
Modelling composite shapes by Gibbs Random Fields

Boris Flach
Czech Technical University
flachbor@cmp.felk.cvut.cz

Dmitrij Schlesinger
Dresden University of Technology
dmytro.shlezinger@tu-dresden.de

Abstract

We analyse the potential of Gibbs Random Fields for
shape prior modelling. We show that the expressive power
of second order GRFs is already sufficient to express spatial
relations between shape parts and simple shapes simultane-
ously. This allows to model and recognise complex shapes
as spatial compositions of simpler parts.

1. Introduction
Motivation and goals. Recognition of shape characteristics
is one of the major aspects of visual information processing.
Together with colour, motion and depth processing it forms
the main pathways in the visual cortex.

Experiments in cognitive science show in a quite im-
pressive way, that humans recognise complex shapes by de-
composition into simpler parts and interpreting the former
as coherent spatial compositions of these parts [5]. Cor-
responding guiding principles for the decomposition where
identified from these experiments as well as from research
in computer vision (see e.g. [7]). The formulation of these
principles relies however on the assumption that the objects
are already segmented and thus concepts like convexity and
curvature can be applied.

From the point of view of computer vision it is desirable
to use shape processing and modelling in the early stages
of visual processing. This allows to control e.g. segmen-
tation directly by prior assumptions or by feedback from
higher processing layers. This leads to the question whether
composite shape models can be represented and learned in
a topologically fully distributed way. The aim of the pre-
sented work is to study this question for probabilistic graph-
ical models.
Related work. All mathematically well principled shape
models for early vision can be roughly divided into the fol-
lowing two groups.

Global models treat shapes as a whole. Prominent rep-
resentatives are variational models and level set methods in
particular. A shape is described up to its pose by means of a
level set function defined on the image domain. Cremers et

al. have shown in [1] how to extend these models for scene
segmentation. Recently we have shown how to use level set
methods in conjunction with MRFs [2]. Global shape mod-
els are well suited e.g. for segmentation and tracking if the
number of objects is known in advance and a good initial
pose estimation is provided.

Semi global models consider shape characteristics in lo-
cal neighbourhoods and go back to the ideas of G. Hinton on
“product of experts” as well as of Roth and Black on “fields
of experts” (see [4, 9] and citations therein). Mathemati-
cally these models are higher order GRFs of a certain type
– additional auxiliary variables are used to express mixtures
of local shape characteristics in usually overlapping neigh-
bourhoods. Marginalisation over these auxiliary variables
results in GRFs of higher order. The work of Kohli, Torr
et al. [8, 6] demonstrates how to introduce such higher or-
der Gibbs potentials directly and to use them for segmen-
tation in hierarchical Conditional Random Fields (CRF).
However, it is not clear how to learn the graphical structure
for such models.
Contributions. We will show that Gibbs Random Fields
of second order have already sufficient expressive power to
model complex shapes as coherent spatial compositions of
simpler parts. Obviously, these models have to have a sig-
nificantly more complex graphical structure than just simple
lattices. Moreover, the graphical structure itself becomes a
parameter which has to be learnt together with the Gibbs
potentials for each considered shape class.

From the application point of view these models have
advantages especially in the context of scenes with an un-
known number of similar objects (i.e. all objects are in-
stances of a single shape class). Moreover, such models can
be easily combined for scenes with instances of different
shape classes.

2. The shape model
Probability distribution. We begin with the description of
the prior part of our shape model. Let D ⊂ Z2 be a finite
set of nodes t ∈ D, where each node corresponds to an
image pixel. Let A ⊂ Z2 be a set of vectors used to define
a neighbourhood structure on the set of nodes, i.e. a graph:
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Figure 1. Left: example of a translational invariant graphical struc-
ture. Equivalence classes of edges Ea are coloured by different
colours. The set A is represented by bold edges outgoing from the
central node. Right: Gibbs potentials for an edge from Ea.

two nodes t and t′ are connected by an edge if t′ − t = a ∈
A. To avoid double edges we require −A ∩ A = 0 (we use
unary potentials as well). The resulting graph is obviously
translational invariant and the elements of a ∈ A define
subsets Ea ⊂ E of equivalent edges, where e = (t, t′) ∈
Ea if t′ − t = a. An simple example is shown in Fig. 1.

