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ABSTRACT

The wireless industry is witnessng an volatile emergence today in present era.
Today's antenna systems demand \ersatility and unolbrusiveness. Operators are
looking for systems that can perform over several frequency bands or are
reconfigurable as the demands on the system changes. Some applicaions require the
antenna to be a miniaturized as posshle. Fractal plays a prominent role for these
requirements. Fractals have nonrintegral dimensions and their space filling capability
could be used for miniaturizing antenna size and their property of being self-simil arity
in the geometry leads to have antennas which have alarge number of resonant
frequencies. Fractal antennas also have Multiband performance is at hon-harmonic
frequencies. Fracta antennas have improved Impedance, improved SWR(standing
wave ratio) performance on a reduced physical area when compared to nonfractal
Euclidean geometries. Fractal antennas $how Compressed Resonant behavior. At
higher frequencies the Fractal antennas are naturally broadband. Polarizaion and
phasing of Fracta antenna is possble. In many cases, the use of fradal element
antennas can simplify circuit design. Often fractal antenna do rot require ayy
matching comporents to achieve multiband a broadband performance. Perturbation
could be applied to shape of fractal antenna to make it to resonate at different
frequency.

In this thesis Koch fractal, Sierpinski Triangle, Sierpinski Carpet ,Julia fractal
with dfferent iterations have been generated using MATLAB. Koch fractal of length
5.1c.m. with dfferent iterations as a monopade aitenna have been simulated using
MATLAB and EZNEC code which is a MININEC code, and show the desirable
advantages of fractal antennas. Different three iteration Koch fractal monopoles have
been studied for GSM900 and GSM1800 lands .The Koch mongpole exhibits
excellent performance at 925 MHz and 180Mhz and hes radiation properties nearly
identical to that of traditional, straight-wire monopoales at that frequency. The greaest



advantage of the Koch monopde design is compadness A size reduction d nearly
50% was achieved over the straight-wire, , A /4free-space monopde. This is highly
significant for applications such as GSM cellular phores. Since it is haf the size of
the traditional monopadle, it could easily be completely integrated within the ase of
the phorg, eliminating the protruding monopdes commonly seen on many cellular
phores. Since the radiation pettern is highly uniform and identicd to that of a
traditional A/4 monopde, it could be used in nearly any type of wireless
communications receiver. The very similar gain to the traditional A /4 monopde is
another benefit of the design. Anather beneficia of fradal antennasis fractal antennas
are in form of a PCB. Thus the Koch monopole presents an excellent, compact

solution to the traditional straight-wire monopde.
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Chapter-1
Introduction

1.1 Overview

The wireless industry is witnesdng an volatile emergence today in present era. Today’s antenna
systems demand versatility and unobtrusiveness. Operators are looking for systems that can perform
over several frequency bands or are reoonfigurable & the demands on the system changes.
Furthermore, aesthetics in the design of the systems are dways important Some gpli cations require the
antenna to be a miniaturized as possible. Fradal antennas have entered the view of many as a very
promising solution. Fradal antenna theory is a relatively new area However, fractal antennas and its
superset fractal electrodynamics is a state of affairs for research adivity. Although fradal geometry
has been known to mathematics for a century, frada antenna engineering reseach is arelatively very
recent development becaise considerable computing speed is required to complete their design.

In the reseach journals, we see reports of adive research covering such dverse aress of
Fractals use in antennafield and their advantages. Fradals are self-similar objeds and possessstructure
at all scades. Fractal geometries have found an intricate place in science & a representation of some of
the unique geometrical feaures occurring in neture. Fradal geometry was first discovered by Benoit
Mandelbrot as a way to mathematicdly define structures whose dimension can not be limited to whale
numbers.

Benoit Mandelbrot, the pioneer of classifying this geometry, first coined the term ‘fradal’ in
1975 from the Latin word fractus, which means broken. The field is quite extensive with many
applicaions from statistica analyses, natural modeling, compression and, of course, computer graphics
[1]. Soon after scientists discovered the pradicd asped of frada geometry, research began in the field
of eledrodynamicg2].To date most efforts have been concentrated in uncerstanding the physicd
process and mathematica badkground of interaction between eledromagnetic waves and fradal
structures.

These geometries have been used to charaderize structures in neture that were difficult to
define with Euclidean geometries. Examples include the length of a mastline, the density of clouds,
and the branching d trees. Just as nature is nat confined to Euclidean geometries, antennas and
antennas array designs sould not be @nfined, as well. In addition to having non-integer dimension,
fractals usually exhibit some form of self-similarity which means that they are composed only of
multiple cpies of themselves at several scales. These properties can be used to develop new
configurations for antennas and antenna arrays. It might be possible to discover structures that give us
better performance than any Euclidean geometry could provide. Fractals represent a dass of geometry
with very unique properties that can be enticing for antenna designers.

Fractals are space filling contours, meaning eledrically large features can be dficiently
packed into small areas [1]. Since the dectricd lengths play such an important role in antenna design,
this efficient padking can be used as a viable miniaturization technique. Fradals are structures of

infinite complexity with a self-similar nature. What this means, is that as the structure is zoomed in



upon, the structure repeats itself. This property could be used to design antennas that can gperate &
several frequencies.

Fracta antenna theory uses a modern (fradta) geometry that is a natural extension of
Euclidian geometry. A frada can fill the space occupied by the antenna in a more effective manner
than the traditional Euclidean antenna. This can lead to more dfedive coupling of energy from feeding
transmission lines to free space in lessvolume. Therefore, Fradals can be used in two ways to enhance
antenna designs. The first method isin the design of miniaturized antenna el ements. These can lead to
antenna elements which are more discrete for the end wser. The seaond method is to use the self-
similarity in the geometry to blueprint antennas which are multiband or resonant over severa frequency
bands. This would allow the operator to incorporate several aspeds of their system into one antenna.
Such antennas could be used to improve the functionality of modern wireless communication receivers
such as cellular handsets. Because frada antennas are more compad, they would more eaily in the
recaver package. Currently, many cellular handsets use quarter wavelength monopoles which are
esentially sedions of radiating wires cut to a determined length. Although simple, they have excdlent
radiation properties. However, for systems operating at 900 MHz such as GSM, the length of these
monopoles is often longer than the handset itself, posing a nuisance to the user. It would be highly
beneficial to design an antenna with similar radiation properties as the quarter-wavelength monopole
while retaining its radiation properties. Other prevailing trends in wireless communications technd ogy
could also benefit. More and more systems are introduced which integrate many technologies. They are
often required to operate & multiple frequency bands and so they require antenna systems which
acommodate that requirement.

Other applications included Fractal miniaturization of pasdve networks and components,
fractal filters and Resonatorg[3].A fractal element antenna, or FEA, is one that has been shaped in a
fractal fashion, either through bending a shaping a volume, or introducing holes. They are based on
fractal shapes such as the Sierpinski triangle. Mandelbrot tree Koch curve, and Koch idand. The
advantage of FEAs, when compared to conventional antenna designs, center around size and
bandwidth.

Thetheory of fradal antenna operationis geeped in mathematics, but in its most basic form, it
comes down to this: In order for an antenna to work equally well at al frequencies, it must satisfy two
criteria4]:

1.1t must be symmetricd about a point.

2.1t must be self-similar, having the same basic gppeaance at every scde.

Fradal satisfies above ndtions that is why it shows wideband and multiple resonant frequencies
behavior.
The advantages of fradal over conventional antennas are[4]:

» Size ca be shrunk from two to four times with surprising good performance.



» Multiband performanceis at non-harmonic frequencies.

> Improved Impedance Improved SWR(standing wave ratio) performance on a reduced

physical areawhen compared to nonfradal Euclidean geometries.
» Compressed Resonant behavior.
» At higher frequencies the FEA is naturaly broadband.
» Polarization and phasing d FEAs also are possble.
» In many cases, the use of fractal element antennas can simplify circuit design.
» Reduced construction costs.
> Improved reliability.
» Because FEAs are self-loading, no antenna tuning coils or cgpadtors are necessary.

» Often they do not require any matching components to achieve multiband or broadband

performance.

» Perturbation could be gplied to shape of fractal to make it to resonate & different frequency.

1.2 Objectives of thethesis

The objedives of the thesis are:
» To generate Koch fradal, Sierpinski Triangle, Sierpinski Carpet ,Julia frada for
different iterations using MATLAB.

» To generate aKoch fractal monopole of length 5.1c.m. of zero, one, two iterations
using MATLAB.

» Toplot frequency versus impedance plot of fractal monopole with zero , one ,two
iterations for showing the multiband behavior a non-harmonic frequencies of fradals

,and to show that with each iterations the number of resonant frequenciesincrease.

» To pot frequency versus Refledion coefficient of fradal monopole with zero , one

Jfwo iterations.



» To plot frequency versus SWR plot of fradal monopole with zero , one ,two

iterations to show the compressed resonant behavior of fractal antennas.
» To show improved SWR(standing wave ratio) performance
» Toplot radiation pattern of fractal mongpole with zero , one ,two iterations.
» To show the size reduction capabilities of fractals.
» Antenna miniaturization wsing Koch fractal for GSM900 band.

» Antennaminiaturization wsing Koch frada for GSM 1800 band.

1.3 Organization of thereport

In chapter-2, a brief overview of fractals, fradal basics ,types of fradals, generation process fradal
dimensions, properties ,fractals applicdion and fradals antennas, software simulators is mentioned
along with abrief overview of key reseach papersis given to introduce the aurrent state of research in
thisfield.

In chapter-3,various fradals and their multiband property, compressed resonant behavior ,improved
SWR performance ,antenna miniaturization capability is described. Results have been shown using
MATLAB and EZNEC codes.

In chapter-4 koch fradal antenna with three iteration for GSM900band is described. Results are
shown using MMANA code.

In chapter-5 koch fradal antenna with threeiteration for GSM1800 band is described. Results are
shown using MMANA code.

Finally in chapter 6, the mnclusion part of the thesis is outlined which is aresult of the iterative work
caried out on various fradal antennas

Chapter-2
Fractals

2.1 Fractal’s Definition:

According to Webster's Dictionary a fradal is defined as being "derived from the Latin fractus
meaning broken, uneven: any of various extremely irregular curves or shape that repea themselves at
any scde onwhich they are examined."

