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graceful QoS degradation are necessary for real-timeapplications but pose conicting requirements.The main focus of this paper is on how to achievepredictability and graceful degradation in long-livedreal-time services for embedded applications. By\long-lived" we mean that a request, if granted, willhold its reserved resources for a relatively long periodof time. To control the load imposed on system re-sources and hence guarantee a certain level of QoS,the request must go through admission control andresource reservation. Conventional admission controlschemes make \binary" decisions on whether to guar-antee or reject each request. Future requests may berejected because resources have already been commit-ted to those that arrived earlier. In hard-real-timesystems, a static analysis may be performed to guar-antee a priori that all requests be honored under theassumption of the worst-case request arrival behav-ior and service requirements. If these assumptions areviolated at run-time due to transient overload or re-source loss (failures), the guarantees may become in-valid, which may, in turn, lead to system failure.We propose a mechanism for QoS (re)negotiationas a way to ensure graceful degradation in cases ofoverload, failures, or violation of pre-run-time assump-tions. This mechanism permits clients to express intheir service requests a spectrum of QoS levels they canaccept from the provider and perceived utility of re-ceiving service at each of these levels. As a result, theapplication designer will be able to express acceptablecompromises in QoS and their relative cost/bene�t asderived from application domain knowledge.We incorporate the proposed QoS negotiation intoa processing capacity management middleware servicecalled RTPOOL. The service is designed and imple-



mented to support timeliness guarantees for a ightcontrol application, in which a set of ight controltasks, their QoS levels, and the corresponding rewardsare provided by the ight mission planner , and canbe renegotiated, if necessary, using RTPOOL's QoS-negotiation support. The mission planner was de-veloped in the context of the Cooperative IntelligentReal-time Control Architecture (CIRCA) [1], whichcomputes task execution tradeo�s from applicationdomain knowledge and alters the mission plan as re-quired during QoS negotiation.In this paper, we begin with a review of relatedwork (Section 2), followed by a description of theproposed QoS-negotiation model (Section 3). Next(Section 4), we describe RTPOOL, a distributedprocessing resource management service that followsthe proposed QoS-negotiation model, highlighting thesynergy between RTPOOL components and QoS-negotiation support. We present details of RT-POOL implementation and negotiation API (Sec-tion 5), then describe the use of RTPOOL in the con-text of automated ight control (Section 6). Flightperformance is evaluated (Section 7), illustrating thee�cacy of QoS-negotiation support, followed by a briefpaper summary (Section 8).2 Related workPredictable performance of real-time services has tra-ditionally been achieved using resource reservationand admission control. In hard real-time systems, suf-�cient resources are reserved a priori for the appli-cation. O�-line schedulability analysis (e.g., [2{4]) isused to verify that the reserved resources are su�-cient for meeting all timing constraints. Such analy-sis requires that the worst-case load/failure conditionsbe known at design time. For some applications, theworst-case load and failure conditions may be di�cultto know, thus a mechanism is needed to ensure grace-ful performance degradation when the load or failurehypotheses are violated.On-line admission control has been used to guaran-tee predictability of services where request patternsare not known in advance, e.g., establishment re-quests of real-time channels [5]. This concept has alsobeen applied to resource reservation for dynamically-arriving real-time tasks, e.g., the Spring Kernel [6] andDreams real-time system [7]. A main concern of thisapproach is predictability. Run-time guarantees givento admitted requests are never revoked even if they re-sult in rejecting subsequently-arriving more importantrequests competing for the same resources.In soft real-time systems, services are more con-cerned with maximizing overall utility (by serving