Given a class of composite shapes, we denote the set of
its parts enlarged by an extra element for the background
by K. A shape-part labelling y : D → K is a mapping,
that assigns either a shape-part label or the background label
yt ∈ K to each node t ∈ D. A function ua : K ×K → R,
is defined for each difference vector a ∈ A. Its val-
ues ua(k, k′) are called Gibbs potentials. A corresponding
probability distribution is defined over the set of shape-part
labellings as follows

p(y) =
1

Z(u)
exp

∑
a∈A

∑
tt′∈Ea

ua

(
yt, yt′

)
, (1)

where Z denotes the partition sum (we omit the unary terms
for better readability). This p.d. is homogeneous (up to
boundary effects) – all edges in an equivalence class Ea

have the same potentials. Moreover, it can be shown that
the homogeneous parametrisation is unique up to additive
constants.

The appearance model is assumed to be a “simple” con-
ditional independent model. The probability to observe an
image x : D → C (C is some colour space) given a shape-
part labelling y is

p(x | y) =
∏
t∈D

p
(
xt | yt

)
. (2)

In the light of the current popularity of CRFs it might
well be asked, why we decided to favour a GRF here. Both
variants are identical with respect to inference. Differences
occur for learning. We can imagine that shape-part la-
bellings can be used as latent variable layers for complex
object segmentation models. Recently, empirical risk min-
imisation learning has been proposed for structured SVM
models with latent variables [12]. This shows that learn-
ing of graphical models with latent variables is possible for

both variants – GRFs and CRFs. However, since we want
to study the expressive power of the model in its pure form,
we need a prior p.d. and moreover, we want to be able to
learn such models fully unsupervised, which is possible for
GRFs but not for CRFs.
The inference task. Informally, the inference task can be
understood as follows. Given an observation (i.e. an im-
age), it is necessary to assign values to all hidden variables.
We pose the segmentation task as a Bayesian decision task.
Let y′ be the true (but unknown) segmentation and C(y, y′)
be a loss function, that assigns a penalty for each possible
decision y. The task of Bayesian decision is to minimise the
expected loss

R(y;x) =
∑
y′

p(y′ | x)C(y, y′)→ min
y

. (3)

We use the number of misclassified pixels

C(y, y′) =
∑
t

1I
{
yt 6= y′t

}
(4)

as the loss function. It leads to the max-marginal decision

y∗t = max
k

p
(
yt = k

∣∣ x) ∀t ∈ D. (5)

Hence, it is necessary to calculate the marginal posterior
probabilities for each node t ∈ D and label k ∈ K. This
task is infeasible for GRFs. Several approximation tech-
niques based e.g. on belief propagation or variational meth-
ods have been proposed for it (see e.g. [11] for an overview).
Unfortunately none of them guarantees convergence to the
exact values of the sought-after marginal probabilities. To
our knowledge, the only scheme which does it is sampling,
which is however known to be slow [10].
Estimation of Gibbs potentials. The learning task com-
prises to estimate the unknown model parameters given a
learning sample. We assume that the latter is a random re-
alisation of i.i.d. random variables, so that the Maximum
Likelihood estimator is applicable.

The following situations are distinguished depending on
the format of the learning data. If the elements of the sam-
ple have the format (x, y) then the learning is called su-
pervised. If instead, they consist of images only then the
learning is called fully unsupervised. To cope with variants
in-between as well, i.e. partial labellings yV , we consider
the elements of the training sample to be events of the type
B = (x, yV ) = {(x, y) | y|V = yV }.

We start with the learning of unknown potentials u. For
simplicity we consider the case when only one event B is
given as the training sample. According to the Maximum
Likelihood principle, the task is

p(B;u) =
∑
y∈B

p(y)p(x|y)→ max
u

. (6)
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Taking the logarithm and substituting the model (1), (2)
gives

L(u) = log
∑
y∈B

exp
[∑
a∈A

∑
tt′∈Ea

ua

(
yt, yt′

)]
p(x|y)−

log
(
Z(u)

)
→ max

u
. (7)

It is easy to see, that the derivative with respect to the poten-
tials is a difference of expectations of certain random vari-
ables na(k, k′; y) with respect to the posterior and prior p.d.