2.2 Basics of Fractals.

Althoughfradals are mainly discussed in mathematical forums, they exist in all parts

of nature. For example Mandelbrot [5] discusses the basics of frada theory as applied to the
characteristics of a coastline(see Figure 2). The length of a coastline depends on the size of the
measuring yardstick. As the yardstick we use to measure every turn and detail decreasesin length, the

coastline perimeter increases exponentialy. As the view of a coastline is brought closer, we discover



that within the aastline there lie miniature bays and peninsulas. As we examine the coastline on a
rescded map, we discover that each of the bays and peninsulas contain sub-bays and sub-peninsulas.
Thereis a self-similar trait observed as we look at the mastline & various resolutions. The number of
microscopic structures begin to approach infinity. In fact, because of the large number of irregularities,

the physicd length of a wastlineisvirtualy infinite.

o D N

Figure 2: Coastline of Britain[6]

These pictures represent an imaginary coastline of Britain. The red lines are rulers being used to
measure the length of the mastline (L). These rulers are of the length S. Using the first ruler we seethat
itL =2* S, When we deaease the length of S the number of timesthat Sis used increases. What these
rulers illustrate is that as the size of the measuring device bemmes smaller the acuracy of the
measurements become more and more acarate. From this fad we an assume that eventually we will
be able to get an exad measurement of the wastline. This datement is false. As we deaease the size of
the measuring device the length that we have to measure becomes greder. We can seethis by zooming
in on the mastline. Aswe get closer and closer we wil | notice that it looks very similar to how it looked
from a greater distance away. Only now we ae much closer. This observation show the self similarity
of the wastline. Therefore a we deaease the size of the measuring device the length of the mastline
will increase without limit. Thus, showing s its fractal nature. Self similarity (seen in the coast
example above) is defined by structures that look the same at variable magnifications. This reaurring
self-similarity is one of the many attributes of many fractals. Much like the mastline described above,
any small partin aself-similar fradal is going to look exadly like the fradal as a whole.

The example of coastline shows that the coastline has a dimension greder than 1 bu less than
2. The more wiggly the mastlineis, its dimensionis near to 2 How can a line have adimension more
than 1?.Imagine avery wigdly line that doubles back on itself and wanders around a lot(figure 2.1).
Such aline would eventually cover a shee of paper In other words it would be a "spacefilling curve".
Because it nealy fills a space (a plane with dmension 2) the line must have a dimension close to 2.

Figure 2.1:shows how lines following simple rules about how they wiggle anfill aspace.



Fractal geometries have found intricae placein science as a representation of some of the
unique geometrical feaures occurring in nature. Fradals are used to describe the branching of tree
leaves and dants , the sparse filling of water vapor that forms clouds, the random erosion that carves

mountain faces, the variability of coastlines and bark and many more examplesin nature.
2.3 Problem of defining dimensions:

The complexity of defining dimensions can be summarized in the following visualization depicted in
figure2.2 , of a microscopic fly flying towards a piece of paper[7].The fly starts out very far from the
object in figure 2.2(a),thus it appeas as a zro dmensiona speck. As the fly gets closer , in figure
2.2(b), the spedk begins to elongate into a one dimensional line. Upon flying over the line, in figure
2.2(c), thefly seesthat it is actually atwo dimensional plane. Flying even closer in figure 2.2(d). the fly
sees that the plane has a depth to it. as well , forming a three dimensiona prism ,followed by flying
closer till, sees only atwo dimensional plane . Finaly the fly flies into the pieceof paper, seeéngaone

dimensional network of fibers.

1 &

Figure 2.2:A fly flying towards a pieceof paper from very far away reveals the problem of defining

dimensionqg].

Therefore there is a need for a geometry that handles these situations better than Euclidean
geometry. Euclidean structures have whole number dimensions, such as one dimensional line or atwo
dimensional plane. Benoit Mandelbrot first defined the term “Fradal” meaning fractal dimensions in
1975 to handle geometries with dimensions that do not fall nedly into a whole number category. One
property of a certain class of fractals ( as shown in the example of coastline),is the unique property that
it can have an infinite length whil e fitting in finite volume. Fradals are structures of infinite complexity
with a self similar nature. This means that as the structure is zoomed in upon the structure repeés
.There never is a point where the fundamental building blocks are found. This is because the building
blocks themselves have the same form as the original object with infinite mmplexity in each one. An

example of thisin nature can be seeninafern, showninfigure 2.3.



Figure 2.3: A fernisacommon example of ageometry in nature that is easily modeled using fradal
geometry[8].

The entire fern has the same structure as ead branch. If the individual branches were zvomed

inupon, it isquite conceivable to imagine this as a completely separate fern with branches of its own.
Fractals are self similar under some change in scde ather strictly or Statisticdly. Strictly self
similar fradals do not change their appearance significantly when viewed under a microscope of
arbitrary magnifying power, where & for statistically self similar fradtals when a small portion of it is
seemingly but not exactly similar to the original fractal itself .Fradal objeds by definition , contain
infinite detail ,they contain the same degree of detail in eat part as is contained in entire objed , no

matter how many times sdion of it are enlarged[9].

2.4 Typesof Fractals:

Fractal come into two major variations[10]:

1.Detrminsitic fractal

2.Random fradal

The first category consists of those fradals that are composed of several scded down and rotated
copies of itself, such as Koch curve ,They are cdled Geometric fradals. Julia set dso fals in same
caegory. The whole set can be obtained by applying a nonlinea iterated map to all arbitrary small
sedion of it .Thus the structure of Julia set is arealy contained in any small fradion. They are clled
algebraic fradals. Hence both algebraic and geometric fractals are termed deterministic fractals. Since
the generation requires use of a particular mapping a rule which is repeaed reaursively over and over
again , They exhibit the property of strict self similarity. The second caegory (Random Fractals)
includes those fradas which have an additional element of randomness alowing for simulation of

natural phenomenon ,so they exhibit property of statisticd self similarity.

2.4.1 Geometric Fractals: The fradals of this classare visual. In two-dimensional case they are made
of a broken line (or of a surface in threedimensional case) so-cdled the generator. Each of the
segments which forms the broken line is replaced by broken line generator at corresponding scde for a

step of algorithm . Asaresult of infinite repeaing the steps geometricd fractal arises.
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Figure2.4: Construction processof the triad Koch curve[11]

The process of construction begins from the segment of single length (Fig.2.4). It is
zero generation d the Koch curve. Then each of section (one segment in zero
generation) is replaced by formative eement defined on thefig.2.4 asn=1. Asaresult
of the subgtitution we get the next generation of the Koch curve. There ae four
rectilinear sections 1/3 length when the first generation is. Thus, to produce the next
generation all of the sections of pervious generation are replaced by diminished
formative element. The curve of n-th generation is called prefractal when n is finite

quantity. When nisinfinite quantity the airveis considered afracta object. [11].

2.4.2 Algebraic fractals: Algebraic is the biggest classof fractals. They are created

by using norlinear processesin n-dimensional spaces.

2.4.3 Stochastic fractals: The stochastic fradals are got in the case iterate process
has accidental parameters. Using the way objects like natural can be aeated. Two-
dimensional stochastic fractals are used for designing surface of sea or relief
modeling. [12] .

2.5 Dimensions of Fractalg[6]: Ancther definition of Fractas is “A fractal is by
definition a set for which the Hausdorff-Besicovitch dmension strictly exceeds the

topologicd dimension.”



To understand the second definition we need to be able to understand the fractal
dimension. So first we have to look at understanding how to calculate the dimension

of an olject. Below we have three different objects.

1.Aswe can seethelineis broken into 4 smaller lines. Each of these linesis similar to the original line,
but they are dl 1/4 the scde. Thisisthe idea of self similarity.

2.The square below is aso broken into smaller pieces. Each of which is 1/4th the size of the original. In
this cese it takes 16 of the smaller piecesto crede the original.

3.As with the others the cube is also broken down into smaller cubes of 1/4 the size of the original. It
takes 64 of these smaller cubesto creae the original cube.

By looking at this we begin to see apattern:

4=4"

16 =472

64 =43
This gives usthe equation: N = S"D

Where N is the number of small pieces that go into the larger one, Sis the scale to which the
smaller pieces compare to the larger one and D is the dimension. We now have the tools to be able to
cdculate the dimension. Just solve for D in the previous equation. When we do this we find that the
Dimensionis:
D=IlogN/logS (2.1)

Thisdimensionisthe Hausdorff-Besicovitch dmension.



Fractal curves have infinite length in a finite square of R2[13]. To characterize the
topological properties of frada structures ,usual length measurement is not adopted. In 1919 Hardroff
introduced anew definition of dimension based on the size variation of sets when measured at
different scdegq[14]. Let S be anumber N(s) of balls of radius sto cover S. If Sisa set of dimension D,
with afinite length (D=1),surfacgD=2) or volume(D=3), then

N(s)=s™® 22
S0 D =-liminf M , Herelimitis s - 0 (2.3
log(s)

It may be ather finite or infinite. The ssimplest well known examples of fradal sets are koch
curve and triadic cantor set. The former is obtained by recursively dividing each segment of length | in

four segments of |/3. Each subdivision increases length by 4/3.The limit of these subdivisions is
therefore acurve of infinite length and its fradal dimension is D>1. We nead N(s)=4" balls of size

s=3 "to cover the whole curve, Hence
_log4
N(3™")=(3™") "3, (2.4)
One can verify that at any other scde s, the minimum number of balls N(s) to cover this curve
satisfies
log4
D =292 25
log3
as expected it has afradal dimension of between 1& 2.
Function y=F(x) iscdled fradal if itsplot isafradal set[15].

2.6 Generation process

There are severa techniques to develop and to produce fascinating images. Two

techniques popuarized by Mandelbrot’ s book are the

1.Koch construction
2. Function iterationin the complex domain.

Random fradals are generated by arandom process

2.6.1 Iterated Function Systems. The Language of Fractals. Any fradal has some infinitely
repeating pattern. When creaing such fradal, you would susped that the easiest way is to reped a
certain series of steps which creae that pattern. Instead of the word "reped” we use amathematical
synonym "iterate" and the processis cdled iteration.|FS (iterated function system) is another way of
generating fradals. It is based on taking a point or a figure and substituting it with severa other

identicd ones.



