Network Decomposition and
Locality in Distributed Computation
(Extended Abstract)

Baruch Awerbuch” Andrew V. Goldberg'
Department of Mathematics and Department of Computer Science
Laboratory for Computer Science Stanford University

M.LT. Stanford, CA 94305
Cambridge, MA 02139
Michael Lubyf Serge A. Plotkin®
International Computer Science Institute Department of Computer Science

Berkeley, CA 94704 Stanford University
Stanford, CA 94305

May 1989

Abstract

We introduce a concept of network decomposition, the essence of which is to partition an
arbitrary graph into small-diameter connected components, such that the graph created by
contracting each component into a single node has low chromatic number. We present an
efficient distributed algorithm for constructing such a decomposition, and demonstrate its use
for design of efficient distributed algorithms.

Our method yields new deterministic distributed algorithms for finding a maximal indepen-
dent set and for (A + 1)-coloring of graphs with maximum degree A. These algorithms run in
O(n®) time for any ¢ > 0, while the best previously known deterministic algorithms required
Q(n) time. Our techniques can be used to remove randomness from the previously known
most efficient distributed Breadth-First Search algorithm, without increasing the asymptotic
communication and time complexity.

*Supported by Air Force Contract TNDGAFOSR-86-0078, ARO contract DAAL03-86-K-0171, NSF contract
CCR8611442, and a special grant from IBM.

TResearch partially supported by NSF Presidential Young Investigator Grant CCR-8858097, IBM Faculty Devel-
opment Award, and ONR Contract N00014-83-K-0166.

{On leave of absence from the Computer Science Department, University of Toronto, research partially supported
by NSERC of Canada operating grant A8092.

SResearch partially supported by ONR Contract N00014-88—-K—0166.

1 Introduction

A distributed network of processors is described by an undirected graph G = (V, F), where |V| = n.
There is a processor located at each node of GG that can communicate directly only with processors
at neighboring nodes, i.e., all communication is local. As a result, locality is a very important
issue in distributed computation, and algorithms that use only local communication are of special
interest. Parallel deterministic algorithms rely heavily on global communication, since in parallel
models of computation is is easy to collect information from all the nodes quickly. In the distributed
network this is not the case, because the communication channels are part of the problem input.
Using only communication links of the network, it takes at least the diameter of G time steps
to gather global information. In general, the diameter of G could be as large as n. Therefore
some problems, known to be in NC, are not known to be solvable in polylogarithmic time in a
distributed system. An representative example of such a problem is the Maxzimal Independent Set
(MIS) problem. Linial [12] was the first to use sophisticated graph-theoretic techniques to study

locality in distributed systems and to point out the importance of the MIS problem in this context.

We say that a function can be computed locally if it can be computed deterministically in time
that is significantly smaller than n, for any possible diameter of the network. For some problems,
such as the MIS problem, global communication can be avoided if the interconnection network has
a small degree (see e.g. [7, 8]). A natural approach to extend this idea to a high degree network is
to attempt to decompose the network into clusters of small diameter, so that the graph induced by
clusters (the cluster graph) has a small degree. Given such a decomposition, global communication
within a cluster is relatively inexpensive (because of its small diameter), and global communication
between clusters can be avoided. Unfortunately, it is easy to construct a graph where, even if
we allow cluster diameter to be as high as \/n, the degree of the cluster graph is Q(y/n) [Linial
and Saks, personal communication]. We can overcome this problem by showing that in order to
avoid global communication between clusters, it is suflicient to use decomposition with a relaxed
requirement. Instead of requiring the cluster graph to have a small degree, we require it to have a

small arboricity', and therefore a small chromatic number.

This motivates the main technique of this paper, which appears to be very useful for design
of local distributed algorithms. We introduce the concept of a (d(n), ¢(n))-decomposition, which
is interesting from the graph-theoretic point of view as well. A (d(n),c(n))-decomposition of a
graph ¢ = (V, V) is a partition of V into disjoint clusters, such that the subgraph induced by
each cluster is connected, the diameter of each cluster is O(d(n)), and the arboricity (and therefore
the chromatic number) of the cluster graph is O(c¢(n)), where the cluster graph is obtained by

contracting each cluster into a single node.

