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Abstract. In this paper we develop a posteriori error estimates for finite element discretization of
elliptic optimization problems with pointwise inequality constraints on the control variable. We derive
error estimators for assessing the discretization error with respect to the cost functional as well as with
respect to a given quantity of interest. These error estimators provide quantitative information about
the discretization error and guide an adaptive mesh refinement algorithm allowing for substantial
saving in degrees of freedom. The behavior of the method is demonstrated on numerical examples.
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1. Introduction. In this paper we develop a posteriori error estimates for fi-
nite element approximations of optimization problems governed by elliptic partial
differential equations. We discuss this question in a general manner, including the
consideration of optimal control and parameter identification problems with control
constraints given through a closed convex admissible set. The derived error estimates
have the goal of guiding an adaptive mesh refinement algorithm for finding economical
meshes for the optimization problem under consideration.

The use of adaptive techniques based on a posteriori error estimation is well
accepted in the context of finite element discretization of partial differential equations;
see, e.g., [6, 13, 35]. To our knowledge there are only a few results published on
adaptive finite elements for optimization problems; see [2, 17, 20, 23, 25, 27, 4, 7, 8, 30].

In articles [17, 20, 23, 25, 27] the authors provide a posteriori error estimates for
elliptic optimal control problems with distributed or Neumann control subject to box
constraints. These estimates assess the error in the control, state, and the adjoint
variable with respect to the natural norms of the corresponding spaces. In [2] another
approach for the estimation of the error with respect to the norm of the control space
is presented. In [17] convergence of an adaptive algorithm for a control constrained
optimal control problem is shown.

However, in many applications, the error in global norms does not provide a
useful error bound for the error in the quantity of physical interest. The a posteri-
ori estimators derived in this paper grant access to the error with respect to given
functionals.
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510 B. VEXLER AND W. WOLLNER

In [4, 6] the authors present a general concept for a posteriori estimation of the
discretization error with respect to the cost functional in the context of optimal control
problems. In articles [7, 8] the authors have extended this approach to the estimation
of the discretization error with respect to an arbitrary functional depending on both
the control and the state variable, so-called quantity of interest. This allowed, among
other things, the treatment of parameter identification and model calibration prob-
lems. However, in all these publications, the control variable was searched for in a
Hilbert space Q without additional (inequality) constraints. Therefore the main con-
tribution of this work is the extension of these techniques to the case of optimization
problems with additional control constraints given through a closed convex admissible
set Qad ⊂ Q. In the majority of practical cases this admissible set is described by
inequality control constraints of box type q− ≤ q(x) ≤ q+. Therefore we will concen-
trate on this case, although our techniques may also be extended to the consideration
of more general admissible sets Qad.

In this paper we consider optimization problems governed by (nonlinear) partial
differential equations. The aim is to minimize a given cost functional J(q, u) which
depends on the state variable u ∈ V and the control variable q ∈ Q, with Hilbert
spaces V and Q. These variables have to satisfy the state equation

(1.1) A(q, u) = f,

where A denotes a (nonlinear) differential operator and f represents the given data.
The optimization problem is then formulated as follows:

(1.2)

{
Minimize J(q, u), u ∈ V, q ∈ Qad,

A(q, u) = f.

Constraints on the control are incorporated via the definition of the closed and convex
set Qad representing the set of admissible controls.

For numerical treatment this infinite dimensional optimization problem is dis-
cretized in virtue of finite element methods; see the discussion in section 3. Let the
solution to the discretized problem be denoted by (qh, uh). Our aim is to derive a
posteriori error estimates for the error between the solutions to the continuous and
the discrete problem. A crucial point for our error analysis is the choice of a quantity,
which describes the goal of the computation. If this quantity coincides with the cost
functional, we have to estimate the error

J(q, u) − J(qh, uh).

In a more general case, we suppose I : Q×V → R to be a given functional describing
the quantity of interest. Then the error to be estimated is

I(q, u) − I(qh, uh).

The consideration of quantities of interest is important, for instance, in the context
of parameter identification and model calibration problem; see [8] for an application
of this concept to an optimization problem from computational fluid dynamics.

To the authors’ knowledge this is the first article providing a posteriori error
estimates with respect to a given functional for optimization problems with partial
differential equations and subject to control constraints.

The paper is organized as follows. In the next section we describe the optimization
problem under consideration, discuss necessary optimality conditions, and sketch the
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solution algorithm on the continuous level. In section 3 we describe the discretization
of the optimization problem in virtue of finite element methods. Section 4 is devoted
to a posteriori error estimation. In sections 4.1 and 4.2 we derive two different error
estimates for the error with respect to the cost functional J . The first error estimator is
based on the optimality system involving a variational inequality, whereas the second
one exploits Lagrange multipliers for the treatment of inequality constraints. Due
to the fact that the optimal control q is not expected to be sufficiently smooth (due
to inequality constraints), the approximation of (interpolation) weights involved in
the error estimator cannot be treated in a usual way. To overcome this difficulty we
exploit the projection formula (2.9) from the optimality conditions and propose an
approximation on the (interpolation) weights using a postprocessing step (4.7), which
is motivated by the considerations in [31]. In section 4.3 we provide an error estimator
with respect to a given quantity of interest. To this end we utilize an additional (dual)
linear-quadratic optimal control problem describing the sensitivity with respect to the
quantity of interest. In the last section we present numerical examples to illustrate
the behavior of our method.

2. Optimization problem. In this section we give a precise formulation of the
optimization problem under consideration and describe necessary optimality condi-
tions and the solution algorithm.

In order to deal with different types of optimization problems simultaneously, we
seek the control variable q in the Hilbert space Q = L2(ω) with scalar product (·, ·)
and norm ‖·‖. Typically, ω is a subset of the computational domain Ω or a subset
of its boundary ∂Ω. The case of finite dimensional controls is realized by choosing
ω = {1, 2, . . . , n} resulting in Q ∼= R

n.
Throughout this paper we suppose that the state equation (1.1) for u ∈ V is given

in a weak form:

(2.1) a(q, u)(ϕ) = f(ϕ) ∀ϕ ∈ V,

where a : Q×V ×V → R is a four times directional differentiable form which is linear
in the third argument and f is in the dual space V ′. A possible choice for this space
is V = H1(Ω), or V = H1

0 (Ω), or a direct product of such spaces. In the presence of
inhomogeneous Dirichlet boundary conditions, one seeks the state variable u in û+V ,
where û represents the boundary data. However, for clarity of notation, we assume
throughout that û = 0.