Iterated function systems (IFS) represent an extremely versatile method for conveniently generating a
wide variety of useful fractal structures [16]. These iterated function systems are based on the
application of a series of affine transformations, w, defined by[17]

BEEGERHE o

w(x, y) = (ax+by+e,cx+dy+ f) @.7)

where a, b, ¢, d, e and f are real numbers. Hence, the affine transformation, w, is represented by six

gl e

such that a, b, ¢, and d control rotation and scaling, while e and f control linear trandation.

or, equivalently, by

parameters

Now suppose we mnsider W, , W, ,........ W, as a set of affine linea transformations, and Let A be

the initial geometry Then a new geometry, produced by applying the set of transformations to the
original geometry, A , and colleding the results fromw, (A), W, (A),.....W, (A), can be

represented by
N
w(A) = Jw, (A) (2.9)
=1

where W is known as the Hutchinson operator [16]. A fractal geometry can be obtained by repeaedly

applying W to the previous geometry. For example, if the set A, represents the initial geometry, then

we will have

A =WA), A =WA) o A = WA (2.10)

An iterated function system generates a sequence that converges to afina image, A,, , in such away

that
1 1
Wl(x,y)=(§><+(0)y0,(0)+§y+0) (2.11)
1 1732 11732 1
W, (X, y) = (=X———y+—, X+=y+0 2.12
,(%,Y) (6 AT Y ) (212)
1 1732 1 1732 1 173
W. X, =(—x+ +—,——X+— + 2.13
s(y)(6 6y26 6y 62) (213
1 2 1
W4(><,y)=(§><+(0)y+§,(0)><+§y+0) (2.14)

W(A) = w, (A) Uw, (A) Uw, (A) Uw, (A) (219



wl i -"1 el

Figure 2.5: The standard Koch curve & an iterated function system (IFS)

0 NI SUND an UNIL Y s WO

[teration 1 Iteration 2 Iteration 3

ndBPNY s YN

Iteration 4
Figure2.6: Thefirst four stagesin the construction of the standard Koch curve via an iterated function
system (IFS) approach.
Thetransformationis applied for ead iteration to achieve higher levels of fractalizdtion.

W(A,) = A, (2.16)

Thisimageiscalled the dtrador of the iterated function system, and represents a"fixed point" of w.
Figure 2.6 illustrates the iterated function system procedure for generating the well-known
Koch fractal curve. In this case, the initia set, A, is the line interval of unit length, i.e,, A, ={ x : X
[J[0,1]). Four affine linea transformations are then applied to A, asindicated in Figure 2.5. Next, the
results of these four linea transformations are combined together to form the first iteration of the Koch

curve, denoted by A, . The second iteration of the Koch curve, A,, may then be obtained by

applying the same four affine transformations to A, ,. Higher-order version:; of the Koch curve are

generated by simply repeding the iterative process until the desired resolution is achieved. The first

four iterations of the Koch curve are shown in Figure 2.6 . We note that these curves would converge to
the atua Koch fractal, represented by A_, as the number of iterations approaches infinity[18].

Iterated function systems have proven to be a very powerful design tool for fradal antenna enginees.



This is primarily becaise they provide ageneral framework for the description, classfication, and
manipulation of fradals [17]. In order to further ill ustrate this important point, the iterated function
system code fix such dverse objects as a Sierpinski gasket and a fradal tree have been provided in
Figure 2.7 and Figure 2.8 respectively [16].

a b ¢c d4 e f
0.500 0.000 0.000 0.500 ' 0.000 0.000
0.500 0.000 0.000 0.500 :II}.SIIO' 0.000

0.500 0.000 0.000 0.500 ! 0.000 0.500

Figure 2.7: The iterated function system code for a Sierpinski gasket[16].
a b ¢ d | e f
0.195 -0.488 0.344 0.443 i0.4431 0.2452
0.462 0.414-0.252 0.361 ;0.2511 0.5692
-0.058 —0.07 0.453-0.111 1:“.59‘76 0.0969
0035 0.07 -0.469 -0.022 | 0.4884 0.5069

-0.637 0.0 0.0 l}.SGII 0.8562 0.2513

Figure 2.8: Theiterated function system code for afradal tree[16].

The basic principle of construction of the triadic Koch curve ansists of reaursively repladng the
edges of an arbitrary polygon (Initiator) by an gpen polygon (generator)
, reduced and displacel so as to have the same end points as thaose of interval being replacel. The

amount of detail included in final display of curve depends on the number of iterations performed and



the resolution of display system. Figure 2.9 shows initiator polygon ,generator polygon and the final

curve after successve iterations.

Figure 2.9(a):initiator Figure2.9(b):Generator

Figure2.9(c):Fina curve

2.7 Why Fractals are space filling geometries:

Euclidean geometries are limited to points, lines, sheets & volumes, Fradal include geometries that fall
in between these distinctions .Therefore, a fractal can be line that approaches a sheet. These space
filling properties lead to curve that are dedricaly very long [19] , but fit into a compad physica
space. This property leads to miniaturization of antenna elements. Fradals could be used to define the
spacing in arrays for thinning or to define radiation pattern [20].

With successive iteration the length of koch increases by 1/3 of the original length.

Length of koch after nth iterations :
—_ n
I, =1,(4/3) (2.17)

where |, andl, are the length after nth iteration and original length(without any iteration)

respedively.
For Sierpenski Triange with each iteration the aea of the holes and circumference of solid
pieces changes. If the aeaof original triangleis 1, then first iteration removes ¥4 of the aea, second

iteration removes a further 3/16 and third iteration 9/64.

Then total area removed after the Nth iteration

A, =13Y " (3/4) (219



A, =1 (2.19)
If circumference of origina triangle is 1, then after first iteration the drcumference increases by 1/2.

After seconditeration it increases by ¥4, after Nth iteration
N .
C, =1+1/ 3Z (3/2)' (2.20)
and C, = (2.21)

This means gasket has no area but boundary is of infinite length.Figure2.10 shows how with eath

iteration the area of holes and circumference .

Figure Area Perimeter

A(): 3:]”(3)/4 Po =3
P, =3+3(1/2)
Al =3/4 Ao
=3+3/2

P,=3+3/2+3*3*1/4

A, = (3/4)2 A
2= (34 Ao =3+3/2+9/4

P;=3+3/2+9/4+9*3*1/8

As=(3/4)% A,
=3+3/2+9/4+27/8

24 o

Stage n AL=(314)" A Po=3+32+..+(3/2)"

) o infinity
Sierpenski Triangle 0 ) ) )
(geometric serieswith r > 1)

Figure2.10:Different iteration of Gasket and veriation of area and circumference[21]

2.8 Fractalsin nature and Applications:

Fradals are nat just complex shapes and retty pictures generated by computers.
Anything that appears randam and irregular can be afracta. Fractals permeate our
lives, appearing in places astiny as the membrane of a cell and as majestic as the solar
system. Fractals are the unique, irregular patterns left behind by the unpredictable



movements of the dhaotic world at work. In theory, one @n argue that everything

existent on thisworld isafradal[22].

* theleavesin trees,

+ theveinsinahand,

e water swirling and twisting aut of atap,

e apuffy cumulus cloud

» tiny oxygen molecule, or the DNA moleaule,
» thestock market

Fractals have more and more gplicaionsin science
Astronomy

Fractals will maybe revolutionize the way that the universe is sen. Cosmologists usualy
assume that matter is gpread uniformly acoss pace But observation shows that this is not true.
Astronomers agree with that assumption on "small" scdes, but most of them think that the universeis
smooth at very large scdes. However, a dissident group of scientists claims that the structure of the
universeisfractal at all scales.
Nature

Take atree, for example. Pick a particular branch and study it closely. Choose abundle of
leaves on that branch. All three of the objeds described - the tree the branch, and the leaves - are
identicd. To many, the word chaos suggests randomness, unpredictability and perhaps even messness.
Weaher is a favorite example for many people. Forecasts are never totally accurate, and long-term
forecasts, even for one week, can be totally wrong. This is due to minor disturbances in airflow, solar
heating, etc. Each disturbance may be minor, but the change it creae will incresse geometricdly with
time. Soon, the weaher will be far different than what was expeded. With fradal geometry we an
visually model much of what we witness in nature, the most recogrized being coastlines and
mountains. Fradals are used to model soil erosion and to analyze seismic patterns as well.
Computer science

Actualy, the most useful use of fradalsin computer science is the fradal image compression.
Thiskind of compresson uses the fact that the red world iswell described by frada geometry. By this
way, images are cmpressed much more than by usual ways (e.g.: JPEG or GIF file formats). An other
advantage of fradal compression is that when the picture is enlarged, there is no pixelisation. The
picture seems very often better when its sizeis increased.
Fluid medhanics

The study of turbulence in flows is very adapted to fractals. Turbulent flows are chaotic and
very difficult to model corredly. A fradal representation of them helps enginees and physicists to
better understand complex flows. Flames can aso be simulated. Porous media have avery complex
geometry and are well represented by fractal .Thisis actually used in petroleum science.

Surfacephysics



Fractals used to describe the roughness of surfaces. A rough surface taraderized by a
combination of two different fractals.
Medicine
Biosensor interadions can be studied by using fradals.
Telecoommunications

A new applicaion is fradal-shaped antenna that reduce greatly the size and the weight of the
antennas . The benefits depend onthe fradal applied, frequency of interest, and so on. In genera the
fractal parts produces 'fractal loading' and makes the antenna smaller for a given frequency of use.
Practical shrinkage of 2-4 times are redizable for acceptable performance Surprisingly high

performanceis attained.

2.9 Fractalsas Wire Antenna Elements

A fradal can fill the spaceoccupied by the antenna in a more effedive manner than the traditional
Euclidean antenna. This leads to more dfective mupling of energy from feeding transmisson lines to
free space in less volume. Fractal loop and fradal dipole wire radiators are contrasted with linear loop
and dipole antennas, fractals effedively fills the space ad because of fradal dimensions allows

antenna miniaturization.. Frada antennas do not need to be limited to ony wire antennas.