In order to apply the decomposition for design of efficient distributed algorithms, both the
partitioning of the graph into clusters and a good coloring of the cluster graph must be efficiently

O(lolglogn) O(lolglogn)
ogn n ogn
?

computable. We show that any network has an (n)-decomposition and

' A connected graph has arboricity k if its edges can be covered by at most k trees.

loglog n
present a distributed algorithm which constructs such a decomposition in n (y Fes time. (Note

loglog n

that nV " = O(n®) for any € > 0.)
We give several applications of our network decomposition technique.
loglog n

log n

o We give an n -time algorithm for constructing a MIS in a distributed network.

o We show how to distributively color graphs with maximum degree A with A 4+ 1 colors in

loglogn
O(log n)

n time.

o We present a deterministic algorithm for constructing a breadth-first search tree in an asyn-
o) o)

1+ +
chronous distributed network in O(m = V5") messages and O(D ~ Viesn) time, where m is

the number of edges in the network and D is the diameter of the network.

The MIS problem is a classical example of a problem for which obtaining efficient sequential
algorithms is easy, but obtaining efficient parallel algorithms is much harder. Karp and Wigderson
[11] have shown that the problem is in NC. A lot of research was done to improve the processor
and time complexity of parallel algorithms for the MIS problem [10, 13, 14]. Unfortunately, direct
distributed implementation of these algorithms is inefficient. Intuitively, the main problem is that,
at each iteration, the algorithm decides on the next step by collecting the information from every
node in the graph to a single memory location and making a choice based on this information,
leading to maximum “benefit”. Hence, direct conversion of these algorithms to a distributed system
leads to a running time that is at least linear in the diameter of the graph. (Observe that an MIS can
be found by a trivial distributed algorithm in linear time.) For bounded degree, several distributed

algorithms for MIS and related problems that run in O(log™ n) time were developed in [5, 7, 8].

The local nature of distributed networks is a limitation that often allows to prove lower bounds
for them. Awerbuch [2] and Linial [12] show an Q(log™ n) lower bound on time needed to find an
MIS in a distributed system. Note that the results mentioned in the previous paragraph imply
that for constant degree graphs, these lower bounds are optimal to within a constant factor. For
distributed networks of large degree, the gap between the upper and the lower bounds has been

n

almost linear, namely a7 The results of this paper decrease this gap to below n¢ for any € > 0.

The A 4+ 1 coloring problem is closely related to the MIS problem, and the algorithms for
the former problem are closely related to ones for the latter problem and achieve similar bounds
[7, 8,9, 14].

The problem of constructing a breadth-first search tree in an asynchronous network (the BFS
problem) is a fundamental problem in distributed computing, as it constitutes a bottleneck for many

other algorithms, including Spanning Tree, Leader Election, computing a global function, etc. On a
network with n nodes, m edges, and diameter D, the obvious lower bounds on the communication

and time complexity of the problem are Q(m) and Q(D), respectively. An existing deterministic
BF'S algorithm that is best in terms of communication is that of Awerbuch and Gallager [4]. This
algorithm runs in O(m!*¢) messages and O(n'*¢) time, for any constant ¢ > 0. An existing
deterministic algorithm that is best in terms of time is obtained by combining a synchronizer [1]
with a standard synchronous algorithm; the resulting algorithm runs in O(m+ nD log;, n) messages
and O(kD) time, for any constant & > O. The first algorithm has a poor time complexity on
networks of small diameter, while the second algorithm has a poor message complexity on sparse
networks of large diameter. A randomized algorithm of Awerbuch [3] achieves a better message—
time tradeoff. This algorithm runs in O(m!*¢) messages and O(D'*¢) time. We show how to
apply techniques developed in this paper to make this algorithm deterministic, without degrading
its asymptotic complexity.

