
Network Decomposition andLocality in Distributed Computation(Extended Abstract)Baruch Awerbuch�Department of Mathematics andLaboratory for Computer ScienceM.I.T.Cambridge, MA 02139 Andrew V. GoldbergyDepartment of Computer ScienceStanford UniversityStanford, CA 94305Michael LubyzInternational Computer Science InstituteBerkeley, CA 94704 Serge A. PlotkinxDepartment of Computer ScienceStanford UniversityStanford, CA 94305May 1989AbstractWe introduce a concept of network decomposition, the essence of which is to partition anarbitrary graph into small-diameter connected components, such that the graph created bycontracting each component into a single node has low chromatic number. We present ane�cient distributed algorithm for constructing such a decomposition, and demonstrate its usefor design of e�cient distributed algorithms.Our method yields new deterministic distributed algorithms for �nding a maximal indepen-dent set and for (� + 1)-coloring of graphs with maximum degree �. These algorithms run inO(n�) time for any � > 0, while the best previously known deterministic algorithms required
(n) time. Our techniques can be used to remove randomness from the previously knownmost e�cient distributed Breadth-First Search algorithm, without increasing the asymptoticcommunication and time complexity.�Supported by Air Force Contract TNDGAFOSR-86-0078, ARO contract DAAL03-86-K-0171, NSF contractCCR8611442, and a special grant from IBM.yResearch partially supported by NSF Presidential Young Investigator Grant CCR-8858097, IBM Faculty Devel-opment Award, and ONR Contract N00014{88{K{0166.zOn leave of absence from the Computer Science Department, University of Toronto, research partially supportedby NSERC of Canada operating grant A8092.xResearch partially supported by ONR Contract N00014{88{K{0166.0



1 IntroductionA distributed network of processors is described by an undirected graph G = (V;E), where jV j = n.There is a processor located at each node of G that can communicate directly only with processorsat neighboring nodes, i.e., all communication is local. As a result, locality is a very importantissue in distributed computation, and algorithms that use only local communication are of specialinterest. Parallel deterministic algorithms rely heavily on global communication, since in parallelmodels of computation is is easy to collect information from all the nodes quickly. In the distributednetwork this is not the case, because the communication channels are part of the problem input.Using only communication links of the network, it takes at least the diameter of G time stepsto gather global information. In general, the diameter of G could be as large as n. Thereforesome problems, known to be in NC, are not known to be solvable in polylogarithmic time in adistributed system. An representative example of such a problem is the Maximal Independent Set(MIS) problem. Linial [12] was the �rst to use sophisticated graph-theoretic techniques to studylocality in distributed systems and to point out the importance of the MIS problem in this context.We say that a function can be computed locally if it can be computed deterministically in timethat is signi�cantly smaller than n, for any possible diameter of the network. For some problems,such as the MIS problem, global communication can be avoided if the interconnection network hasa small degree (see e.g. [7, 8]). A natural approach to extend this idea to a high degree network isto attempt to decompose the network into clusters of small diameter, so that the graph induced byclusters (the cluster graph) has a small degree. Given such a decomposition, global communicationwithin a cluster is relatively inexpensive (because of its small diameter), and global communicationbetween clusters can be avoided. Unfortunately, it is easy to construct a graph where, even ifwe allow cluster diameter to be as high as pn, the degree of the cluster graph is 
