of Systems Architecture 7 

 

Table 1. Summary of symbols of the simulated annealing pseudo-code. 

C Cost function value 

bestC  Best cost function value 

Cost() Cost function 

i Iteration number 

Move() Move heuristics function 

p Probability value 

Prob() Probability function of accepting a bad 

move 

r Random value 

Random() Random variable function returning value 

in range [0, 1) 

R Number of consecutive move rejections 

maxR  Maximum number of rejections 

S Optimization state (mapping) 

0S  Initial state 

bestS  Best state 

T Current temperature in range (0, 1] 

0T  Initial temperature (1.0 in this method) 

fT  Final temperature 

Temperature-Cooling() Annealing schedule function 

 

5.2. Automatic parameter selection for SA 

The choice of annealing schedule (Temperature-Cooling function) is an important factor for optimization [19]. 

Mathematical theory establishes that infinite number of iterations is needed to find a global optimum with SA. However, 

the mapping problem is finite but it is also an NP problem implying that a practical compromise has to be made that runs 

in polynomial time. Annealing schedule must be related to the terminal condition. We define the dynamic temperature 

scale to be 0log( )
f

T
r

T
=  and assert that a terminal condition must not be true before a large scale of temperatures has been 

tried, because only a large scale r  allows careful exploration of the search space. High temperatures will do rapid and 

aggressive exploration, and low temperatures will do efficient and greedy exploration. A common choice for the annealing 

schedule is a function that starts from an initial temperature, and the temperature decreases proportionally between each 

level until the final temperature is reached. The proportion value p is close to but smaller than 1. Thus the number of 

temperature levels is proportional to r . We will use this schedule. 

The terminal condition of annealing must limit the computational complexity of the algorithm so that it is reasonable 

even with larger applications. The maximum number of iterations should grow as a polynomial number of problem factors 

rather than as an exponential number that is required for true optimum solution. The relevant factors for the number of 

iterations are initial temperature 
0

T , final temperature 
f

T , the number of tasks to be mapped N  and the number of PEs 

M . 

Further requirement for task mapping is that annealing schedule must scale with application and allocation complexity 

with respect to optimization ability. This means that the amount of iterations per temperature level must increase as the 

application and allocation size grows. For N  tasks and M  PEs one must choose a single move from ( 1)N M −  different 

alternatives, and thus it is logical that the amount of iterations per temperature level is at least proportional to this value. 

Considering these issues we define the system complexity as 
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( 1)L N M= −  (1) 

Thus the complexity measure is a product of application and allocation complexity. Furthermore we require that the 

number of iterations for each temperature level is L , because that is the number of choices for changing a single mapping 

on any given state. Also, we select the number of temperature levels according to dynamic temperature scale r .  

It must be noted that SA will very unlikely try each alternative mapping for a temperature level even if the number of 

iterations is L  because the heuristics move is a random function. Also, if a move is accepted then the mapping alternatives 

after that are based on the new state and therefore trying L  different alternatives will not happen. In the case of frequent 

rejections due to bad states or low temperature, the L  amount of moves gives similar behavior as the group migration 

algorithm, but not exactly the same because SA makes chains of moves instead of just trying different move alternatives. 

Also, SA does not share the limitations of group migration because it is not greedy until low temperature levels are 

reached. 

The chosen terminal condition is true when the final temperature is reached and a specific amount of consecutive 

rejections happen. The maximum amount of consecutive rejections 
max

R  should also scale with system complexity, and 

therefore it is chosen so that 
max

R L= . 

Based on these choices we get a formula to compute the total number of iterations for SA. The number of different 

temperature levels x in Equation (2) depends on the proportion p  and the initial and final temperatures as 

0

0

log

log

f

x

f

T

T
T p T x

p
= ⇒ = . (2) 

  

The total number of iterations 
total

I  is computed in Equation (3) based on the number of different temperature levels x  

and the number of tasks and PEs of the system as 

max

0

( 1)

log

( 1) ( 1)
log

total

f

I xL R xL L x L

T

T
N M

p

= + = + = +

= + −

. (3) 

Therefore the total number of iterations is a function of N  tasks, M  PEs and the temperature scale r . 

Equation (4) shows the annealing schedule function decreasing temperature geometrically every L  iterations as 

0 0
Temperature- Cooling( , )

i

LT i T p

 
 
 

= . (4) 

A common choice for acceptance probability is shown in Equation (5) as 

1
Basic- Probability( , )

1 exp

C T
C

T

∆ =
∆

+

.  (5) 

C∆  is the increase in cost function value between two states. A bigger cost increase leads to lower probability, and thus 

moving to a much worse state is less probable than moving to a marginally worse state. The problem with this function is 

that it gives a different probability scale depending on the scale of the cost function values of a specific system. The 

system includes the platform and applications, and it would be a benefit to automatically tune the acceptance probability to 

the scale of the cost function. 