2 Preliminaries

We consider the standard point-to-point communication network model (see e.g. [6] and [1]). The
network topology is described by an undirected communication graph G = (V, F), where the set
of nodes represents processors of the network and the set of edges represents bidirectional commu-
nication channels between pairs of nodes. No common memory is shared by the processors. We
denote the number of nodes in the network by n, and assume that each node has an ID represented

by O(logn) bits.

We use the following complexity measures to evaluate the performance of distributed algorithms.
The communication complexity is the worst-case total number of messages sent during an execution
of the algorithm. The time complexity is the worst-case total number of time steps needed to
complete the algorithm.

We describe the algorithms in terms of operations on clusters of nodes. We define cluster as
follows.

Definition 1 A cluster is a connected component of the original graph (' together with a spanning
tree of the cluster and a node designated as the leader in the cluster. The depth of a cluster is the
depth of the spanning tree. The ID of the cluster is the ID of its leader. Two clusters are neighbors in
the cluster graph if there exists an edge in the original graph between a node in one cluster and a node
in the other.

Given a set of clusters C, we denote the graph induced by these clusters by G[C]. We use 6¢(X)
to denote the degree of cluster X in the cluster graph G[C]. We omit the subscript when the set C
is clear from the context.

To simplify the presentation, for the purpose of this extended abstract we assume that a message

contains O(nlogn) bits, and that each processor has O(n?logn) bits of memory. A more careful

(loglogn)
log n

implementation of our algorithms uses O(logn)-bit messages and O(d + n) memory for

a processor whose degree in the network is d.

Suppose we are given a distributed algorithm and we want to convert it to run on a cluster
graph, i.e. we want clusters to play the role of nodes from the point of view of this algorithm. We
can achieve this by running the given algorithm on cluster leaders, and using the spanning trees of
the clusters for the communication. Assuming sufficient message length and sufficient memory, it
is easy to see that if T is the running time of the original algorithm and d is the upper bound on
cluster depth, the simulation runs in O(dT') time.

Except for the part dealing with the BF'S problem, we assume that the communication network
is synchronous, and that at each time step a processor can communicate with all of its neighbors.
Awerbuch’s Synchronizer-a [1] can be used to implement our algorithms on an asynchronous net-
work. This does not change the asymptotic time bound 7', but increases the asymptotic message
complexity by an additive factor of mT. Observe that, since the algorithms considered in this pa-
per require at least Q(m) communication, the use of the synchronizer increases the communication

complexity by at most an O(m*) factor, for any € > 1.

3 Basic Tools

In this section we describe several basic algorithms that are needed for our main result, the network

decomposition algorithm, presented in Section 4.

Definition 2 Given a graph G = (V. E) and a set V' C V, we say that a forest ¥, = (V,, E,),
V' CV,, is (a, B)-ruling with respect to V' if the following three conditions hold:

1. The roots of the trees in F, are in V.
2. The distance in G between roots of any two trees in F, is at least a.

3. The depth of each tree in the forest is at most /3.

The next definition generalizes that of [5].
Definition 3 The set of tree roots of an («a, 3)-ruling forest is called an («, 5)-ruling set.

We find a (k, klog n)-ruling forest by first finding a (k, klog n)-ruling set and then constructing a
forest by executing a (klogn)-depth breadth-first search from each node in the ruling set. Figure 1
describes the RuLING-SET algorithm that finds a (k, klogn)-ruling set with respect to a specified
set of nodes V/ C V and an arbitrary k.

The algorithm RuLING-SET starts by dividing the input set of vertices V' into two disjoint sets
Vo and Vj according to the last bit of ID. Next we recursively find a (k, klog(n/2))-ruling set Sy
with respect to Vo, and a (k, klog(n/2))-ruling set S7 with respect to V;. Using breadth-first search
that starts at each node in Sy, we identify the nodes of 57 that are at distance of less then k£ from
nodes in Sy, remove these nodes from 55, and return S U 5.

procedure RULING-SET(G[V], V', k);

Divide V into two disjoint sets V4 and V; according to the last bits of IDs;
Discard the last bits of IDs;
Vg = V' Ny,
Vi =V nig;
for ¢ € {0,1} in parallel do begin
S; — RULING-SET(G[Vi], V{, k);
end;
for each v € 51 in parallel do begin
if there exists u € 57 s.t. distance from v to u is at most k
then begin
Sp — S —v;
end;
end;

S<_SOU51;

return (5);
end.