(pn) [Linialand Saks, personal communication]. We can overcome this problem by showing that in order toavoid global communication between clusters, it is su�cient to use decomposition with a relaxedrequirement. Instead of requiring the cluster graph to have a small degree, we require it to have asmall arboricity1, and therefore a small chromatic number.This motivates the main technique of this paper, which appears to be very useful for designof local distributed algorithms. We introduce the concept of a (d(n); c(n))-decomposition, whichis interesting from the graph-theoretic point of view as well. A (d(n); c(n))-decomposition of agraph G = (V;E) is a partition of V into disjoint clusters, such that the subgraph induced byeach cluster is connected, the diameter of each cluster is O(d(n)), and the arboricity (and thereforethe chromatic number) of the cluster graph is O(c(n)), where the cluster graph is obtained bycontracting each cluster into a single node.In order to apply the decomposition for design of e�cient distributed algorithms, both thepartitioning of the graph into clusters and a good coloring of the cluster graph must be e�cientlycomputable. We show that any network has an (nO(q log log nlog n ); nO(q log log nlog n ))-decomposition and1A connected graph has arboricity k if its edges can be covered by at most k trees.1



present a distributed algorithm which constructs such a decomposition in nO(q log log nlog n ) time. (Notethat nq log log nlog n = O(n�) for any � > 0.)We give several applications of our network decomposition technique.� We give an nO(q log log nlog n )-time algorithm for constructing a MIS in a distributed network.� We show how to distributively color graphs with maximum degree � with � + 1 colors innO(q log log nlog n ) time.� We present a deterministic algorithm for constructing a breadth-�rst search tree in an asyn-chronous distributed network in O(m1+ O(1)4plog n ) messages and O(D1+ O(1)4plog n ) time, where m isthe number of edges in the network and D is the diameter of the network.The MIS problem is a classical example of a problem for which obtaining e�cient sequentialalgorithms is easy, but obtaining e�cient parallel algorithms is much harder. Karp and Wigderson[11] have shown that the problem is in NC. A lot of research was done to improve the processorand time complexity of parallel algorithms for the MIS problem [10, 13, 14]. Unfortunately, directdistributed implementation of these algorithms is ine�cient. Intuitively, the main problem is that,at each iteration, the algorithm decides on the next step by collecting the information from everynode in the graph to a single memory location and making a choice based on this information,leading to maximum \bene�t". Hence, direct conversion of these algorithms to a distributed systemleads to a running time that is at least linear in the diameter of the graph. (Observe that an MIS canbe found by a trivial distributed algorithm in linear time.) For bounded degree, several distributedalgorithms for MIS and related problems that run in O(log� n) time were developed in [5, 7, 8].The local nature of distributed networks is a limitation that often allows to prove lower boundsfor them. Awerbuch [2] and Linial [12] show an 
(log� n) lower bound on time needed to �nd anMIS in a distributed system. Note that the results mentioned in the previous paragraph implythat for constant degree graphs, these lower bounds are optimal to within a constant factor. Fordistributed networks of large degree, the gap between the upper and the lower bounds has beenalmost linear, namely nlog� n . The results of this paper decrease this gap to below n� for any � > 0.The � + 1 coloring problem is closely related to the MIS problem, and the algorithms forthe former problem are closely related to ones for the latter problem and achieve similar bounds[7, 8, 9, 14].The problem of constructing a breadth-�rst search tree in an asynchronous network (the BFSproblem) is a fundamental problem in distributed computing, as it constitutes a bottleneck for manyother algorithms, including Spanning Tree, Leader Election, computing a global function, etc. On anetwork with n nodes, m edges, and diameter D, the obvious lower bounds on the communication2



and time complexity of the problem are 
(m) and 
