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ABSTRACT 

 

The wireless industry is witnessing an volatile emergence today in present era. 

Today’s antenna systems demand versatility and unobtrusiveness. Operators are 

looking for systems that can perform over several frequency bands or are 

reconfigurable as the demands on the system changes. Some applications require the 

antenna to be as miniaturized as possible. Fractal plays a prominent role for these 

requirements. Fractals have non-integral dimensions and their space fil ling capability 

could be used for miniaturizing antenna size and their property of being self-similarity 

in the geometry leads to have antennas which  have a large number of resonant 

frequencies.  Fractal antennas also have Multiband performance is at non-harmonic 

frequencies. Fractal antennas have improved Impedance, improved SWR(standing 

wave ratio) performance on a reduced  physical area when compared to non fractal 

Euclidean geometries. Fractal antennas show Compressed Resonant behavior. At 

higher frequencies the Fractal antennas are naturally broadband. Polarization and 

phasing of Fractal antenna is possible. In many cases, the use of fractal element 

antennas can simplify circuit design. Often fractal antenna do not require any 

matching components to achieve multiband or broadband performance. Perturbation 

could be applied to shape of fractal antenna to make it to resonate at different 

frequency.  

In this thesis Koch fractal, Sierpinski Triangle, Sierpinski Carpet ,Julia fractal 

with different iterations have been generated  using MATLAB. Koch fractal of length 

5.1c.m. with different iterations as a monopole antenna have been simulated using  

MATLAB and EZNEC code which is a MININEC code, and show the desirable 

advantages of fractal antennas. Different three iteration Koch fractal monopoles  have 

been studied for GSM900 and GSM1800 bands .The Koch monopole exhibits 

excellent performance at 925 MHz and 1800Mhz and has radiation properties nearly 

identical to that of traditional, straight-wire monopoles at that frequency. The greatest 



advantage of the Koch monopole design is compactness. A size reduction of nearly 

50% was achieved over the straight-wire, , 4/λ free-space monopole. This is highly 

significant for applications such as GSM cellular phones. Since it is half the size of 

the traditional monopole, it could easil y be completely integrated within the case of 

the phone, eliminating the protruding monopoles commonly seen on many cellular 

phones.  Since the radiation pattern is highly uniform and identical to that of a 

traditional 4/λ  monopole, it could be used in nearly any type of wireless 

communications receiver. The very similar gain to the traditional 4/λ  monopole is 

another benefit of the design. Another beneficial of fractal antennas is fractal antennas 

are in form of a PCB. Thus the Koch monopole presents an excellent, compact 

solution to the traditional straight-wire monopole.   
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Chapter-1 
Introduction 

 
1.1 Overview  
The wireless industry is witnessing an volatile emergence today in present era. Today’s antenna 

systems demand versatility and unobtrusiveness. Operators are looking for systems that can perform 

over several frequency bands or are reconfigurable as the demands on the system changes. 

Furthermore, aesthetics in the design of the systems are always important Some applications require the 

antenna to be as miniaturized as possible. Fractal antennas have entered the view of many as a very 

promising solution. Fractal antenna theory is a relatively new area.  However, fractal antennas and its 

superset fractal electrodynamics  is a state of affairs for research activity. Although fractal geometry 

has been known to mathematics for a century, fractal antenna engineering research is a relatively very 

recent development because considerable computing speed is required to complete their design.   

 In the research journals, we see reports of active research covering such diverse areas of 

Fractals use in antenna field and their advantages. Fractals are self-similar objects and possess structure 

at all scales. Fractal geometries have found an intricate place in science as a representation of some of 

the unique geometrical features occurring in nature. Fractal geometry was first discovered by Benoit 

Mandelbrot as a way to mathematically define structures whose dimension can not be limited to whole 

numbers. 

 Benoit Mandelbrot, the pioneer of classifying this geometry, first coined the term ‘fr actal’ in 

1975 from the Latin word fractus, which means broken. The field is quite extensive with many 

applications from statistical analyses, natural modeling, compression and, of course, computer graphics 

[1]. Soon after scientists discovered the practical aspect of fractal geometry, research began in the field 

of electrodynamics[2].To date most efforts have been concentrated in understanding the physical 

process and mathematical background of interaction between electromagnetic waves and fractal 

structures. 

 These geometries have been used to characterize structures in nature that were difficult to 

define with Euclidean geometries. Examples include the length of a coastline, the density of clouds, 

and the branching of trees. Just as nature is not confined to Euclidean geometries, antennas and 

antennas array designs should not be confined, as well. In addition to having non-integer dimension, 

fractals usually exhibit some form of self-similarity which means that they are composed only of 

multiple copies of themselves at several scales. These properties can be used to develop new 

configurations for antennas and antenna  arrays. It might be possible to discover structures that give us 

better performance than any Euclidean geometry could provide. Fractals represent a class of geometry 

with very unique properties that can be enticing for antenna designers.  

Fractals are space fill ing contours, meaning electrically large features can be eff iciently 

packed into small areas [1]. Since the electrical lengths play such an important role in antenna design, 

this efficient packing can be used as a viable miniaturization technique.  Fractals are structures of 

infinite complexity with a self-similar nature. What this means, is that as the structure is zoomed in 



upon, the structure repeats itself. This property could be used to design antennas that can operate at 

several frequencies. 

 Fractal antenna theory uses a modern (fractal) geometry that is a natural extension of 

Euclidian geometry. A fractal can fil l the space occupied by the antenna in a more effective manner 

than the traditional Euclidean antenna. This can lead to more effective coupling of energy from feeding 

transmission lines to free space in less volume. Therefore,  Fractals can be used in two ways to enhance 

antenna designs. The first method is in the design of miniaturized antenna elements. These can lead to 

antenna elements which are more discrete for the end user. The second method is to use the self-

similarity in the geometry to blueprint antennas which are multiband or resonant over several frequency 

bands. This would allow the operator to incorporate several aspects of their system into one antenna. 

Such antennas could be used to improve the functionality of modern wireless communication receivers 

such as cellular handsets. Because fractal antennas are more compact, they would more easily in the 

receiver package. Currently, many cellular handsets use quarter wavelength monopoles which are 

essentially sections of radiating wires cut to a determined length. Although simple, they have excellent 

radiation properties. However, for systems operating at 900 MHz such as GSM, the length of these 

monopoles is often longer than the handset itself, posing a nuisance to the user. It would be highly 

beneficial to design an antenna with similar radiation properties as the quarter-wavelength monopole 

while retaining its radiation properties. Other prevailing trends in wireless communications technology 

could also benefit. More and more systems are introduced which integrate many technologies. They are 

often required to operate at multiple frequency bands and so they require antenna systems which 

accommodate that requirement.  

Other applications included Fractal miniaturization of passive networks and components, 

fractal fil ters and Resonators[3].A fractal element antenna, or FEA, is one that has been shaped in a 

fractal fashion, either through bending or shaping a volume, or introducing holes. They are based on 

fractal shapes such as the Sierpinski triangle. Mandelbrot tree, Koch curve, and Koch island. The 

advantage of FEAs, when compared to conventional antenna designs, center around size and 

bandwidth.  

 

The theory of fractal antenna operation is steeped in mathematics, but in its most basic form, it 

comes down to this: In order for an antenna to work equally well at all frequencies, it must satisfy two 

criteria[4]: 

 

1.It must be symmetrical about a point.  

2.It must be self-similar, having the same basic appearance at every scale. 

 

Fractal satisfies above conditions that is why it shows wideband and multiple resonant frequencies 

behavior. 

The advantages of fractal over conventional antennas are[4]: 

¾ Size can be shrunk from two to four times with surprising good performance. 

 



¾ Multiband performance is at non-harmonic frequencies. 

 

¾ Improved Impedance, Improved SWR(standing wave ratio) performance on a reduced  

physical area when compared to non fractal Euclidean geometries. 

 

¾ Compressed Resonant behavior. 

 

¾ At higher frequencies the FEA is naturally broadband. 

 

¾ Polarization and phasing of FEAs also are possible. 

 

¾ In many cases, the use of fractal element antennas can simpli fy circuit design. 

 

¾ Reduced construction costs. 

 

¾ Improved reliabilit y. 

 

¾ Because FEAs are self-loading, no antenna tuning coils or capacitors are necessary. 

 

¾ Often they do not require any matching components to achieve multiband or broadband 

performance. 

 

¾ Perturbation could be applied to shape of fractal to make it to resonate at different frequency. 

 

1.2 Objectives of the thesis 

The objectives of the thesis are: 

¾ To generate Koch fractal, Sierpinski Triangle, Sierpinski  Carpet ,Julia fractal for 

different iterations using MATLAB. 

 

¾ To generate a Koch fractal monopole of length 5.1c.m. of  zero, one, two iterations 

using MATLAB. 

 

¾ To plot  frequency versus impedance plot of fractal monopole with zero , one ,two 

iterations for showing the multiband behavior at non-harmonic frequencies of fractals 

,and to show that with each iterations the number of resonant frequencies increase. 

 

¾ To plot frequency versus Reflection coefficient of fractal monopole with zero , one 

,two iterations. 

 



¾ To plot frequency versus SWR plot of fractal monopole with zero , one ,two 

iterations to show the compressed resonant behavior of  fractal antennas. 

 

¾ To show improved SWR(standing wave ratio) performance. 

 

¾ To plot radiation pattern of fractal monopole with zero , one ,two iterations. 

 

¾ To show the size reduction capabilities of fractals. 

 

¾ Antenna miniaturization using Koch fractal for GSM900 band. 

 

¾ Antenna miniaturization using  Koch fractal for GSM1800 band. 

 

 

1.3 Organization of the report 

In chapter-2, a brief overview of fractals, fractal basics ,types of fractals, generation process, fractal 
dimensions, properties ,fractals application and fractals  antennas, software simulators is mentioned 
along with a brief overview of key research papers is given to introduce the current state of research in 
this field.  