the most important request �rst) than guaranteeingreserved resources for individual requests. Prioritydriven services can generally be categorized this way,and are supported in real-time kernels such as Al-pha [8] and Mach [9]. Under overload conditions, lowerpriority tasks are denied service in favor of more im-portant tasks. In the Rialto operating system [10], aresource planner attempts to dynamically maximizeuser-perceived utility of the entire system. However,the scheme does not adopt the notion of guaranteeinga reserved amount of resources for the application.Compromises between giving irrevocable serviceguarantees to arriving requests (in hard real-time sys-tem), and maximizing overall system utility (in softreal-time systems) have been addressed. For exam-ple, virtual clock based communication schemes [11]essentially delay a packet transmission request untilits virtual arrival time. This enforces a global priorityorder, a special case of maximizing utility. Recently, asimilar approach has been suggested for guaranteeingdynamic real-time tasks. The decision to guaranteean arrived task (and commit resources to it) is de-layed until some critical instant, e�ectively making thesystem wait for \more important" tasks to arrive. Un-fortunately, the delay in making task guarantees mayitself waste processing bandwidth which may reduceschedulability and increase the task rejection rate.A di�erent approach to maintaining hard real-timeguarantees while maximizing the overall perceivedutility under overload and failure conditions is to of-fer QoS as a new dimension to trade in making re-source management decisions. QoS negotiation ex-tends the typical real-time service interface in two dif-ferent ways. First, it o�ers QoS degradation as analternative to denial of service, thus enhancing thepercentage of accepting service requests and the to-tal perceived system utility. Second, it provides ageneric means of utilizing application-speci�c knowl-edge to control QoS degradation. This paper describesa generic QoS-negotiation scheme and its applicationto automated ight control systems.3 QoS-Negotiation ModelA simple yet expressive QoS-negotiation model is thekey to building predictable, gracefully degradable mid-dleware services for real-time applications. In this sec-tion we describe the application model, the proposedQoS-negotiation model, and the model of a real-timemiddleware service that supports QoS negotiation.We consider a class of embedded real-time systems inwhich various software components realize functions toaccomplish a single overall \mission." We will hence-forth call this mission an application. Flight control,



shipboard computing, automated manufacturing, andprocess control generally fall under this category. Theapplication is composed of a set of tasks, each of whichrequires a set of resources/services. We are concernedmainly with long-lived services that need to hold re-served resources for an extended period of time, suchas processor capacity reservation [12] and communica-tion connection establishment services [5].Our negotiation model is centered around threesimple abstractions: QoS levels, rewards, and rejec-tion penalty . A client requesting service speci�es in itsrequest a set of negotiation options and the penalty ofrejecting the request derived from the expected utilityof the requested service. Each negotiation option con-sists of an acceptable QoS level for the client to receivefrom the provider and a reward value commensuratewith this QoS level. The QoS levels are expressedin terms of parameters whose semantics need to beknown only to the client and service provider. For ex-ample, in establishing a real-time communication con-nection, these parameters may specify the client's traf-�c delay and jitter requirements. In processor capacityreservation, they may express the required processorbandwidth, while in a multicast protocol they mayrepresent the semantics of the requested multicast ser-vice, such as reliable, ordered, causal, or atomic deliv-ery. The reward represents the \degree of satisfaction"to be achieved from the QoS level (i.e., application-perceived utility of supplying the client with that levelof service). Thus, the client's negotiation options rep-resent a set of alternatives for \acceptable" QoS andtheir \utility." The rejection penalty of a client's re-quest is the penalty incurred to the application if therequest is rejected. Rejection penalty plays no fur-ther role if the request is guaranteed. In Section 6 wedescribe how QoS levels, negotiation options, and re-jection penalty are computed in the context of a ightcontrol application using a mission planner. The plan-ner computes QoS levels, rewards, and penalties fromapplication domain knowledge and a speci�cation ofsystem failure probabilities.To control system load in a way that ensures pre-dictable service, the service provider must subject theclient's request to on-line admission control which de-termines whether to guarantee or reject the request.We propose a slightly di�erent notion of guaranteeinga request, as compared to the conventional notion ofguarantee. In our model, guaranteeing a client's re-quest is the certi�cation of the request to receive ser-vice at one of the QoS levels listed in its negotiationoptions. The selection of the QoS level it will actuallyreceive, however, is up to the service provider. Fur-