(D), respectively. An existing deterministicBFS algorithm that is best in terms of communication is that of Awerbuch and Gallager [4]. Thisalgorithm runs in O(m1+�) messages and O(n1+�) time, for any constant � > 0. An existingdeterministic algorithm that is best in terms of time is obtained by combining a synchronizer [1]with a standard synchronous algorithm; the resulting algorithm runs in O(m+nD logk n) messagesand O(kD) time, for any constant k > O. The �rst algorithm has a poor time complexity onnetworks of small diameter, while the second algorithm has a poor message complexity on sparsenetworks of large diameter. A randomized algorithm of Awerbuch [3] achieves a better message{time tradeo�. This algorithm runs in O(m1+�) messages and O(D1+�) time. We show how toapply techniques developed in this paper to make this algorithm deterministic, without degradingits asymptotic complexity.2 PreliminariesWe consider the standard point-to-point communication network model (see e.g. [6] and [1]). Thenetwork topology is described by an undirected communication graph G = (V;E), where the setof nodes represents processors of the network and the set of edges represents bidirectional commu-nication channels between pairs of nodes. No common memory is shared by the processors. Wedenote the number of nodes in the network by n, and assume that each node has an ID representedby O(logn) bits.We use the following complexity measures to evaluate the performance of distributed algorithms.The communication complexity is the worst-case total number of messages sent during an executionof the algorithm. The time complexity is the worst-case total number of time steps needed tocomplete the algorithm.We describe the algorithms in terms of operations on clusters of nodes. We de�ne cluster asfollows.De�nition 1 A cluster is a connected component of the original graph G together with a spanningtree of the cluster and a node designated as the leader in the cluster. The depth of a cluster is thedepth of the spanning tree. The ID of the cluster is the ID of its leader. Two clusters are neighbors inthe cluster graph if there exists an edge in the original graph between a node in one cluster and a nodein the other.Given a set of clusters C, we denote the graph induced by these clusters by G[C]. We use �C(X)to denote the degree of cluster X in the cluster graph G[C]. We omit the subscript when the set Cis clear from the context.To simplify the presentation, for the purpose of this extended abstract we assume that a messagecontains O(n logn) bits, and that each processor has O(n2 logn) bits of memory. A more carefulimplementation of our algorithms uses O(logn)-bit messages and O(d+ nO(q log log nlog n )) memory for3



a processor whose degree in the network is d.Suppose we are given a distributed algorithm and we want to convert it to run on a clustergraph, i.e. we want clusters to play the role of nodes from the point of view of this algorithm. Wecan achieve this by running the given algorithm on cluster leaders, and using the spanning trees ofthe clusters for the communication. Assuming su�cient message length and su�cient memory, itis easy to see that if T is the running time of the original algorithm and d is the upper bound oncluster depth, the simulation runs in O(dT ) time.Except for the part dealing with the BFS problem, we assume that the communication networkis synchronous, and that at each time step a processor can communicate with all of its neighbors.Awerbuch's Synchronizer-� [1] can be used to implement our algorithms on an asynchronous net-work. This does not change the asymptotic time bound T , but increases the asymptotic messagecomplexity by an additive factor of mT . Observe that, since the algorithms considered in this pa-per require at least 
(m) communication, the use of the synchronizer increases the communicationcomplexity by at most an O(m�) factor, for any � > 1.3 Basic ToolsIn this section we describe several basic algorithms that are needed for our main result, the networkdecomposition algorithm, presented in Section 4.De�nition 2 Given a graph G = (V;E) and a set V 0 � V , we say that a forest Fr = (Vr; Er),V 0 � Vr, is (�; �)-ruling with respect to V 0 if the following three conditions hold:1. The roots of the trees in Fr are in V 0.2. The distance in G between roots of any two trees in Fr is at least �.3. The depth of each tree in the forest is at most �.The next de�nition