Remark 2.1. Throughout this paper we use two pairs of parentheses after a
form to indicate that the form is linear in all variables enclosed by the second pair of
parentheses, as seen in (2.1) for a(·, ·)(·).

The cost function is given by

(2.2) J(q, u) = J1(u) +
α

2
‖q‖2 ,

where J1 is a four times directionally differentiable operator on V and α > 0. Let the
admissible set Qad be given through box constraints on q, i.e.,

(2.3) Qad = {q ∈ Q | q− ≤ q(x) ≤ q+ a.e. on ω},

with bounds q−, q+ ∈ R ∪ {±∞} and q− < q+.
Now we are able to formulate the optimization problem as

(2.4) Minimize J(q, u) , u ∈ V, q ∈ Qad , subject to (2.1).
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512 B. VEXLER AND W. WOLLNER

Remark 2.2. The choice of constant bounds q−, q+ ∈ R∪{±∞} is not a limitation,
since one can transform an optimal control problem with bounds q−, q+ ∈ Q into an
equivalent one with constant bounds for the control.

To shorten notation we introduce the space X and the admissible set Xad by

X =Q× V × V,(2.5)

Xad =Qad × V × V.(2.6)

In addition we shall write ξ = (q, u, z) for a vector in X or Xad, where z will denote
an adjoint state.

Throughout the paper we assume that the problem (2.4) admits a solution. Con-
ditions ensuring the existence of solutions to optimal control problems may, for in-
stance, be found in [16, 26, 34]. We shall especially assume that the primal and dual
equations associated with (2.4) are solvable for every given q ∈ Q.

To establish an optimality system, we introduce the Lagrangian L : X → R as
follows:

L(ξ) = J1(u) +
α

2
‖q‖2 + f(z) − a(q, u)(z),

where z denotes the dual variable. Due to the convexity of the admissible set Qad,
the first-order necessary optimality condition for (q, u) ∈ Qad × V reads as follows:

There exists z ∈ V such that the triple ξ = (q, u, z) ∈ Xad satisfies

L′
u(ξ)(δu) = 0 ∀δu ∈ V,(2.7a)

L′
q(ξ)(δq − q) ≥ 0 ∀δq ∈ Qad,(2.7b)

L′
z(ξ)(δz) = 0 ∀δz ∈ V.(2.7c)

This system can be stated explicitly in the following form:

J ′
1(u)(δu) − a′u(q, u)(δu, z) = 0 ∀δu ∈ V,(2.8a)

α(q, δq − q) − a′q(q, u)(δq − q, z) ≥ 0 ∀δq ∈ Qad,(2.8b)

f(δz) − a(q, u)(δz) = 0 ∀δz ∈ V.(2.8c)

We introduce a projection operator PQad
: Q → Qad by

PQad
(p) = max

(
q−,min(p, q+)

)
pointwise a.e. This allows us to rewrite variational inequality (2.8b) (see, e.g., [34]) as

(2.9) q = PQad

(
1

α
a′q(q, u)(·, z)

)
,

where a′q(u, q)(·, z) is understood as a Riesz representative of a linear functional on
Q.

For a solution (q, u) of (2.4) we introduce active sets ω− and ω+ as follows:

ω− = {x ∈ ω | q(x) = q−} ,(2.10)

ω+ = {x ∈ ω | q(x) = q+} .(2.11)
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Let ξ ∈ X be a solution to (2.7); then we introduce an additional Lagrange multiplier
μ ∈ Q by the following identification:

(2.12) (μ, δq) = −α(q, δq) + a′q(q, u)(δq, z) = −L′
q(ξ)(δq) ∀δq ∈ Q .

The variational inequality (2.8b) or the projection formula (2.9) are known to be
equivalent to the following conditions:

μ(x) ≤ 0 a.e. on ω− ,(2.13a)

μ(x) ≥ 0 a.e. on ω+ ,(2.13b)

μ(x) = 0 a.e. on ω \ (ω− ∪ ω+) .(2.13c)

Using this representation of the optimality condition (2.8b) we apply nonlinear primal
dual active set strategy (see, e.g., [9, 24]) to solve (2.4). In the following we sketch
the corresponding algorithm on the continuous level.

Nonlinear primal-dual active set strategy
1. Choose initial guess q0, μ0 and c > 0 and set n = 1.
2. While not converged
3. Determine the active sets ωn

+ and ωn
−:

ωn
− = {x ∈ ω | qn−1(x) + μn−1(x)/c− q− ≤ 0},

ωn
+ = {x ∈ ω | qn−1(x) + μn−1(x)/c− q+ ≥ 0}.

4. Solve the equality-constrained optimization problem

Minimize J1(u
n) +

α

2
‖qn‖2, un ∈ V, qn ∈ Q,

subject to (2.1) and

qn(x) = q− on ωn
− , qn(x) = q+ on ωn

+ .

5. Set

μn = −αqn + a′q(q
n, un)(·, zn)

with adjoint variable zn.
6. Set n = n + 1 and go to 2.

Remark 2.3. The convergence in step 2 can be determined conveniently from
agreement of the active sets in two consecutive iterations.

Remark 2.4. The algorithm above is known to be globally convergent for a class
of optimal control problems if α is sufficiently large; see, e.g., [9, 24]. Moreover, local
superlinear convergence can be shown; see, e.g., [21].

In our practical realization, the equality-constrained optimization problem in
step 4 is solved by Newton’s method on the control space without assembling the
Hessian. The finite element discretization of the optimization problem, described in
the next section, allows us to directly translate these algorithms onto the discrete
level.

As we will encounter some trouble with the variational inequality in the neces-
sary optimality condition (2.8) due to missing Galerkin orthogonality, we consider in
addition the full Lagrangian L̃ : X ×Q×Q → R which is given by

L̃(χ) = L(ξ) + (μ−, q− − q) + (μ+, q − q+),
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with χ = (ξ, μ−, μ+) = (q, u, z, μ−, μ+) ∈ X × Q × Q, where μ− and μ+ denote the
variables corresponding to Lagrange multipliers for the inequality constraints. To
shorten notation we introduce the abbreviation

(2.14) Y = X ×Q×Q.