thermore, the service provider is free to switch thisQoS level to another level in the client's negotiationoptions, if it increases perceived utility. Note thatspecifying only one negotiation option with defaultrejection penalty reduces this mechanism to tradi-tional on-line guarantee schemes. Thus, while the pro-posed mechanism should perform no worse than theseschemes in the special case, it provides the means toexpress and take advantage of more accurate semanticinformation about the application whenever such in-formation is available. So, while we do not require theapplication designer to supply more information thanis necessary for traditional on-line guarantee schemes,we o�er the exibility to take advantage of additionalsemantic informationwhen it is available. In Section 6we give an example application that bene�ts from thissupport.Shifting the authority in selecting clients' QoS lev-els from client to service provider has two importantadvantages. First, the application code is decoupledfrom assumptions on underlying resource availabilityand capacity, implied when a client asks for a speci�cQoS level. Second, providing negotiation options anddelegating QoS-level selection to the provider allowsQoS-level adjustment by the provider, when necessary,to achieve higher overall system utility while maintain-ing each client's QoS guarantee at a level speci�ed innegotiation options.4 RTPOOLWe designed an example middleware service, RT-POOL, to support the proposed QoS-negotiationmodel. This service is responsible for managing a dis-tributed pool of computing resources (processors) toguarantee timeliness. It employs a processor member-ship protocol to keep track of processor pool mem-bership and report processor failures. Schedulabilityanalysis is used to provide timeliness guarantees. Ad-ditionally, we integrated support for QoS negotiationinto RTPOOL. This support is split into local and dis-tributed algorithms, and is the focus of this section.Clients of RTPOOL are application tasks. RT-POOL service requests are used to guarantee the time-liness of new incoming tasks. Our task executionmodel is inuenced by the requirements of the ightcontrol application (Section 6), but is still su�cientlygeneral for use in di�erent applications. RTPOOL as-sumes periodic tasks and handles aperiodic tasks withperiodic servers. A task is composed of a set of mod-ules and has a deadline by which all its modules mustcomplete. The modules may have arbitrary prece-dence constraints among themselves, thus specifyingtheir execution sequence. We assume task arrivals



(guarantee requests) are independent, so we do notsupport precedence constraints among di�erent tasks.Each request for guaranteeing a task includes itsrejection penalty, and the negotiation options of theclient task that specify di�erent QoS levels and theirrespective rewards. A client task's QoS level is speci-�ed by the parameters of its execution model. For anindependent periodic task, the parameters consist oftask period, deadline, and execution time. We modelperiod and deadline as negotiable parameters. Thisrepresents a signi�cant departure from most schedul-ing literature, although the authors of [13] articulateon the alterability of task periods in real-time controlsystems using system stability and performance in-dex. Task execution time, on the other hand, dependson the underlying machine speed and thus should notbe hardcoded into the client's request. Instead, eachQoS level in the negotiation options speci�es whichmodules of the client task are to be executed at thatlevel. This allows the programmer to de�ne di�erentversions of the task to be executed at di�erent QoSlevels, or to compose tasks with mandatory and op-tional modules. The reward associated with each QoSlevel tells RTPOOL the utility of executing the spec-i�ed modules of the task with the given period anddeadline.Requests for guaranteeing tasks may arrive dynam-ically at any machine in the pool. Since, in the pro-posed QoS-negotiation scheme, tasks normally receivehigher QoS than their minimum functionality QoSlevel, it is highly probable for the new arrival to beguaranteed on the local machine. To guarantee a re-quest at the local machine, RTPOOL executes a localQoS-optimization heuristic, which (re)computes theset of QoS levels for all local clients (including thisnew one) to maximize the sum of their rewards. Re-computing the QoS levels may involve degrading sometasks to accommodate the new one. The task is re-jected if both (i) the new sum of rewards (includingthat of the newly-arrived task) is less than the ex-isting sum prior to its arrival, and (ii) the di�erencebetween the current and previous sums is larger thanthe new task's rejection penalty. Otherwise, the re-quested task is guaranteed. As a result, task executionrequests will be guaranteed unless the penalty from re-sulting QoS degradation of other local clients is largerthan that from rejecting the request. When a task ex-ecution request is rejected by the local machine, onemay attempt to transfer and guarantee it on a dif-ferent machine using a load-sharing algorithm. Notethat conventional admission control schemes would al-ways incur the request rejection penalty whenever an