Figure 1: The RULING-SET algorithm.

Lemma 1 The algorithm RuriNG-SET on input (G[V], V' k) produces a (k, klogn)-ruling set with
respect to V' in O(klogn) time.

Proof: To prove correctness of the algorithm, note that by construction, the distance between any
two nodes in S set is at least k. It remains to show that for any node v € V' that is not in the
ruling set, there is a node w in the set, such that the distance between v and w is at most klog n.
We prove this by induction on the size of the graph. The statement is trivially true for graphs
consisting of a single node. Assume that the algorithm works for graphs with at most 2°~' nodes.
By the induction hypothesis, given a graph with at most 2 nodes, the recursive calls produce sets
So and 57 such that each node v € V' is at distance at most k(¢ — 1) from a node w in one of these
sets. Therefore, if w is in the returned set 5, the induction hypothesis holds for ». Observe that
w is not in 5 only if w is closer than £ to some node u € Sy. In this case, the distance from v
to u is at most ¢k. Hence, any node in V' is at distance of at most klogn from some node in the
constructed set 5.

There are at most O(logn) bits in an ID and thus at most O(logn) levels of recursion, each

level of recursion taking O(k) time. |

Next we describe the Sparse-Coror algorithm which colors a graph with maximum degree A
with (A + 1)-colors. The algorithm is an adaptation of the algorithm of Goldberg, Plotkin, and
Shannon [8].

The SparsE-Coror algorithm starts by dividing the nodes in V” into two disjoint sets Vj and
V1 according to the last bit of the IDs. Then it recursively colors the graphs G[Vy], G[V1], induced

by these sets. The colors assigned to the nodes in Vj remain, but the colors assigned to nodes in
V1 are used to determined a recoloring order on these nodes, such that all nodes recolored at time
j are independent in G.

The following lemma follows directly from the algorithm description. (Note that we only need

to know an upper bound on A in order to run this algorithm.)

Lemma 2 The algorithm SpaRrsE-CoLoR runs in O(Alogn) time and produces a (A + 1) coloring of
the input graph.

Another algorithm that we need in subsequent sections is the MERGE-CLUSTERS algorithm. The
input to this algorithm is a forest in a cluster graph, and the output is a new cluster graph for the
network, where the new clusters are formed by merging together the clusters in each one of the
trees in the input forest. We omit the details of this algorithm. Note that if the maximum depth of
the trees in the input forest is d and the maximum depth of any cluster in the input cluster graph

was d’, then the maximum depth of any new cluster is bounded by (2d + 1)d’.

4 Network Decomposition

In this section we describe a distributed algorithm to decompose a network into node-disjoint
clusters of small depth, such that the cluster graph can be colored with a small number of colors.

The NETWORK-PaRTITION algorithm is described in Figure 2. The algorithm consists of two
stages. The first stage divides the graph into clusters of small depth. The clusters are grouped into
a small number of levels, where the degree of a cluster on level ¢ in the cluster graph induced by
the clusters on this and higher levels is smaller or equal to a predetermined parameter A*. (We
defer the discussion of the appropriate choice for the value of A* until the end of the section.) The
second stage colors the cluster graph produced by the first stage in A* + 1 colors using the fact
that the cluster graph produced by the first stage has arboricity bounded by A*.

Lemma 3 Consider a cluster X which belongs to C; for some 1 < ¢ < L. The degree of X in the
cluster graph G; = G[C;,Ci41,...Cr] is bounded by A*.