In chapter-3,various fractals  and their multiband property, compressed resonant behavior ,improved 
SWR performance ,antenna miniaturization capability  is described. Results have been shown using 
MATLAB and EZNEC codes. 

 In chapter-4 koch fractal antenna  with three iteration for GSM900band  is described.  Results are 
shown using MMANA code. 

 In chapter-5 koch fractal antenna  with three iteration for GSM1800 band  is described. Results are 
shown using MMANA code. 

 Finally in chapter 6, the conclusion part of the thesis is outlined which is a result of the iterative work 
carried out on various fractal antennas 

Chapter-2 
Fractals 

  
2.1 Fractal’s Definition: 

According to Webster's Dictionary a fractal is defined as being "derived from the  Latin fractus 

meaning broken, uneven: any of various extremely irregular curves or shape that repeat themselves at 

any scale on which they are examined." 

 

2.2 Basics of Fractals: 

Although fractals are mainly discussed in mathematical forums, they exist in all parts 

of nature. For example Mandelbrot [5] discusses the basics of fractal theory as applied to the 

characteristics of a coastline(see Figure 2). The length of a coastline depends on the size of the 

measuring yardstick. As the yardstick we use to measure every turn and detail decreases in length, the 

coastline perimeter increases exponentially. As the view of a coastline is brought closer, we discover 



that within the coastline there lie miniature bays and peninsulas. As we examine the coastline on a 

rescaled map, we discover that each of the bays and peninsulas contain sub-bays and sub-peninsulas. 

There is a self-similar trait observed as we look at the coastline at various resolutions. The number of 

microscopic structures begin to approach infinity. In fact, because of the large number of irregularities, 

the physical length of a coastline is virtually infinite. 

 

 

Figure 2: Coastline of Britain[6] 

 

These pictures represent an imaginary coastline of Britain. The red lines are rulers being used to 

measure the length of the coastline (L). These rulers are of the length S. Using the first ruler we see that 

it L = 2 * S. When we decrease the length of S the number of times that S is used increases. What these 

rulers illustrate is that as the size of the measuring device becomes smaller the accuracy of the 

measurements become more and more accurate. From this fact we can  assume that eventually we will 

be able to get an exact measurement of the coastline. This statement is false. As we decrease the size of 

the measuring device the length that we have to measure becomes greater. We can see this by zooming 

in on the coastline. As we get closer and closer we wil l notice that it looks very similar to how it looked 

from a greater distance away. Only now we are much closer. This observation show the self similarity 

of the coastline. Therefore as we decrease the size of the measuring device the length of the coastline 

will increase without limit. Thus, showing us its fractal nature. Self similarity (seen in the coast 

example above) is defined by structures that look the same at variable magnifications. This recurring 

self-similarity is one of the many attributes of many fractals. Much like the coastline described above, 

any small part in a self-similar fractal is going to look exactly like the fractal as a whole. 

The example of coastline shows  that the coastline has a dimension greater than 1 but less than 

2. The more wiggly the coastline is, its dimension is near to 2.  How can a line have a dimension more 

than 1?.Imagine a very wiggly line that doubles back on itself and wanders around a lot(figure 2.1). 

Such a line would eventually cover a sheet of paper In other words it would be a "space fill ing curve". 

Because it nearly fill s a space (a plane with dimension 2) the line must have a dimension close to 2.  

    

Figure 2.1:shows how lines following simple rules about how they wiggle can fill a space. 



Fractal geometries have found intricate place in science as a representation of some of the 

unique geometrical features occurring in nature. Fractals are used to describe the branching of tree 

leaves and plants , the sparse filli ng of water vapor that forms clouds, the random erosion that carves 

mountain faces , the variability of coastlines and bark  and many more examples in nature.   

2.3 Problem of defining dimensions: 

The complexity of defining dimensions can be summarized in the following visualization depicted in 

figure2.2 , of a microscopic fly flying towards a piece of paper[7].The fly starts out very far from the 

object in figure 2.2(a),thus it appears as a zero dimensional speck. As the fly gets closer , in figure 

2.2(b), the speck begins to elongate into a one dimensional l ine. Upon flying over the line , in figure 

2.2(c), the fly sees that it is actually a two dimensional plane. Flying even closer in figure 2.2(d). the fly 

sees that the plane has a depth to it. as well , forming a three dimensional prism ,followed by flying 

closer still, sees only a two dimensional plane . Finally the fly flies into the piece of paper, seeing a one 

dimensional network of fibers. 

 
Figure 2.2:A fly flying towards a piece of paper from very far away reveals the problem of defining 

dimensions[8]. 

 

Therefore there is a need for a geometry that handles these situations better than Euclidean 

geometry. Euclidean structures have whole number dimensions , such as  one dimensional line or a two 

dimensional plane. Benoit Mandelbrot first defined the term “Fractal” meaning fractal dimensions in 

1975 to handle geometries with dimensions that do not fall neatly into a whole number category. One 

property of a certain class of fractals ( as shown in the example of coastline),is the unique property that 

it can have an infinite length while fitting in finite volume. Fractals are structures of infinite complexity 

with a self similar nature. This means  that as the structure is zoomed in upon the structure repeats 

.There never is a point where the fundamental building blocks are found . This is because the building 

blocks themselves have the same form as the original object with infinite complexity in each one. An 

example of this in nature can be seen in a fern , shown in figure 2.3. 



 

Figure 2.3: A fern is a common example of a geometry  in nature that is easily modeled using fractal 

geometry[8]. 

The entire fern has the same structure as each branch. If the individual branches were zoomed 

in upon , it is quite conceivable to imagine this as a completely separate fern with branches of its own.  

Fractals are self similar under some change in scale either strictly or Statistically. Strictly self 

similar fractals do not change their appearance significantly when viewed under a microscope of 

arbitrary  magnifying power, where as for statistically self similar fractals when a small portion of it is 

seemingly but not exactly similar to the original fractal itself .Fractal objects by definition , contain 

infinite detail ,they contain the same degree of detail in each part as is contained in entire object , no 

matter how many times section of it are enlarged[9].  

 

2.4 Types of Fractals: 

Fractal come into two major variations[10]: 

1.Detrminsitic fractal 

2.Random fractal 

The first category consists of those fractals that are composed of several scaled down and rotated 

copies of itself, such as Koch curve ,They are called Geometric fractals. Julia set also falls in same 

category. The whole set can be obtained by applying a non-linear iterated map to all arbitrary small 

section of it .Thus the structure of Julia set is already contained in any small fraction. They are called 

algebraic fractals. Hence both algebraic and geometric fractals are termed deterministic fractals. Since 

the generation requires use of a particular  mapping or rule which is repeated recursively over and over 

again , They exhibit the property of strict self similarity. The second category (Random Fractals) 

includes those fractals which have an additional element of randomness allowing for simulation of 

natural phenomenon ,so they exhibit property of statistical self similarity.   

 

2.4.1 Geometr ic Fractals: The fractals of this class are visual. In two-dimensional case they are made 

of a broken line (or of a surface in three-dimensional case) so-called the generator. Each of the 

segments which forms the broken line is replaced by broken line generator at corresponding scale for a 

step of algorithm . As a result of infinite repeating the steps geometrical fractal arises. 



 

Figure2.4: Construction process of the triad Koch curve[11] 

The process of construction begins from the segment of single length (Fig.2.4). It is 

zero generation of the Koch curve. Then each of section (one segment in zero 

generation) is replaced by formative element defined on the fig.2.4 as n=1. As a result 

of the substitution we get the next generation of the Koch curve. There are four 

rectilinear sections 1/3 length when the first generation is. Thus, to produce the next 

generation all of the sections of pervious generation are replaced by diminished 

formative element. The curve of n-th generation is called prefractal when n is finite 

quantity. When n is infinite quantity the curve is considered a fractal object. [11]. 

2.4.2 Algebraic fractals:  Algebraic is the biggest class of fractals. They are created 

by using nonlinear processes in n-dimensional spaces. 

2.4.3 Stochastic fractals: The stochastic fractals are got in the case iterate process 

has accidental parameters. Using the way objects like natural can be created. Two-

dimensional stochastic fractals are used for designing surface of sea or relief 

modeling. [12] . 

2.5 Dimensions of Fractals[6]: Another definition of Fractals is “A fractal is by 

definition a set for which the Hausdorff-Besicovitch dimension strictly exceeds the 

topological dimension.”  



To understand the second definition we need to be able to understand the fractal 

dimension. So first we have to look at understanding how to calculate the dimension 

of an object. Below we have three different objects. 

1.As we can see the line is broken into 4 smaller lines. Each of these lines is similar to the original line, 

but they are all 1/4 the scale. This is the idea of self similarity.  

 

2.The square below is also broken into smaller pieces. Each of which is 1/4th the size of the original. In 

this case it takes 16 of the smaller pieces to create the original.  

 

3.As with the others the cube is also broken down into smaller cubes of 1/4 the size of the original. It 

takes 64 of these smaller cubes to create the  original cube.  

 

 

By looking at this we begin to see a pattern:  

4 = 4^1 

16 = 4^2 

64 = 4^3 

This gives us the equation: N = Ŝ D 

Where N is the number of small pieces that go into the larger one, S is the scale to which the 

smaller pieces compare to the larger one and D is the dimension. We now have the tools to be able to 

calculate the dimension. Just solve for D in the previous equation. When we do this we find that the 

Dimension is: 

                                               D = log N / log S                                                    (2.1) 

This dimension is the Hausdorff-Besicovitch dimension. 