We propose a solution to normalize the probability scale by adding a new term to the expression shown in Equation (6). 

0
C  is the initial cost function value of the optimization process. The term 

0

C

C

∆
 makes the state change probability relative 

to the initial cost 
0

C . This makes annealing comparable between different applications and cost functions. An additional 

assumption is that temperature  T is in range (0, 1]. 

0

1
Normalized- Probability( , )

1 exp
0.5

C T
C

C T

∆ =
∆

+

   (6) 
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Figure 4 presents acceptance probabilities for the normalized probability function for relative cost function changes and 

temperatures. The probabilities lie in the range (0, 0.5]. As the relative cost change goes to zero, the probability goes to 

0.5. Thus the function has a property of easily allowing SA to take many small steps that have only a minor worsening 

effect on the cost function. When the temperature decreases to near zero, these small worsening steps become very 

unlikely. 
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Figure 4. Acceptance probabilities for the normalized probability function with respect to 

relative cost function change 
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A common choice for move heuristics [2][6][10] is a function that chooses one random task and maps that to a random 

PE. It is here named as the RN (Random Node) move heuristics and presented in Figure 5. It has the problem that it may 

do unnecessary work by randomizing exactly the same PE again for a task. In 2 PE allocation case probability for that is 

50%. Despite this drawback, it is a very common choice as a move heuristics. 

RN-Move(S, T )
1 Snew ← S

2 Snew[Random-Task()]← Random-Element(PEs)
3 return Snew  

Figure 5. RN move heuristics moves one random task to a random PE. 

The obvious deficiency in the RN heuristics is fixed by our RM move (Random Modifying move) heuristics presented 

in Figure 6. It avoids choosing the same PE and, thus, has a clear advantage over the RN heuristics when only a few PEs 

are used. This small detail has often been left unreported on other publications, but it is worth pointing out here. 

RM-Move(S, T )
1 Snew ← S

2 t← Random-Task()
3 Snew[t]← Random-Element(PEs without S[t])
4 return Snew

 

Figure 6. RM move heuristics moves one random to a different random PE. 

Figure 7 shows an example of annealing process for optimizing execution time of a 50 node STG on 2 PEs. The effect 

of annealing from high temperature to a low temperature can be seen as the cost function altering less towards the end. At 

the end the optimization is almost purely greedy, and hence allows moves to a worse state with a very low probability. 

This figure shows the cost function value of the current accepted state rather than cost function values of all tried states. A 

figure showing cost function values of all tried states would be similar to a white noise function. 



Submission to Elsevier Journal of Systems Architecture 10 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1

1.2

1.4

1.6

1.8

2

2.2
x 10

−4

Mapping iteration

A
cc

e
p
te

d
 c

o
st

 f
o
r 

S
A

Cost

Best cost

Local minimum

 

Figure 7. An example of  annealing from a high to a low temperature state for a 50 node STG with 2 PEs. x marks 

the mapping iteration that has the lowest cost function value. 

5.3. Group Migration Algorithm 

Group migration is used to map task graphs onto multiple PEs in a greedy fashion. This is a generalization of the 

original algorithm [12] that partitioned graphs to two disjoint subsets. Our modified version partitions the graph into 

arbitrarily many disjoint subsets. 

The algorithm is greedy because it only accepts moves to better positions, and thus it always gets stuck into a local 

minimum in the optimization space. The algorithm consists of migration rounds. Each round either improves the solution 

or keeps the original solution. Optimization ends when the latest round is unable to improve the solution. Usually the 

algorithm converges into a local minimum in less than five rounds [12]. 