∂L/∂ua(k, k′) = Ep(y|B;u)
[
na(k, k′; y)

]
−

Ep(y;u)

[
na(k, k′; y)

]
. (8)

The random variables na(k, k′; y) are defined by

na(k, k′; y) =
∑

tt′∈Ea

1I
{
yt=k, yt′=k′

}
(9)

and represent co-occurrences for label pairs (k, k′) along
the edges in Ea for a labelling y.

The exact calculation of the expectations in (8) is not
feasible. Therefore, we propose to use a stochastic gradi-
ent ascent to maximise (7). The learning algorithm is an
iteration of the following steps:

1. Sample ỹ and y according to the current a-posteriori
probability p(y|B;u) and a-priori probability p(y;u)
respectively.

2. Compute na(k, k′; ỹ) and na(k, k′; y) by (9) for each
a ∈ A, k, k′ ∈ K.

3. Replace the expectations in (8) by their realisations
and calculate new potentials u.

For the sake of completeness we mention that the learn-
ing of the appearance models p(c|k) can be done in a very
similar manner. It is even simpler from the computational
point of view because the normalising constant Z does not
depend on these probabilities. Therefore only a-posteriori
sampled labellings are needed to perform the correspond-
ing stochastic gradient step.
Estimation of the interaction structure. A very important
question not discussed so far is the optimal choice of the
neighbourhood structure A. Unfortunately, no well founded
answer to this question is known at present. One option
is to use an abundant set of interaction edges, e.g. to as-
sume that the set A consists of all vectors A = {a ∈ Z2 |
|a1|, |a2| 6 d} within a certain range. Despite of the com-
putational complexity this would lead to models with high
VC dimension and possibly – as a result – to weak discrimi-
nation. Therefore we use a greedy search for the interaction
edges proposed by Zalesny in the context of texture mod-
elling [13, 3]. Starting from the set A = {0}, i.e. a model

Figure 2. Modelling spatial relations between segments. The first
row shows input images and regions with fixed segmentation. The
middle and bottom row show labellings generated by the learned
a-priori models (segment labels are coded by colour): the images
in the middle row were generated by the model with full neigh-
bourhood, whereas the images in the bottom row were generated
by the baseline model.

with unary potentials, new edges are iteratively chosen and
included into A as follows. For the current set A the opti-
mal set of potentials u∗A ∈ UA is determined as described
in the previous subsection. Here UA denotes the subspace
of potentials on the edges in A (assuming that the Gibbs
potentials are zero on all other edges). If a bigger neigh-
bourhood A′ is considered, then clearly, the gradient of the
(log) likelihood with respect to uA′ in the point u∗A will be
orthogonal to the subspace UA. The proposal is to include
the vector a′ ∈ A′ with the largest gradient component

a′ = arg max
a∈A′\A

∑
k,k′

[
na(k, k′;B, u)− na(k, k′;u)

]2
. (10)

3. Experiments
Modelling spatial relations between segments. The first
experiment investigates the ability of the model (1), (2) to
reflect spatial relations between segments, i.e. scene parts,
which are too large for capturing their shape by a neigh-
bourhood structure of reasonable size. We used the three
images shown in the first row of Fig. 2 as training exam-
ples. Each scene should be segmented into three segments:
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Figure 3. Segmentation results obtained after fully unsupervised
learning of the appearance part of the model. Upper row – model
with full neighbourhood, bottom row – baseline model.

K = {sky, trees, grass}. The appearance models p(c|k)
for the segments were assumed as mixtures of multivariate
Gaussians (four per segment). A model with ”full“ neigh-
bourhood structure – all vectors {a ∈ Z2 | |a1|, |a2| ≤ d}
with d = 20 was used in this experiment. A “simple” but
anisotropic Potts model on the 8-neighbourhood was cho-
sen as a baseline for comparison.

Semi-supervised learning was applied by fixing the seg-
ment labels in the rectangular areas shown by red rectangles
during learning. Both the a-priori models (the potentials
and the direction specific Potts parameters for the baseline
model) and the appearance models (mixture weights, mean
values and covariance matrices) were learned.