Fractal curves have infinite length in a finite square of 2R [13]. To characterize the 

topological properties of fractal structures ,usual length measurement is not adopted. In 1919 Hardroff 

introduced  anew  definition of dimension based on the size variation of sets when measured at 

different scales[14]. Let S be a number N(s) of balls of radius s to cover S. If S is a set of dimension D, 

with a finite length (D=1),surface(D=2) or volume(D=3), then 

                                                   DssN −=)(                                                          (2.2) 

so                       
)log(

)(log
inflim

s

sN
D −=  , Here limit is 0→s                              (2.3) 

It may be either finite or infinite. The simplest well known  examples of fractal sets are koch 

curve and triadic cantor set. The former is obtained by recursively dividing each segment of length l in 

four segments of l/3. Each subdivision increases length by 4/3.The limit of these subdivisions is 

therefore a curve of infinite length and its fractal dimension is D>1. We need N(s)= n4   balls of size 

s= n−3 to cover the whole curve, Hence  

                                              N( n−3 )= 3log

4log

)3(
−

−n .                        (2.4) 

 One can verify that at any other scale s , the minimum number of balls N(s) to cover this curve 

satisfies 

                                                   
3log

4log
=D  ,                       (2.5) 

as expected it has a fractal dimension of between 1 & 2. 

Function y=F(x) is called fractal if its plot is a fractal set[15]. 

2.6 Generation process: 

There are several techniques to develop and to produce fascinating images. Two 

techniques popularized by Mandelbrot’s book are the  

1.Koch construction 

2. Function iteration in the complex domain. 

Random fractals are generated by a random process. 

 

2.6.1 I terated Function Systems: The Language of Fractals: Any fractal has some infinitely 

repeating pattern. When creating such fractal, you would suspect that the easiest way is to repeat a 

certain series of steps which create that pattern. Instead of the word "repeat" we use a mathematical 

synonym "iterate" and the process is called iteration.IFS (iterated function system) is another way of 

generating fractals. It is based on taking a point or a figure and substituting it with several other 

identical ones. 



Iterated function systems (IFS) represent an extremely versatile method for conveniently generating a 

wide variety of useful fractal structures [16]. These iterated function systems are based on the 

application of a series of aff ine transformations, w, defined by[17] 
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or, equivalently, by 

                              ( ) ( )fdycxebyaxyxw ++++= ,,               (2.7) 

where a, b, c, d, e, and f are real numbers. Hence, the affine transformation, w, is represented by six 

parameters 
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             (2.8) 

such that a, b, c, and d control rotation and scaling, while e and f control linear translation. 

Now suppose we consider  Nwww ,........,, 21 as a set of aff ine linear transformations, and Let A be 

the initial geometry Then a new geometry, produced by applying the set of transformations to the 

original geometry, A , and collecting the results from )(),.......(),( 21 AWAwAw N , can be 

represented by 
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where W is known as the Hutchinson operator [16]. A fractal geometry can be obtained by repeatedly 

applying W to the previous geometry. For example, if the set 0A  represents the initial geometry, then 

we will have 

                  ),( 01 AwA =  )( 12 AwA = , …..  , )(1 KK AwA =+             (2.10) 

 

An iterated function system generates a sequence that converges to a final image, ∞A , in such a way 

that 
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Figure 2.5:The standard Koch curve as an iterated function system (IFS) 

 

 

Figure 2.6: The first four stages in the construction of the standard Koch curve via an iterated function 

system (IFS) approach. 

The transformation is applied for each iteration to achieve higher levels of fractalizaltion. 

                                                           ∞∞ = AAw )(                        (2.16) 

 

This image is called the attractor of the iterated function system, and represents a "fixed point" of  w. 

Figure 2.6 illustrates the iterated function system procedure for generating the well-known 

Koch fractal curve. In this case, the initial set, A, is the line interval of unit length, i.e., A, = { x : x 

∈ [0,1]). Four affine linear transformations are then  applied to A, as indicated in Figure 2.5. Next, the 

results of these four linear transformations are combined together to form the first iteration of the Koch 

curve, denoted by 1A   . The second iteration of the Koch curve, 2A , may then be obtained by 

applying the same four affine transformations to 1A ,. Higher-order version:; of the Koch curve are 

generated by simply repeating the iterative process until the desired resolution is achieved. The first 

four iterations of the Koch curve are shown in Figure 2.6 . We note that these curves would converge to 

the actual Koch fractal, represented by ∞A , as the number of iterations approaches infinity[18]. 

Iterated function systems have proven to be a very powerful design tool for fractal antenna engineers. 



This is primarily because they provide a general framework for the description, classification, and 

manipulation of fractals [17]. In order to further ill ustrate this important point, the iterated function 

system code fix such diverse objects as a Sierpinski gasket and a fractal tree have been provided in 

Figure 2.7 and Figure 2.8 respectively [16]. 

 

 

Figure 2.7: The iterated function system code for a Sierpinski gasket[16]. 

 

Figure 2.8: The iterated function system code for a fractal tree[16]. 

 

The basic principle of construction of the triadic Koch curve consists of  recursively replacing the 

edges of an arbitrary polygon (Initiator) by an open polygon (generator) 

, reduced and displaced so as to have the same end points as those of interval being replaced. The 

amount of detail included in final display of curve depends on the number of iterations performed and 



the resolution of display system. Figure 2.9 shows initiator polygon ,generator polygon and the final 

curve after successive iterations.   

     

                           Figure 2.9(a):initiator           Figure2.9(b):Generator 

 

Figure2.9(c):Final curve 

2.7 Why Fractals are space fill ing geometr ies: 

Euclidean geometries are limited to points, lines, sheets & volumes, Fractal include geometries that fall 

in between these distinctions .Therefore, a fractal can be line that approaches a sheet. These space 

fil ling properties lead to curve that are electrically very long [19] , but fit into a compact physical 

space. This property leads to miniaturization of antenna elements. Fractals could be used to define the 

spacing in arrays for thinning or to define radiation pattern [20]. 

With successive iteration the length of koch increases by 1/3 of the original length. 

Length of koch after nth  iterations : 

                                                   
n

n ll )3/4(0=            (2.17) 

where nl  and 0l  are the length after nth iteration and original length(without any iteration) 

respectively. 

For Sierpenski Triangle with each iteration the area of the holes and circumference of solid 

pieces changes.  If the area of original triangle is 1 , then first iteration removes ¼ of the area., second 

iteration removes a further 3/16 and third iteration 9/64. 

 

Then total area  removed after  the Nth iteration 
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                                                          ∞A =1                (2.19) 

If circumference of original triangle is 1, then after first iteration the circumference increases by 1/2. 

After second iteration it increases by ¾, after Nth iteration 
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and                                                      ∞=∞C                 (2.21) 

This means gasket has no area but boundary is of infinite length.Figure2.10 shows how with each 

iteration the area of holes and circumference . 

Figure Area Perimeter  

 

A0 = sqrt(3)/4 P0 = 3 

 

A1 = 3/4 A0 
P1 = 3 + 3(1/2) 

= 3 + 3/2 

 

A2 = (3/4)2 A0 
P2 = 3 + 3/2 + 3*3*1/4 

= 3 + 3/2 + 9/4 

 

A3 = (3/4)3 A0 
P3 = 3 + 3/2 + 9/4 + 9*3*1/8 

= 3 + 3/2 + 9/4 + 27/8 

Stage n  An = (3/4)n A0  Pn = 3 + 3/2 + ... + (3/2)n  

Sierpenski Triangle 0 
infinity 

(geometric series with r > 1) 

Figure2.10:Different iteration of Gasket and variation of area and circumference[21] 

 

2.8 Fractals in nature and Applications: 

Fractals are not just complex shapes and pretty pictures generated by computers. 

Anything that appears random and irregular can be a fractal. Fractals permeate our 

lives, appearing in places as tiny as the membrane of a cell and as majestic as the solar 

system. Fractals are the unique, irregular patterns left behind by the unpredictable 



movements of the chaotic world at work. In theory, one can argue that everything 

existent on this world is a fractal[22]. 

• the leaves in trees,  

• the veins in a hand,  

• water swirling and twisting out of a tap,  

• a puffy cumulus cloud,  

• tiny oxygen molecule, or the DNA molecule,  

• the stock market  

 

Fractals have more and more applications in science.  

Astronomy  

Fractals will maybe revolutionize the way that the universe is seen. Cosmologists usually 

assume that matter is spread uniformly across space. But observation shows that this is not true. 

Astronomers agree with that assumption on "small " scales, but most of them think that the universe is 

smooth at very large scales. However, a dissident group of scientists claims that the structure of the 

universe is fractal at all scales. 

Nature  

Take a tree, for example. Pick a particular branch and study it closely. Choose a bundle of 

leaves on that branch. All three of the objects described - the tree, the branch, and the leaves - are 

identical. To many, the word chaos suggests randomness, unpredictability and perhaps even messiness. 

Weather is a favorite example for many people. Forecasts are never totally accurate, and long-term 

forecasts, even for one week, can be totally wrong. This is due to minor disturbances in airflow, solar 

heating, etc. Each disturbance may be minor, but the change it create will increase geometrically with 

time. Soon, the weather will be far different than what was expected. With fractal geometry we can 

visually model much of what we witness in nature, the most recognized being coastlines and 

mountains. Fractals are used to model soil erosion and to analyze seismic patterns as well.  

Computer science  

Actually, the most useful use of fractals in computer science is the fractal image compression. 

This kind of compression uses the fact that the real world is well described by fractal geometry. By this 

way, images are compressed much more than by usual ways (e.g.: JPEG or GIF file formats). An other 

advantage of fractal compression is that when the picture is enlarged, there is no pixelisation. The 

picture seems very often better when its size is increased. 

Fluid mechanics  

The study of turbulence in flows is very adapted to fractals. Turbulent flows are chaotic and 

very difficult to model correctly. A fractal representation of them helps engineers and physicists to 

better understand complex flows. Flames can also be simulated. Porous media have a very complex 

geometry and are well represented by fractal .This is actually used in petroleum science.  

Surface physics   



Fractals  used to describe the roughness of surfaces. A rough surface characterized by a 

combination of two different fractals.  

Medicine  

Biosensor interactions can be studied by using fractals.  

Telecommunications  

A new application is fractal-shaped antenna that reduce greatly the size and the weight of the 

antennas . The benefits depend on the fractal applied, frequency of interest, and so on. In general the 

fractal parts produces 'fractal loading' and makes the antenna smaller for a given frequency of use. 