A move in GM means moving one specific task to another PE. A round consists of sub-rounds which try all tasks on all 

other PEs. With N nodes and M PEs it is ( 1)M N−  tries. The best move on the sub-round is chosen for the next sub-

round. Tasks, which have been moved as best task candidates on previous sub-rounds, are not moved anymore until the 

next round comes. There are at most N sub-rounds. This results into at most 2( 1)M N−  moves per round. If no improving 

move is found on a sub-round, the round is terminated, because all possible single moves were already tried ( ( 1)M N−  

tries). The pseudo-code of the modified group migration algorithm is shown in Figure 8 and variables that are new 

compared to SA are explained in Table 2. 
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Group-Migration(S)
1 while True

2 do Snew ← GM-Round(S)
3 if Cost(Snew) < Cost(S)
4 then S ← Snew

5 else break

6 return S

GM-Round(S0)
1 S ← S0

2 C ← Cost(S)
3 Moved← Boolean array of N falses

4 for i← 1 to N

5 do Dtask = nil

6 DPE = nil

7 for t← 0 to N − 1
8 do if Moved[t] = True

9 then continue

10 Aold ← S[t]
11 for A← 0 to M − 1
12 do if A = Aold

13 then continue

14 S[t]← A

15 if Cost(S) ≥ C

16 then continue

17 C = Cost(S)
18 Dtask = t

19 DPE = A

20 S[t]← Aold

21 if DPE = nil

22 then break

23 Moved[Dtask]← True

24 S[Dtask]← DPE

25 return S
 

Figure 8. A modified group migration algorithm for arbitrary number of PEs. 

Table 2. Summary of new variables used in the group migration algorithm. Other variables are the same as in SA. 

  A PE 

oldA  Old PE 

PED  PE associated with the best migration candidate 

taskD  Task associated with the best migration candidate 

Moved Array of Booleans indicating tasks that have been moved 

 
The main loop of the pseudo-code begins on Line 1 of Group-Migration function. It calls GM-Round function as long 

as it can improve the mapping. GM-Round will change at most one mapping per round. If it does not change any, the 

optimization will terminate. GM-Round first computes the initial cost of initial state
0

S  on Line 2.  The Cost function is the 

same function as with SA. Line 3 initializes an array that marks all tasks as non-moved. The function can only move each 

task once from one PE to another, and this table keeps record of tasks that have been moved. Moved tasks can not be 

moved again until the next call to this function. The upper limit of loop variable i on Line 4 signifies that each task can 

only be moved once. Increasing the upper limit would not break or change the functional behavior. Line 7 begins a sub-

round which ends at Line 20. The sub-round tries to move each task from one PE to every other PE. The algorithm accepts 

a move on Line 15, if it is better than any other previous move. The effect of any previous moves is discarded on Line 19, 

even if a move improved mapping. However, the best improving move is recorded for later use on Lines 17-18. Each 

move is a separate try that ignores other moves. If no improving move was found in the loop beginning on Line 7, the 

search is terminated for this round on Line 21. Otherwise, the best move is applied on Lines 23-24. The best found is 

returned on Line 25. 
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5.4. Random Mapping Algorithm 

Random mapping is an algorithm that selects a random PE separately for all tasks on every invocation of the algorithm. 

The algorithm is a useful baseline comparison algorithm [14] against other algorithms since it is a policy neutral mapping 

algorithm that converges like Monte Carlo algorithms. The random mapping exposes the inherent parallelizability of any 

given application for a given number of iterations. It should be compared with other algorithms by giving the same number 

of iterations for both algorithms. Random mapping results are presented here to allow fair comparison of the SA and GM 

methods against any other mapping algorithms. Cost function ratio of SA and random mapping can be compared to the 

ratio of any other algorithm and random mapping. 

6. Scheduling and Cost Functions 

6.1. B-level Scheduler 

The scheduler decides the execution order of tasks on each PE. If a task has not been executed yet, and it has all the 

data required for its execution, it is said to be ready. When several tasks are ready on a PE the scheduler selects the most 

important task to be executed first.  

Tasks are abstracted as nodes in task graphs, and communication is abstracted as edges. Node and edge weights, which 

are cycle times and data sizes respectively, are converted into time units before scheduling. The conversion is possible 

because allocation and mapping are already known. 

The scheduler applies B-level scheduling policy for ordering tasks on PEs. The priority of a node is its B-level value 

[18]. Higher value means more important. The B-level value of a node is the longest path from that node to an exit node, 

including exit nodes weight. Exit node is defined as a node that has no children. The length of the path is defined as the 

sum of node and edge weights along that path. For example, in Figure 1 the longest path from A to F is 1+1+5+1+6=14, 

and thus B-level value of node A is 14. 

As an additional optimization for decreasing schedule length, the edges, which represent communication, are also 

scheduled on the communication channels. A priority of an edge is the weight of the edge added with B-level values of 

child nodes. Thus, children who have higher priority may also receive their input data more quickly. 