Using the subspaces

Q− = {r ∈ Q | r = 0 a.e. on ω \ ω−},
Q+ = {r ∈ Q | r = 0 a.e. on ω \ ω+},

we introduce

Yad =Xad ×Q− ×Q+,(2.15)

Ỹad =X ×Q− ×Q+(2.16)

and see that the following equality holds for all χ ∈ Yad:

(2.17) L(ξ) = L̃(χ).

We can rewrite the first-order necessary optimality condition for (q, u) ∈ Qad ×V
equivalently as follows (cf. [34]):

There exist z ∈ V, μ− ∈ Q−, μ+ ∈ Q+ such that the following conditions hold
for χ = (q, u, z, μ−, μ+) ∈ Yad:

L̃′
u(χ)(δu) = 0 ∀δu ∈ V,(2.18a)

L̃′
q(χ)(δq) = 0 ∀δq ∈ Q,(2.18b)

L̃′
z(χ)(δz) = 0 ∀δz ∈ V,(2.18c)

L̃′
μ−(χ)(δμ−) = 0 ∀δμ− ∈ Q−,(2.18d)

L̃′
μ+(χ)(δμ+) = 0 ∀δμ+ ∈ Q+,(2.18e)

μ+, μ− ≥ 0 a.e. on ω.(2.18f)

It is easy to verify that the Lagrange multipliers μ+ and μ− are given as the positive
and negative part of the Lagrange multiplier μ from (2.12); cf. [34].

Note that (2.18d), (2.18e) are equivalent to the complementarity conditions

(2.19) μ−(q− − q) = μ+(q − q+) = 0 a.e. on ω.

For later use we recall a second-order sufficient optimality condition.
Lemma 2.1 (sufficient optimality condition). Let ξ = (q, u, z) ∈ Xad satisfy the

first-order necessary condition (2.7a)–(2.7c) of optimization problem (2.4). Moreover,
let z �→ a′u(q, u)(·, z) : V → V ′ be surjective. If there exists ρ > 0 such that

(2.20)
(
δq , δu

) [L′′
qq(ξ)(·, ·) L′′

qu(ξ)(·, ·)
L′′
uq(ξ)(·, ·) L′′

uu(ξ)(·, ·)

](
δq
δu

)
≥ ρ

(
‖δu‖2

V + ‖δq‖2
Q

)
holds for all (δq, δu) satisfying the linear (tangent) partial differential equation

(2.21) a′u(q, u)(δu, ϕ) + a′q(q, u)(δq, ϕ) = 0 ∀ϕ ∈ V,

then (q, u) is a (strict) local solution to the optimization problem (2.4).
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We refer the reader to [29] for the proof.

Remark 2.5. Throughout the paper we exploit only first-order information. This
means that the error estimators proposed in section 4 are applicable to all solutions
of the optimality system (2.8) or (2.18), respectively.

For the convenience of the reader we list the assumptions made in the preceding
section.

Assumption 1. The optimization problem (2.4) possesses a solution (q, u). In
addition there exists z ∈ V such that the first-order necessary conditions (2.8) are
fulfilled by the triple (q, u, z).

Remark 2.6. It is sufficient for the existence of z in the preceding assumption if
the mapping z �→ a′u(q, u)(·, z) is surjective onto V ′. This is one of the requirements
in Lemma 2.1 and is fulfilled by all examples given in this article.

Assumption 2. The functional a(·, ·)(·) : Q × V × V → R defined in (2.1) is
assumed to be four times directional differentiable.

Assumption 3. The functional J(·, ·) : Q× V → R defined in (2.2) is assumed to
be four times directional differentiable.

Assumption 4. The functional I(·, ·) : Q×V → R mentioned in the introduction
(see also (4.20)) is assumed to be three times directional differentiable.

3. Finite element discretization. In this section we discuss finite element
discretization of the optimization problem (2.4).

To keep the following sections simple we restrain ourselves to the case of problems
where H1-conforming finite elements are satisfactory. However, the ideas can be
adapted to other problems.

Let Th be a triangulation (mesh) of the computational domain Ω consisting of
closed cells K which are either triangles or quadrilaterals. The straight parts which
make up the boundary ∂K of a cell K are called faces. The mesh parameter h is
defined as a cellwise constant function by setting h

∣∣
K

= hK , and hK is the diameter of
K. The mesh Th is assumed to be shape regular. In order to ease the mesh refinement
we allow the cells to have nodes, which lie on midpoints of faces of neighboring cells.
But at most one of such hanging nodes is permitted per face.

On the mesh Th we define a finite element space Vh ⊂ V consisting of linear or
bilinear shape functions; see, e.g., [14] or [10]. The case of hanging nodes requires
some additional remarks. There are no degrees of freedom corresponding to these
irregular nodes, and therefore the value of the finite element function is determined
by pointwise interpolation. This implies continuity and therefore global conformity.

For the discretization of the optimization problem (2.4) we introduce an additional
finite dimensional subspace Qh ⊂ Q of the control space. Depending on the concrete
situation there are different possible ways to choose the space Qh. It is reasonable
to set Qh = Q if Q is finite dimensional. In the case where the control variable is a
distributed function on the computational domain Ω, i.e., Q = L2(Ω), one may choose
Qh as an analogue to Vh or consider Qh as a space of cellwise constant functions on the
mesh Th. A priori error analysis for the last two choices in the context of distributed
(or boundary) elliptic optimal control problems can be found, e.g., in [1, 11, 15, 18, 28]
for cellwise constant control or in [12, 32, 33] for continuous cellwise linear control.
An approach without discretization of the control variable is presented in [22].

We denote a basis of Qh by

(3.1) B = {ψi}, with ψi ≥ 0,
∑
i

ψi = 1, max
x∈ω

ψi(x) = 1.
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Remark 3.1. It might be desirable to use different meshes for the control and the
state variable in the case of distributed control. The error estimator presented below
can provide information for separate refinement of the control and state meshes. One
can split the error estimator into two parts, one containing the functionals on the
space V which give information for the refinement of the state mesh and one part
consisting of the functionals defined on the control space Q which give information
for the refinement of the control mesh. The refinement then follows an equilibration
strategy for both estimators; cf. [30].