Practical shrinkage of 2-4 times are realizable for acceptable performance. Surprisingly high 

performance is attained.  

2.9 Fractals as Wire Antenna Elements 

A fractal can fill t he space occupied by the antenna in a more effective manner than the traditional 

Euclidean antenna. This leads to more effective coupling of energy from feeding transmission lines to 

free space in less volume. Fractal loop and fractal dipole wire radiators are contrasted with linear loop 

and dipole antennas, fractals effectively fil ls the space and because of fractal dimensions allows 

antenna miniaturization.. Fractal antennas do not need to be limited to only wire antennas.  

2.10 Fractal Loop Antennas 

The space-filling abiliti es of fractals fed as loop antennas can exhibit two benefits over Euclidean 

antennas. The first benefit is that the increased space-fil ling ability of the fractal loop .means that more 

electrical length can be fitted into a smaller physical area. The increased electrical length leads to a 

lower resonant frequency, which effectively miniaturizes the antenna. The second benefit is that the 

increased electrical length can raise the input resistance of a loop antenna when it is used in a frequency 

range as a small antenna. It can be shown that the resistance increase resulting from the increased wire 

length for a material with a finite conductivity is insignificant in relationship to the miniaturization of 

the antenna. Miniaturization of a loop antenna is possible using fractals. [23]. Here, it was observed 

that the resonant frequency of the loop decreased as the generating iterations were increased[24]. 

2.11 Fractal antennas are Wideband : 

Fractal antennas show multiband or log periodic  behavior that has been attributed to self similar scale 

factor of the antenna geometry. Fractal loop shows improved impedance and SWR performance on a 

reduced  physical area when compared to non fractal Euclidean geometries. Sierpenski Gasket 

monopole antenna demonstrates a log periodic resonant property . Although fractal structure from these 

mathematical function could provide attractive multiband performance ,it is clear that such geometry  

could be modified to enhance their application .Perturbation effectively varies the structural properties 

and hence electrical properties. In order to enable more operating bands within lower spectrum , a 

higher scaling factor is required.    

Fractal antenna Represents a class of electromagnetic radiators where the overall structure is comprised 

of a series of repetition of a single geometry and where repetition is at different scale . Compressed 

resonant behavior is exhibited by Fractal antennas. 



 

2.12 Fractal Patch Antennas 

It has also been found if fractals can be used to miniaturize patch elements as well as wire elements. 

The same concept of increasing the electrical length of a radiator can be applied to a patch element.  

 

 

 

2.13 Fractal Frequency Selective Sur faces 

Fractals, which are a modern development of geometry that define a class of objects, can be created 

using an iterative methodology [25]. A fractal starts as a simple geometry. A linear transformation, 

usually involving copying, scaling, and translation, is applied to this structure. The transformation is 

then applied again to the entire resulting structure. The fractal is generated by repeating this 

methodology an infinite number of times while a pre- fractal is the resulting structure if the iterative 

process is truncated after a finite number of times. The manufacturable fractal objects themselves must 

result from a truncated generation process and therefore are referred to as pre-fractals to be more 

precise. These pre-fractals, which contain many scaled versions of the original simple geometry, can be 

investigated as a frequency selective surface (FSS). A frequency selective surface is a planar periodic 

structure that has a frequency response to radiation passed through it that correlates to the spacing of 

the elements. Radiation is either allowed to transmit through or blocked depending on the retransmitted 

phase of the radiation from the excited elements with the same underlying fundamental principles as 

array theory. A frequency selective surface has a signature that, in general, is dependent on the 

frequency of the incident wave, the incident angle, and the incident polarization. A common FSS 

example is the mesh screen on the door of a microwave oven. The mesh screen blocks electromagnetic 

radiation from the inside of the microwave oven while allowing the operator to see inside safely. 

Several iterations of the fractal can be used to design an FSS that has a multiband frequency response 

that correlates to the scales of the geometry that is present in the structure.  

 



 

Figure 2.11 Three types of fractals that are used as dipoles, including a Koch curve, a fractal tree, and a 

three-dimensional fractal tree. The first five growth iterations are shown, along with the common 

linear-dipole initiator for all three fractals. 

2.14 Fractal Dipole Antennas: 

An interesting study of the space-fil ling properties of fractal antennas could be extended to  dipole 

antennas also.   Three types of fractals are shown as dipoles. They are depicted in Figure2.11 for the 

first six stages of growth. They included a Koch curve, a fractal tree, and a three-dimensional fractal 

tree. The starting structure for each of the fractals is the same dipole antenna. The Koch dipole has been 

extensively analyzed in [26, 27]. Also, a version of a tree fractal has been studied in [28]. As mentioned 

in the previous section, the Koch curve is generated by replacing the middle third of each segment with 

two sides of an equilateral triangle. The resulting curve is comprised of four segments of equal length. 

As calculated above, the fractal dimension of the Koch curve is 1.2619. 

2.15 Antenna M iniatur ization using Koch Fractal: 

The use of fractal antenna techniques, is to reduce the size of UHF linear dipoles, monopoles. To be an 

efficient  radiator an antenna size must be an appreciable portion 

of a wavelength Therefore the antenna that operate at low frequencies are physically very large. This 

large  size hinders their integration into smaller hand held communication equipments.  

When the  size of antenna is made smaller than the operating wavelength, it becomes  highly 

inefficient .Its radiation resistance decreases while proportionally the reactive energy stored in the 

antenna neighborhood rapidly increases. Both  phenomenon make small antenna difficult to match to 

the feeding circuit and when matched they display a high Q i.e. a very narrow bandwidth. 

 Using fractals the process is attractive because of the potential to produce smaller elements 

without sacrificing bandwidth or efficiency .Fractal antenna represent a class of electromagnetic 

radiators where the overall structure is comprised of a single geometry and where repetition is at 

different scales. 



Fractal structures may provide size reduction and bandwidth enhancement. Elements  size 

reduction may include the added length attributed to meandering of conductor and reactive loading 

.The added bandwidth expected from fractal element is generall y attributed to fact that resulting 

structure consists of many scaled self similar “cells” or building  blocks. 

With  each iteration the effective  length of Koch antenna increases by 1/3 of the previous 

length. n
n ll )3/4(0=  ,where nl  is length after nth iteration , 0l is initial length or length at 0th 

iteration. Therefore if we use Koch as monopole with each iteration the resonant frequency should 

decrease, but Resonant frequency of a Koch monopole does not decrease at the same rate as the wire 

length increases.. In fact, the reduction factor in the resonant frequency of the Koch antenna as the 

iteration number increases tends monotonically to one. A high degree of coupling between parallel wire 

segments with opposite current vectors causes a significant reduction in the effective length of the total 

wire, and therefore increases the resonant frequency [29]. 

 

 

Figure 2.12:Shortcouts 

2.15.1 Hypothesis[30]: The observed behavior is due to the coupling between sharp angles at curve 

segment junctions. These angles radiate a spherical wave with phase center at the vertex (Fig. 2.12). 

Each angle not only radiates, but also receives signal radiated by the other angles. As a consequence, 

part of the signal does not follow the wire path, but takes “shortcuts” that start at a radiating angle (Fig. 

2.12). The length of the path traveled by the signal is, therefore, shorter than the total wire length. The 

higher number of iterations in the Koch antenna, the more angles it has and the closer to each other 

they are, so the more signal takes shortcuts and the less signal follows the whole curve path. For that 

reason, adding new iterations to a highly-iterated antenna does  not reduce the resonant frequency, 

since the path followed by the signal -taking shortcuts- is not longer, although the curve length 

increases. 

 

2.16 Simulation M ethod and Software Simulators: 

There are a number of commonly available software packages which allow the simulation of antenna 

parameters. Some of the best known are SONNET, XFDTD, HFSS and various packages based on the 

NEC2 code. XFDTD and HFSS are excellent professional design tools which offer a great deal of 

simulation flexibilit y and analysis options. Unfortunately, evaluation or academic versions of these 

programs are not offered . SONNET, however, is offered as a feature-limited evaluation package. It 



uses the MoM technique to simulate 2D surfaces including traces on dielectric layers, which is essential 

for microstrip antenna modeling. The software is user-friendly and with some effort it can be used to 

model realistic structures despite the feature limitations. Software based on the NEC2 code is freely 

available. NEC2 uses 1D MoM, which allows modeling of wire structures. This is ideal for modeling 

free-space antennas such  as arrays of dipoles. Although not as user-friendly as SONNET, NEC2 is 

more flexible and offers more analysis options. The computational technique used to investigate the 

properties of fractal antennas utilizes the moment method. The geometry of the pre- fractal is first 

mathematically defined either by hand or using recursive loops in Matlab. The geometry is then fed 

into a moment method code EZNEC code or MMANA code which are different versions of 

NEC(numerical electromagnetic code) . The modeling process is simply done by dividing all straight 

wires into short segments where the current in one segment is considered constant along the length of 

the short segment. These codes solve for the surface currents generated on perfectly conducting 

surfaces or thin wires or combinations of both. From these currents, the far field patterns and input 

impedances can be determined.  

 

Chapter-3 
Simulation of Koch Fractal Antenna 

 
Koch curve, Sierpinski Triangle, Sierpinski  Carpet ,Julia fractal were simulated using Matlab. 

Simulation results are shown below. To demonstrate the behavior of fractal antenna , a Koch fractal 

monopole antenna of 5.1c.m. length and with wire radius 0.1m.m.,up to two iteration has been 

simulated. Koch fractal with zero, one and two iterations has been generated by Matlab and simulated 

using EZNEC code. EZNEC is based upon the method of moments in which the electromagnetic 

interactions between wire segments can be analyzed. From this program, the impedance, radiation 

patterns,  gain, front to back ratio and VSWR are obtained and have been plotted using Matlab. 

  

Figure 3.1 shows Koch curve for different iterations,3.1(a) shows Koch curve for zero iteration,3.1(b) 

Koch curve for one iteration, 3.1(c) Koch curve for two iteration, 3.1(d) Koch curve for three iteration, 

with each iteration the length of Koch increases by one third of its previous length.  