Figure 9 shows pseudo-code for computing B-level priorities for an STG. Line 1 does a topological sort on the task 

graph. The topological sort means ordering the task graph into a list where the node A is before the node B if A is a 

descendant of B. Thus the list is ordered so that children come first. Line 2 iterates through all the tasks in that order. Line 

3 sets default B-level value for a node, which is only useful if the node is an exit node. Array B contains known B-level 

values so far.  If a node is not an exit node, the B-level is computed on Lines 4-9 to be the maximum B-level value with 

respect to its children. A B-level value with respect to a child is the sum of child’s B-level value, edge weight towards the 

child, and the node weight of the parent node. 

B-Level-Priorities(STG)
1 TaskList← Topological-Sort(STG)
2 for each task t in TaskList

3 do B[t]← Node-Weight(STG, t)
4 for each child c of node t

5 do w← B[c]
6 w← w + Edge-Weight(STG, t, c)
7 w← w + Node-Weight(STG, t)
8 if B[t] < w

9 then B[t]← w

10 return B
 

Figure 9. Algorithm to compute B-level values for nodes of a task graph. 

It should be noted that although B-level value is dependent on communication costs, it does not model communication 

congestion. Despite this limitation, Kwok et al. show in [13] that the best bounded number of processor (BNP) class 

scheduling algorithm is based on ALAP (as late as possible) time. ALAP time of a node is defined as the difference of the 

critical path length and the B-level value of the node. An unscheduled node with the highest B-level value is by definition 

on the dynamic critical path, and therefore B-level priority determines ALAP time uniquely, and therefore B-level priority 

is an excellent choice. 

The algorithmic complexity of the B-level priority computation is ( )O E V+ , where E  is the number of edges and V  

is the number of nodes. However, the list scheduling algorithm complexity is (( ) log )O E V V+ , which is higher than the 
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complexity of computing B-level priorities, and therefore the complexity of the whole scheduling system  is 

(( ) log )O E V V+ . 

6.2. Cost function 

In this paper, the optimization process measures two factors from a mapped system by scheduling the task graph. 

Execution time T and memory buffer size S are the properties which determine the cost function value of a given allocation 

and mapping. 

The scheduler system simulates the task graph and architecture by executing each graph node parent before the child 

node is executed as well as delaying the execution of the child node until results from the parent nodes have arrived, thus 

determining the execution time T by behavioral simulation. The system is however not limited to behavioral simulation, 

but exact models on the underlying system could be used by changing the scheduler part. 

The scheduler keeps track of buffers that are needed for the computation and communication to determine memory 

buffer size S. When a PE starts receiving a data block from another PE it needs to allocate a memory buffer to contain that 

data. The PE must preserve that data buffer as long as it is receiving the data or computing something based on that data. 

The receiving buffer is freed after the computation. When a PE starts computing it needs to allocate memory for the result. 

The result is freed when the computation is done and the result has been sent to other PEs. 

As a result, when the full schedule of an STG has been simulated, the scheduler knows memory size S required for the 

whole architecture and the total execution time T. The mapping algorithm is orthogonal to the scheduler part in our system, 

which was the design goal of the optimization framework, and thus other optimization parameters could be easily added by 

just changing the scheduler part without affecting the mapping algorithms. 

The cost function is chosen to optimize both execution time and required memory buffers, that is, minimize the cost 

function aT bS+ , where a  and b  are constants. When both time and memory are optimized, parameters a  and b  are 

chosen so that on a single PE case both aT and bS are 0.5 and thus cost function has the value 1.0 in the beginning. 

The motivation for including memory buffer size factor into the cost function is to minimize expensive on-chip buffer 

memory required for parallel computation. An embedded system designer may balance cost function factors to favor 

speedup or memory saving depending on which is more important for the given application. Adding more factors into the 

cost function will motivate for research on multi-objective optimization and can take advantage of pareto-optimization 

methods such as [23]. 

7. Experiments 

7.1. Setup for the Experiment 

The optimization software is written for the UNIX environment containing 3,600 lines of C code. On a 2.0 GHz AMD 

Athlon 64 computer, the software is able to evaluate 12000 mappings in a second for a 50 node STG with 119 edges, or 

600000 nodes or 1.43 million edges in a second.  The software did 2,094 mappings in a second for a 336 node STG with 

1211 edges, or 703584 nodes or 2.54 million edges in a second. Thus the method scales well with the number of nodes and 

edges. Scalability follows from the computational complexity of the scheduling method because a single mapping iteration 

without scheduling is in (1)O  complexity class. 