Let each client task Ti have QoS levelsMi[0]; : : : ;Mi[besti] with rewardsRi[0]; : : : ;Ri[besti], respectively.1. Start by selecting the best QoS level,Mi[besti], for each client Ti.2. While the set of selected QoS levels isnot schedulable, do Steps 3 and 4.3. For each client Ti receiving serviceat level Mi[j] > Mi[0], determine thedecrease of local reward,Ri[j]�Ri[j�1], resulting from degradingthis client to the next lower level.4. Find client Tk whose Rk[j]�Rk[j � 1] isminimum and degrade it to the nextlower level.5. Go to Step 2.Figure 1: Local QoS optimization heuristicarrived task makes the set of current tasks unschedu-lable. By o�ering QoS degradation as an alternativeto rejection and by using admission control rules, wecan show that the reward sum (or perceived utility)achieved with our scheme is lower bounded by thatachieved using conventional admission control schemesgiven the same schedulability analysis and load shar-ing algorithms. Thus, in general, our proposed schemeachieves higher perceived utility.Figure 1 gives an example of the local QoS-optimization heuristic. The heuristic implements agradient descent algorithm, terminating when it �ndsa set of QoS levels that keeps all tasks schedulable, ifany. Note that unless all tasks are executed at theirhighest QoS level, the machine su�ers from unful�lledpotential reward . The unful�lled potential reward,UPRj, on machine Nj , is the di�erence between thetotal reward achieved by the current QoS levels se-lected and the maximum possible reward that wouldbe achieved if all local tasks were executed at theirhighest QoS level. This di�erence can be thought ofas a fractional loss to the mission and is often unavoid-able due to resource limitations. However, such lossmay also be caused by poor load distribution, in whichcase it can be improved by proper load sharing.RTPOOL employs a load-sharing algorithm thatimplements a distributed QoS-optimization protocol .Described in Figure 2, the protocol uses a hill climb-ing approach to maximize the global sum of rewardsacross all clients in the distributed pool. It is activatedbetween two machines Ni and Nj when the di�erenceUPRi � UPRj exceeds a threshold V .Close examination of the local QoS optimization



1. On source machine, Ni, find client Tkwhose removal will result in maximumincrease, W, in total reward.2. Ni request reassigning Tk with rewardW.3. Each machineNj, where UPRi � UPRj > V , receivesthe request and recomputes QoS levelsfor its local clients plus Tk. If itstotal reward is higher with Tk, Njbids for Tk with the reward incrementWj resulting from accepting it.4. Ni transfers Tk to highest bidder.Figure 2: Distributed QoS optimization protocolheuristic and the distributed QoS optimization pro-tocol reveals that neither makes assumptions aboutthe nature of the client and the semantics of its QoSlevels.1 For RTPOOL this means complete indepen-dence between the task model used by the feasibilityassessment module and the QoS-negotiation mecha-nism. As a result, it is easier to enhance RTPOOL tohandle more elaborate task models, constraints, andQoS-level parameters/semantics without a�ecting itsQoS-negotiation mechanism. The disadvantage of thisseparation of concerns compromises optimality some-what, as illustrated by the example in Section 7.5 Implementation and APIIn this section we highlight implementation detailsof RTPOOL, particularly those related to its QoS-negotiation API. RTPOOL is currently running ontop of OSF Mach RT, mk7.2, on a PC platform, andis implemented as a user-level library which exportsthe abstraction of tasks, threads, QoS levels, and re-wards. Highlighted below are the components of theimplemented prototype.5.1 Scheduling and QoS NegotiationOur scheduling and QoS negotiation support is imple-mented as a thread package called qthreads controlledby a user-level local scheduler. The local scheduler isthe lowest layer of RTPOOL, and supports periodicthread creation with a period that can be changed atrun-time in response to QoS-level changes.On top of our local scheduler, the qthreads pack-age exports the abstraction of tasks, QoS levels, andrewards. Its API permits the user to create tasks, cre-ate threads within each task, de�ne QoS levels, andspecify rewards. It also permits the user to specify1The distributed QoS-negotiation protocol, however, as-sumes service to a given client can be migrated to another node.