 

 

 

 

 

Figure 3.1(a) 

Koch curve with 

zero Iteration 

 



 

 

Figure 3.1(b) Koch curve with one iteration 

 

 

 

 

Figure 3.1(c) Koch curve  with two iterations 

 

 

 

 

Figure 3.1(d) Koch curve  with three iterations 

 

 



Figure3.2 shows Sierpinski triangle for different iterations, 3.2(a)shows Sierpinski triangle for zero 

iteration, 3.2(b) shows Sierpinski triangle for one iteration, 3.2(c) shows Sierpinski triangle for two 

iteration. 

 

 

 

Figure 3.2(a) Sierpinski triangle for zero iteration 

 

 

 

Figure 3.2(b) Sierpinski triangle for one iteration 

 

 

Figure 3.2 (c) Sierpinski triangle for two iteration. 

Figure3.3 shows Sierpinski  Carpet for different iterations., 3.3(a) shows Sierpinski Carpet for zero 

iteration, 3.3(b) shows Sierpinski Carpet for one iteration, 3.3(c) shows Sierpinski Carpet for two 

iteration. 



 

Figure3.3(a) Sierpinski Carpet for zero iteration 

 

Figure 3.3(b) Sierpinski Carpet for one iteration 

 

Figure 3.3(c) Sierpinski Carpet for two iteration 

 

Figure 3.4 shows different examples of Julia fractal. 

 

 

 



 

Figure 3.4(a) 

 

 

 

 

Figure 3.4(b) 

 

 

 

 

 

 

 

 

 

Figure 3.5(a) shows straight  monopole of length 5.1c.m. with zero iteration erected  over a perfect 

ground. 3.5(b) shows  Koch fractal monopole of length 5.1c.m. with one iteration erected  over a 

perfect ground. 3.5(c) shows  Koch fractal monopole of length 5.1c.m. with two iteration erected  over 

a perfect ground. 



 

Figure3.5(a):Straight Monopole(K0) of 5.1c.m.length erected  over a perfect ground 

 

Figure 3.5(b): Koch fractal monopole of length 5.1c.m. with one iteration erected  over a perfect 

ground. 

 

Figure3.5(c): Koch fractal monopole of length 5.1c.m. with two iteration erected  over a perfect 

ground. 

 

 

Figure 3.6(a) graph shows the frequency versus impedance plot for 5.1c.m.long Koch fractal monopole 

with zero iteration 3.6(b)graph shows frequency versus impedance plot for 5.1c.m. long Koch fractal 

monopole with one iteration 3.6(c)graph shows frequency versus impedance plot for 5.1c.m. long  

Koch fractal monopole with two iteration, as we increase the  iterations number of resonant frequency 

increase, is obvious from the graphs that as iterations is increased the number of times Imaginary part  

of impedance becomes zero increases. This demonstrates that as number of iteration increases , more 



and more resonant frequency are there leading to a multiband antenna. This is due to the coupling 

between the wires. As more contours and iterations of the fractal are added, the coupling becomes more 

complicated and different segments of the wire resonate at different frequencies. 

 

 

 

 

 

Figure 3.6(a):frequency versus impedance plot for 5.1c.m. long Koch fractal monopole with zero 

iteration 

 



 

Figure 3.6(b) :frequency versus impedance plot for 5.1c.m.  long Koch fractal monopole with one 

iteration 

 

Figure 3.6(c) :frequency versus impedance plot for 5.1c.m long Koch fractal monopole with two 

iterations 

 



Figure3.7(a):graph shows frequency versus Reflection coeff icient plot for 5.1c.m. long Koch fractal 

monopole with zero iteration, Figure3.7(b):graph shows frequency versus Reflection coefficient plot 

for 5.1c.m.long  Koch fractal monopole with one iteration Figure3.7(c):graph shows frequency versus 

Reflection coefficient plot for 5.1c.m.long  Koch fractal monopole with two iteration, from graphs , 

observation is that as iteration is increased, the reflection coefficient becomes favorable at more 

frequencies. 

 

 

 

 

 

Figure3.7(a):frequency versus Reflection coefficient plot for 5.1c.m. long Koch fractal monopole with 

zero iteration 

 

 



 

Figure3.7(b):frequency versus Reflection coeff icient plot for 5.1c.m. long Koch fractal monopole with 

one iteration 

 

Figure3.7(c):frequency versus Reflection coeff icient plot for 5.1c.m.long  Koch fractal monopole with 

two iterations 



Figure3.8(a):graph shows frequency versus SWR plot for 5.1c.m. Koch fractal monopole with zero 

iteration, Figure3.8(b):graph shows frequency versus SWR plot for 5.1c.m. Koch fractal monopole 

with one iteration, Figure3.8(c):graph shows frequency versus SWR plot for 5.1c.m. Koch fractal 

monopole with two iteration, graph shows that as we increase iteration the resonant behavior becomes 

more and more compressed. 

 

 

 

 

 

Figure3.8(a):frequency versus SWR plot for 5.1c.m. long Koch fractal monopole with zero iteration 

 



 

Figure3.8(b):frequency versus SWR plot for 5.1c.m.long  Koch fractal monopole with one iteration 

 

Figure3.8(c):frequency versus SWR plot for 5.1c.m. long Koch fractal monopole with two iteration 

Figure3.9(a): figure shows Elevation plot of total field for 5.1c.m. Koch fractal monopole with zero 

iteration, Figure3.9(b): figure shows Elevation plot of total field for 5.1c.m. Koch fractal monopole 

with one iteration, Figure3.9(c): figure shows Elevation plot of total field for 5.1c.m. Koch fractal 



monopole with two  iteration Figure 3.9(d):Azimuthal plot of total field for Koch fractal Monopole.  It 

is interesting to note that for the E-plane radiation pattern, the fractal antenna also has a null at 90 

degrees. This is due to the symmetry of the fractal and the electric and magnetic fields cancelled in this 

direction. Due to the symmetry of the fractal antenna at resonance, the electric and magnetic fields are 

added and cancelled in the far field to give a symmetrical pattern. It is also interesting to note that the 

fractal antenna has slightly less gain than the straight monopole. This is due to the fact that the fractal 

antenna is slightly less efficient than the straight monopole.  

 

 

 

 

 

Figure3.9(a): Elevation plot of total field for 5.1c.m. long Koch fractal monopole with zero iteration 

 



 

Figure3.9(b): Elevation plot of total field for 5.1c.m. long  Koch fractal monopole with one iteration 

 

 

 

 

Figure3.9(c): Elevation plot of total field for 5.1c.m. long Koch fractal monopole with two iteration 

 



 

 

 

Figure 3.9(d):Azimuthal plot of total field for Koch fractal Monopole 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10(a):Graph shows variation of resonant frequency of Koch fractal antenna with each 

successive iteration and for  Euclidean monopole of same length, Figure 3.10(b) shows the same in 

Tabular form. From the graph and table it is observed that ,Resonant frequency of Koch monopole does 

not decrease at the same rate as the wire length increases . Infect  the reduction factor in resonant 

frequency of the Koch antenna  as the iteration number increases tends monotonically  to one. High 

degree of coupling between parallel wire segment  with opposite current vector causes a significant  



reduction in effective length of total wire and therefore increases the resonant frequency. This can be a 

limitation for the fractal antenna. After 5 iterations of the fractal, there was very little benefit in 

reducing the resonant frequency. 

 

 

 

 

 

Figure 3.10(a):Graph shows variation of resonant frequency of koch fractal antenna with each 

successive iteration and for  Euclidean monopole of same length 

 

 

 
Antenna Effective  

length 
Resonant 
Freq.(M Hz) from  
programme 

Frequency (MHz)from  
Quar ter-wavelength 
Effective length 

K0 5.1 1400 1400 
K1 6.8 1170 1102 
K2 9.06 1030 827 

 

Table 3.10(b):Table to demonstrate how resonant frequency decreases as iteration increases. 

 

 

Table 3.11(a), 3.11(b), 3.11(c) shows real and imaginary part of Impedance, SWR Reflection 

coefficient for different frequencies for Koch antenna with zero, one and two iterations respectively. 

 



 

Freq.(M Hz) Impedance 
(Real) 

Impedance 
(imaginary) 

SWR Reflection 
coefficient 

600 9.446 -810.9 >100 0.9986 
1100 35.97 -224.9 30.2 0.9359 
1250 49.24 -110 6.76 0.7424 
1350 60.15 -38.21 2.03 0.3391 
1400 66.35 -3.114 1.33 0.143 
1450 73.14 31.74 1.89 0.3089 
1550 88.77 101.4 4.43 0.6317 
1800 145.2 284.4 14.3 0.8695 
2400 649.7 937.5 40.1 0.9513 
3000 1751 -1530 61.8 0.9681 
3600 129.4 -606.3 59.8 0.9671 
4200 92.9 -91.3 3.94 0.5949 
4350 118 6.975 2.37 0.4066 
4500 156.7 101.6 4.55 0.6397 
5000 454.4 383.7 15.6 0.8796 
5700 1125 -311.3 24.2 0.9207 
6000 680.9 -616.7 24.8 0.9225 

 

           Table 3.11(a): For 5.1c.m.long Koch fractal monopole with zero iteration 

 

 

 

 
Freq. 
(M hz) 

Impedance 
(Real) 

Impedance 
(Imaginary) 

SWR Reflection 
Coefficient 

600 4.615 -324 >100 0.9957 
1050 17.74 -52.44 6.11 0.7187 
1100 20.19 -29.27 3.44 0.5493 
1150 22.95 -6.434 2.22 0.3796 
1600 75.43 218.3 14.7 0.873 
2000 333.9 591.8 27.8 0.9305 
2300 1750 75.81 35.1 0.9446 
2900 62.22 -311 33.1 0.9414 
3050 40.22 -202.5 22.4 0.9146 
3350 38.03 -42.41 2.64 0.4509 
3400 41.17 -19.08 1.58 0.2257 
3450 45.27 3.864 1.14 0.06403 
3550 56.67 49.21 2.46 0.4228 
4000 207.8 259.4 10.8 0.8302 
4750 443 -299.3 12.9 0.8565 
5400 115.6 -100.7 4.27 0.6202 
5700 101.9 -0.1355 2.04 0.3416 
6000 125.3 97.39 4.18 0.6319 