generalizes that of [5].De�nition 3 The set of tree roots of an (�; �)-ruling forest is called an (�; �)-ruling set.We �nd a (k; k logn)-ruling forest by �rst �nding a (k; k logn)-ruling set and then constructing aforest by executing a (k log n)-depth breadth-�rst search from each node in the ruling set. Figure 1describes the Ruling-Set algorithm that �nds a (k; k logn)-ruling set with respect to a speci�edset of nodes V 0 � V and an arbitrary k.The algorithm Ruling-Set starts by dividing the input set of vertices V 0 into two disjoint setsV0 and V1 according to the last bit of ID. Next we recursively �nd a (k; k log(n=2))-ruling set S0with respect to V0, and a (k; k log(n=2))-ruling set S1 with respect to V1. Using breadth-�rst searchthat starts at each node in S0, we identify the nodes of S1 that are at distance of less then k fromnodes in S0, remove these nodes from S1, and return S0 [ S1.4



procedure Ruling-Set(G[V ]; V 0; k);Divide V into two disjoint sets V0 and V1 according to the last bits of IDs;Discard the last bits of IDs;V 00  V 0 \ V0;V 01  V 0 \ V1;for i 2 f0; 1g in parallel do beginSi  Ruling-Set(G[Vi]; V 0i ; k);end;for each v 2 S1 in parallel do beginif there exists u 2 S1 s.t. distance from v to u is at most kthen beginS1  S1 � v;end;end;S  S0 [ S1;return (S);end. Figure 1: The Ruling-Set algorithm.Lemma 1 The algorithm Ruling-Set on input (G[V ]; V 0; k) produces a (k; k logn)-ruling set withrespect to V 0 in O(k log n) time.Proof : To prove correctness of the algorithm, note that by construction, the distance between anytwo nodes in S set is at least k. It remains to show that for any node v 2 V 0 that is not in theruling set, there is a node w in the set, such that the distance between v and w is at most k logn.We prove this by induction on the size of the graph. The statement is trivially true for graphsconsisting of a single node. Assume that the algorithm works for graphs with at most 2i�1 nodes.By the induction hypothesis, given a graph with at most 2i nodes, the recursive calls produce setsS0 and S1 such that each node v 2 V 0 is at distance at most k(i� 1) from a node w in one of thesesets. Therefore, if w is in the returned set S, the induction hypothesis holds for v. Observe thatw is not in S only if w is closer than k to some node u 2 S0. In this case, the distance from vto u is at most ik. Hence, any node in V 0 is at distance of at most k logn from some node in theconstructed set S.There are at most O(logn) bits in an ID and thus at most O(logn) levels of recursion, eachlevel of recursion taking O(k) time.Next we describe the Sparse-Color algorithm which colors a graph with maximum degree �with (� + 1)-colors. The algorithm is an adaptation of the algorithm of Goldberg, Plotkin, andShannon [8].The Sparse-Color algorithm starts by dividing the nodes in V 0 into two disjoint sets V0 andV1 according to the last bit of the IDs. Then it recursively colors the graphs G[V0]; G[V1], induced5



by these sets. The colors assigned to the nodes in V0 remain, but the colors assigned to nodes inV1 are used to determined a recoloring order on these nodes, such that all nodes recolored at timej are independent in G.The following lemma follows directly from the algorithm description. (Note that we only needto know an upper bound on � in order to run this algorithm.)Lemma 2 The algorithm Sparse-Color runs in O(� logn) time and produces a (�+ 1) coloring ofthe input graph.Another algorithm that we need in subsequent sections is the Merge-Clusters algorithm. Theinput to this algorithm is a forest in a cluster graph, and the output is a new cluster graph for thenetwork, where the new clusters are formed by merging together the clusters in each one of thetrees in the input forest. We omit the details of this algorithm. Note that if the maximum depth ofthe trees in the input forest is d and the maximum depth of any cluster in the input cluster graphwas d0, then the maximum depth of any new cluster is bounded by (2d+ 1)d0.4 Network DecompositionIn this section we describe a distributed algorithm to decompose a network into node-disjointclusters of small depth, such that the cluster graph can be colored with a small number of colors.The Network-Partition