2.10Fractal Loop Antennas

The spacefilling abiliti es of fradals fed as loop antennas can exhibit two benefits over Euclidean
antennas. The first benefit is that the increased space-filling ability of the fradta loop .means that more
electricd length can be fitted into a smaller physicd area The increased electricd length leads to a
lower resonant frequency, which effedively miniaturizes the antenna. The second benefit is that the
increased eledricd length can raise the input resistance of aloop antennawhen it is used in a frequency
range & a small antenna. It can be shown that the resistance increase resulting from the increased wire
length for a material with a finite cnductivity is insignificant in relationship to the miniaturization o
the antenna. Miniaturizaion of a loop antenna is possible using fradals. [23]. Here, it was observed
that the resonant frequency of the loop decreased as the generating iterations were increased[24].

2.11 Fractal antennas are Wideband :

Fractal antennas $how multiband a log periodic behavior that has been attributed to self similar scde
fador of the antenna geometry. Fractal loop shows improved impedance and SWR performance on a
reduced physical area when compared to non fradal Euclidean geometries. Sierpenski Gasket
monopole aitenna demonstrates a log periodic resonant property . Although fradal structure from these
mathematical function could provide attradive multiband performance ,it is clea that such geometry
could be modified to enhance their applicaion .Perturbation eff ectively varies the structural properties
and hence éectrical properties. In order to enable more operating bands within lower spedrum , a
higher scaling fador is required.

Fractal antenna Represents a dassof eledromagnetic radiators where the overall structure is comprised
of a series of repetition of a single geometry and where repetition is at different scale . Compressed
resonant behavior is exhibited by Frada antennas.



2.12 Fractal Patch Antennas
It has also been found if fradals can be used to miniaturize patch elements as well as wire elements.

The same aoncept of increasing the electrical length of aradiator can be applied to a patch element.

2.13 Fractal Frequency Seledive Surfaces

Fractals, which are amodern development of geometry that define a ¢assof objeds, can be aeaed
using an iterative methodology [25]. A fractal starts as a ssimple geometry. A linea transformation,
usudly involving copying, scaling, and trandation, is applied to this gructure. The transformation is
then applied again to the eitire resulting structure. The fradal is generated by repeating this
methodology an infinite number of times while a pre- fractal is the resulting structure if the iterative
processis truncaed after a finite number of times. The manufacurable fradal objeds themselves must
result from a truncated generation process and therefore ae referred to as pre-fractals to be more
predse. These pre-fractals, which contain many scaled versions of the original simple geometry, can be
investigated as a frequency seledive surface (FSS). A frequency seledive surfaceis a planar periodic
structure that has a frequency response to radiation passed through it that correlates to the spadng of
the dements. Radiation is either allowed to transmit through or blocked depending on the retransmitted
phase of the radiation from the excited elements with the same underlying fundamental principles as
array theory. A frequency seledive surface has a signature that, in general, is dependent on the
frequency of the incident wave, the incident angle, and the incident polarizetion. A common FSS
example is the mesh screen on the door of a microwave oven. The mesh screen blocks eledromagnetic
radiation from the inside of the microwave oven while dlowing the operator to see inside safely.
Several iterations of the fradal can be used to design an FSS that has a multiband frequency response
that correlates to the scdes of the geometry that is present in the structure.
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Figure 2.11 Three types of fractals that are used as dipoles, including a Koch curve, afradal tree, and a
three-dimensiona fractal tree The first five growth iterations are shown, along with the cmmon
linea-dipole initiator for al three fradals.

2.14 Fractal Dipole Antennas:

An interesting study of the space-filling properties of fractal antennas could be extended to dipole
antennas also. Three types of fradals are shown as dipoles. They are depicted in Figure2.11 for the
first six stages of growth. They included a Koch curve, a fractal treg and a threedimensiona fradal
tree The starting structure for each dof the fradals is the same dipole aitenna. The Koch dipole has been
extensively analyzed in [26, 27]. Also, aversion of atreefradal has been studied in [28]. As mentioned
in the previous fdion, the Koch curveis generated by repladng the middle third of ead segment with
two sides of an equilateral triangle. The resulting curve is comprised of four segments of equal length.
As cdculated above, the fradal dimension of the Koch curve is 1.2619.

2.15 Antenna Miniaturization using Koch Fractal:

The use of fractal antenna tedhniques, is to reduce the size of UHF linea dipoles, monopoles. To be an
efficient radiator an antenna size must be an appredable portion

of a wavelength Therefore the antenna that operate at low frequencies are physically very large. This
large sizehinderstheir integrationinto smaller hand held communication equipments.

When the size of antenna is made smaller than the operating wavelength, it becomes highly
inefficient .Its radiation resistance deaeases while proportionally the readive energy stored in the
antenna neighborhood rapidly increases. Both phenomenon make small antenna difficult to match to
the feeding circuit and when matched they display a high Q i.e. avery narrow bandwidth.

Using fradds the processis attradive because of the potential to produce smaller elements
without sacrificing bandwidth or efficiency .Fradal antenna represent a dass of eledromagnetic
radiators where the overal structure is comprised of a single geometry and where repetition is at

different scdes.



Fractal structures may provide size reduction and bandwidth enhancement. Elements size
reduction may include the alded length attributed to meandering of conductor and readive loading
.The alded bandwidth expected from frada element is generaly attributed to fact that resulting
structure aconsists of many scded self similar “cdl s’ or building blocks.

With each iteration the effedive length of Koch antenna increases by 1/3 of the previous
length.l, =1,(4/3)" ,where | is length after nth iteration , |, is initia length or length at 0"

iteration. Therefore if we use Koch as monopole with ead iteration the resonant frequency should
decrease, but Resonant frequency of a Koch monopole does not decrease at the same rate as the wire
length increases.. In fact, the reduction fador in the resonant frequency of the Koch antenna as the
iteration rumber increases tends monotonicdly to one. A high degreeof coupling between parallel wire
segments with opposite current vectors causes a significant reduction in the dfedive length of the total

wire, and therefore increases the resonant frequency [29].

ﬁ

Figure 2.12:Shortcouts
2.15.1 Hypothesig[30]: The observed behavior is due to the @mupling between sharp angles at curve
segment junctions. These angles radiate asphericd wave with phase center at the vertex (Fig. 2.12).
Each ange not only radiates, but also receéves signal radiated by the other angles. As a mnsequence,
part of the signal does nat foll ow the wire path, but takes “shortcuts’ that start at a radiating angle (Fig.
2.12). The length of the path traveled by the signal is, therefore, shorter than the total wire length. The
higher number of iterations in the Koch antenna, the more angles it has and the doser to ead other
they are, so the more signal takes shortcuts and the less signal follows the whole curve path. For that
reason, adding new iterations to a highly-iterated antenna does not reduce the resonant frequency,
since the path followed by the signal -taking shortcuts- is not longer, athough the curve length

increases.

2.16 Simulation M ethod and Software Simulators:

There ae a number of commonly avail able software packages which alow the ssimulation of antenna
parameters. Some of the best known are SONNET, XFDTD, HFSSand various padages based on the
NEC2 code. XFDTD and HFSS are excdlent professional design tools which offer a grea ded of
simulation flexibility and analysis options. Unfortunately, evaluation a academic versions of these

programs are not offered . SONNET, however, is offered as a fedure-limited evaluation padkage. It



uses the MoM technique to simulate 2D surfacesincluding traces on dieledric layers, which is esential
for microstrip antenna modeling. The software is user-friendly and with some dfort it can be used to
model redistic structures despite the feaure limitations. Software based on the NEC2 code is fredy
avail able. NEC2 uses 1D MoM, which allows modeling of wire structures. Thisis ided for modeling
free-space aitennas such as arrays of dipoles. Although not as user-friendy as SONNET, NEC2 is
more flexible and dffers more analysis options. The mmputational technique used to investigate the
properties of fradal antennas utilizes the moment method. The geometry of the pre- fractal is first
mathematically defined either by hand or using recursive loops in Matlab. The geometry is then fed
into a moment method code EZNEC code or MMANA code which are different versions of
NEC(numericd eledromagnetic code) . The modeling processis smply done by dividing al straight
wires into short segments where the arrent in one segment is considered constant along the length of
the short segment. These codes lve for the surface currents generated on perfedly conducting
surfaces or thin wires or combinations of both. From these currents, the far field patterns and input

impedances can be determined.

Chapter-3
Simulation of Koch Fractal Antenna

Koch curve, Sierpinski Triangle, Sierpinski Carpet ,Julia fradal were simulated using Matlab.
Simulation results are shown below. To demonstrate the behavior of frada antenna, a Koch fradal
monopole aitenna of 5.1c.m. length and with wire radius 0.1m.m.,up to two iteration has been
simulated. Koch frada with zero, one and two iterations has been generated by Matlab and simulated
using EZNEC code. EZNEC is based upn the method of moments in which the dedromagnetic
interadions between wire segments can be anayzed. From this program, the impedance, radiation
patterns, gain, front to badk ratio and VSWR are obtained and have been plotted using Matlab.

Figure 3.1 shows Koch curve for different iterations,3.1(a) shows Koch curve for zero iteration,3.1(b)
Koch curve for one iteration, 3.1(c) Koch curve for two iteration, 3.1(d) Koch curve for three iteration,
with each iteration the length of Koch increases by one third of its previous length.

Figure 3.1(a)
Koch curve with

zero lteration




Figure 3.1(b) Koch curve with oneiteration

Figure 3.1(c) Koch curve with two iterations

Figure 3.1(d) Koch curve with threeiterations



Figure3.2 shows Sierpinski triangle for different iterations, 3.2(a)shows Sierpinski triangle for zero
iteration, 3.2(b) shows Sierpinski triangle for one iteration, 3.2(c) shows Sierpinski triangle for two

iteration.

Figure 3.2(a) Sierpinski triangle for zero iteration

Figure 3.2(b) Sierpinski triangle for one iteration

Figure 3.2 (c) Sierpinski triangle for two iteration.
Figure3.3 shows Sierpinski Carpet for different iterations., 3.3(a) shows Sierpinski Carpet for zero
iteration, 3.3(b) shows Sierpinski Carpet for ore iteration, 3.3(c) shows Sierpinski Carpet for two
iteration.