                      

Table3.11(b): For 5.1c.m long Koch fractal  monopole with One iteration 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  Freq. 
(M hz) 

Impedance 
(Real) 

Impedance 
(Imaginary) 

SWR Reflection 
coefficient 

500 2.803 -342.6 >100 0.9977 
920 12.68 -55.35 8.92 0.7984 
1000 16.31 -13.73 3.32 0.5372 
1040 18.51 7.053 2.76 0.4686 
1220 33.19 106.3 8.87 0.7973 
1750 481.4 796 36 0.946 
2040 758.1 -1080 46 0.9574 
2700 18.57 -139.9 24.1 0.9204 
2920 19.15 -28.98 3.59 0.5645 
2980 21.8 0.7628 2.29 0.3929 
3080 29.25 52.24 3.93 0.5941 
3560 314.8 469.2 20.4 0.9065 
4360 84.29 -211.5 12.8 0.8553 
4720 57.09 -45.27 2.3 0.3941 
4820 59.76 -3.886 1.21 0.09566 
5040 82.95 95.97 4.25 0.6188 
5620 933.4 11.3 18.7 0.8983 
6000 141.1 -325.9 18.2 0.8957 

                   

Table 3.11(c): For 5.1c.m.long Koch fractal monopole with two iterations 

 

From the tables 3.11(a),3.11(b),3.11(c),it is apparent that as iterations increase, the resonant 

frequencies for antenna increases, means antenna shows multiband performance. With each iteration  

resonant behavior gets more and more compressed, and SWR and reflection coeff icients becomes 

favorable at more frequencies. 

 

 

 

 

 



 

 

 

 

 

 

 

Chapter-4 
Fractal Antenna in GSM900 

 
GSM900 operates at frequency range 890-915Mhz. for uplink communication and 935-960Mhz. for 

downlink communication. A monopole on a perfect ground having resonance at 925Mhz is required. 

and the  length of  straight wire monopole required is 8.1c.m., But this length will be very large in 

comparison to the dimensions of handset. By using a three iteration  Koch,  the length of  monopole 

required is 3.41c.m.(from equation 2.17)  to provide effective height of 8.1c.m., but due to the coupling 

effect described in capter-2 , Koch of length 4.1c.m.of three iteration on a perfect ground with source at 

bottom end  is used. Radius of wire has been taken 0.1m.m.With radius 0.1m.m. the antenna has 

bandwidth(SWR<2) 21Mhz ,which  is very less to cover 900Mhz  band ,by increasing wire radius 

,bandwidth could be increased. By taking radius 6.8m.m. bandwidth(SWR<2) increases up to 71Mhz. 

which covers the whole 900Mhz band, and provides a gain of 4.9db. Using Matlab a Koch with three 

iterations  4.1c.m long . has been generated and using MMANA code which is a MININEC code, 

antenna is simulated. The Koch monopole exhibits excellent performance at 925 MHz and has 

radiation properties nearly identical to that of traditional, straight-wire monopoles at that frequency. 

The radiation pattern is very uniform in all directions The greatest advantage of the Koch monopole 

design is  compactness. A size reduction of nearly 50% was achieved over the straight-wire, , 

4/λ free-space monopole. This is highly significant for applications such as GSM cellular phones . 

Since it is half the size of the traditional monopole, it could easily be completely integrated within the 

case of the phone, eliminating the protruding monopoles commonly seen on many cellular phones.  

Simulation results are shown below. 

 

 

 

 

 

 

 

Figure 4.1 shows Koch of length 4.1c.m. of three iterations with source at bottom on a perfect ground  

of wire radius 0.1m.m. 

 

 



 

 

 

 

Figure 4.1 : Three iteration Koch of length 4.1cm.with source at bottom on a perfect ground. 

. 

 

Figure 4.2 to 4.9 shows the results given by MMANA code, that gives frequency versus impedance 

plot, frequency versus gain  and front to back ratio plot , frequency versus SWR plot, azimuthal and 

elevation plot of radiation pattern. SWR has been taken for 50 ohm feeding impedance.  Figure 4.2 to 

4.9 shows these results for different values of radius , for radius 0.1m.m., 1m.m., 2m.m.,3m.m. ,4m.m. 

,5m.m. , 6m.m. , 6.8m.m., It has been observed that with increase in radius of antenna the bandwidth of 

antenna increases, gain remains almost same, radiation pattern also remains same.Figure4.9 shows the 

results of antenna with radius 6.8m.m.,this antenna is having gain of 4.9db ,front to back ratio 0db and 

bandwidth 71Mhz. 

Figure 4.2(a)shows the Frequency versus Impedance plot and figure 4.2(b)shows frequency versus gain 

and frequency versus front to back ratio for the Koch fractal antenna of three iterations of length 

4.1c.m. with radius 0.1m.m. 

 



 

Figure 4.2(a): Frequency versus Real and Imaginary part of impedance plot for radius 0.1m.m. 

 

Figure 4.2(b):Frequency versus Gain and  front to back ratio Plot for radius 0.1m.m. 

 

Figure 4.2(c)shows the Frequency versus SWR plot and figure 4.2(d)shows Azimuthal and Elevation 

plot of radiation pattern for Koch fractal antenna of three iterations of length 4.1c.m. with radius 

0.1m.m. 



 

 

 

Figure 4.2(c): Frequency versus SWR plot for radius 0.1m.m. 

 

 

 

Figure 4.2(d): Azimuthal and elevation plot of Radiation Pattern 

 

Figure 4.3(a)shows the Frequency versus Impedance plot and figure 4.3(b)shows frequency versus gain 

and frequency versus front to back ratio for the Koch fractal antenna of three iterations of length 

4.1c.m. with radius 1m.m. 



 

Figure 4.3(a): Frequency versus Real and Imaginary part of impedance plot for radius 1m.m. 

 

 

Figure 4.3(b): Frequency versus Gain and front to back ratio Plot for radius 1m.m. 

 

 

Figure 4.3(c)shows the Frequency versus SWR plot and figure 4.3(d)shows Azimuthal and Elevation 

plot of radiation pattern for Koch fractal antenna of three iterations of length 4.1c.m. with radius 1m.m. 



 

Figure 4.3(c): Frequency versus SWR plot for radius 1m.m. 

 

 

Figure 4.3(d): Azimuthal and elevation plot of Radiation Pattern 

 

 

 

Figure 4.4(a)shows the Frequency versus Impedance plot and figure 4.4(b)shows frequency versus gain 

and frequency versus front to back ratio for the Koch fractal antenna of three iterations of length 

4.1c.m. with radius 2m.m. 



 

Figure 4.4(a): Frequency versus Real and Imaginary part of impedance plot for radius 2m.m. 

 

Figure 4.4(b): Frequency versus Gain and front to back ratio Plot for radius 2m.m. 

 

 

 

 

Figure 4.4(c)shows the Frequency versus SWR plot and figure 4.4(d)shows Azimuthal and Elevation 

plot of radiation pattern for Koch fractal antenna of three iterations of length 4.1c.m. with radius 2m.m. 



 

Figure 4.4(c): Frequency versus SWR plot for radius 2m.m. 

 

 

Figure 4.4(d): Azimuthal and elevation plot of Radiation Pattern 

 

 

 

Figure 4.5(a)shows the Frequency versus Impedance plot and figure 4.5(b)shows frequency versus gain 

and frequency versus front to back ratio for the Koch fractal antenna of three iterations of length 

4.1c.m. with radius 3m.m. 



Figure 4.5(a): Frequency versus Real and Imaginary part of impedance plot for radius 3m.m. 

 

Figure 4.5(b): Frequency versus Gain and front to back ratio Plot for radius 3m.m. 

 

 

 

Figure 4.5(c)shows the Frequency versus SWR plot and figure 4.5(d)shows Azimuthal and Elevation 

plot of radiation pattern for Koch fractal antenna of three iterations of length 4.1c.m. with radius 3m.m. 



 

Figure 4.5(c): Frequency versus SWR plot for radius 3m.m. 

 

 

Figure 4.5(d): Azimuthal and elevation plot of Radiation Pattern 

 

 

 

 

Figure 4.6(a)shows the Frequency versus Impedance plot and figure 4.6(b)shows frequency versus gain 

and frequency versus front to back ratio for the Koch fractal antenna of three iterations of length 

4.1c.m. with radius 4m.m. 



 

Figure 4.6(a): Frequency versus Real and Imaginary part of impedance plot for radius 4m.m 

 

 

 

Figure 4.6(b): Frequency versus Gain and front to back ratio Plot for radius 4m.m. 

 

Figure 4.6(c)shows the Frequency versus SWR plot and figure 4.6(d)shows Azimuthal and Elevation 

plot of radiation pattern for Koch fractal antenna of three iterations of length 4.1c.m. with radius 4m.m. 



 

Figure 4.6(c): Frequency versus SWR plot for radius 4m.m. 

 

 

Figure 4.6(d): Azimuthal and elevation plot of Radiation Pattern 

 

 

 

Figure 4.7(a)shows the Frequency versus Impedance plot and figure 4.7(b)shows frequency versus gain 

and frequency versus front to back ratio for the Koch fractal antenna of three iterations of length 

4.1c.m. with radius 5m.m. 



 

Figure 4.7(a): Frequency versus Real and Imaginary part of impedance plot for radius 5m.m. 

 

 

Figure 4.7(b): Frequency versus Gain and front to back ratio Plot for radius 5m.m. 

 

 

Figure 4.7(c)shows the Frequency versus SWR plot and figure 4.7(d)shows Azimuthal and Elevation 

plot of radiation pattern for Koch fractal antenna of three iterations of length 4.1c.m. with radius 5m.m. 