The discrete admissible set Qad,h is defined as

Qad,h = Qh ∩Qad ,

and the discretized optimization problem is formulated as follows:

(3.2) Minimize J(qh, uh) , uh ∈ Vh, qh ∈ Qad,h ,

subject to

(3.3) a(qh, uh)(vh) = f(vh) ∀vh ∈ Vh.

We introduce the discretized versions of (2.5) and (2.6) by

Xh =Qh × Vh × Vh,(3.4)

Xad,h =Qad,h × Vh × Vh(3.5)

and denote a vector from these sets by ξh = (qh, uh, zh). The optimality system for
the discretized optimization problem is formulated as follows:

J ′
1(uh)(δuh) − a′u(qh, uh)(δuh, zh) = 0 ∀δuh ∈ Vh,(3.6a)

α(qh, δqh − qh) − a′q(qh, uh)(δqh − qh, zh) ≥ 0 ∀δqh ∈ Qad,h,(3.6b)

f(δzh) − a(qh, uh)(δzh) = 0 ∀δzh ∈ Vh.(3.6c)

The nonlinear primal dual active set strategy, described in the previous section,
can be translated directly into the discrete level to solve (3.6a)–(3.6c).

In order to formulate the analog system to (2.18a)–(2.18f) we introduce discrete
active sets ω−,h and ω+,h for a solution (qh, uh) to (3.2), (3.3) by

ω−,h = {x ∈ ω | qh(x) = q−},(3.7)

ω+,h = {x ∈ ω | qh(x) = q+}(3.8)

and define a Lagrange multiplier μh ∈ Qh via

(3.9) (μh, δqh) = −L′
q(qh, uh, zh)(δqh) ∀ δqh ∈ Qh.

Moreover, we introduce μ−
h ∈ Qh and μ+

h ∈ Qh by

(3.10) μ+
h − μ−

h = μh, (μ−
h , ψi) ≥ 0, (μ+

h , ψi) ≥ 0 ∀ψi ∈ B

by which μ±
h are uniquely determined if in addition the following complementarity

conditions hold:

(3.11) (μ−
h , qh − q−) = (μ+

h , q+ − qh) = 0.
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Remark 3.2. This definition corresponds to the Lagrange multipliers obtained for
the inequality constraints if the discrete optimization problem (3.2), (3.3) is considered
a finite dimensional optimization problem for qh =

∑
i qiψi ∈ Qh with the following

restrictions:

q− ≤ qi ≤ q+ ∀i.

Note that due to the choice of the basis B in (3.1) this is equivalent to q− ≤
qh(x) ≤ q+ for all x ∈ ω. Utilizing this fact, the discrete active sets ω−,h, ω+,h are
completely determined by the values of the coordinate vector of qh. In particular they
consist only of whole cells, edges, and nodes.

To obtain the complementarity conditions with respect to the Q = L2(ω)-inner
product (3.11) one requires

(μ+
h , ψi) = 0 if qi < q+ and (μ−

h , ψi) = 0 if qi > q− .

We now define the discretized versions of (2.14), (2.16), and (2.15) by

Yh =Xh ×Qh ×Qh,(3.12)

Yad,h =Xad,h ×Q−,h ×Q+,h,(3.13)

Ỹad,h =Xh ×Q−,h ×Q+,h,(3.14)

where

Q−,h = {r ∈ Qh | r(x) = 0 a.e. on ω \ ω−
h },

Q+,h = {r ∈ Qh | r(x) = 0 a.e. on ω \ ω+
h }.

A vector from these spaces will be abbreviated by χh = (qh, uh, zh, μ
−
h , μ

+
h ).

Using the definitions above we have the first-order necessary optimality condition
for (qh, uh) ∈ Qad,h × Vh:

There exist zh ∈ Vh, μ
−
h ∈ Q−,h, μ

+
h ∈ Q+,h such that for χh = (qh, uh, zh, μ

−
h , μ

+
h )

∈ Yad the following conditions hold:

L̃′
u(χh)(δu) = 0 ∀δu ∈ Vh,(3.15a)

L̃′
q(χh)(δq) = 0 ∀δq ∈ Qh,(3.15b)

L̃′
z(χh)(δz) = 0 ∀δz ∈ Vh,(3.15c)

L̃′
μ−(χh)(δμ−) = 0 ∀δμ− ∈ Q−,h,(3.15d)

L̃′
μ+(χh)(δμ+) = 0 ∀δμ+ ∈ Q+,h,(3.15e)

μ+
h − μ−

h = μh, (μ−
h , ψi) ≥ 0, (μ+

h , ψi) ≥ 0 ∀ψi ∈ B.(3.15f)

Here again (3.15d), (3.15e) are equivalent to the complementarity condition

(3.16) (μ−
h , q− − qh) = (μ+

h , qh − q+) = 0.

Finally we state the following assumption concerning our discretization which is
the analogue to Assumption 1.

Assumption 5. The optimization problem (3.2), (3.3) possesses a solution (qh, uh).
In addition there exists zh ∈ Vh such the first-order necessary conditions (3.6) are
fulfilled by the triple (qh, uh, zh).
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4. A posteriori error estimation. The aim of this section is to derive a poste-
riori error estimates for the error with respect to the cost functional and to an arbitrary
quantity of interest. These error estimates extend the results from [4, 6, 7, 8] to the
case of optimization problems with control constraints. The provided estimators will
be used within the following adaptive algorithm for error control and mesh refinement:
We start on a coarse mesh, solve the discretized optimization problem, and evaluate
the error estimator. Thereafter we refine the current mesh using local information
obtained from the error estimator, allowing for efficient reduction of the discretiza-
tion error with respect to the quantity of interest. This procedure is iterated until
the value of the error estimator is below a given tolerance; see, e.g., [7] for a detailed
description of this algorithm.

The section is structured as follows: First we will derive two a posteriori error
estimators for the error with respect to the cost functional. The first one is based
on the first-order necessary condition (2.8), which involves a variational inequality,
and the second estimator uses the information obtained from the Lagrange multipliers
for the inequality constraints. Both estimators can be evaluated in terms of the solu-
tion to the discretized optimization problem (3.2), (3.3). Then we will proceed with
the error estimator with respect to an arbitrary quantity of interest, which requires
the solution to an auxiliary linear-quadratic optimization problem. Even though the
idea behind the estimators remains unchanged, the latter estimators require a more
technical discussion.