algorithm is described in Figure 2. The algorithm consists of twostages. The �rst stage divides the graph into clusters of small depth. The clusters are grouped intoa small number of levels, where the degree of a cluster on level i in the cluster graph induced bythe clusters on this and higher levels is smaller or equal to a predetermined parameter ��. (Wedefer the discussion of the appropriate choice for the value of �� until the end of the section.) Thesecond stage colors the cluster graph produced by the �rst stage in �� + 1 colors using the factthat the cluster graph produced by the �rst stage has arboricity bounded by ��.Lemma 3 Consider a cluster X which belongs to Ci for some 1 � i � L. The degree of X in thecluster graph Gi = G[Ci; Ci+1; : : :CL] is bounded by ��.Proof : A cluster X belongs to Ci only if it did not participate in merges at iteration i. In otherwords, the degree of X in the cluster graph C considered at iteration i is bounded by ��. Observethat since we never re�ne the decomposition, the degree of X in Gi = G[Ci; Ci+1; : : :CL] is at mostits degree in the cluster graph C. The lemma follows from the fact that the nodes that composethe cluster graph C at iteration i are exactly the nodes that compose the cluster graph Gi at theend of the �rst stage.Lemma 4 At the end of the �rst stage, each node belongs to some cluster X 2 Ci for 1 � i � L, forL = logn= log��. 6



procedure Network-Partition;fStage 1: Construct cluster graphgMake each node into a (trivial) cluster;C  the set of (trivial) clusters;L  logn= log��;for i = 1 to L do beginC0  the set of clusters with degree at least �� in the cluster graph G[C];Fr  Ruling-Forest(G[C]; C0; 3);C00  the set of clusters constructed by applyingMerge-Clusters to the forest Fr;Ci  clusters in C not participating in the merge;C  C00;i i+ 1;end;fStage 2: Color cluster graphgfor all 1 � i �L in parallel do begin�i  color G[Ci] with �� + 1 colors using Sparse-Color;end;for i = L down to 1 do beginfor j = 1 to �� + 1 do beginfor all clusters X 2 Ci in parallel do beginif �i(X) = jthen beginC�i  Ci [ Ci+1 [ : : :[ CL;recolor cluster X into color di�erent from the color of its neighbors in G[C�i ];end;end;end;end;end.Figure 2: The Network-Partition algorithm. The algorithm constructs the cluster graph C =G[C1; : : : ; CL] and colors the graph in �� + 1 colors.Proof : Consider the cluster graph C at iteration i. By construction, the distance in G[C] betweenany two roots of the trees in the forest computed during this iteration is three, and degree of eachroot of this forest in G[C] is at least ��. Thus each one of the root clusters is merged with at least�� other clusters. Since each non-root cluster is merged with some root cluster, the number ofclusters decreases by a factor of at least �� at each iteration, and the lemma follows.Lemma 5 The maximumdepth of a cluster produced by the Network-Partition algorithm is boundedby (9 logn)(logn= log��).Proof : Omitted. 7



Lemma 6 The Network-Partition algorithm terminates in O ���(9 logn)(logn= log��+1)� time.Proof : The running time of the �rst stage is determined by the last iteration of this stage, when clus-ters have the highest depth. By Lemma 5, the maximum depth of a cluster during this iteration isbounded by O((9 logn)(logn= log��)). Together with Lemma 1, this implies O((9 logn)(logn= log��)+1)bound on the running time of the �rst stage.The second stage starts with executing the Sparse-Color algorithm. When this algorithm isapplied, depth of the clusters is bounded by O((9 logn)(logn= log��)). Lemma 2 implies the runningtime bound of O(��(9 logn)(logn= log��+1)).After executing the Sparse-Color algorithm, the second stage proceeds from level to level,recoloring the clusters in each level. The total number of levels is L = logn= log��, and for eachlevel we execute �� recoloring iterations, each iteration taking time proportional to the depthof the clusters at this level. Like in the analysis of the �rst stage, the running time of recolor-ing is determined by the time it takes to recolor the highest level. Hence, the recoloring takesO(��(9 logn)(logn= log��)) time.By taking �� = nq log log nlog n , we get the following result. Notice that nO(q