The difference of the models can be clearly seen by ob-
serving labellings generated a-priori by the learned models,
i.e. without input images. Some of them are shown in the
second and third row for the model with complex neigh-
bourhood structure and the baseline model respectively. It
can be seen, that the spatial relations between segments
(like e.g. “above”, “below” etc.) were correctly captured
by the complex model, whereas it is clearly not the case for
the Potts model.

The consequences can be clearly seen from the follow-
ing experiment. We fixed the prior models obtained in
the previous experiment for both variants and learned the
parameters of the Gaussian mixtures completely unsuper-
vised. Fig. 3 shows labellings (i.e. segmentations) sampled
at the end of the learning process by the corresponding a-
posteriori probability distributions for the complex a-priori
model and the Potts a-priori model in the first and the sec-
ond row respectively. The advantages of the complex model
are clearly seen. These results can be explained as fol-
lows. There are twelve Gaussians in total to interpret the

Figure 4. Modelling and segmentation of simple shapes. Upper
left – input image, upper right – a labelling generated a-priory by
the learned complex model. Final segmentations are shown in the
bottom row: left – baseline model, right – complex model.

given images. For the learning process it is “hard to decide”
which of the Gaussians belongs to which segment. Using
the compactness assumption only, is obviously not enough
to separate segments from each other. If the complex model
is used instead, the learning process starts to generate la-
bellings according to the a-priori probability distribution,
i.e. labellings which reflect the correct spatial relations be-
tween the segments. This forces the unsupervised learning
of the appearance models into the right direction.
Modelling simple shapes. This group of experiments
demonstrates the ability of the model to represent simple
shapes as well as to perform shape driven segmentation.
This experiment is prototypical e.g. for a class of image
recognition tasks in biomedical research. Fig. 4 (upper
left) shows a microscope image of liver cells with stained
DNA. Thus, only the cell nuclei are visible. The task is
to segment the image into two segments – ”cells“ (nearly
circular shaped) and ”background“ (the rest including arte-
facts). Hence, two labels are used. The ”full“ neighbour-
hood structure with d = 12 was used (it approximately cor-
responds to the mean cell diameter). Again, we used a base-
line model for comparison – a GRF with 4-neighbourhood
and free potentials. The appearances for grey-values were
assumed to be Gaussian mixtures (two per segment) in both
models.

First, semi-supervised learning was performed (like in
the previous experiment with trees) in order to learn the
prior distributions for labellings as well as the appearances
for both, the complex and the baseline model. A labelling
generated a-priori by the learned complex model is shown
in Fig. 4 (upper right). The final segmentations accord-
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Figure 5. Composite shape modelling. Upper row from left: in-
put image, labelling generated a-priori by the learned model, esti-
mated interaction structure. Bottom row: labellings generated by
models during learning.

ing to the max-marginal decision (5) are shown in the bot-
tom row of the same figure. The differences are clearly
seen. The shape prior modelled in the complex model led to
the correct segmentation – the artefacts were segmented as
background, whereas the baseline model produces a wrong
segmentation because neither the appearance nor a simple
”compactness“ assumption allow to differentiate between
cells and artefacts.
Modelling composite shapes. The previous experiments
have shown that second order GRFs can model both, spatial
relations between segments and simple shapes. Now we are
going to demonstrate the capability of the model to capture
both properties simultaneously. This opens the possibility
to represent complex shapes as spatial compositions of sim-
pler parts. To demonstrate this, we use an artificial example
shown in Fig. 5 (upper left). It was produced manually and
corrupted by Gaussian noise. Accordingly, the model was
defined as follows. The label set K consists of seven labels,
each one corresponding to a part of the modelled shape (as
well as one for the background). The appearance models
p(c|k) for the labels are Gaussians with known parameters.
In this experiment we applied the estimation of the interac-
tion structure as described in section 2.

Fig. 5 (upper row, center) shows a labelling generated by
the learned prior model. It is clearly seen that both, spatial
relation between object parts and part shapes are captured
correctly.

The bottom row of Fig. 5 displays labellings generated
during the process of structure learning at time moments,
when the current interaction structure learned so far was
not yet capable to capture all needed properties. As it can
be seen, the model was able to learn spatial relations be-
tween the segments more or less correctly even for a small
numbers of edges (5 edges – bottom left). More relations

Figure 6. Shape segmentation and classification. Left – input im-
age, right – segmentation (part-labels are encoded by colours).

are learned as the number of edges grows (bottom middle
and right). Finally, 20 difference vectors were necessary to
capture all relations (out of 1200 possible for the maximal
range of d = 24).