Figure3.3(a) Sierpinski Carpet for zero iteration

Figure 3.3(b) Sierpinski Carpet for one iteration

Figure 3.3(c) Sierpinski Carpet for two iteration

Figure 3.4 shows different examples of Juliafradal.
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Figure 3.4(a)

Figure 3.4(b)

Figure 3.5(a) shows draight monopole of length 51c.m. with zero iteration erected over a perfed
ground. 3.5(b) shows Koch fradal monopole of length 51c.m. with ore iteration ereded ower a
perfed ground. 3.5(c) shows Koch fradal monopole of length 5.1c.m. with two iteration ereded over
aperfect ground



Figure3.5(a): Straight Monopole(K0) of 5.1c.m.length ereded over a perfed ground

Figure 3.5(b): Koch fractal monopole of length 5.1c.m. with oreiteration ereded ower a perfect
ground.

Figure3.5(c): Koch frada monopole of length 5.1c.m. with two iteration ereded over a perfed
ground.

Figure 3.6(a) graph shows the frequency versus impedance plot for 5.1c.m.long Koch fradal monopole
with zero iteration 3.6(b)graph shows frequency versus impedance plot for 5.1c.m. long Koch fractal
monopole with ore iteration 3.6(c)graph shows frequency versus impedance plot for 5.1c.m. long
Koch fradal monopole with two iteration, as we increase the iterations number of resonant frequency
increase, is obvious from the graphs that as iterations is increased the number of times Imaginary part

of impedance becomes zero increases. This demonstrates that as number of iteration increases , more



and more resonant frequency are there leading to a multiband antenna. This is due to the coupling
between the wires. As more contours and iterations of the fradal are alded, the coupling becomes more

complicated and diff erent segments of the wire resonate at diff erent frequencies.
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Figure 3.6(a):frequency versus impedance plot for 5.1c.m. long Koch fractal monopole with zero
iteration



frequency versus impedance
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Figure 3.6(b) :frequency versusimpedance plot for 5.1c.m. long Koch fradal monopole with one
iteration
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Figure 3.6(c) :frequency versusimpedance plot for 5.1c.m long Koch fradal monopole with two

iterations



Figure3.7(a):graph shows frequency versus Refledion coefficient plot for 5.1c.m. long Koch fradal
monopole with zero iteration, Figure3.7(b):graph shows frequency versus Refledion coefficient plot
for 5.1c.m.long Koch fradal monopole with ore iteration Figure3.7(c):graph shows frequency versus
Refledion coefficient plot for 5.1c.m.long Koch frada monopole with two iteration, from graphs ,
observation is that as iteration is increased, the reflection coefficient becomes favorable at more

frequencies.
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Figure3.7(a):frequency versus Refledion coefficient plot for 5.1c.m. long Koch fractal monopole with
zero iteration
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Figure3.7(c):frequency versus Refledion coefficient plot for 5.1c.m.long Koch fractal monopole with

two iterations



Figure3.8(a):graph shows frequency versus SWR plot for 5.1c.m. Koch fractal monopole with zero
iteration, Figure3.8(b):graph shows frequency versus SWR plot for 5.1c.m. Koch fractal mongpole
with one iteration, Figure3.8(c):graph shows frequency versus SWR plot for 5.1c.m. Koch fradal
monopole with two iteration, graph shows that as we increase iteration the resonant behavior becomes

more and more compressed.
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Figure3.8(a):frequency versus SWR plot for 5.1c.m. long Koch fradal monopole with zero iteration
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Figure3.8(b):frequency versus SWR plot for 5.1c.m.long Koch fradal monopole with one iteration
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Figure3.8(c):freguency versus SWR plot for 5.1c.m. longKoch fradal monapole with two iteration

Figure3.9(a): figure shows Elevation plot of total field for 5.1c.m. Koch fractal mongpole with zero

iteration, Figure3.9(b): figure shows Elevation plot of total field for 5.1c.m. Koch fractal mongpole

with one iteration, Figure3.9(c): figure shows Elevation pot of total field for 5.1c.m. Koch fradal



monopole with two iteration Figure 3.9(d):Azimuthal plot of total field for Koch fractal Monopole. It
is interesting to note that for the E-plane radiation pattern, the fradal antenna aso has a null at 90
degrees. Thisis due to the symmetry of the fradal and the dedric and magnetic fields cancelled in this
direction. Due to the symmetry of the fractal antenna at resonance, the dedric and magnetic fields are
added and cancelled in the far field to give a symmetrical pattern. It is also interesting to note that the
fractal antenna has dightly less gain than the straight monopole. This is due to the fad that the fradal

antenna is dightly lessefficient than the straight monopole.

0dB--. ..

Figure3.9(a): Elevation plot of total field for 5.1c.m. long Koch fraca mongpole with zero iteration
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Figure3.9(b): Elevation plot of total field for 5.1c.m. long Koch fractal monopole with ore iteration

-0dB- -

Figure3.9(c): Elevation plot of total field for 5.1c.m. long Koch frada monopole with two iteration



Figure 3.9(d):Azimutha plot of total field for Koch fradal Mongpole

Figure 3.10(a):Graph shows variation of resonant frequency of Koch frada antenna with ead
successve iteration and for Euclidean monopole of same length, Figure 3.10(b) shows the same in
Tabular form. From the graph and table it is observed that ,Resonant frequency of Koch monopole does
not deaesse & the same rate as the wire length increases . Infed the reduction fador in resonant
frequency of the Koch antenna & the iteration number increases tends monotonicaly to ore. High

degree of coupling between parallel wire segment with opposite current vector causes a significant



reduction in effedive length of total wire and therefore increases the resonant frequency. This can be a
limitation for the fractal antenna. After 5 iterations of the fradal, there was very little benefit in

reducing the resonant frequency.
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Figure 3.10(a): Graph shows variation of resonant frequency of koch fractal antenna with each
successve iteration and for Euclidean monopole of same length

Antenna | Effective | Resonant Frequency (MHZz)from
length Freq.(MHz) from | Quarter-wavelength
programme Effective length
KO 5.1 1400 1400
K1 6.8 1170 1102
K2 9.06 1030 827

Table 3.10(b):Table to demonstrate how resonant frequency decreases as iteration increases.

Table 3.11(a), 3.11(b), 3.11(c) shows red and imaginary part of Impedance SWR Refledion

coefficient for different frequencies for Koch antennawith zero, one and two iterations respedively.



Freq.(MHz) | Impedance | Impedance | SWR | Refledion

(Real) (imaginary) coefficient
600 9.446 -810.9 >100 0.9986
1100 35.97 -224.9 30.2 0.9359
1250 49.24 -110 6.76 0.7424
1350 60.15 -38.21 2.03 0.3391

1400 66.35 -3.114 1.33 0.143

1450 73.14 3174 1.89 0.3089
1550 88.77 101.4 4.43 0.6317
1800 145.2 284.4 14.3 0.8695
2400 649.7 937.5 40.1 0.9513
3000 1751 -1530 61.8 0.9681
3600 129.4 -606.3 59.8 0.9671
4200 929 -91.3 3.94 0.5949
4350 118 6.975 2.37 0.4066
4500 156.7 101.6 4.55 0.6397
5000 454.4 383.7 15.6 0.879%
5700 1125 -311.3 24.2 0.9207
6000 680.9 -616.7 24.8 0.9225

Table 3.11(a): For 5.1c.m.long Koch fradal monopole with zero iteration

Freq. | Impedance | Impedance | SWR | Reflecion
(Mhz) (Real) (Imaginary) Coefficient
600 4.615 -324 >100 0.9957
1050 17.74 -52.44 6.11 0.7187
1100 20.19 -29.27 3.44 0.5493
1150 22.95 -6.434 2.22 0.37%
1600 75.43 218.3 14.7 0.873
2000 333.9 591.8 27.8 0.9305
2300 1750 75.81 35.1 0.9446
2900 62.22 -311 33.1 0.9414
3050 40.22 -202.5 224 0.9146
3350 38.03 -42.41 2.64 0.4509
3400 41.17 -19.08 1.58 0.2257
3450 45.27 3.864 1.14 0.06403
3550 56.67 49.21 2.46 0.4228
4000 207.8 259.4 10.8 0.8302
4750 443 -299.3 12.9 0.8565
5400 115.6 -100.7 4.27 0.6202
5700 101.9 -0.1355 2.04 0.3416
6000 125.3 97.39 4.18 0.6319

Table3.11(b): For 5.1c.m long Koch fradal monaopole with One iteration



Freg. | Impedance | Impedance | SWR | Refledion
(Mhz) (Real) (Imaginary) coefficient
500 2.803 -342.6 >100 0.9977
920 12.68 -55.35 8.92 0.7984
1000 16.31 -13.73 3.32 0.5372
1040 18.51 7.053 2.76 0.4686
1220 33.19 106.3 8.87 0.7973
1750 481.4 796 36 0.946
2040 758.1 -1080 46 0.9574
2700 18.57 -139.9 24.1 0.9204
2920 19.15 -28.98 3.59 0.5645
2980 21.8 0.7628 2.29 0.3929
3080 29.25 52.24 3.93 0.5941
3560 314.8 469.2 20.4 0.9065
4360 84.29 -211.5 12.8 0.8553
4720 57.09 -45.27 23 0.3941
4820 59.76 -3.886 121 | 0.09566
5040 82.95 95.97 4.25 0.6188
5620 933.4 113 18.7 0.8983
6000 141.1 -325.9 18.2 0.8957

Table 3.11(c): For 5.1c.m.long Koch frada monopole with two iterations

From the tables 3.11(a),3.11(b),3.11(c),it is apparent that as iterations increase, the resonant
frequencies for antenna increases, means antenna shows multiband performance With each iteration
resonant behavior gets more axd more @wmpressed, and SWR and refledion coefficients becomes

favorable & more frequencies.