The experiment is divided into two categories. The first category is the execution time optimization, where the cost 

function is the execution time of the application. The second category is the execution time and memory buffer 

optimization, where the cost function is a combination of execution time and memory buffers. Both categories are tested 

with SA, GM and random mapping algorithms. Each algorithm is used with 1 to 4 PEs. The single PE case is the reference 

case that is compared with other allocations. For each allocation, 10 graphs with 50 nodes and 10 graphs with 100 nodes 

are tested. The graphs were random STGs with random weights. Each graph is optimized 10 times with exactly the same 

parameters. Thus, the total amount of optimizations is 2 (categories) * 3 (algorithms) * 3 (PE allocations) * 20 (STGs) * 

10 (independent identical runs) = 3600 runs. Figure 10 depicts the whole experiment as a tree. Only one branch on each 

level is expanded in the figure, and all branches are identical in size. 
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Figure 10. Outline of the experiment procedure. 

7.2. Simulated Annealing Parameters 

SA parameters are presented in Table 3. Final temperature is only 0.0001, and therefore SA is very greedy at the end of 

optimization as shown by the acceptance function plot in Figure 4. 

Table 3. Parameters for simulated annealing. 

Temperature proportion (p) 0.95 

Initial temperature (
0

T ) 1.0 

Final temperature (
f

T ) 0.0001 

Iterations per temperature level  L=N(M-1)  (Eq. (1)) 

Move heuristics RM-move 

Annealing schedule 

(Temperature-Cooling) 

Temperature decreases proportionally 

once in L iterations. 

Acceptance probability (Prob) Normalized probability (Eq. (6)) 

Terminal condition Final temperature is reached and at least L 

consecutive rejections are observed. 

Table 4 shows the total number of mappings for one SA descend based on the parameters shown in Table 3. 

Table 4. Total number of mappings for one simulated annealing descend. 

 2 PEs 3 PEs 4 PEs 

52 tasks 9300 18700 28000 

102 tasks 18300 36600 54900 

7.3. Group Migration and Random Mapping Parameters 

Group migration algorithm does not need any parameters. This makes it a good algorithm to compare against other 

algorithms because it is also easy to implement and suitable for automatic architecture exploration. Relative advantage of 

the SA method over GM can be compared to any other algorithm over GM. 

Random mapping tries 2 2
N M  random mappings independently, which is much more than with SA. Random mapping 

is defined as choosing a random PE separately for all tasks. Random mapping presents a neutral reference to all other 

algorithms both in terms of behavior and efficiency. It does worse than other algorithms, as experiment will show, but it 

shows how much can be optimized without any knowledge of system behavior. 
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7.4. Static Task Graphs 

STGs used in this paper are from Standard Task Graph Set [20]. The experiment uses 10 random STGs with 50 nodes 

and 10 random STGs with 100 nodes. The task graph numbers from 50 node graphs are: 2, 8, 18, 37, 43, 49, 97, 124, 131 

and 146. The task graph numbers from 100 node graphs are: 0, 12, 15, 23, 46, 75, 76, 106, 128 and 136. Edge weights had 

to be added into the graphs because the Standard Task Graph collection graphs do not have them. In this case study, each 

edge presents communication of 2(64,16 )Normal  bytes. That is, the edge weights are normally distributed with mean of 

64 bytes and standard deviation of 16 bytes. The node weights were multiplied by a factor of 32 to have communication to 

computation ratio (CCR) at a reasonable level. The CCR is defined as the average edge weight divided by the average 

node weight. Summary of the properties is presented in Table 5. 

Table 5. Summary of graph properties for the experiment. 

Graphs 10 times 50 node STGs, 10 times 100 node STGs, from Standard Task Graph Set 

Edge weights Normally distributed: 2(64,16 )Normal  

Node weights 32 times the Standard Task Graph Set values 

7.5. MP-SoC Execution Platform 

The MP-SoC execution platform on which experiments are run is assumed to have a number of identical PEs as shown 

in Figure 11. Each PE is a 50 MHz general purpose processor (GPP), and thus it can execute any type of task from the TG 

and the mapping space does not have constraints. Task execution on a GPP is uninterruptible by the other tasks. IO 

operations are carried out in the background and they are assumed to be interrupt-driven. Task execution time is one or 

more GPP cycles. This is converted into time units by dividing the cycle number by the associated PE’s clock frequency 

before scheduling. 

Memory Memory Memory Memory

PE PE PE PE

 

Figure 11. Block diagram of the MP-SoC execution platform. 