Throughout this section we shall denote a solution to the optimization prob-
lem (2.4) by (q, u) and the corresponding solution to the optimality system (2.7) by
ξ = (q, u, z) ∈ Xad and its discrete counterpart (3.6) by ξh = (qh, uh, zh) ∈ Xad,h. The
corresponding solution to (2.18) and its discrete counterpart (3.15) will be abbreviated
as χ = (q, u, z, μ−, μ+) ∈ Yad and χh = (qh, uh, zh, μ

−
h , μ

+
h ) ∈ Yad,h.

4.1. Error in the cost functional. For the derivation of the error estimator
with respect to the cost functional, we introduce the residual functionals ρu(ξh)(·),
ρz(ξh)(·) ∈ V ′, and ρq(ξh)(·) ∈ Q′ by

ρu(ξh)(·) = f(·) − a(qh, uh)(·),(4.1)

ρz(ξh)(·) =J ′
1(uh)(·) − a′u(qh, uh)(·, zh),(4.2)

ρq(ξh)(·) =α(qh, ·) − a′q(uh, qh)(·, zh).(4.3)

The following theorem is an extension of the result from [6].
Theorem 4.1. Let ξ ∈ Xad be a solution to the first-order necessary system

(2.7) and ξh ∈ Xad,h be its Galerkin approximation (3.6). Then the following estimate
holds:

(4.4) J(q, u)−J(qh, uh) ≤ 1

2
ρu(ξh)(z− z̃h)+

1

2
ρz(ξh)(u− ũh)+

1

2
ρq(ξh)(q−qh)+R1,

where ũh, z̃h ∈ Vh are arbitrarily chosen and R1 is a remainder term given by

(4.5) R1 =
1

2

∫ 1

0

L′′′(ξh + s(ξ − ξh))(ξ − ξh, ξ − ξh, ξ − ξh)s(s− 1) ds.

Proof. From optimality system (2.7a)–(2.7c) we obtain that

J(q, u) = L(ξ).
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A similar equality holds on the discrete level. Therefore we have

J(q, u) − J(qh, uh) = L(ξ) − L(ξh) =

∫ 1

0

L′(ξh + s(ξ − ξh))(ξ − ξh) ds.

We approximate this integral by the trapezoidal rule and obtain

(4.6) J(q, u) − J(qh, uh) =
1

2
L′(ξ)(ξ − ξh) +

1

2
L′(ξh)(ξ − ξh) + R1,

with the reminder term R1 as in (4.5). For the first term we have

L′(ξ)(ξ − ξh) = L′
u(ξ)(u− uh) + L′

z(ξ)(z − zh) + L′
q(ξ)(q − qh).

Using optimality system (2.7a)–(2.7c) and the fact that qh ∈ Qad,h ⊂ Qad, we deduce
that

L′(ξ)(ξ − ξh) = −L′
q(ξ)(qh − q) ≤ 0.

Rewriting the second term in (4.6) we obtain

L′(ξh)(ξ − ξh) = ρu(ξh)(z − zh) + ρz(ξh)(u− uh) + ρq(ξh)(q − qh).

Due to the Galerkin orthogonality for the state and adjoint equations, we have for
arbitrary ũh, z̃h ∈ Vh

ρu(ξh)(z − zh) = ρu(ξh)(z − z̃h) and ρz(ξh)(u− uh) = ρz(ξh)(u− ũh).

This completes the proof.
Remark 4.1. We note that, in contrast to the terms involving the residuals of

state and the adjoint equations, the error q − qh in the term ρq(ξh)(q − qh) in (4.4)
cannot be replaced by q− q̃h with an arbitrary q̃h ∈ Qad,h. This fact is caused by the
control constraints. However, we may replace ρq(ξh)(q−qh) by ρq(ξh)(q−qh+q̃h) with
arbitrary q̃h fulfilling supp(q̃h) ⊂ ω \ (ω−,h ∪ ω+,h) due to the structure of ρq(ξh)(·).

In order to use the estimate from the theorem above for computable error estima-
tion we proceed as follows: First we choose ũh = ihu, z̃h = ihz, with an interpolation
operator ih : V → Vh; then we have to approximate the corresponding interpolation
errors u− ihu and z − ihz. There are several heuristic techniques to do this; see, for
instance, [6, 7]. Assume we have an operator π : Vh → Ṽh, with Ṽh �= Vh, such that
u− πuh has a better local asymptotical behavior as u− ihu. Then we approximate

ρu(ξh)(z − ihz) ≈ ρu(ξh)(πzh − zh) and ρz(ξh)(u− ihu) ≈ ρz(ξh)(πuh − uh).

Such an operator can be constructed, for example, by the interpolation of the
computed bilinear finite element solution in the space of biquadratic finite elements
on patches of cells. For this operator the improved approximation property relies on
local smoothness of u and superconvergence properties of the approximation uh. The
use of such “local higher-order approximation” is observed to work very successfully
in the context of a posteriori error estimation; see, e.g., [6, 7].

The approximation of the term ρq(ξh)(q − qh) requires more care. In contrast
to the state u and the adjoint state z, the control variable q can generally not be
approximated by “local higher-order approximation” for the following reasons:

• In the case of finite dimensional control space Q, there is no “patch-like”
structure allowing for “local higher-order approximation.”
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• If q is a distributed control, it typically does not possess sufficient smoothness
(due to the inequality constraints) for the improved approximation property.

We therefore suggest another approximation of ρq(ξh)(q−qh) based on the projection
formula (2.9). To this end we introduce q̃ ∈ Qad by

(4.7) q̃ = PQad

(
1

α
a′q(qh, πuh)(·, πzh)

)
.

In some cases one can show better approximation behavior of q − q̃ in comparison
with q− qh; see [31] and [22] for similar considerations in the context of a priori error
analysis.

This construction results in the following computable a posteriori error estimator:

η1 =
1

2

(
ρu(ξh)(πzh − zh) + ρz(ξh)(πuh − uh) + ρq(ξh)(q̃ − qh)

)
.