log log nlog n ) = O(n�) forany � > 0.Theorem 1 In nO(q log log nlog n ) time it is possible to decompose the network into clusters of depth atmost nO(q log log nlog n ), and to color the cluster graph with nO(q log log nlog n ) colors.5 Applications5.1 Maximal Independent SetAn MIS of nodes in a distributed network can be computed by the following algorithm. First, thealgorithm applies Network-Partition to construct a cluster graph C and its coloring �. Then, ititerates over the cluster colors. At each iteration, the algorithm �nds an independent set of nodesin the original graph and deletes these nodes and their neighbors from the graph. At iteration i,the algorithm considers clusters colored �i, which are independent in the cluster graph. For eachsuch cluster, the algorithm �nds an MIS of a subgraph induced by undeleted nodes of the cluster.The union of these sets is an independent set such that, when nodes in this set and their neighborsare deleted from the graph, all nodes that are in clusters colored �i are deleted from the graph.Theorem 2 A MIS in a distributed network can be found in nO(q log log nlog n ) time.8



Proof : (sketch) Since the clusters produced by the network decomposition algorithm have smalldepth, we can adapt Luby's MIS algorithm [14] so that each iteration runs in nO(q log log nlog n ) time.Luby's MIS algorithm terminates in O(log3 n) iterations. Hence, by Theorem 1, the algorithm runsin nO(q log log nlog n ) time.5.2 �+ 1 ColoringThe linear-processor PRAM algorithm for �+1 coloring, due to Luby [14], can be changed to workwhen we start from a (legal) partial coloring of the input graph. This observation enables us to usethe same strategy that we have used for the MIS problem. First, we use Network-Decompositionalgorithm to decompose the network into clusters, where the clusters are colored with ��+1 colors.Then we proceed in iterations, where at iteration i we consider the nodes that comprise the clustersof the ith color, and use Luby's coloring algorithm to color these.Theorem 3 A maximumdegree � graph can be distributively colored with �+1 colors in nO(q log log nlog n )time.6 Deterministic BFS6.1 OverviewThe problem of constructing a (3; 2)r-ruling set has been the only obstacle towards eliminating ran-domness from (the best known) distributed algorithm for Breadth-First Search (BFS) and ShortestPaths [3]. The recursive version of that algorithm partitions the network into \strips" of d � Dsuccessive BFS layers, and processes each strip one-by-one.During the processing of a strip, we need to construct a (3; 2)-ruling set of a certain \clustergraph". Straightforward substitution of our MIS algorithm leads to a deterministic BFS algorithmthat runs in D1+O( 4plog log n)4plog n time, where D is the diameter of the graph. The disadvantage of thisapproach is that computing the MIS becomes the bottleneck for the BFS, making deterministicalgorithm slower than the randomized one, which runs in D1+ O(1)4plog n time.Reducing the running time of the deterministic algorithm to that of the randomized one requiresa slight modi�cation of the algorithm, combined with a more careful analysis. The modi�cation isbased on a new algorithm that constructs a (3; 2)-ruling forest in a subgraph, given a spanning treeT that is not necessarily restricted to the sub-graph. The algorithm requires O(depth(T ) � log2 n)time and O(( ~m+ jT j) log2 n) messages. Here, jT j is the cardinality of T , depth(T ) is its depth, and~m is the number of edges in the sub-graph. There is no damage from dependance on the parameters9



of the spanning tree T since during processing of the strip the algorithm anyway needs to perform(around) n 1plog5 V ) synchronizations thru the whole BFS tree.In constructing this algorithm, we use the cost-bene�t framework of Luby [14]. The timecomplexity and the communication complexity of the resulting BFS algorithm are same as in [3],namely D1+ O(1)4plog n and m1+ O(1)4plog n , respectively. Below, we provide the details of the construction.6.2 Radomized AlgorithmThe randomized algorithm is given in Figure 3. In general, each vertex is classi�ed to be one offour possible colors, dark green, light green, yellow and red. There is an implicit