Chapter-4
Fractal Antennain GSM 900

GSM900 operates at frequency range 890-915Mhz. for uplink communication and 935-960Mhz. for
downlink communication. A monopole on a perfed ground having resonance & 925Mhz is required.
and the length of straight wire monopole required is 8.1c.m., But this length will be very large in
comparison to the dimensions of handset. By using a threeiteration Koch, the length o monopole
required is 3.41c.m.(from equation 217) to provide dfective height of 8.1c.m., but due to the coupling
effed described in cgpter-2 , Koch of length 4.1c.m.of three iteration on a perfed ground with source at
bottom end is used. Radius of wire has been taken 0.1m.m.With radius 0.1m.m. the atenna has
bandwidth(SWR<2) 21Mhz ,which is very less to cover 900Mhz band ,by increasing wire radius
,bandwidth could be increased. By taking radius 6.8m.m. bandwidth(SWR<2) increases up to 71Mhz.
which covers the whole 900Mhz band, and provides a gain of 4.9db. Using Matlab a Koch with three
iterations 4.1c.m long . has been generated and wising MM ANA code which is a MININEC code,
antenna is simulated. The Koch monopole exhibits excellent performance & 925 MHz and has
radiation properties nealy identicd to that of traditional, straight-wire monopoles at that frequency.
The radiation pattern is very uniform in al directions The greatest advantage of the Koch monopole
design is compactness A size reduction of nealy 50% was adchieved over the straight-wire, |,
A [ 4free-space monopole. This is highly significant for applicaions sich as GSM cdlular phones .
Since it is half the size of the traditional monopole, it could easily be mmpletely integrated within the
case of the phore, eliminating the protruding monaopoles commonly seen on many cdlular phones.

Simulation results are shown below.

Figure 4.1 shows Koch of length 4.1c.m. of three iterations with source at bottom on a perfed ground
of wire radius 0.1m.m.



Figure4.1: Threeiteration Koch of length 4.1cm.with source & bottom on a perfed ground.

Figure 4.2 to 4.9 shows the results given by MM ANA code, that gives frequency versus impedance
plot, frequency versus gain and front to badk ratio plot , frequency versus SWR plot, azmuthal and
elevation plot of radiation pattern. SWR has been taken for 50 ohm feeding impedance. Figure 4.2 to
4.9 shows these results for different values of radius, for radius 0.1m.m., Im.m., 2m.m.,3m.m. ,4m.m.
,5m.m. , 6m.m. , 6.8m.m., It has been observed that with increase in radius of antenna the bandwidth of
antenna increases, gain remains amost same, radiation pattern also remains same.Figure4.9 shows the
results of antenna with radius 6.8m.m. this antenna is having gain of 4.9db ,front to badk ratio Odband
bandwidth 71Mhz.

Figure 4.2(a)shows the Frequency versus Impedance plot and figure 4.2(b)shows frequency versus gain
and frequency versus front to back ratio for the Koch fradal antenna of three iterations of length

4.1c.m. with radius 0.1m.m.
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Figure 4.2(a): Frequency versus Red and Imaginary part of impedance plot for radius 0.1m.m.
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Figure 4.2(b):Frequency versus Gain and front to bad ratio Plot for radius 0.1m.m.

Figure 4.2(c)shows the Frequency versus SWR plot and figure 4.2(d)shows Azimuthal and Elevation

plot of radiation pattern for Koch fradal antenna of three iterations of length 4.1c.m. with radius
0.1m.m.
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BW11803.2 KHz(SWHR<1.5) match freq: 925.0
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Figure 4.2(c): Frequency versus SWR plot for radius 0.1m.m.

4.9(dBi) = 0dB

Figure 4.2(d): Azimuthal and elevation gdot of Radiation Pattern

Figure 4.3(a)shows the Frequency versus |mpedance plot and figure 4.3(b)shows frequency versus gain
and frequency versus front to back ratio for the Koch fradal antenna of three iterations of length

4.1c.m. with radius Im.m.
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BO.0 ffo: 1492 36k 10.0
R Jx
50.0 0.0
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300 -20.0
917.000 921.000 826.000 929.000 933.000
Figure 4.3(a): Frequency versus Red and I maginary part of impedance plot for radius Im.m.
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917.000 921.000 925.000 929.000 833.000

Figure 4.3(b): Frequency versus Gain and front to bad ratio Plot for radius 1m.m.

Figure 4.3(c)shows the Frequency versus SWR plot and figure 4.3(d)shows Azimuthal and Elevation

plot of radiation pattern for Koch fradtal antenna of threeiterations of length 4.1c.m. with radius Im.m.
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EWvi34107.3 KHz(SWR<2.0)
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MR
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917.000 921.000 925.000 925.000 933.000

Figure 4.3(c): Frequency versus SWR plot for radius Im.m.

4.9(dBi) = 0dB

Figure 4.3(d): Azimuthal and elevation got of Radiation Pattern

Figure 4.4(a)shows the Frequency versus Impedance plot and figure 4.4(b)shows frequency versus gain
and frequency versus front to back ratio for the Koch fradal antenna of three iterations of length

4.1c.m. with radius 2m.m.
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50.0 0.0
40.0 -10.0
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917.000 921.000 925.000 929.000 933.000

Figure 4.4(a): Frequency versus Red and Imaginary part of impedanceplot for radius 2m.m.

51 0.38

50 018
G FE

49 -0.0z

48 -0.22

47 -0.42

917.000 921.000 925.000 929.000 933.000

Figure 4.4(b): Freguency versus Gain and front to bad ratio Plot for radius 2m.m.

Figure 4.4(c)shows the Freguency versus SWR plot and figure 4.4(d)shows Azimuthal and Elevation

plot of radiation pattern for Koch fradtal antenna of threeiterations of length 4.1c.m. with radius 2m.m.
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Figure 4.4(c): Frequency versus SWR plot for radius 2m.m.

4.9(dB) = 0dB

Figure 4.4(d): Azimuthal and elevation pot of Radiation Pattern

Figure 4.5(a)shows the Frequency versus |mpedance plot and figure 4.5(b)shows frequency versus gain
and frequency versus front to back ratio for the Koch fradal antenna of three iterations of length

4.1c.m. with radius 3m.m.
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40.0 -10.0

30.0 -20.0
517.000 921.000 925000 525.000 933.000
Figure 4.5(a): Frequency versus Red and Imaginary part of impedanceplot for radius 3m.m.
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Figure 4.5(b): Frequency versus Gain and front to bad ratio Plot for radius 3m.m.

Figure 4.5(c)shows the Frequency versus SWR plot and figure 4.5(d)shows Azimuthal and Elevation

plot of radiation pattern for Koch fractal antenna of three iterations of length 4.1c.m. with radius 3m.m.
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Figure 4.5(c): Frequency versus SWR plot for radius 3m.m.

4.9(dBi) = 0dB

Figure 4.5(d): Azimuthal and elevation gdot of Radiation Pattern

Figure 4.6(a)shows the Frequency versus |mpedance plot and figure 4.6(b)shows frequency versus gain
and frequency versus front to back ratio for the Koch fradal antenna of three iterations of length

4.1c.m. with radius 4m.m.
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Figure 4.6(a): Frequency versus Red and I maginary part of impedance plot for radius 4m.m
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Figure 4.6(b): Frequency versus Gain and front to back ratio Plot for radius 4m.m.

Figure 4.6(c)shows the Freguency versus SWR plot and figure 4.6(d)shows Azimuthal and Elevation
plot of radiation pattern for Koch fradal antenna of three iterations of length 4.1c.m. with radius 4m.m.
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Figure 4.6(c): Frequency versus SWR plot for radius 4m.m.

4.9(clBi) = 0B

Figure 4.6(d): Azimuthal and elevation gdot of Radiation Pattern

Figure 4.7(a)shows the Frequency versus |mpedance plot and figure 4.7(b)shows frequency versus gain
and frequency versus front to badk ratio for the Koch fradal antenna of three iterations of length
4.1c.m. with radius 5m.m.
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Figure 4.7(a): Frequency versus Red and Imaginary part of impedance plot for radius 5m.m.
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Figure 4.7(b): Frequency versus Gain and front to bad ratio Plot for radius 5m.m.

Figure 4.7(c)shows the Freguency versus SWR plot and figure 4.7(d)shows Azimuthal and Elevation
plot of radiation pattern for Koch fradal antenna of three iterations of length 4.1c.m. with radius 5m.m.
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Figure 4.7(c): Frequency versus SWR plot for radius 5m.m.

4.9(dB) = 0B

Figure 4.7(d): Azimuthal and elevation gdot of Radiation Pattern

Figure 4.8(a)shows the Frequency versus |mpedance plot and figure 4.8(b)shows frequency versus gain
and frequency versus front to back ratio for the Koch fractal antenna of three iterations of length

4.1c.m. with radius 6m.m.
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Figure 4.8(a): Frequency versus Red and Imaginary part of impedance plot for radius 6m.m.
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Figure 4.8(b): Freguency versus Gain and front to bad ratio Plot for radius 6m.m.

Figure 4.8(c)shows the Frequency versus SWR plot and figure 4.8(d)shows Azimuthal and Elevation
plot of radiation pattern for Koch fradal antenna of three iterations of length 4.1c.m. with radius 6m.m.
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Figure 4.8(c): Frequency versus SWR plot for radius 6m.m.

4.9(dBi) = 0dB

Figure 4.8(d): Azimuthal and elevation gdot of Radiation Pattern

Figure 4.9(a)shows the Frequency versus |mpedance plot and figure 4.9(b)shows frequency versus gain
and frequency versus front to back ratio for the Koch fradal antenna of three iterations of length

4.1c.m. with radius 6.8m.m..
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Figure 4.9(a): Frequency versus Red and Imaginary part of impedanceplot for radius 6.8m.m.
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Figure 4.9(b): Frequency versus Gain and front to bad ratio Plot for radius 6.8m.m.

Figure 4.9(c)shows the Frequency versus SWR plot and figure 4.9(d)shows Azimuthal and Elevation
plot of radiation pattern for Koch fradal antenna of three iterations of length 4.1c.m. with radius

6.8m.m.
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Figure 4.9(c): Frequency versus SWR plot for radius 6.8m.m.