Remark 4.2. In order to use this error estimator as an indicator for mesh refine-
ment, we have to localize it to cellwise or nodewise contributions. A direct localization
of the terms like ρu(ξh)(πzh−zh) leads, in general, to the local contributions of wrong
order (overestimation) due to oscillatory behavior of the residual terms. To overcome
this, one may integrate the residual terms by part (see, e.g., [6]) or use a filtering
operator; see [36] for details.

We should note that (4.4) does not provide an estimate for the absolute value of
J(q, u)−J(qh, uh), which is due to the inequality sign in (4.4). In the next section we
will overcome this difficulty utilizing the alternative optimality system (2.18a)–(2.18f).

4.2. Error in the cost functional reviewed. In order to derive an error
estimator for the absolute value of J(q, u) − J(qh, uh) we introduce the additional
residual functionals ρ̃q(χh)(·), ρ̃μ−(χh)(·), ρ̃μ+(χh)(·) ∈ Q′ by

ρ̃q(χh)(·) =α(qh, ·) − a′q(qh, uh)(·, zh) + (μ+
h − μ−

h , ·),(4.8)

ρ̃μ−(χh)(·) = (·, q− − qh),(4.9)

ρ̃μ+(χh)(·) = (·, qh − q+).(4.10)

In what follows, the last two residual functional will also be evaluated in the point χ
where they read as follows:

ρ̃μ−(χ)(·) = (·, q− − q), ρ̃μ+(χ)(·) = (·, q − q+).

Analogous to Theorem 4.1 we obtain the following theorem.
Theorem 4.2. Let χ ∈ Yad be a solution to the first-order necessary condi-

tion (2.18a)–(2.18f) and χh ∈ Yad,h be its Galerkin approximation (3.15a)–(3.16).
Then the following estimate holds:

J(q, u) − J(qh, uh) =
1

2
ρu(χh)(z − z̃h) +

1

2
ρz(χh)(u− ũh) +

1

2
ρ̃q(χh)(q − q̃h)

+
1

2
ρ̃μ−(χh)(μ− − μ̃−

h ) +
1

2
ρ̃μ+(χh)(μ+ − μ̃+

h )

+
1

2
ρ̃μ−(χ)(μ̃− − μ−

h ) +
1

2
ρ̃μ+(χ)(μ̃+ − μ+

h ) + R2,

(4.11)

where ũh, z̃h ∈ Vh, q̃h ∈ Qh, μ̃−
h ∈ Q−,h, μ̃+

h ∈ Q+,h, μ̃− ∈ Q−, μ̃+ ∈ Q+ are
arbitrarily chosen and R2 is a remainder term given by

(4.12) R2 =
1

2

∫ 1

0

L̃′′′(χh + s(χ− χh))(χ− χh, χ− χh, χ− χh)s(s− 1) ds.
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Proof. From (2.17) and optimality system (2.8a)–(2.8c) we obtain

J(q, u) = L(ξ) = L̃(χ).

The analog result holds on the discrete level. We therefore have

J(q, u) − J(qh, uh) = L̃(χ) − L̃(χh) =

∫ 1

0

L̃′(χh + s(χ− χh))(χ− χh) ds.

As in the proof of Theorem 4.1 we approximate this integral by the trapezoidal rule
and obtain

(4.13) J(q, u) − J(qh, uh) =
1

2
L̃′(χ)(χ− χh) +

1

2
L̃′(χh)(χ− χh) + R2,

with the remainder term R2 as in (4.12). For the first term we have

L̃′(χ)(χ− χh) = L̃′
u(χ)(u− uh) + L̃′

z(χ)(z − zh) + L̃′
q(χ)(q − qh)

+ L̃′
μ−(χ)(μ− − μ−

h ) + L̃′
μ+(χ)(μ+ − μ+

h ).

Using optimality system (2.18a)–(2.18f) we deduce that

L̃′(χ)(χ− χh) = L̃′
μ−(χ)(μ− − μ−

h ) + L̃′
μ+(χ)(μ+ − μ+

h ).

From (2.18d) and (2.18e) together with linearity of L̃′
μ−(χ)(·) and L̃′

μ+(χ)(·) we obtain

that for arbitrary μ̃− ∈ Q− and μ̃+ ∈ Q+

L̃′
μ−(χ)(μ− − μ−

h ) = L̃′
μ−(χ)(μ̃− − μ−

h ), L̃′
μ+(χ)(μ+ − μ+

h ) = L̃′
μ+(χ)(μ̃+ − μ+

h )

holds, and thus we obtain

L̃′(χ)(χ− χh) = ρ̃μ−(χ)(μ̃− − μ−
h ) + ρ̃μ+(χ)(μ̃+ − μ+

h ).

Rewriting the second term in (4.13) we obtain

L̃′(χh)(χ− χh) = ρu(χh)(u− uh) + ρz(χh)(z − zh) + ρ̃q(χh)(q − qh)

+ ρ̃μ−(χh)(μ− − μ−
h ) + ρ̃μ+(χh)(μ+ − μ+

h ),

where we can use linearity of the residual functionals in the second argument and
(3.15a)–(3.15c) to obtain the following equalities:

ρu(χh)(u− uh) =ρu(χh)(u− ũh),(4.14)

ρz(χh)(z − zh) =ρz(χh)(z − z̃h),(4.15)

ρ̃q(χh)(q − qh) =ρ̃q(χh)(q − q̃h)(4.16)

for arbitrary ũh, z̃h ∈ Vh, q̃h ∈ Qh. Additionally we gain from (3.15d) and (3.15e)
that for arbitrary μ̃−

h ∈ Q−,h and μ̃+
h ∈ Q+,h

ρ̃μ−(χh)(μ− − μ−
h ) =ρ̃μ−(χh)(μ− − μ̃−

h ),(4.17)

ρ̃μ+(χh)(μ+ − μ+
h ) =ρ̃μ+(χh)(μ+ − μ̃+

h )(4.18)

holds. This completes the proof.
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To gain a computable error estimator we proceed as in the previous section. In
order to deal with the new residual functionals we utilize (2.12) and construct an
approximation for μ by

(4.19) μ̃ = −αq̃ + a′q(q̃, πuh)(·, πzh),

where q̃ is given by (4.7). This leads to a computable a posteriori error estimator:

η2 =
1

2

(
ρu(χh)(πzh − zh) + ρz(χh)(πuh − uh) + ρ̃q(χh)(q̃ − qh),

ρ̃μ−(χh)(μ̃− − μ−
h ) + ρ̃μ+(χh)(μ̃+ − μ+

h ),

ρ̃μ−(χ̃)(μ̃− − μ−
h ) + ρ̃μ+(χ̃)(μ̃+ − μ+

h )
)
.