 

Figure 4.7(c): Frequency versus SWR plot for radius 5m.m. 

 

 

Figure 4.7(d): Azimuthal and elevation plot of Radiation Pattern 

 

 

 

 

Figure 4.8(a)shows the Frequency versus Impedance plot and figure 4.8(b)shows frequency versus gain 

and frequency versus front to back ratio for the Koch fractal antenna of three iterations of length 

4.1c.m. with radius 6m.m. 



 

Figure 4.8(a): Frequency versus Real and Imaginary part of impedance  plot for radius 6m.m. 

 

Figure 4.8(b): Frequency versus Gain and front to back ratio Plot for radius 6m.m. 

 

 

 

Figure 4.8(c)shows the Frequency versus SWR plot and figure 4.8(d)shows Azimuthal and Elevation 

plot of radiation pattern for Koch fractal antenna of three iterations of length 4.1c.m. with radius 6m.m. 



 

Figure 4.8(c): Frequency versus SWR plot for radius 6m.m. 

 

 

Figure 4.8(d): Azimuthal and elevation plot of Radiation Pattern 

 

 

 

 

Figure 4.9(a)shows the Frequency versus Impedance plot and figure 4.9(b)shows frequency versus gain 

and frequency versus front to back ratio for the Koch fractal antenna of three iterations of length 

4.1c.m. with radius 6.8m.m.. 



 

Figure 4.9(a): Frequency versus Real and Imaginary part of impedance plot  for radius 6.8m.m. 

 

Figure 4.9(b): Frequency versus Gain and front to back ratio Plot for radius 6.8m.m. 

 

 

 

Figure 4.9(c)shows the Frequency versus SWR plot and figure 4.9(d)shows Azimuthal and Elevation 

plot of radiation pattern for Koch fractal antenna of three iterations of length 4.1c.m. with radius 

6.8m.m. 



 

Figure 4.9(c): Frequency versus SWR plot for radius 6.8m.m. 

 

Figure 4.9(d): Azimuthal and elevation plot of Radiation Pattern 

 

 

 

 

Figure 4.10 shows the variation of Quality Factor with Radius of Koch Fractal Antenna, it is observed 

that with increase in radius the quality factor decreases and for radius 6.8m.m.,the quality factor is 6.7 

 



 

 

Figure 4.10:Variation of Quality Factor with Radius of Koch Fractal Antenna 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11shows the variation of Bandwidth(SWR<2) with Radius of Koch Fractal Antenna, it is 

observed that with increase  in radius of antenna the bandwidth increases, for radius 6.8m.m.,the 

bandwidth(SWR<2) is 71Mhz.,which covers the whole GSM900 band. 

 



 

 

Figure 4.11:Variation of Bandwidth with Radius of Koch Fractal Antenna 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 shows variation of Q, Bandwidth, Impedance ,Gain and Front to Back ratio with Radius of 

antenna at925Mhz in tabular form. With increase in radius the quali ty factor decreases, 

bandwidth(SWR) increases, impedance of the antenna keep on decreasing, gain and front to back ratio 

remains same.  

 
 
 

Radius of Quality Bandwidth Real par t Imaginary par t Gain Front to 



Antenna 

(m.m.) 

Factor (Q) (KHz) of Impedance of  Impedance (db) Back Ratio(db) 

0.1 25.4 21826.2 7.7 -117.9 4.9 0.0 

1 15.3 34107.3 5.9 -92.4 4.9 0.0 

2 12.2 42041.8 5.0 -72 4.9 0.0 

3 10.4 48822.5 4.3 -57.8 4.9 0.0 

4 9.1 55075.5 3.8 -47.5 4.9 0.0 

5 8.1 60994.8 3.4 -39.7 4.9 0.0 

6 7.3 66874.6 3.1 -33.8 4.9 0.0 

6.8 6.7 71449.9 2.9 -29.9 4.9 0.0 

 

Figure 4.12:Table showing variation of Q, Bandwidth, Impedance ,Gain and Front to Back ratio with 

Radius of antenna at925Mhz. 

 

The Koch fractal antenna of length 4.1c.m.with radius 6.8c.m.,has quality factor 6.7 ,has  

bandwidth(SWR<2) 71Mhz ,has gain 4.9 db and a front to back ratio 0db.The bandwidth covers the 

GSM900 band. It has radiation pattern which is uniform in all directions, same as that of traditional 

monopole .But using fractals a reduction of nearly 50% in the size  antenna over conventional 

monopole has been achieved without sacrificing the performance of antenna up to much extent. This is 

highly significant for applications such as GSM cellular phones. 

 

 

 

Chapter-5 
Fractal Antenna in GSM1800 

 
GSM1800 operates at frequency range 1710-1785Mhz for uplink communication and 1805-1880Mhz. 

for downlink communication. A monopole on a perfect ground having resonance at 1800Mhz is 

required. and the  length of  straight wire monopole required is 4.16c.m., But this length will be very 

large in comparison to the dimensions of handset. By using a three iteration  Koch,  the length of Koch 

monopole required is 1.75c.m.(from equation 2.17)  to provide effective height of 4.16c.m., but due to 

the coupling effect described in capter-2 , Koch of length 2c.m. with three iteration on a perfect ground 

with source at bottom end  is used. Radius of wire has been taken 0.1m.m.With radius 0.1m.m. antenna 

has bandwidth(SWR<2) 38.7Mhz which  is very less to cover 1800Mhz  band ,by increasing wire 

radius ,bandwidth could be increased. By taking radius 6.5m.m. bandwidth increases up to 180Mhz. 

which covers the whole 1800Mhz band, provide a gain of 4.9db. Using Matlab a Koch of three 

iterations on height 2c.m. has been generated and using MMANA code which is a MININEC code, 

antenna is simulated. The Koch monopole exhibits excellent performance at 1800 MHz and has 

radiation properties nearly identical to that of traditional, straight-wire monopoles at that frequency. 

The radiation pattern is very uniform in all directions. The greatest advantage of the Koch monopole 



design is  compactness. A size reduction of nearly 50% was achieved over the straight-wire, , 

4/λ free-space monopole. This is highly significant for applications such as GSM cellular phones . 

Since it is half the size of the traditional monopole, it could easily be completely integrated within the 

case of the phone, eliminating the protruding monopoles commonly seen on many cellular phones.  

Simulation results are shown below. 

 

 

 

 

 

 

 

Figure 5.1shows Koch of length 2c.m. of three iterations with source at bottom on a perfect ground  of 

wire radius 0.1m.m. 

 

 

 

Figure5.1 : Three iteration Koch of length 2cm.with source at bottom on a perfect ground. 

 

 

 

Figure 5.2 to 5.9 shows the results given by MMANA code, that gives frequency versus impedance 

plot, frequency versus gain  and front to back ratio plot , frequency versus SWR plot, azimuthal and 

elevation plot of radiation pattern. SWR has been taken for 50 ohm feeding impedance.  Figure 5.2 to 

5.9 shows these results for different values of radius , for radius 0.1m.m., 1m.m., 2m.m.,3m.m. ,4m.m. 

,5m.m. , 6m.m. , 6.5m.m. It has been observed that with increase in radius of antenna the bandwidth of 

antenna increases, gain remains almost same, radiation pattern also remains same.Figure5.9 shows the 



results of antenna with radius 6.5m.m.,this antenna is having gain of 4.9db ,front to back ratio 0db and 

bandwidth 180Mhz. 

 

 

 

 

Figure 5.2(a)shows the Frequency versus Impedance plot and figure 5.2(b)shows frequency versus gain 

and frequency versus front to back ratio for the Koch fractal antenna of three iterations of length 2c.m. 

with radius 0.1m.m. 

 

Figure 5.2(a): Frequency versus Real and Imaginary part of impedance plot for radius 0.1m.m. 

 

Figure 5.2(b):Frequency versus Gain and front to back ratio Plot for radius 0.1m.m. 



 

 

 

Figure 5.2(c)shows the Frequency versus SWR plot and figure 5.2(d)shows Azimuthal and Elevation 

plot of radiation pattern for Koch fractal antenna of three iterations of length 2c.m. with radius 0.1m.m. 

 

Figure 5.2(c): Frequency versus SWR plot for radius 0.1m.m. 

 

 

Figure 5.2(d): Azimuthal and elevation plot of Radiation Pattern 

 

 

 



Figure 5.3(a)shows the Frequency versus Impedance plot and figure 5.3(b)shows frequency versus gain 

and frequency versus front to back ratio for the Koch fractal antenna of three iterations of length 2c.m. 

with radius 1m.m. 

 

Figure 5.3(a): Frequency versus Real and Imaginary part of impedance plot for radius 1m.m. 

 

Figure 5.3(b):Frequency versus Gain and front to back ratio Plot for radius 1m.m. 

 

 

 

Figure 5.3(c)shows the Frequency versus SWR plot and figure 5.3(d)shows Azimuthal and Elevation 

plot of radiation pattern for Koch fractal antenna of three iterations of length 2c.m. with radius 1m.m. 



 

Figure 5.3(c): Frequency versus SWR plot for radius 1m.m. 

 

 

Figure 5.3(d): Azimuthal and elevation plot of Radiation Pattern 

 

 

 

Figure 5.4(a)shows the Frequency versus Impedance plot and figure 5.4(b)shows frequency versus gain 

and frequency versus front to back ratio for the Koch fractal antenna of three iterations of length 2c.m. 

with radius 2m.m. 



 

Figure 5.4(a): Frequency versus Real and Imaginary part of impedance plot for radius 2m.m. 

 

Figure 5.4(b)Freq. versus Gain and front to back ratio Plot for radius 2.m. 

 

 

 

Figure 5.4(c)shows the Frequency versus SWR plot and figure 5.4(d)shows Azimuthal and Elevation 

plot of radiation pattern for Koch fractal antenna of three iterations of length 2c.m. with radius 2m.m. 



 

Figure 5.4(c): Frequency versus SWR plot for radius 2m.m. 