for a given thread the QoS levels in which the threadis eligible to execute. This package also exports aforce negotiation() primitive used to initiate QoS ne-gotiation. In the current implementation, all createdtasks execute in the same address space. The applica-tion is compiled into a single executable image that isloaded in its entirety at system start time. The codeitself is thus static, although task arrival/activationtimes at di�erent nodes may vary dynamically.5.2 Invocation MigrationOn top of qthreads we provide an invocation migrationmechanism to implement the distributed QoS opti-mization protocol described in Section 4. The mecha-nism is completely transparent to the application. Wecall it invocation migration, because the transfer oc-curs between two successive invocations of a periodictask (i.e., when one invocation has terminated and thenext hasn't started yet).When the distributed QoS optimization heuristicdetermines that a task is to be migrated, the statevariables of each thread in the transferred task aresent to the new machine, and the threads belongingto the task are destroyed at the source and recreatedwith the transferred state at the target. In the currentimplementation, state variables of a thread must be in-dicated to RTPOOL using a corresponding library callat thread initialization time. The force negotiation()primitive is called on source and target after the trans-fer to update QoS levels accordingly. If a task mustexecute on a certain machine the task can be wired tothat machine by calling a wire task() primitive.5.3 Pool Membership APIA membership algorithm is used to maintain a consis-tent view of current membership in the shared resourcepool. Our group membership algorithm is a derivativeof [14], and the user interface to this algorithm is thesubscribe to pool() call which causes the machine onwhich the call was executed to join the named pool.When a new machine subscribes (joins), each machinein the pool adds the new member to the group. Sincethe new machine does not run any application task,its unful�lled potential reward is zero. In our load-sharing heuristic, machines whose unful�lled poten-tial reward is above a given threshold will attempt too�oad tasks to the new member. Task transfer willcontinue until the unful�lled potential reward is bal-anced within a certain threshold, which stops the dis-tributed QoS optimization protocol. When a machinefails, the group leader (the machine with the highestnumber in the pool) re-creates the destroyed tasks,then the load-sharing heuristic redistributes the loadif necessary. When the group leader fails, its succes-



sor (the machine with the next highest pool number)becomes the leader. Task state will be lost in case ofa crash, but it can be avoided by task replication.5.4 Communication APIAn application need not be aware where each of itstasks is executing. The same executable applicationimage is started on every machine that joins the pool.The application is composed of tasks, and the decisionof where to run each task is left up to the load-sharingheuristic. This requires location-independent send()and receive() primitives for inter-task communication.Tasks communicate via location-independent send()and receive() primitives which use local communica-tion bu�ers on the same machine, and send messagesacross the network for remote destinations. Our com-munication protocol stack is implemented using xKer-nel 3.2 [15], and is layered on top of a UDP/IP stack.The communication subsystem architecture on eachhost is designed to support prioritized, bounded-timemessage delivery. This architecture has been proposedearlier in the context of implementing real-time chan-nels [16]. We adapt it to export the abstraction ofa sporadic communication server, implemented as aseparate task using qthread support.6 ApplicationWe have used RTPOOL to provide negotiable timeli-ness guarantees for several real-time tasks required inour fully-automated ight control system, which wasused to y a simulated model of an F-16 �ghter air-craft. Details of the automated aircraft ight prob-lem are provided in Section 6.1, followed by a de-scription of a method to determine task QoS levelsand rewards from application domain knowledge (Sec-tion 6.2). Section 6.3 summarizes the set of tasks, QoSlevels, and rewards that describe our application.6.1 Automated Flight ControlCurrent Flight Management Systems (FMS)( [17], [18]) perform several functions, including ightplanning, navigation, guidance, and control. Theight planner computes waypoint trajectories, thenduring ight, the navigator uses sensor data to main-tain a current aircraft state estimate. The guidancemodule uses the planned trajectory and state esti-mate to build the reference state vector, which is thenused by the controller to compute actuator commands.In all FMS, real-time execution guarantees exist fornavigation, guidance, and control, adhering to criti-cal function deadlines with schedulability guaranteesmade o�-line. Our QoS-negotiation scheme will al-low graceful performance degradation when enoughresources are lost to violate o�-line guarantees. Inthis paper we consider only tasks having a known and