4.9(dEi = 0dB

Figure 4.9(d): Azimuthal and elevation gdot of Radiation Pattern

Figure 4.10 shows the variation of Quality Fador with Radius of Koch Frada Antenna, it is observed
that with increase in radius the quality fadtor decreases and for radius 6.8m.m. the quality fador is 6.7
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in radius of antenna the bandwidth increases, for radius 6.8m.m.the

Figure4.10:Variation d Quality Fador with Radius of Koch Frada Antenna
bandwidth(SWR<2) is 71Mhz.,which covers the whole GSM 900 hand.

Figure 4.11shows the variation of Bandwidth(SWR<2) with Radius of Koch Frada Antenna, it is

observed that with increase
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Figure4.11:Variation o Bandwidth with Radius of Koch Fradal Antenna

Figure 4.12 shows variation of Q, Bandwidth, Impedance ,Gain and Front to Back ratio with Radius of
antenna @925Mhz in tabular form. With increase in radius the quality fador decreases,
bandwidth(SWR) increases, impedance of the antenna keep on decreasing, gain and front to bad ratio

remains same.

‘ Radius of ‘ Quality | Bandwidth | Real part Imaginary part ‘ Gain ‘ Front to




Antenna | Factor(Q) | (KH2) of Impedance | of Impedance | (db) | Back Ratio(db)
(m.m.)

0.1 254 21826.2 7.7 -117.9 49 |00

1 15.3 34107.3 59 -92.4 49 0.0

2 12.2 42041.8 50 -72 49 0.0

3 10.4 48822.5 43 -57.8 49 0.0

4 9.1 55075.5 3.8 -47.5 4.9 0.0

5 8.1 60994.8 34 -39.7 49 |00

6 7.3 66874.6 31 -33.8 49 0.0

6.8 6.7 71449.9 29 -29.9 49 |00

Figure 4.12:Table showing variation d Q, Bandwidth, Impedance ,Gain and Front to Bad ratio with
Radius of antenna &925Mhz.

The Koch frada antenna of length 4.1c.m.with radius 6.8c.m.,has quality factor 6.7 ,has
bandwidth(SWR<2) 71Mhz ,has gain 4.9 db and a front to back ratio 0db.The bandwidth covers the
GSM900 band. It has radiation pattern which is uniform in all diredions, same & that of traditional
monopole .But using fradals a reduction of nealy 50% in the size antenna over conventiona
monopole has been achieved without saaificing the performance of antenna up to much extent. Thisis

highly significant for applications such as GSM cdlular phones.

Chapter-5
Fractal Antennain GSM 1800

GSM1800 operates at frequency range 1710-1785Mhz for uplink communicaion and 1805-1880Mhz.
for downlink communicaion. A mongpole on a perfect ground having resonance @ 1800Mhz is
required. and the length of straight wire monopole required is 4.16c.m., But this length will be very
large in comparison to the dimensions of handset. By using athree iteration Koch, the length of Koch
monopole required is 1.75c.m.(from equation 2.17) to provide effedive height of 4.16c.m., but due to
the coupding effect described in capter-2 , Koch of length 2c.m. with three iteration ona perfed ground
with source at bottom end is used. Radius of wire has been taken 0.1m.m.With radius 0.1m.m. antenna
has bandwidth(SWR<2) 38.7Mhz which is very lessto cover 1800Mhz band ,by increasing wire
radius ,bandwidth could be increased. By taking radius 6.5m.m. bandwidth increases up to 180Mhz.
which covers the whole 1800Mhz band, provide again of 4.9db. Using Matlab a Koch of three
iterations on height 2c.m. has been generated and using MM ANA code which is a MININEC code,
antenna is smulated. The Koch monopole exhibits excdlent performance at 1800 MHz and has
radiation properties nealy identical to that of traditional, straight-wire monopoles at that frequency.
The radiation pattern is very uniform in all diredions. The greaest advantage of the Koch monopole



design is compactness A size reduction of nealy 50% was achieved ower the straight-wire, |,
A | 4 free-space monapole. This is highly significant for applicaions sich as GSM cdlular phores .
Since it is half the size of the traditional monopole, it could easily be mmpletely integrated within the
case of the phone, eliminating the protruding monaopoles commonly seen on many cdlular phones.

Simulation results are shown below.

Figure 5.1shows Koch of length 2c.m. of three iterations with source d bottom on a perfect ground of

wireradius 0.1m.m.

Figure5.1: Threeiteration Koch of length 2cm.with source a bottom on a perfed ground.

Figure 5.2 to 59 shows the results given by MM ANA code, that gives frequency versus impedance
plot, frequency versus gain and front to badk ratio plot , frequency versus SWR plot, azmutha and
elevation plot of radiation pattern. SWR has been taken for 50 dim feeding impedance. Figure 5.2 to
5.9 shows these results for different values of radius, for radius 0.1m.m., Im.m., 2m.m.,3m.m. 4m.m.
,5m.m. , 6m.m. , 6.5m.m. It has been observed that with increase in radius of antenna the bandwidth of

antenna increases, gain remains amost same, radiation pattern also remains same.Figure5.9 shows the



results of antenna with radius 6.5m.m. this antenna is having gain of 4.9db ,front to bad ratio Odband
bandwidth 180Mhz.

Figure 5.2(a)shows the Frequency versus |mpedance plot and figure 5.2(b)shows frequency versus gain
and frequency versus front to back ratio for the Koch fractal antenna of threeiterations of length 2c.m.

with radius 0.1m.m.

80.0 50.0
L 0.0uH match freq: 1800.0
E0.0 25.0
R Jx
40.0 0.0
200 -26.0
0.0 -50.0
1780.00 1730.00 1800.00 1810.00 1820.00
Figure 5.2(a): Frequency versus Red and Imaginary part of impedance plot for radius 0.1m.m.
5.1 0.38
5.0 018
GA FE
49 -0.02
4.8 -0.22
4.7 -0.42
1780.00 1790.00 1800.00 1810.00 1820.00

Figure 5.2(b):Frequency versus Gain and front to back ratio Plot for radius 0.1m.m.



Figure 5.2(c)shows the Frequency versus SWR plot and figure 5.2(d)shows Azimutha and Elevation

plot of radiation pattern for Koch fradal antenna of three iterations of length 2c.m. with radius 0.1m.m.
30

Bw22152.3 KHz(ZWR<1.5) match freq: 1800.0
Bw'36710.6 KHz(SWR<2.0)

2.5

=R

2.0

15

1.0

1780.00 17430.00 1600.00 1810.00 1620.00

Figure 5.2(c): Frequency versus SWR plot for radius 0.1m.m.

4.9(dBi = 0dB

Figure 5.2(d): Azimuthal and elevation plot of Radiation Pattern



Figure 5.3(a)shows the Frequency versus |mpedance plot and figure 5.3(b)shows frequency versus gain
and frequency versus front to back ratio for the Koch fractal antenna of threeiterations of length 2c.m.

with radius Im.m.

800 400
L: 0.0uH match freq: 1800.0
C:0.7pF
o132
B: 243708 3kHz

60.0 fm-3220 77hdHz 20.0

R Jx
40.0 0.0
200 -20.0

0.0 -40.0

1780.00 1740.00 1800.00 181000 1820000

Figure 5.3(a): Frequency versus Red and Imaginary part of impedance plot for radius 1m.m.

5.1 0.3a

5.0 018
G, FEB

49 -0.02

48 -0.22

47 -0.42

1780.00 1790.00 1800.00 181000 1820.00

Figure 5.3(b):Frequency versus Gain and front to back ratio Plot for radius 1m.m.

Figure 5.3(c)shows the Frequency versus SWR plot and figure 5.3(d)shows Azimuthal and Elevation

plot of radiation pattern for Koch fradtal antenna of three iterations of length 2c.m. with radius 1Im.m.
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1780.00 1790.00 1800.00 1810.00 1820.00

Figure 5.3(c): Frequency versus SWR plot for radius 1m.m.

4.9(dBi) = 0dB

Figure 5.3(d): Azimuthal and elevation pot of Radiation Pattern

Figure 5.4(a)shows the Frequency versus Impedance plot and figure 5.4(b)shows frequency versus gain
and frequency versus front to back ratio for the Koch fractal antenna of threeiterations of length 2c.m.

with radius 2m.m.
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10.0

I
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300 -20.0

1780.00 1790.00 1800.00 1810.00 1820.00

Figure 5.4(a): Frequency versus Real and Imaginary part of impedance plot for radius 2m.m.

5.1 0.39
50 019

GA FE
49 -0.07
48 -0.21
47 -0.47

1780.00 1790.00 1800.00 1810.00 1820.00

Figure 5.4(b)Freq. versus Gain and front to bad ratio Plot for radius 2.m.

Figure 5.4(c)shows the Frequency versus SWR plot and figure 5.4(d)shows Azimuthal and Elevation
plot of radiation pattern for Koch fradal antenna of three iterations of length 2c.m. with radius 2m.m.
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B4 7851.3 KHz(EWF<1.5) match freq: 1600.0
Bw32024.1 KHz{EWHRL2.0)
1.38
SWhR
1.25
112
1.0
1780.00 17490.00 1800.00 1610.00 1620.00

Figure 5.4(c): Frequency versus SWR plot for radius 2m.m.

H(dBin) = 0dB

4.9

Figure 5.4(d): Azimuthal and elevation gdot of Radiation Pattern

Figure 5.5(a)shows the Frequency versus |mpedance plot and figure 5.5(b)shows frequency versus gain
and frequency versus front to back ratio for the Koch fractal antenna of threeiterations of length 2c.m.

with radius 3m.m.



70.0 20.0

L: 0.0uH match freq: 1800.0
B0.0 100
R i
BO.O 0o
40.0 -10.0
300 -20.0
178000 1730.00 1800.00 181000 1820.00
Figure 5.5(a): Frequency versus Red and I maginary part of impedance plot for radius 3m.m.
51 0.4
Al 0.2
GA, FEB
49 0.0
48 -0z
47 -0.4
1780.00 1780.00 1800.00 1810.00 1820.00

Figure 5.5(b): Frequency versus Gain and front to back ratio Plot for radius 3m.m.