 

 

Figure 5.4(d): Azimuthal and elevation plot of Radiation Pattern 

 

 

 

Figure 5.5(a)shows the Frequency versus Impedance plot and figure 5.5(b)shows frequency versus gain 

and frequency versus front to back ratio for the Koch fractal antenna of three iterations of length 2c.m. 

with radius 3m.m. 



Figure 5.5(a): Frequency versus Real and Imaginary part of impedance plot for radius 3m.m. 

 

Figure 5.5(b):Frequency versus Gain and front to back ratio Plot for radius 3m.m. 

 

 

 

Figure 5.5(c)shows the Frequency versus SWR plot and figure 5.5(d)shows Azimuthal and Elevation 

plot of radiation pattern for Koch fractal antenna of three iterations of length 2c.m. with radius 3m.m. 



 

Figure 5.5(c): Frequency versus SWR plot for radius 3m.m. 

 

 

Figure 5.5(d): Azimuthal and elevation plot of Radiation Pattern 

 

 

 

Figure 5.6(a)shows the Frequency versus Impedance plot and figure 5.6(b)shows frequency versus gain 

and frequency versus front to back ratio for the Koch fractal antenna of three iterations of length 2c.m. 

with radius 4m.m. 



 

Figure 5.6(a): Frequency versus Real and Imaginary part of impedance plot for radius 4m.m. 

 

Figure 5.6(b):Frequency versus Gain and front to back ratio Plot for radius  4m.m. 

 

 

 

Figure 5.6(c)shows the Frequency versus SWR plot and figure 5.6(d)shows Azimuthal and Elevation 

plot of radiation pattern for Koch fractal antenna of three iterations of length 2c.m. with radius 4m.m. 



 

Figure 5.6(c): Frequency versus SWR plot for radius   4m.m. 

 

 

Figure 5.6(d): Azimuthal and elevation plot of Radiation Pattern 

 

 

 

Figure 5.7(a)shows the Frequency versus Impedance plot and figure 5.7(b)shows frequency versus gain 

and frequency versus front to back ratio for the Koch fractal antenna of three iterations of length 2c.m. 

with radius 5m.m. 



 

Figure 5.7(a): Frequency versus Real and Imaginary part of impedance plot for radius   5m.m. 

 

Figure 5.7(b):Frequency versus Gain and front to back ratio Plot for radius  5m.m. 

 

 

 

Figure 5.7(c)shows the Frequency versus SWR plot and figure 5.7(d)shows Azimuthal and Elevation 

plot of radiation pattern for Koch fractal antenna of three iterations of length 2c.m. with radius 5m.m. 



 

Figure 5.7(c): Frequency versus SWR plot for radius  5m.m. 

 

 

Figure 5.7(d): Azimuthal and elevation plot of Radiation Pattern 

 

 

 

Figure 5.8(a)shows the Frequency versus Impedance plot and figure 5.8(b)shows frequency versus gain 

and frequency versus front to back ratio for the Koch fractal antenna of three iterations of length 2c.m. 

with radius 6m.m. 



 

Figure 5.8(a): Frequency versus Real and Imaginary part of impedance plot for radius   6m.m. 

 

Figure 5.8(b):Frequency versus Gain and front to back ratio Plot for radius 6m.m. 

 

 

 

Figure 5.8(c)shows the Frequency versus SWR plot and figure 5.8(d)shows Azimuthal and Elevation 

plot of radiation pattern for Koch fractal antenna of three iterations of length 2c.m. with radius 6m.m. 



 

Figure 5.8(c): Frequency versus SWR plot for radius   6m.m. 

 

Figure 5.8(d): Azimuthal and elevation plot of Radiation Pattern 

 

 

 

 

Figure 5.9(a)shows the Frequency versus Impedance plot and figure 5.9(b)shows frequency versus gain 

and frequency versus front to back ratio for the Koch fractal antenna of three iterations of length 2c.m. 

with radius 6.5m.m. 



 

Figure 5.9(a): Frequency versus Real and Imaginary part of impedance plot for radius 6.5m.m. 

 

Figure 5.9(b):Frequency versus Gain and front to back ratio Plot for radius 6.5m.m. 

 

 

 

Figure 5.9(c)shows the Frequency versus SWR plot and figure 5.9(d)shows Azimuthal and Elevation 

plot of radiation pattern for Koch fractal antenna of three iterations of length 2c.m. with radius 6.5m.m. 



 

Figure 5.9(c): Frequency versus SWR plot for radius 6.5m.m. 

 

 

Figure 5.9(d): Azimuthal and elevation plot of Radiation Pattern 

 

 

 

 

Figure 5.10 shows the variation of Quality Factor with Radius of Koch Fractal Antenna, it is observed 

that with increase in radius the quality factor decreases and for radius 6.5m.m.,the quality factor is 4. 

 



 

Figure 5.10:Variation of Quality Factor with Radius of Koch Fractal Antenna 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11shows the variation of Bandwidth(SWR<2) with Radius of Koch Fractal antenna, it is 

observed that with increase  in radius of antenna the bandwidth increases, for radius 6.5m.m.,the 

bandwidth(SWR<2) is 180Mhz.,which covers the whole GSM1800 band. 

 



 

Figure 5.11:Variation of Bandwidth with Radius of Koch Fractal Antenna 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 shows variation of Q, Bandwidth, Impedance ,Gain and Front to Back ratio with Radius of 

antenna at 1800Mhz in tabular form. With increase in radius the quali ty factor decreases, 

bandwidth(SWR) increases, impedance of the antenna keep on decreasing, gain and front to back ratio 

remains same.  

 
 

Radius 

(m.m.) 

Quality  

Factor  

Bandwidth 

(Khz) 

Real  Par t 

of  Impedance 

Imaginary Par t 

of Impedance  

Gain 

(db) 

Front to 

Back ratio(db) 

0.1 24.5 38710.6 6.6 -136.7 4.9 0.0 

1 13.2 68938.4 5.2 -86.7 4.9 0.0 

2 9.9 92024.1 4.1 -57.5 4.9 0.0 



3 7.9 112266.5 3.2 -40.5 4.9 0.0 

4 6.6 131541.3 2.7 -30.0 4.9 0.0 

5 5.4 150786.5 2.3 -23.1 4.9 0.0 

6 4.5 170655.4 2.0 -18.3 4.9 0.0 

6.5 4.0 180675.2 1.9 -16.5 4.9 0.0 

 

Figure 5.12:Table showing variation of Q, Bandwidth, Impedance ,Gain and Front to Back ratio with 

Radius of antenna at 1800Mhz. 

 

The Koch fractal antenna of length 2c.m.with radius 6.5c.m.,has quality factor 4,has 

bandwidth(SWR<2) 180Mhz ,has gain 4.9 db and a front to back ratio 0db.The bandwidth covers the 

GSM1800 band. It has radiation pattern which is uniform in all directions, same as that of traditional 

monopole .But using fractals a reduction of nearly 50% in the size  antenna over conventional 

monopole has been achieved without sacrificing the performance of antenna up to much extent. This is 

highly significant for applications such as GSM cellular phones. 

 

 

 

 

Chapter-6 
Conclusions and Future Scope 

 
In this dissertation, fractal antenna incorporated into GSM handsets have been purposed. The project 

involves simulation of  Koch fractal antennas. Several Koch fractal antennas have been simulated using 

MATLAB ,EZNEC and MMANA codes.  The results in chapter-3  shows the Multiband performance 

of fractal antennas at non-harmonic frequencies, improved impedance, improved SWR(standing wave 

ratio) performance on a reduced  physical area when compared to non fractal Euclidean geometries, 

Compressed Resonant behavior, broadband  characteristic, improved reliabili ty and the biggest 

advantage their size reducing capability, Size can be shrunk from two to four times with surprising 

good performance and with each iteration the number of resonant frequency increases. Perturbation 

could be applied to shape of fractal to make it to resonate at different frequency. In chapter-4 , chapter-

5 results shows that  Koch fractal monopole  are an excellent alternative to traditional antenna systems 

in mobile wireless receivers The Koch monopole exhibits excellent performance at 925 MHz and 

1800Mhz and has radiation properties nearly identical to that of traditional, straight-wire monopoles at 

that frequency. The radiation pattern is very uniform in all directions. It is consistent with the classic 

doughnut shape characteristic of the straight wire 4/λ  monopole, and consequently that of the 

2/λ dipole. The greatest advantage of the Koch monopole design is  compactness. A size reduction of 

nearly 50% was achieved over the straight-wire, , 4/λ free-space monopole. This is highly significant 

for applications such as GSM cellular phones. Since it is half the size of the traditional monopole, it 



could easily be completely integrated within the case of the phone, eliminating the protruding 

monopoles commonly seen on many cellular phones. The Koch monopole design has excellent 

impedance bandwidth, allowing some flexibility in the types of applications where it could be used. 

Since the radiation pattern is highly uniform and identical to that of a traditional 4/λ  monopole, it 

could be used in nearly any type of wireless communications receiver. The very similar gain to the 

traditional 4/λ  monopole is another benefit of the design. Another beneficial of fractal antennas is 

fractal antennas are in form of a PCB. Thus the Koch monopole presents an excellent, compact solution 

to the traditional straight-wire monopole.  

Future Scope 

   Since the area of fractal antenna engineering research is stil l in its infancy, there are many 

possibili ties for future work on this topic. The  Koch fractal was  chosen for this project because this is 

the best documented fractal antenna types in current research. However, many possible fractal 

structures exist which may undoubtedly have desirable radiation properties. Thus, a possible approach  

for future work is to investigate other types of fractals for antenna applications. A novel  development 

is the use of fractal patterns for antenna arrays . Fractal antennas can be studied in several areas. One 

area of development is to implement fractal antennas into  current technologies in practical situations 

such as expanding wireless market. For this application an  analysis of the polarization of these 

antennas will need to be looked. Another benefit that can be explored is lower covered area of resonant 

loop antennas. This may lead to antenna with lower cross sections. Also, fractals can be used into 

microstrip antennas.  
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