Remark 4.3. We note that the a posteriori error estimates derived in Theorems 4.1
and 4.2 coincide if the control constraints are inactive, e.g., if Qad = Q. Moreover, if
the active sets are approximated from outside, i.e., ω− ⊂ ω−,h and ω+ ⊂ ω+,h, these
error estimators coincide as well.

4.3. Error in the quantity of interest. The aim of this section is the deriva-
tion of an error estimator for the error

(4.20) I(q, u) − I(qh, uh)

with a given functional I : Q × V → R describing the quantity of interest which
we require to be three times directional differentiable. To this end we consider an
additional Lagrangian M : Y × Y → R defined by

(4.21) M(χ)(ψ) = I(q, u) + L̃′(χ)(ψ),

where we abbreviate χ = (q, u, z, μ−, μ+) and ψ = (p, v, y, ν−, ν+). Here (p, v, y, ν−, ν+)
will be variables dual to (q, u, z, μ−, μ+). Note that for the solution χ to the optimality
system (2.18a)–(2.18f) of the optimization problem (2.4) the identity

(4.22) M(χ)(ψ) = I(q, u)

holds for all ψ ∈ Ỹad. To proceed as in the proof of Theorem 4.2 it remains to find
ψ ∈ Ỹad such that (χ, ψ) is a stationary point of M on Ỹad × Ỹad.

Therefore we consider the auxiliary (linear-quadratic) optimization problem

Minimize K(χ, p, v), p ∈ Pad, v ∈ V,(4.23)

subject to L̃′′
uz(χ)(v, ϕ) + L̃′′

qz(χ)(p, ϕ) = 0 ∀ϕ ∈ V(4.24)

for given χ ∈ Y. The admissible set Pad is given as

(4.25) Pad = {p ∈ Q | p−(x) ≤ p(x) ≤ p+(x) a.e. on ω},

with the bounds

p−(x) =

{
0, μ(x) �= 0 or q(x) = q−(x),

−∞ else,

p+(x) =

{
0, μ(x) �= 0 or q(x) = q+(x),

+∞ else,
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and the cost functional K : Y ×Q× V → R is defined via

K(χ, p, v) = I ′u(q, u)(v) + I ′q(q, u)(p) + L̃′′
uq(χ)(v, p) +

1

2
L̃′′
uu(χ)(v, v) +

1

2
L̃′′
qq(χ)(p, p).

(4.26)

We introduce the following abbreviation for later use:

(4.27) Ȳad = Pad × V × V ×Q− ×Q+.

Remark 4.4. Consideration of the auxiliary optimization problem (4.23), (4.24)
is motivated by the unconstrained case Qad = Q. There the stationary point of M
is given as the solution to (4.23), (4.24) with Pad = Q. A similar linear-quadratic
optimization problem is considered in [19] in the context of sensitivity analysis.

Remark 4.5. If we assume that the second-order sufficient condition from Lemma
2.1 holds, the linear-quadratic optimization problem (4.23) possesses a solution. This
is the case, as the quadratic part L̃′′

uq(χ)(v, p) + 1
2 L̃′′

uu(χ)(v, v) + 1
2 L̃′′

qq(χ)(p, p) of
K(p, v) is positive definite (see (2.20)) for all solutions to the linear equation (2.21),
which is exactly the same as (4.24).

We introduce an auxiliary Lagrangian N : Y × X → R for (4.23), (4.24) by

(4.28) N (χ, p, v, y) = K(χ, p, v) + L̃′′
uz(χ)(v, y) + L̃′′

qz(χ)(p, y).

For a solution (p, v) to (4.23), (4.24) the following first-order necessary condition
holds:

There exists y ∈ V such that

N ′
y(χ, p, v, y)(δy) = 0 ∀δy ∈ V,(4.29a)

N ′
v(χ, p, v, y)(δv) = 0 ∀δv ∈ V,(4.29b)

N ′
p(χ, p, v, y)(δp− p) ≥ 0 ∀δp ∈ Pad(4.29c)

or, if written more explicitly,

L̃′′
uz(χ)(v, δy) + L̃′′

qz(χ)(p, δy) = 0 ∀δy ∈ V,(4.30a)

I ′u(q, u)(δv) + L̃′′
uq(χ)(δv, p) + L̃′′

uu(χ)(δv, v) + L̃′′
uz(χ)(δv, y) = 0 ∀δv ∈ V,

(4.30b)

I ′q(q, u)(δp) + L̃′′
uq(χ)(v, δp) + L̃′′

qq(χ)(δp, p) + L̃′′
qz(χ)(δp, y) ≥ 0 ∀δp ∈ Pad − p.

(4.30c)

Again we can introduce the full Lagrangian Ñ : Y × Y → R by

(4.31) Ñ (χ, ψ) = N (χ, p, v, y) + (ν−, p− − p) + (ν+, p− p+).
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As in (2.18a)–(2.18f) we can rewrite the necessary optimality condition for ψ ∈ Ȳad as

Ñ ′
v(χ, ψ)(δv) = 0 ∀δv ∈ V,(4.32a)

Ñ ′
p(χ, ψ)(δp) = 0 ∀δp ∈ Q,(4.32b)

Ñ ′
y(χ, ψ)(δy) = 0 ∀δy ∈ V,(4.32c)

Ñ ′
ν−(χ, ψ)(δν−) = 0 ∀δν− ∈ Q−,(4.32d)

Ñ ′
ν+(χ, ψ)(δν+) = 0 ∀δν+ ∈ Q+,(4.32e)

ν+ − ν− = ν, ν−(p− − p) = ν+(p− p+) = 0 a.e. onω,(4.32f)

supp ν+ ⊆ ω \ {x ∈ ω | q = q− and μ �= 0}, ν+ ≥0, a.e. whereμ = 0,(4.32g)

supp ν− ⊆ ω \ {x ∈ ω | q = q+ and μ �= 0}, ν− ≥0, a.e. whereμ = 0,(4.32h)

where ν− and ν+ are given by the following relations depending on ν = −N ′
p(χ, p, v, y)(·):

ν+(x) =

⎧⎪⎨
⎪⎩
ν, q(x) = q+ and μ(x) �= 0,

0, q(x) = q− and μ(x) �= 0,

max(0, ν) else,

ν−(x) =

⎧⎪⎨
⎪⎩
ν, q(x) = q− and μ(x) �= 0,

0, q(x) = q+ and μ(x) �= 0,

max(0,−ν) else.