Proof: A cluster X belongs to C; only if it did not participate in merges at iteration ¢. In other
words, the degree of X in the cluster graph C considered at iteration ¢ is bounded by A*. Observe
that since we never refine the decomposition, the degree of X in G; = G[C;,Ciy1,...Cr] is at most
its degree in the cluster graph C. The lemma follows from the fact that the nodes that compose
the cluster graph C at iteration ¢ are exactly the nodes that compose the cluster graph G; at the
end of the first stage. |

Lemma 4 At the end of the first stage, each node belongs to some cluster X € C; for 1 < ¢ < [, for
L =logn/log A*.

procedure NETWORK-PARTITION;

{Stage 1. Construct cluster graph}

Make each node into a (trivial) cluster;
C — the set of (trivial) clusters;
L — logn/log A*;
for i =1 to L do begin
C' — the set of clusters with degree at least A* in the cluster graph G[C];
F, —RuLiNGg-ForesT(G[C], ', 3);
C"” «— the set of clusters constructed by applying MERGE-CLUSTERS to the forest F;
C; — clusters in C not participating in the merge;
Cc—c
I o
end;

bl

{Stage 2: Color cluster graph}

for all 1 < i <L in parallel do begin
X;i < color G[C;] with A* + 1 colors using SPARSE-COLOR;

end;

for i = L down to 1 do begin
for j = 1to A* + 1 do begin
for all clusters X € C; in parallel do begin
if XZ(X) = _]

then begin
CZ* %CiUCH_lU...UCL;
recolor cluster X into color different from the color of its neighbors in G[C/];

end;

end;

end;

end;

end.

Figure 2: The NETWORK-PARTITION algorithm. The algorithm constructs the cluster graph C' =
G[Cy,...,C] and colors the graph in A* 4+ 1 colors.

Proof: Consider the cluster graph C at iteration ¢. By construction, the distance in G[C] between
any two roots of the trees in the forest computed during this iteration is three, and degree of each
root of this forest in G[C] is at least A*. Thus each one of the root clusters is merged with at least
A* other clusters. Since each non-root cluster is merged with some root cluster, the number of

clusters decreases by a factor of at least A* at each iteration, and the lemma follows. |

Lemma 5 The maximum depth of a cluster produced by the NETwoRK-PaRTITION algorithm is bounded
by (9 log n)(log”/logA*).

Proof: Omitted. |

Lemma 6 The NETWORK-PARTITION algorithm terminates in O (A*(Qlog n)(IOg”/IOgA*“)) time.

Proof: The running time of the first stage is determined by the last iteration of this stage, when clus-
ters have the highest depth. By Lemma 5, the maximum depth of a cluster during this iteration is
bounded by O((9logn)losn/ 10824y Together with Lemma 1, this implies O((9log n)es™/log AT)+1)
bound on the running time of the first stage.

The second stage starts with executing the Sparse-CoLor algorithm. When this algorithm is
applied, depth of the clusters is bounded by O((91logn)Ulosn/1064")) Lemma 2 implies the running
time bound of O(A*(9logn)lesn/log AT+1)),

After executing the Sparse-Coror algorithm, the second stage proceeds from level to level,
recoloring the clusters in each level. The total number of levels is L = logn/log A*, and for each
level we execute A* recoloring iterations, each iteration taking time proportional to the depth

of the clusters at this level. Like in the analysis of the first stage, the running time of recolor-
ing is determined by the time it takes to recolor the highest level. Hence, the recoloring takes

O(A*(91log n)llosn/ 108 A)) time, |

loglog n O(lolglogn)
ogn

By taking A* = nV " _we get the following result. Notice that n = O(n®) for

any € > 0.

O(y/loplony . .
Theorem 1 In n °8™ 7 time it is possible to decompose the network into clusters of depth at
loglog n 1o} loglog n

logn log n

most n , and to color the cluster graph with n colors.

5 Applications

5.1 Maximal Independent Set

An MIS of nodes in a distributed network can be computed by the following algorithm. First, the

algorithm applies NETWORK-PARTITION to construct a cluster graph C' and its coloring y. Then, it
iterates over the cluster colors. At each iteration, the algorithm finds an independent set of nodes
in the original graph and deletes these nodes and their neighbors from the graph. At iteration ¢,
the algorithm considers clusters colored y;, which are independent in the cluster graph. For each
such cluster, the algorithm finds an MIS of a subgraph induced by undeleted nodes of the cluster.
The union of these sets is an independent set such that, when nodes in this set and their neighbors
are deleted from the graph, all nodes that are in clusters colored y; are deleted from the graph.