bounded execution time. Issues in dealing with poten-tially unbounded on-line computations, such as run-time intelligent ight planning, are discussed in [1].We issue F-16 aircraft guidance commands in termsof altitude (z) and compass heading (h), and em-ploy a control loop to compute primary actuator com-mands, including elevator, ailerons, rudder, and throt-tle. The elevator, ailerons, and rudder generate aero-dynamic forces that directly a�ect aircraft roll andpitch attitude, and, via dynamic coupling, alter air-craft heading and airspeed. The throttle provides alinear force along the aircraft fuselage. Our controllermay also command a secondary actuator set that im-proves ight performance but is not critical for ightsafety. Secondary actuators include the afterburnerfor extra engine thrust, and aps and speed brake usedto enhance slow-airspeed control.In a parallel research e�ort [19] a set of linear con-trollers have been implemented to calculate the pri-mary actuator commands to achieve the desired ref-erence altitude (zref ) and heading (href ). Controllerstate includes altitude z, heading h, pitch, p, and rollr. Equation (1) shows the control laws used duringour experiments, adopted from those used in [1]. Inhigher-performance QoS levels (see Section 6.3), thecontroller also sends discrete-valued commands to thesecondary actuator set (described in [19]).0@ elevatoraileronsrudder 1A = K 0BBBBBB@ zref � zhref � hp_pr_r 1CCCCCCA (1)K = 0@ K1 0 �Kp1 �Kd1 0 00 K2 0 0 �Kp2 �Kd20 K3 0 0 �Kp3 �Kd3 1A6.2 Computing QoS Levels and RewardsOur QoS-negotiation scheme enables the applicationdomain expert to express application-level semanticsto RTPOOL using QoS levels, rewards, and rejectionpenalty. In this section we briey highlight how thissupport may complement mission planning techniquesin the context of CIRCA (the Cooperative IntelligentReal-time Control Architecture) [1]. Based on a user-speci�ed domain knowledge base, CIRCA's main goalis to build a set of control plans to keep the sys-tem \safe" (i.e., avoid catastrophic failures such asan aircraft crash) while working to achieve its perfor-mance goals (e.g., arrive at its destination on time).



In order to deal successfully with an inherently non-deterministic, perhaps poorly modeled, environmentof a complex real-time system CIRCA employs prob-abilistic planning which models the system by a setof states and transition probabilities. System failureis modeled by temporal transitions to failure states(TTFs). CIRCA's mission planner uses its domainknowledge base to select appropriate actions (tasks)and their timing constraints (QoS levels), so that theprobability of TTFs is reduced below a certain thresh-old. The reward decrease corresponding to degradinga task from one QoS level to another, or rejecting atask altogether, is computed from the correspondingincrease in failure probability.The CIRCA planner computes a maximum pe-riod for each task based on the notion of preempt-ing TTFs [19]. For any state, an outgoing TTF isconsidered preempted if its probability is below thespeci�ed threshold. To de�ne alternative QoS levels,CIRCA's planner may compute di�erent task periodsbased on a set of alternative TTF probability thresh-olds. For example, say a TTF has a cumulative prob-ability distribution that reaches the threshold valuewhen the preemptive task's maximumperiod is set to0.2 seconds. But, suppose we need to relax the task'speriod requirement under overload. The new, longertask period for degraded QoS is computed from thenext higher TTF probability threshold, and this taskis assigned a lower reward that corresponds to the re-duction in certainty that the TTF will be preempted.A complete set of task QoS levels may be developedby considering all TTF probability thresholds.6.3 Description of Flight TasksWe have used the Aerial Combat (ACM) F-16 ightsimulator [20] for all ight tests. ACM runs on a Sunworkstation with socket connection to the real-timeexecution platform. We have tested QoS-negotiationby ying the simulated aircraft around a left-hand pat-tern in which the aircraft executes a takeo� and climb,holds a constant altitude around a rectangular course,then descends through �nal approach and landing. Byvarying periods for controllers and sensors, we are ableto observe the degradation in ight quality (i.e., sta-bility) as a function of each task's selected QoS level.In this section, we describe the tasks and rewardsused during our QoS-negotiation algorithm tests. Ourmission goals were to complete the ight around thepattern and to destroy observed enemy targets, if any,using the F-16's onboard radar and missiles. Fourseparate tasks were required to control the aircraft:Guidance (Guid), Control (Ctrl), Slow Navigation(SNav), and Fast Navigation (FNav). These tasks