precedence oncolors, dark green has the highest precedence, followed by light green, then yellow and �nallyred. Whenever we state that a vertex changes color, this is only true if the new color has higherprecedence, e.g. a dark green vertex always remains dark green, whereas a yellow vertex canchange color to dark green or light green but not to red. Initially, for all v 2 V , color(v) = red:Upon termination, no marked vertex is colored red, i.e. all remaining red vertices are unmarked.The dominating set S is the set of all vertices with color dark green. The colors have the followingmeanings:dark green: vertices in the dominating set.light green: neighbors of vertices in the dominating set (labeled dark green).yellow: neighbors of vertices labeled light green.red: all other vertices in the graph, i.e. vertices at distance bigger than two from vertices in thedominating set. The neighbors of all red vertices are either red or yellow.For all v 2 V; color(v)  redDo while red vertices exist in the marked set: /* This is the iteration loop */For all yellow and red vertices v,Flip a coin with probability of heads 13~dIf coin = heads then color(v) dark greenFor all yellow and red vertices v,If there is a dark green vertex adjacent to v thencolor(v) light greenFor all red vertices v,If there is a light green vertex adjacent to v thencolor(v) yellowendreturn the set of vertices colored dark greenFigure 3: The randomized algorithm10



6.3 Analysis of the randomized algorithmTheorem 4 The randomized algorithm in Figure 3 terminates within c log jV j steps with probabil-ity at least 1 � 2��(c). Furthermore, the expected number of dark green vertices at termination isO � jV j log jV jd �.Proof : Each marked red vertex is going to change color to light green with probability at leastsome constant. The intuitive reasoning for this is that each marked red vertex has at least dneighbors, all of them colored yellow or red, and thus with some constant probability (since eachsuch vertex is changing color to dark green with probability 13 ~d) at least one of these neighborschanges color to dark green. Thus, since a constant fraction of the marked red vertices changecolor at each iteration, the number of iterations before all marked red vertices are gone is O(log jV j).In each iteration, the expected number of vertices that are colored dark green is O( jV j~d ), and thusoverall the expected number of dark green vertices is O( jV j log jV j~d ).7 The Deterministic FrameworkDe�nition 4 Let Red, RedB and Y ellow denote the sets of of red, marked red, and yellow verticesat the beginning of an iteration, respectively. For any set S, we denote by ]S the cardinality of that set.Our goal is to have a deterministic simulation of the algorithm described in Figure 3 such thatat each iteration the following two properties hold:1. The number of new dark green vertices introduced by an iteration is at most 3(]Y ellow+]Red)~d :2. The number of marked red vertices remaining upon termination of an iteration is at most8(]RedB)9 :The general strategy for achieving this goal is to show that the probabilistic analysis holdswhen the random choices for the vertices are only pairwise independent, and in the analysis we usePro�ts and Costs as de�ned below. The strategy from there is to use the ideas in [14] to simulatethe algorithm deterministically.In the following analysis, we restrict attention to the subgraph induced on the union of theyellow and red vertices. Let adjv = fuj(v; u) 2 Eg. For each red vertex v, let subadjv � adjvsuch that jsubadjvj = ~d. Since each neighbor of a red v is either red or yellow, every vertex inu 2 subadjv changes to dark green with probability 13 ~d .11