(@)
Theorem 2 A MIS in a distributed network can be found in n (\/ Pesn time.

Proof: (sketch) Since the clusters produced by the network decomposition algorithm have small

1o} loglogn)

depth, we can adapt Luby’s MIS algorithm [14] so that each iteration runs in n (Ve time.

Luby’s MIS algorithm terminates in O(log® n) iterations. Hence, by Theorem 1, the algorithm runs

loglog n
O(log n)

inn time. |

5.2 A+ 1 Coloring

The linear-processor PRAM algorithm for A+ 1 coloring, due to Luby [14], can be changed to work
when we start from a (legal) partial coloring of the input graph. This observation enables us to use
the same strategy that we have used for the MIS problem. First, we use NETWORK-DECOMPOSITION
algorithm to decompose the network into clusters, where the clusters are colored with A*+1 colors.
Then we proceed in iterations, where at iteration ¢ we consider the nodes that comprise the clusters
of the ith color, and use Luby’s coloring algorithm to color these.

Theorem 3 A maximum degree A graph can be distributively colored with A+1 colorsin n fog

time.

6 Deterministic BFS

6.1 Overview

The problem of constructing a (3, 2)r-ruling set has been the only obstacle towards eliminating ran-
domness from (the best known) distributed algorithm for Breadth-First Search (BFS) and Shortest
Paths [3]. The recursive version of that algorithm partitions the network into “strips” of d < D

successive BFS layers, and processes each strip one-by-one.

During the processing of a strip, we need to construct a (3,2)-ruling set of a certain “cluster
graph”. Straightforward substitution of our MIS algorithm leads to a deterministic BF'S algorithm

1+ O(144/10g log n)
that runs in D Viesn time, where D is the diameter of the graph. The disadvantage of this

approach is that computing the MIS becomes the bottleneck for the BFS, making deterministic

140
. . . . 4 .
algorithm slower than the randomized one, which runs in D~ Vls» time.

Reducing the running time of the deterministic algorithm to that of the randomized one requires
a slight modification of the algorithm, combined with a more careful analysis. The modification is
based on a new algorithm that constructs a (3, 2)-ruling forest in a subgraph, given a spanning tree
T that is not necessarily restricted to the sub-graph. The algorithm requires O(depth(T') -log? n)
time and O((7 +|T'|) log? n) messages. Here, |T| is the cardinality of T', depth(T') is its depth, and

m is the number of edges in the sub-graph. There is no damage from dependance on the parameters

of the spanning tree T’ since during processing of the strip the algorithm anyway needs to perform

1
(around) nV'ss V) synchronizations thru the whole BF'S tree.

In constructing this algorithm, we use the cost-benefit framework of Luby [14]. The time

complexity and the communication complexity of the resulting BF'S algorithm are same as in [3],

0N o2
namely D Vls» and m Vls” respectively. Below, we provide the details of the construction.

6.2 Radomized Algorithm

The randomized algorithm is given in Figure 3. In general, each vertex is classified to be one of
four possible colors, dark_green, light_green, yellow and red. There is an implicit precedence on
colors, dark_green has the highest precedence, followed by light_green, then yellow and finally
red. Whenever we state that a vertex changes color, this is only true if the new color has higher
precedence, e.g. a dark_green vertex always remains dark_green, whereas a yellow vertex can
change color to dark_green or light_green but not to red. Initially, for all v € V', color(v) = red.
Upon termination, no marked vertex is colored red, i.e. all remaining red vertices are unmarked.
The dominating set 5 is the set of all vertices with color dark_green. The colors have the following
meanings:

dark _green: vertices in the dominating set.
light_green: neighbors of vertices in the dominating set (labeled dark_green).
yellow: neighbors of vertices labeled light_green.

red: all other vertices in the graph, i.e. vertices at distance bigger than two from vertices in the
dominating set. The neighbors of all red vertices are either red or yellow.