function much like their similarly-named FMS coun-terparts. Guid is responsible for computing the refer-ence trajectory (state) for the aircraft. In our tests,Guid speci�ed heading and altitude to lead the aircraftaround the pattern through landing. The Ctrl task isresponsible for executing the low-level control loopsto compute actuator commands from the high-levelguidance trajectory. We have two navigation tasks(SNav ,FNav) to estimate aircraft state, distinguishedby required update frequency.Table 1 shows the QoS levels (L) present for alltasks, including associated reward (R), execution time(ET), period (P), and version (Ver). In our simpletests, we set each task deadline equal to its period,although there are no such requirements in our QoSnegotiation protocol. Also, because all tasks are con-sidered critical to execute (at least at a degraded QoSlevel), we set all task rejection penalties su�cientlyhigh that all tasks are always accepted by the QoSnegotiator.In addition to the basic ight control tasks, wesimulate a function necessary during military opera-tion: Missile Control (MC ). MC is composed of twoprecedence-constrained threads: \Read Radar" and\Fire Missile". \Read Radar" monitors aircraft radarto detect approaching enemy targets, then \Fire Mis-sile" launches a missile at any enemy targets appearingon radar. As shown in Table 1, MC is computation-ally expensive and has two QoS levels. In Level 1,radar will be scanned with su�cient frequency to al-low detection and destruction of most enemy targets.Otherwise (Level 0), fast-moving targets may not bedestroyed. During experiments (in Section 7.3), wevaried the reward for MC QoS Level 1 depending onthe relative importance of destroying enemy targets.As described above, Ctrl is responsible for execut-ing the control loop. At each invocation, Ctrl usesthe Equation (1) control law with appropriate gainsto compute primary actuator values. Two versions ofthis task were tested, one that used the secondary ac-tuators (QoS levels 0, 2, and 4) and one that did not(QoS levels 1 and 3). Use of these actuators allows theaircraft to perform better in terms of takeo� distanceand climb rate as shown in Section 7 at the expense ofa longer task execution time. The importance of Ctrltask period is illustrated with relatively high rewardgiven to low-period Ctrl QoS levels. The small rewardchanges between the use of the di�erent versions (e.g.,level 3 vs. level 4) reects the fact that version choiceis not critical for safety.22We de�ned a QoS \level 0" for Ctrl and SNav that, as willbe shown in Section 7, were so slow that the aircraft becomes



Task L R ET(ms) P(sec) VerGuid 0 10 100 10 def1 15 100 5 def2 20 100 1 defCtrl 0 1 80 5 sec1 100 60 1 prim2 104 80 1 sec3 120 60 0.2 prim4 124 80 0.2 secSNav 0 10 100 10 def1 20 100 5 def2 25 100 1 defFNav 0 1 60 5 def1 100 60 1 def2 120 60 0.2 defMC 0 1 500 10 def1 30/200 500 1 defTable 1: Flight plan with di�erent QoS levels.The SNav task is responsible for reading sensorsthat do not require a high sampling rate. All naviga-tion sensors are grouped into this task because theyare used only by the Guid task to determine high-levelaltitude and heading commands. The reward/periodvalues for SNav in Table 1 reect this task's non-critical nature. Finally, FNav is responsible for main-taining all sensor data used by the Ctrl task. Sincethe system must read this data frequently to maintainsu�cient state estimates, the periods and associatedrewards are similar to those used by Ctrl .7 EvaluationIn this section, we show results illustrating how QoSnegotiation can help aircraft ight control degradegracefully. First, we assess the QoS negotiation heuris-tic for our ight tasks by observing how the QoS ofeach task degrades with lower machine speeds. In Sec-tion 7.2 we study aircraft performance during ightas a function of the Ctrl task's QoS level, illustrat-ing graceful performance degradation by example. InSections 7.1 and 7.2, we focus on tests that use a sin-gle machine, and consider only the guidance, naviga-tion, and control tasks. We conclude our experiments(Section 7.3) with tests which also include the missilecontrol task and observe the e�ects of load sharingbetween two machines, with processor failure used todemonstrate graceful performance degradation.unstable. These levels are included among the QoS negotiationoptions for illustrative purposes only.