The PEs are connected with a single dynamically arbitrated shared bus, and all the PEs are equally arbitrated on the 

bus. Transaction is defined as transferring one or more data words from one PE to another. Transactions are assumed to be 

atomic, meaning that they can not be interrupted. Arbitration policy for transactions is FIFO. Broadcast is not used in the 

system, i.e. there is exactly one receiver for each send. Bus data width is assumed to be 32 bits, and the bus can transfer its 

data width bits every cycle. Initial transfer latency for a transaction is modeled to be 8 bus cycles. This is the minimum 

latency for each bus transaction. This latency is used to prevent unrealistic bus utilization levels that do not occur in the 

real world. The bus operates on 2.5M  MHz clock (M is the amount of PEs). The bus frequency is scaled with M because 

the amount of required communication is proportional to M. Not scaling with M would mean a significant bottleneck in the 

system. Summary of the system architecture is shown in Table 6. 

Table 6. MP-SoC execution platform data. 

PEs 1 to 4 

PE frequency 50 MHz 

Bus type Dynamically arbitrated shared bus 

Bus width 32 bits 

Bus throughput Bus width bits per cycle 

Bus arbitration latency 8 cycles 

Bus frequency 2.5M  MHz 

It must be noted here that interconnect and GPP frequency are not relevant without the context of task graph 

parameters. The hardware was fixed at the specified level, and then task graph parameters were tuned to show relevant 

characteristics of optimization algorithms. With too fast hardware there would not be much competition among algorithms 

and distribution results would be overly positive. With too slow a hardware nothing could be distributed while gaining 

performance and algorithms would be seen as useless. Many experiments were carried out to choose these specific 

parameters. 
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Edge loads are converted from communication bytes into time units by 

8Si
Lat

W
t

f

 
+   

= , (7) 

where Lat is the arbitration latency of the bus in cycles, W  is the bus width in bits, Si is the transfer size in bytes and f is 

the bus frequency. 

CCR is computed by dividing the average edge weight with the average node weight of the graph. CCR values on 50 

and 100 node graphs for 2, 3 and 4 PE cases are 0.98, 0.65 and 0.49 respectively. As the rationale in related work section 

explains, values near 1.0 are in the relevant range of parallel computing. CCR values could be chosen arbitrarily, but 

values lower than 0.1 would mean very well parallelizable problems, which are too easy cases to be considered here. 

However, values much higher than 1.0 would mean applications that can not be speeded up substantially. It should be 

noted that the CCR decreases with respect to the number of PEs in this paper, because the interconnect frequency is 

proportional to the number of PEs in the allocation phase. 

8. Results 
Results of the experiment are presented as speedup, gain and memory gain values. Speedup is defined as the execution 

time for a single PE case divided by the optimized execution time. Gain is defined to be the cost function value for the 

single PE case divided by the optimized cost function value. Memory gain measures memory usage for the single PE case 

divided by the optimized case. A higher gain value is always better. The following results compare two cases, which are 

the time optimization case and the memory-time optimization case. In the time optimization case, the cost function 

depends only on the execution time of the distributed application, but in the memory-time optimization case, the cost 

function depends on both execution time and memory buffer size. The complexity of algorithms is similar so that the 

number of iterations determines the runtime directly. 

8.1. Time Optimization Comparison 

Figure 12 presents the speedup values for each algorithm in the time optimization case with 2 to 4 PEs for 50 and 100 

node graphs. The average speedups in combined 50 and 100 node cases for SA, GM and random mapping are 2.12, 2.03 

and 1.59, respectively. Thus, SA wins GM by 4.4%, averaged over 20 random graphs that are each optimized 10 times. 

Also, SA finds the best speedup in 34% of iterations compared to GM, as shown in Figure 17. This means that SA 

converges significantly faster than GM. SA wins random mapping by 75%, and converges to the best solution in 74% of 

iterations. Random mapping is significantly worse than others. 

8.2. Memory-time Optimization Comparison 

Figure 13 shows the gain values for the memory-time optimization case with 2 to 4 PEs for 50 and 100 node task 

graphs. Average gains in combined 50 and 100 node cases for SA, GM and random mapping are 1.234, 1.208 and 1.051, 

respectively. Thus, SA wins GM by 2.2% and random by 17%. SA reaches the best solution in 12% of iterations compared 

to GM, which is significantly faster, as shown in Figure 18. The memory-gain units are small as numeric values, and their 

meaning must be analyzed separately in terms of speedup and memory usage. 

Figure 16 shows the memory gain values for the memory-time optimization case, and Figure 15 shows the same values 

for the time optimization case. Average memory gain values for the memory-time optimization case for SA, GM and 

random mappings are 1.00, 1.02 and 0.94, respectively. These numbers are significant, because computation parallelism 

was achieved without using more data buffer memory that needs to be expensive on-chip memory. Using external memory 

for data buffers would decrease throughput and increase latency, which should be avoided. 