For all v € V, color(v) — red
Do while red vertices exist in the marked set: /* This is the iteration loop */
For all yellow and red vertices v,
Flip a coin with probability of heads 3%
If coin = heads then color(v) — dark_green
For all yellow and red vertices v,
If there is a dark_green vertex adjacent to v then
color(v) «— light_green
For all red vertices v,
If there is a light_green vertex adjacent to v then
color(v) — yellow
end
return the set of vertices colored dark_green

Figure 3: The randomized algorithm

10

6.3 Analysis of the randomized algorithm

Theorem 4 The randomized algorithm in Figure 3 terminates within clog |V'| steps with probabil-

ity at least 1 — 279(c) Furthermore, the expected number of dark_green vertices at termination is

0 (IVllczlglVl)_

Proof: Each marked red vertex is going to change color to light_green with probability at least
some constant. The intuitive reasoning for this is that each marked red vertex has at least d

neighbors, all of them colored yellow or red, and thus with some constant probability (since each

such vertex is changing color to dark_green with probability 3%) at least one of these neighbors

changes color to dark_green. Thus, since a constant fraction of the marked red vertices change

color at each iteration, the number of iterations before all marked red vertices are gone is O(log |V]).

In each iteration, the expected number of vertices that are colored dark_green is O(%'), and thus

overall the expected number of dark_green vertices is O(%). |

7 The Deterministic Framework

Definition 4 Let Red, Redp and Yellow denote the sets of of red, marked red, and yellow vertices
at the beginning of an iteration, respectively. For any set 5, we denote by #.5 the cardinality of that set.

Our goal is to have a deterministic simulation of the algorithm described in Figure 3 such that
at each iteration the following two properties hold:

S(ﬁYellovlu—I—ﬁRed)

1. The number of new dark_green vertices introduced by an iteration is at most y

2. The number of marked red vertices remaining upon termination of an iteration is at most

8(§Red)
=

The general strategy for achieving this goal is to show that the probabilistic analysis holds
when the random choices for the vertices are only pairwise independent, and in the analysis we use
Profits and Costs as defined below. The strategy from there is to use the ideas in [14] to simulate

the algorithm deterministically.

In the following analysis, we restrict attention to the subgraph induced on the union of the

yellow and red vertices. Let adj, = {u|(v,u) € E}. For each red vertex v, let subadj, C adj,
such that |subadj,| = d. Since each neighbor of a red v is either red or yellow, every vertex in

u € subadj, changes to dark_green with probability 3%.

11

Let [be a 0/1 labelling of the vertices in the graph, i.e. [, is the label of vertex u. (The vertices
labelled 1 become dark_green.) Let v be any red vertex. Define Iv[i] = 1 if there is some u € adj,

such that [, = 1 and I,[l] = 0 otherwise. ([,[l]] = 1 implies that v changes color to light_green.)
Define

Rbenefit [l = > 1, (1— > zw). (1)
~{u}

u€ subadj, wE subadyy,

The importance of Rbenefitv[i] is that it is a sum that only depends on products of at most two

vertex labels, and that for all [, Rbene fit,[l] < I,[l]. E[Rbenefit,[l]] is an easily computable lower

bound on the probability that v changes color to light_green, even when the coins of the vertices

are only pairwise independent. Furthermore, it turns out that F[Rbene fit,[l] is relatively close to

the true probability that » changes color to light_green. Define

[Rbene fit, [l
Rbenefit]l] = ZUERBd}ERedenefl [1]
B

(2)

Because Rbenefit,[l] < I,[l] < 1, Rbenefit[l] is a lower bound on the fraction of red vertices

that become light_green in this iteration. The idea is that the average value of Rbenefit is going

to be some constant, which helps to guarantee that property 2 holds. The fact that Rbene fit[l] < 1
together with the G'cost function defined in the next few paragraphs is going to help guarantee that
property 1 holds.