Fig. 5 (upper right) shows the estimated neighbourhood
structure. The endpoints of all edges from central pixel are
marked by colours (the image is magnified for better visi-
bility). A certain structure can be seen in this image. The
8-neighbourhood edges (black) reflect compactness and ad-
jacency relations of the object parts. The learned potentials
on these edges represent strong label co-occurrences. Most
of the other vectors are responsible for the shapes of the
parts. The potentials on the red edges express characteristic
breadths, and the potentials on the green edges – charac-
teristic lengths of the parts. The potentials on these edges
mainly represent anti-correlations, forcing label values to
change along certain directions. The blue pixels in the fig-
ure reflect relative positions of object parts.
Composite shape recognition. The final experiment
demonstrates possibilities to combine composite shape
models. The aim is to obtain a joint model which can be
used for detection, segmentation and classification of ob-
jects in scenes populated by instances of different shape
classes like e.g. the example in Fig. 6. As the appear-
ance model can be learned in a fully unsupervised way,
the most important question is, how to combine the prior
models. We propose a method based on the following
observation. Example images (or segmentations) are not
needed for learning the model if the a-posteriori statistics
Φ̄a(k, k′) = Ep(y|B,u)

[
na(k, k′; y)

]
(see (8)) are known for

all difference vectors a ∈ A and label pairs (k, k′). The
gradient of the likelihood reads then

∂L/∂ua(k, k′) = Φ̄a(k, k′)− Ep(y;u)

[
na(k, k′; y)

]
. (11)

The parameter estimation scheme for the joint model con-
sists therefore of two stages: (i) compose the desired a-
posteriori statistics Φ̄a(k, k′) for the joint model and (ii)
learn the model according to (11) so that it reproduces this
statistics. We consider the first stage in more detail for a
simple example – two shapes as shown in Fig. 6. Let us
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Figure 7. Estimation of the a-posteriori statistics for the joint
model. Left and right: statistics for shape models. Middle: the
joint model – statistics marked green and red are inherited from
the components. Others are set to a small constant.

assume that the a-posteriori statistics are known for both
shape models after their learning. The composition of the
needed a-posteriori statistics for the joint model is illus-
trated in Fig. 7. The label set of the composed model is
K1 ∪K2 ∪ b, where K1 and K2 denote the label sets cor-
responding to the shape parts for the first and for the second
shape type respectively, b is the common background label.
The a-posteriori statistics for the joint model is obtained as
a weighted mixture of the two original ones (extended in
a suitable way to the new label set) and an additional uni-
formly distributed component. The latter is added in or-
der to avoid zero probabilities (which would lead to obvi-
ous technical problems for the Gibbs Sampler). Given these
statistics the joint model is learned according to (11).

For the experiment in Fig. 6 two composite shape mod-
els were learned separately. The test image in Fig. 6 (left)
is a collage of both shape types. Note that the appearance
of all shape parts is identical, so they are not distinguish-
able without the prior shape model. Fig. 6 (right) shows
the final segmentation. It is seen that all objects were cor-
rectly segmented and recognised – although both composite
shape classes share similarly shaped parts – they were not
confused.

4. Conclusions
The notation of shape is often understood as an object

property of global nature. We followed a different direction
by modelling shapes in a distributed way. We have demon-
strated that the expressive power of second order GRFs al-
lows to model spatial relations of segments, simple shapes
and moreover, both aspects simultaneously i.e. composite
shapes which are understood as coherent spatial composi-
tions of simpler shape parts.

We have shown that complex shapes can be recognized
even in the situation, when their parts are not distinguish-
able by appearance. However, in our learning experiments
we used training images, where they are distinguishable.
Thus, an important question is, whether it is possible to per-
form unsupervised decomposition of complex shapes into
simpler parts during the learning phase, i.e. to learn shape
models from images, where the desired spatial relations be-

tween shape parts are not explicitly present . Another im-
portant issue is the learning of the interaction structure. It
would be very useful to have a well grounded approach for
this.
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