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7.3 Load SharingLoad sharing capabilities are implemented in RT-POOL, and we performed a �nal test set which in-cluded both the ight control tasks and the missilecontrol MC task, as described in Section 6.3. In thesetests, we start the system with two machines availablefor task execution. Because, as de�ned in Table 1,the MC task is computationally expensive, the loadsharing protocol places all ight control tasks on onemachine and the MC task (both \Read Radar" and"Fire Missile" threads) on the other machine.When the two machines function normally, bothight and missile control tasks ran in their maximumperformance levels. In this case, enemy targets arequickly detected and �red upon, while ight controlis identical to the best performance pro�les in theSection 7.2 plots. For the next test set, we beganoperation with two functioning machines, then shutone down (simulating failure) just after takeo�. Thisrequires the load sharing and QoS negotiation algo-rithms to function dynamically, such that the onefunctional machine now has to execute both ight andmissile control tasks. If MC task reward is relativelylow, the system chooses to degrade theMC ,Guid , andSNav functions (to level 0), but manages to keep theCtrl and FNav tasks at safe levels. In this manner,ight control is a bit sluggish but stable. However, theaircraft is unable to launch missiles at most targets.Alternatively, this system may be aboard an ex-pendable drone whose most important function is todestroy a target or attack enemy aircraft. In this case,the reward set may be structured such that the missilecontrol task takes precedence over accurately main-taining ight control.3 To illustrate such changes inthe task reward set, we altered the reward for QoSlevel 1 of MC to 200 (shown in Table 1). Now, whenthe second machine shuts down, the QoS negotiatorreduces all ight control levels to 0, since the missilecontroller is the \most important" task. After onemachine fails, the aircraft eventually becomes unsta-ble (as illustrated in Section 7.2), but will still quicklydetect and respond to enemy targets on radar.It is important to note that, had we used traditionalschedulability analysis algorithms that do not allownegotiated QoS degradation, the system would havefailed to guarantee/accept the entire task set on thesame processor, leading to complete mission failure.3In our tests, when missile control takes precedence overight control during single machine operation, the aircraft be-comes unstable. This would be undesirable in an actual system,since missiles cannot be launched from a crashed aircraft.

8 Summary and Future WorkIn this paper we presented a novel scheme for QoSnegotiation in real-time applications. This scheme isapplicable for the design of real-time service providers,extending the interface of such services in that (i) itadopts a modi�ed notion of request guarantees thatallows for de�ning QoS compromises and supportsgraceful QoS degradation, and (ii) it provides a genericmeans to express application-level semantics to controlhow application QoS is to be degraded under overloador failure conditions. Our QoS-negotiation scheme im-proves the guarantee ratio over traditional admissioncontrol algorithms and increases the application-levelperceived utility of the system.The proposed QoS-negotiation architecture hasbeen incorporated into RTPOOL, an example middle-ware service which implements a computing resourcemanager for a pool of processors. The synergy be-tween components of the service and QoS-negotiationsupport has been illustrated. RTPOOL is used for aight control application to demonstrate the e�cacyof QoS negotiation. We demonstrated that the appli-cation does have negotiable parameters and can thusbene�t from the added exibility of negotiation. Wealso showed that application task QoS levels and theirrewards can be analytically derived from system fail-ure probability. QoS-negotiation support, while guar-anteeing maximum QoS levels during normal opera-tion, is shown to provide graceful QoS degradation incase of resource loss.We have demonstrated how an application can ben-e�t from the proposed QoS-negotiation scheme, butwe have not analyzed the performance of di�erent QoSoptimization policies, nor the general scope of theirapplicability. We are currently studying alternativeQoS-optimizationmethodologies and the scalability ofour QoS-negotiation approach. We are also consider-ing ways to implement negotiable fault-tolerance QoS,perhaps as an extension to RTPOOL. Finally, we areworking to develop new schemes for quantifying per-ceived utility to compute reward and penalty values.Possible approaches include adapting performabilityanalysis and using economic models of utility/costs.AcknowledgmentThe authors wish to thank Farnam Jahanian,Ashish Mehra, Anees Shaikh, and Wuchang Feng forsharing their opinions and insights during the devel-opment of this paper.References[1] E. M. Atkins, E. H. Durfee, and K. G. Shin, \Plandevelopment in CIRCA using local probabilisticmodels," in Uncertainty in Arti�cial Intelligence:
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