In the following definitions, v is any vertex that is either red or yellow. Define

Geost[l] = > L | - Gscale, (3)
vERedUYellow

_ d
where Giscale = 3(fRed+1Y ellow) *

Gleost[l] is the number of of dark_green vertices, times the “scale” factor G'scale. Geost is the

fraction of all red and yellow vertices that become dark_green times the factor g. The reason

3

4 is that we want to prevent the number of dark_green vertices from exceeding a =

for the factor 3

fraction of all red and yellow vertices, since in this case G'cost would outweigh Rbene fit.

Finally, we define

bene fit]l] = Rbenefit]l] — Geost[l].

12

7.1 Implications of the average benefit

Recall that for each red vertex v, |subadj,| = d.

R ZUERBdB(i - Cz_j) 2
E[Rbenefit[l]] > ﬁRe(;)]i R g (4)
., 1 1
El[Geost[l]] = Z — | - Gscale = 9 (5)
vERedUYellow
Efbene fitll]] = E[Rbene fitll] — E[Geost[l] > % (6)

Theorem 5 For any [, such that benefit[i] > %, [satisfies properties 1 and 2.

Proof: For all [, Rbenefit[l] < 1. For our choice of I, bene fit[l] > 0 and thus

Geost[l] = Rbene fit[l] — bene fit[l] < Rbenefit[l] < 1. (7)

GCost]l]

However, the number of red and yellow vertices that become dark_green is = -+, which is

3(#Red+4Y ellow)
d

at most . This completes the proof of property 1.

We proceed with the proof for property 2. Rbenefit[i] > benefit[i] > % implies that the number

of marked red vertices that become light_green is at least %, thus proving property 2.

References

[1] B. Awerbuch. Complexity of network synchronization. J. Assoc. Comput. Mach., 32:304-823,
1985.

[2] B. Awerbuch. A tight lower bound on the time of distributed maximal independent set algo-
rithms. Unpublished manuscript, February 1987.

[3] B. Awerbuch. Randomized Distributed Shortest Paths Algorithms. In Proc. 21th ACM Symp.
on Theory of Computing, page (to appear), 1989.

[4] B. Awerbuch and R. G. Gallager. A New Distributed Algorithm to Find Breadth First Search
Trees. IFEFE Trans. Info. Theory, 1T-33:315-322, 1987.

13

[5] R. Cole and U. Vishkin. Deterministic Coin Tossing and Accelerating Cascades: Micro and
Macro Techniques for Designing Parallel Algorithms. In Proc. 18th ACM Symp. on Theory of
Computing, pages 206-219, 1986.

[6] R. G. Gallager, P. A. Humblet, and P. M Spira. A Distributed Algorithm for Minimum-Weight
Spanning Trees. ACM Transactions on Programming Languages and Systems, 5:66-77, 1983.

[7] A. V. Goldberg and S. A. Plotkin. Parallel (A + 1) coloring of constant-degree graphs. Infor-
mation Processing Let., 25:241-245, 1987.

[8] A. V. Goldberg, S. A. Plotkin, and G. E. Shannon. Parallel Symmetry-Breaking in Sparse
Graphs. STAM J. Desc. Math., 1:434-446, 1989.

[9] M. Goldberg. Parallel Algorithms for Three Graph Problems. Technical Report 86-4, RPI,
1986.

[10] M. Goldberg and T. Spencer. A New Parallel Algorithm for the Maximal Independent Set
Problem. In Proc. 28th IEFFE Symp. on Foundations of Comp. Sci., pages 161-165, 1987.

[11] R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximal independent set
problem. In Proc. 16th ACM Symp. on Theory of Computing, pages 266-272, 1984.

[12] N. Linial. Distributive Algorithms — Global Solutions from Local Data. In Proc. 28th IEEE
Symp. on Found. of Comp. Sci., pages 331-335, 1987.

[13] M. Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. SIAM J.
Comput., 15:1036-1052, 1986.

[14] M. Luby. Removing Randomness in Parallel Computation without a Processor Penalty. In
Proc. 29th IEEFE Symp. on Found. of Comp. Sci., pages 162173, 1988.

14