Figure 5.5(c)shows the Frequency versus SWR plot and figure 5.5(d)shows Azimuthal and Elevation

plot of radiation pattern for Koch fradtal antenna of threeiterations of length 2c.m. with radius 3m.m.
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Figure 5.5(c): Frequency versus SWR plot for radius 3m.m.

4.9(dBi) = 0dE

Figure 5.5(d): Azimuthal and elevation pdot of Radiation Pattern

Figure 5.6(a)shows the Frequency versus Impedance plot and figure 5.6(b)shows frequency versus gain
and frequency versus front to back ratio for the Koch fractal antenna of threeiterations of length 2c.m.

with radius 4m.m.



70.0 20.0
L: 0.0uH match freq: 1600.0

k0.0 10.0

50.0

40.0 -10.0
Joa -20.0
1780.00 1740.00 1800.00 1810000 1820.00
Figure 5.6(a): Frequency versus Red and Imaginary part of impedance plot for radius 4m.m.

5.1 0.3
5.0 01
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49 -01
48 -0.3
47 -05
1780.00 1780.00 1800.00 181000 1820000

Figure 5.6(b):Frequency versus Gain and front to back ratio Plot for radius 4m.m.

Figure 5.6(c)shows the Frequency versus SWR plot and figure 5.6(d)shows Azimuthal and Elevation
plot of radiation pattern for Koch fradal antenna of three iterations of length 2c.m. with radius 4m.m.
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Figure 5.6(c): Frequency versus SWR plot for radius 4m.m.

4.9(dBi) = 0dE

Figure 5.6(d): Azimuthal and elevation got of Radiation Pattern

Figure 5.7(a)shows the Frequency versus |mpedance plot and figure 5.7(b)shows frequency versus gain
and frequency versus front to back ratio for the Koch fractal antenna of threeiterations of length 2c.m.

with radius 5m.m.
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B0 0.0
4R0 -10.0
40.0 -20.0
1780.00 1730.00 1800.00 181000 1820.00
Figure 5.7(a): Frequency versus Red and Imaginary part of impedanceplot for radius 5m.m.
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51 0
G FB
5.0 -0.0g
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1780.00 1730.00 1800.00 1810.00 1820.00

Figure 5.7(b):Frequency versus Gain and front to back ratio Plot for radius 5m.m.

Figure 5.7(c)shows the Frequency versus SWR plot and figure 5.7(d)shows Azimuthal and Elevation

plot of radiation pattern for Koch fradtal antenna of three iterations of length 2c.m. with radius 5m.m.
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Figure 5.7(c): Frequency versus SWR plot for radius 5m.m.

4.9(dBi) = 0dB

Figure 5.7(d): Azimuthal and elevation pdot of Radiation Pattern

Figure 5.8(a)shows the Frequency versus |mpedance plot and figure 5.8(b)shows frequency versus gain
and frequency versus front to badk ratio for the Koch fradal antenna of threeiterations of length 2c.m.

with radius 6m.m.
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C:4.0pF
45
B: 960632 7KHz
55.0 {fe 4278 86kHz 10.0
R Jx
50.0 0.0
45.0 -10.0
40.0 -20.0
1780.00 1790.00 1800.00 1810.00 1820.00
Figure 5.8(a): Frequency versus Red and Imaginary part of impedanceplot for radius 6m.m.
5.2 0.3z
51 01z
G FE
5.0 -0.08
49 -0.28
4.8 -0.48
1780.00 1790.00 1800.00 1810.00 1820.00

Figure 5.8(b):Frequency versus Gain and front to back ratio Plot for radius 6m.m.

Figure 5.8(c)shows the Freguency versus SWR plot and figure 5.8(d)shows Azimuthal and Elevation
plot of radiation pattern for Koch fradal antenna of three iterations of length 2c.m. with radius 6m.m.
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Figure 5.8(c): Frequency versus SWR plot for radius 6m.m.

4.9(dB) = 0dB

Figure 5.8(d): Azimuthal and elevation pot of Radiation Pattern

Figure 5.9(a)shows the Frequency versus Impedance plot and figure 5.9(b)shows frequency versus gain
and frequency versus front to back ratio for the Koch fradal antenna of threeiterations of length 2c.m.
with radius 6.5m.m.
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GO0 [fo: 4547.82MHz 25.0
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40.0 0.0
200 -26.0
0.0 -50.0
1709.50 175475 1800.00 1545.25 1890.50
Figure 5.9(a): Frequency versus Red and Imaginary part of impedance plot for radius 6.5m.m.
L 0.34
51 0.14
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170950 175475 1800.00 184525 189050

Figure 5.9(b):Frequency versus Gain and front to back ratio Plot for radius 6.5m.m.

Figure 5.9(c)shows the Frequency versus SWR plot and figure 5.9(d)shows Azimuthal and Elevation
plot of radiation pattern for Koch fradtal antenna of three iterations of length 2c.m. with radius 6.5m.m.
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Figure 5.9(c): Frequency versus SWR plot for radius 6.5m.m.

4.9(dBi) = 0dB

Figure 5.9(d): Azimuthal and elevation pdot of Radiation Pattern

Figure 5.10 shows the variation of Quality Fador with Radius of Koch Fradal Antenna, it is observed

that with increase in radius the quality fador decreases and for radius 6.5m.m. the quality fador is 4.
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Figure 5.10:Variation o Quality Fador with Radius of Koch Fradal Antenna

Figure 5.11shows the variation d Bandwidth(SWR<2) with Radius of Koch Frada antenna, it is

in radius of antenna the bandwidth increases, for radius 6.5m.m.the

bandwidth(SWR<2) is 180Mhz.,which covers the whole GSM 1800 band.

observed that with increase
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Figure5.11:Variation d Bandwidth with Radius of Koch Fradal Antenna

Figure 5.12 shows variation of Q, Bandwidth, Impedance ,Gain and Front to Badk ratio with Radius of
antenna at 1800Mhz in tabular form. With increase in radius the quality fador deaeases,

bandwidth(SWR) increases, impedance of the antenna keep on decreasing, gain and front to bad ratio

remains same,

Radius | Quality | Bandwidth | Real Part Imaginary Part | Gain | Front to
(m.m.) | Factor | (Khz) of Impedance | of Impedance | (db) | Back ratio(db)
0.1 24.5 38710.6 6.6 -136.7 49 |00

1 13.2 68938.4 52 -86.7 49 0.0

2 9.9 92024.1 4.1 -57.5 49 0.0




3 7.9 112266.5 3.2 -40.5 4.9 0.0
4 6.6 131541.3 2.7 -30.0 4.9 0.0
5 54 150786.5 2.3 -23.1 4.9 0.0
6 4.5 170655.4 20 -18.3 4.9 0.0
6.5 4.0 180675.2 19 -16.5 4.9 0.0

Figure 5.12:Table showing variation d Q, Bandwidth, Impedance ,Gain and Front to Back ratio with
Radius of antenna & 1800M hz.

The Koch fradad antenna of length 2c.m.with radius 6.5c.m.,has quality factor 4,has
bandwidth(SWR<2) 180Mhz ,has gain 4.9 db and a front to back ratio Odb.The bandwidth covers the
GSM1800 band. It has radiation pattern which is uniform in all directions, same as that of traditional
monopole .But using fradals a reduction of nealy 50% in the size antenna over conventiona
monopole has been achieved without saaificing the performance of antenna up to much extent. Thisis
highly significant for applications such as GSM cdlular phones.

Chapter-6
Conclusions and Future Sope

In this dissertation, frada antenna incorporated into GSM handsets have been purposed. The projed
involves smulation of Koch fradal antennas. Several Koch fradal antennas have been simulated using
MATLAB ,EZNEC and MM ANA codes. The results in chapter-3 shows the Multiband performance
of fradd antennas at non-harmonic frequencies, improved impedance, improved SWR(standing wave
ratio) performance on a reduced physicd areawhen compared to nonfractal Euclidean geometries,
Compressed Resonant behavior, broadband charaderistic, improved reliability and the biggest
advantage their size reducing capability, Size can be shrunk from two to four times with surprising
good performance and with eadh iteration the number of resonant frequency increases. Perturbation
could be gplied to shape of fradal to make it to resonate at different frequency. In chapter-4 , chapter-
5 results howsthat Koch fractal monopole are an excellent aternative to traditional antenna systems
in mobile wireless recevers The Koch monopole exhibits excdlent performance & 925 MHz and
1800Mhz and has radiation properties nealy identicd to that of traditional, straight-wire monopoles at
that frequency. The radiation pattern is very uniform in al diredions. It is consistent with the dassc
doughnut shape charaderistic of the straight wire A /4 monopole, and consequently that of the
A [ 2 dipole. The greaest advantage of the Koch monopole design is compadness A size reduction o

nearly 50% was achieved over the straight-wire, , A / 4 free-space monopole. Thisis highly significant

for applicdions such as GSM cdlular phones. Sinceiit is half the size of the traditional monopole, it



could easily be cmmpletely integrated within the case of the phone, eliminating the protruding
monopoles commonly seen on many cdlular phones. The Koch monopole design has excdlent
impedance bandwidth, allowing some flexibility in the types of applicaions where it could be used.
Since the radiation pattern is highly uriform and identicd to that of a traditional A /4 monopole, it

could be used in nearly any type of wireless communications receaver. The very similar gain to the

traditional A / 4 monopole is another benefit of the design. Another beneficial of frada antennas is
fractal antennas are in form of a PCB. Thus the Koch monopde presents an excell ent, compact solution

to the traditional straight-wire monopole.
Future Scope

Since the aea of fractal antenna engineering reseach is till in its infancy, there ae many
possbilities for future work on thistopic. The Koch fradal was chosen for this projed because thisis
the best documented frada antenna types in current reseach. However, many possible fradal
structures exist which may undoultedly have desirable radiation properties. Thus, a possble approach
for future work is to investigate other types of fradals for antenna applications. A novel development
is the use of fradal patterns for antenna arays . Fradal antennas can be studied in several areas. One
areaof development is to implement fradal antennas into current technologies in practical situations
such as expanding wireless market. For this application an analysis of the polarization of these
antennas will need to be looked. Anaother benefit that can be explored is lower covered areaof resonant
loop antennas. This may lead to antenna with lower cross ®dions. Also, fractals can be used into

microstrip antennas.
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