Let l̂ be a 0/1 labelling of the vertices in the graph, i.e. lu is the label of vertex u. (The verticeslabelled 1 become dark green.) Let v be any red vertex. De�ne Iv[l̂] = 1 if there is some u 2 adjvsuch that lu = 1 and Iv[l̂] = 0 otherwise. (Iv[l̂] = 1 implies that v changes color to light green:)De�neRbenefitv[l̂] = Xu2subadjv lu0@1� Xw2subadjv�fug lw1A : (1)The importance of Rbenefitv[l̂] is that it is a sum that only depends on products of at most twovertex labels, and that for all l̂, Rbenefitv[l̂] � Iv[l̂]: E[Rbenefitv[l̂]] is an easily computable lowerbound on the probability that v changes color to light green; even when the coins of the verticesare only pairwise independent. Furthermore, it turns out that E[Rbenefitv[l̂] is relatively close tothe true probability that v changes color to light green: De�neRbenefit[l̂] = Pv2RedB Rbenefitv [l̂]]RedB (2)Because Rbenefitv [l̂] � Iv [l̂] � 1; Rbenefit[l̂] is a lower bound on the fraction of red verticesthat become light green in this iteration. The idea is that the average value of Rbenefit is goingto be some constant, which helps to guarantee that property 2 holds. The fact that Rbenefit[l̂] � 1together with the Gcost function de�ned in the next few paragraphs is going to help guarantee thatproperty 1 holds.In the following de�nitions, v is any vertex that is either red or yellow. De�neGcost[l̂] = 0B@ Xv2RedSY ellow lv1CA �Gscale; (3)where Gscale = ~d3(]Red+]Y ellow) :Gcost[l̂] is the number of of dark green vertices, times the \scale" factor Gscale. Gcost is thefraction of all red and yellow vertices that become dark green times the factor ~d3 . The reasonfor the factor ~d3 is that we want to prevent the number of dark green vertices from exceeding a 3~dfraction of all red and yellow vertices, since in this case Gcost would outweigh Rbenefit.Finally, we de�ne benefit[l̂] = Rbenefit[l̂]� Gcost[l̂]:12



7.1 Implications of the average bene�tRecall that for each red vertex v, jsubadjvj = ~d.E[Rbenefit[l̂]] � Pv2RedB ( ~d3~d � ~d2~d2 )]RedB � 29 : (4)E[Gcost[l̂]] = 0B@ Xv2RedSY ellow 13 ~d1CA �Gscale = 19 : (5)E[benefit[l̂]] = E[Rbenefit[l̂]]� E[Gcost[l̂]] � 19 ; (6)Theorem 5 For any l̂, such that benefit[l̂] � 19 , l̂ satis�es properties 1 and 2.Proof : For all l̂, Rbenefit[l̂] � 1: For our choice of l̂, benefit[l̂] > 0 and thusGcost[l̂] = Rbenefit[l̂]� benefit[l̂] � Rbenefit[l̂] � 1: (7)However, the number of red and yellow vertices that become dark green is GCost[l̂]Gscale , which isat most 3(]Red+]Y ellow)~d : This completes the proof of property 1.We proceed with the proof for property 2. Rbenefit[l̂] � benefit[l̂] � 19 implies that the numberof marked red vertices that become light green is at least ]RedB9 ; thus proving property 2.References[1] B. Awerbuch. Complexity of network synchronization. J. Assoc. Comput. Mach., 32:804{823,1985.[2] B. Awerbuch. A tight lower bound on the time of distributed maximal independent set algo-rithms. Unpublished manuscript, February 1987.[3] B. Awerbuch. Randomized Distributed Shortest Paths Algorithms. In Proc. 21th ACM Symp.on Theory of Computing, page (to appear), 1989.[4] B. Awerbuch and R. G. Gallager. A New Distributed Algorithm to Find Breadth First SearchTrees. IEEE Trans. Info. Theory, IT-33:315{322, 1987.13



[5] R. Cole and U. Vishkin. Deterministic Coin Tossing and Accelerating Cascades: Micro andMacro Techniques for Designing Parallel Algorithms. In Proc. 18th ACM Symp. on Theory ofComputing, pages 206{219, 1986.[6] R. G. Gallager, P. A. Humblet, and P. M Spira. A Distributed Algorithm for Minimum-WeightSpanning Trees. ACM Transactions on Programming Languages and Systems, 5:66{77, 1983.[7] A. V. Goldberg and S. A. Plotkin. Parallel (�+ 1) coloring of constant-degree graphs. Infor-mation Processing Let., 25:241{245, 1987.[8] A. V. Goldberg, S. A. Plotkin, and G. E. Shannon. Parallel Symmetry-Breaking in SparseGraphs. SIAM J. Desc. Math., 1:434{446, 1989.[9] M. Goldberg. Parallel Algorithms for Three Graph Problems. Technical Report 86-4, RPI,1986.[10] M. Goldberg and T. Spencer. A New Parallel Algorithm for the Maximal Independent SetProblem. In Proc. 28th IEEE Symp. on Foundations of Comp. Sci., pages 161{165, 1987.[11] R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximal independent setproblem. In Proc. 16th ACM Symp. on Theory of Computing, pages 266{272, 1984.[12] N. Linial. Distributive Algorithms | Global Solutions from Local Data. In Proc. 28th IEEESymp. on Found. of Comp. Sci., pages 331{335, 1987.[13] M. Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. SIAM J.Comput., 15:1036{1052, 1986.[14] M. Luby. Removing Randomness in Parallel Computation without a Processor Penalty. InProc. 29th IEEE Symp. on Found. of Comp. Sci., pages 162{173, 1988.
14