The GM case is interesting because it shows that computation actually uses 2% less memory for data buffers than a 

single PE. This happens because it is possible to off-load temporary results away from originating PE and then free buffers 

for other computation. Now comparing memory gain values to the time optimization case, where the averages memory 

gains are 0.67, 0.67 and 0.69, we can see that time optimization case uses 49%, 52% and 36% more data buffers to achieve 

their results. To validate that decreasing memory buffer sizes is useful the speedup values have to be analyzed as well. 

Figure 14 shows speedup values for memory-time optimization case. Average speedups for SA, GM and random mapping 

are 1.63, 1.52 and 1.36 respectively, which are 23%, 25% and 14% less than their time optimization counterparts. 

Therefore our method can give a noticeable speedup without need for additional on-chip memory buffers. 

SoC design implications of memory-time optimization method can be analyzed by looking at absolute requirements for 

on-chip memory buffers. Consider a SoC video encoder performing motion estimation on 2 PEs with 16x16 pixel image 

blocks with 8 bits for each pixel [21]. The video encoder would have at least 10 image blocks stored on both PEs leading 

to total memory usage of 5120 bytes of memory, which also sets a realistic example for SoC data buffers. To compare that 
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to our random graphs, 2312 bytes of memory buffers were used on average for 50 node case with 1 PE. Parallelizing that 

with the memory-time optimization method did not increase required memory, but optimizing purely for time increased 

memory buffer usage to 3451 bytes on average. Therefore 1139 bytes or 33% of on-chip memory was saved with our 

method, but approximately 23% of speed was lost compared to pure time optimization. This means that a realistic trade-off 

between fast execution time and reasonable memory usage is possible by choosing a proper cost function. 

Random graphs used in this paper avoid bias towards specific applications, and the 33% of saved memory buffers are 

independent of the absolute size of the application. Thus bigger applications would save more memory in absolute terms. 

Similar results were obtained by Szymanek et al. [17], who optimized random graphs by a constraint based optimization 

method that penalized memory usage in a cost function. They compared the constraint based method to a greedy algorithm 

that optimized only execution time. The constraint method resulted into 18% less data memory but also 41% less speed 

compared to the greedy algorithm. As a difference to our method, Szymanek et al. also optimized code memory size. Their 

method was able to decrease code size by 33%. The code size does not apply to random graphs from Standard Task Graph 

Set, because they do not have functions defined for each node, and therefore it has to be assumed that each node is a 

separate function. Consequently, changing the mappings does not affect total code size. 
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Figure 12. Mean speedups on time optimization for 50 and 100 node graphs. 

 

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

PEs / Nodes

G
a

in
 (

1
 P

E
 O

b
je

c
ti

v
e
 /

 O
p

ti
m

iz
e
d

 O
b

je
c

ti
v
e
)

SA 1.000 1.215 1.267 1.293 1.170 1.217 1.240

GM 1.000 1.199 1.224 1.265 1.159 1.194 1.206

Random 1.000 1.102 1.069 1.061 1.037 1.021 1.016

1P 2P / 50N 3P / 50N 4P / 50N 2P / 100N 3P / 100N 4P / 100N

 

Figure 13. Mean gains on memory and time optimization for 50 and 100 node graphs. 
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Figure 14. Mean speedups on memory and time optimization for 50 and 100 node graphs. 
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Figure 15. Mean memory gains on time optimization for 50 and 100 node graphs. 
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Figure 16. Mean memory gains on memory and time optimization for 50 and 100 node graphs. 

0

200

400

600

800

1000

1200

PEs / Nodes

It
e
ra

ti
o

n
s

SA 460 398 335 342 184 154

GM 540 985 1005 982 1002 947

Random 502 426 441 391 353 403

2P / 50N 3P / 50N 4P / 50N 2P / 100N 3P / 100N 4P / 100N

 

Figure 17. Mean iterations to reach best solution on time optimization for 50 and 100 node graphs. 
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Figure 18. Mean iterations to reach best solution on memory and time optimization for 50 and 100 node graphs. 

9. Parameter selection 
To analyze the effect of Equation (1) on speedup and gain, we ran Section 7 experiment for 50 and 100 node graphs 

with different values of {1, 2,4, , 4096}L ∈ K  (powers of two). Each graph was optimized 10 times independently to 

estimate the statistical effect of the L parameter. 

By theory, it is trivial that no fixed L value can perform well for arbitrary sized graphs and architectures because not 

even trivial mappings can be tried in a fixed number of iterations. Therefore, L must be a function of graph and 

architecture size. This was the origin of the parameter selection scheme, and the experimental evidence is given below. 

 Figure 19 and Figure 20 show the effect of L parameter for memory and time optimization with 50 and 100 nodes 

respectively. In the 100 node case the gain value curve increases steeper than in the 50 node case, as L increases from one 

to more iterations. This shows clearly that more nodes requires more iterations to reach equal gain. These figures also 

show that increasing M, the number of PEs, makes the climb steeper.  This implies that more iterations are needed as M 

increases. Moreover, these figures show that selecting ( 1)L N M= −  is enough iterations to climb the steepest hill. The 

behavior is similar for the time optimization case as shown in Figure 21.  

 Table 7 shows that relative gain of 85% to 94% is achieved in 2.4% to 7.3% iterations with the parameter selection 

scheme when compared to selecting 4096 iterations. Speedup and gain are almost saturated at 4096 iterations, and thus, it 

is the reference for maximum obtainable gain and speedup. This shows that the parameter selection scheme yields fast 

optimization with relatively good results. From the figures, it must be stressed that L must be at least linear to graph and 

architecture size to reach good gains. 

The impact of our parameter selection scheme is also evaluated in [27]. 
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Table 7 Effect of L parameter on speedup and gain for time and memory+time optimization cases respectively. 

Relative gain shows the effect of L parameter with respect to maximum iterations 4096. N is the number of nodes 

and M is the number of PEs. 

Opt. type N M ( 1)L N M= −  

4096

L
 

Gain 

(L) 

Gain 

(4096) 

Relative gain 

( ) 1

(4096) 1

G L

G

−

−
 

Memory + Time 50 2 50 1.2% 1.210 1.246 0.854 

Memory + Time 50 3 100 2.4% 1.268 1.303 0.884 

Memory + Time 50 4 150 3.7% 1.295 1.331 0.891 

Memory + Time 100 2 100 2.4% 1.172 1.195 0.882 

Memory + Time 100 3 200 4.9% 1.217 1.240 0.904 

Memory + Time 100 4 300 7.3% 1.240 1.261 0.920 

Time 100 2 100 2.4% 1.661 1.709 0.932 

Time 100 3 200 4.9% 2.085 2.152 0.942 

Time 100 4 300 7.3% 2.409 2.492 0.944 
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Figure 19 Effect of L parameter (log scale) for memory and time optimizing 50 node graphs. 

The circles mark ( 1)L N M= −  case for each PE number. 
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Figure 20 Effect of L parameter (log scale) for memory and time optimizing 100 node graphs. 

The circles mark ( 1)L N M= −  case for each PE number. 
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Figure 21 Effect of L parameter (log scale) for time optimizing 100 node graphs. 

The circles mark ( 1)L N M= −  case for each PE number. 

10. Conclusions 
This paper presents an optimization method that carries out memory buffer and execution time optimization 

simultaneously. Results are compared with three task mapping algorithms, which are simulated annealing (SA), group 

migration and random mapping. The mapping algorithms presented are applicable to a wide range of task distribution 

problems, for both static and dynamic task graphs. The SA algorithm is shown to be the best algorithm in terms of 

optimized cost function value and convergence rate. Simultaneous time and memory optimization method with SA is 

shown to speed up execution by 63% without memory buffer size increase. As a comparison, optimizing the execution 

time only speeds up the application by 112% but also increases memory buffer sizes by 49%. Therefore a trade-off 

between our method and the pure time optimization case is 33% of saved on-chip memory but 23% loss in execution 

speed. 

This paper also presents a unique method to automatically select SA parameters based on the problem complexity 

which consists of hardware and application factors. Therefore, the error-prone manual tuning of optimization parameters 

can be avoided by using our method, and optimization results can be improved by better fitting optimization parameters to 
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the complex problem. It is experimentally shown that the number of iterations for SA must be at least linear to the number 

of application graph nodes and the number of PEs to reach good results. 

Future work should study the task distribution problem of minimizing iterations to reach near optimum results with SA, 

instead of just focusing on the final cost function value. Also, the next logical step is to evaluate the method on dynamic 

task graphs. In addition, more mapping algorithms, such as genetic algorithms and Tabu Search, should be tested with our 

memory optimization method, and automatic selection of free parameters should be devised for those algorithms as well. 

Also, adding more factors into the cost function motivates research on multi-objective optimization to fulfill additional 

design restrictions of the system. 
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