Note that due to the choice of p− and p+ the Lagrange multipliers are contained in
the desired spaces, e.g., ν− ∈ Q− and ν+ ∈ Q+.

Remark 4.6. It should be noted that we use the convention ±∞ · 0 = 0 in (4.31),
(4.32f) to ease notation. The same convention will be used throughout this section.

Remark 4.7. The condition (4.32g) arises naturally, as ν+ is the Lagrange mul-
tiplier which corresponds to the equality and inequality constraints for p that are
induced by the active upper control bound q+. Similarly (4.32h) arises from the
active lower control bound q−.

We introduce

(4.33) Ȳad,h = Pad,h × Vh × Vh ×Q−,h ×Q+,h

to shorten notation. This is discretized using the discretized admissible set

(4.34) Pad,h = {p ∈ Qh | ph,−(x) ≤ p(x) ≤ ph,−(x) a.e. on ω},

with the bounds

ph,−(x) =

{
0, μh(x) �= 0 or qh(x) = q−(x),

−∞ else,

ph,+(x) =

{
0, μh(x) �= 0 or qh(x) = q+(x),

+∞ else.

Then the following first-order condition holds with the discretized full Lagrangian:

Ñh(χ, ψ) = N (χ, p, v, y) + (ν−, ph,− − p) + (ν+, p− ph,+),
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where Ñh : Y × Y → R. There exist yh ∈ Vh, ν+
h , ν−h ∈ Qh such that for ψh =

(ph, vh, yh, ν
−
h , ν+

h ) ∈ Ȳad,h the following hold:

Ñ ′
h,v(χh, ψh)(δv) = 0 ∀δv ∈ Vh,(4.35a)

Ñ ′
h,p(χh, ψh)(δp) = 0 ∀δp ∈ Qh,(4.35b)

Ñ ′
h,y(χh, ψh)(δy) = 0 ∀δy ∈ Vh,(4.35c)

Ñ ′
h,ν−(χh, ψh)(δν−) = 0 ∀δν− ∈ Q−,h,(4.35d)

Ñ ′
h,ν+(χh, ψh)(δν+) = 0 ∀δν+ ∈ Q+,h,(4.35e)

ν+
h − ν−h = νh (ν−h , ph,− − ph) = (ν+

h , ph − ph,+) = 0,(4.35f)

(ν+
h , ψi) = 0 ∀i : (μh, ψi) �= 0 and qi = q−,(4.35g)

(ν+
h , ψi) ≥ 0 ∀i : (μh, ψi) = 0,(4.35h)

(ν−h , ψi) = 0 ∀i : (μh, ψi) �= 0 and qi = q+,(4.35i)

(ν−h , ψi) ≥ 0 ∀i : (μh, ψi) = 0.(4.35j)

For the error estimator with respect to the quantity of interest we introduce the
residual functionals ρ̃v(χh, ψh)(·), ρ̃y(χh, ψh)(·) ∈ V ′ and ρ̃p(χh, ψh)(·), ρ̃ν−(χh, ψh)(·),
ρ̃ν+(χh, ψh)(·) ∈ Q′ by

ρ̃v(χh, ψh)(·) = L̃′′
zu(χh)(·, vh) + L̃′′

zq(χh)(·, ph),(4.36)

ρ̃y(χh, ψh)(·) = I ′u(qh, uh)(·) + L̃′′
uu(χh)(·, vh) + L̃′′

uz(χh)(·, yh)(4.37)

+ L̃′′
uq(χh)(·, ph),

ρ̃p(χh, ψh)(·) = I ′q(qh, uh)(·) + L̃′′
qu(χh)(·, vh) + L̃′′

qz(χh)(·, yh)(4.38)

+ L̃′′
qq(χh)(·, ph) + (·, νh),

ρ̃ν−(χh, ψh)(·) = − (·, ph),(4.39)

ρ̃ν+(χh, ψh)(·) = (·, ph),(4.40)

in addition to the already defined residual functionals (4.1)–(4.10). Again the last
two residual functionals also have to be evaluated in the point (χ, ψ) where they read
as follows:

ρ̃ν−(χ, ψ)(·) = −(·, p), ρ̃ν+(χ, ψ)(·) = (·, p).

Theorem 4.3. Let χ ∈ Yad be a solution to the necessary optimality condition
(2.18) and χh ∈ Yad,h be its Galerkin approximation (3.15). In addition let ψ ∈ Ȳad

be a solution to the necessary optimality condition (4.32) of the auxiliary optimization
problem (4.23), (4.24) and ψh ∈ Ȳad,h be its discrete approximation (4.35). Then the
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following estimate holds:

I(q, u) − I(qh, uh) =
1

2
ρu(χh)(y − ỹh) +

1

2
ρz(χh)(v − ṽh) +

1

2
ρ̃q(χh)(p− p̃h)

+
1

2
ρ̃μ−(χh)(ν− − ν̃−h ) +

1

2
ρ̃μ+(χh)(ν+ − ν̃+

h )

+
1

2
ρ̃v(χh, ψh)(z − z̃h) +

1

2
ρ̃y(χh, ψh)(u− ũh) +

1

2
ρ̃p(χh, ψh)(q − q̃h)

+
1

2
ρ̃ν−(χh, ψh)(μ− − μ̃−

h ) +
1

2
ρ̃ν+(χh, ψh)(μ+ − μ̃+

h )

+
1

2
ρ̃μ−(χ)(ν̃− − ν−h ) +

1

2
ρ̃μ+(χ)(ν̃+ − ν+

h )

+
1

2
ρ̃ν−(χ, ψ)(μ̃− − μ−

h ) +
1

2
ρ̃ν+(χ, ψ)(μ̃+ − μ+

h ) + R3,

(4.41)

where ũh, ṽh, z̃h, ỹh ∈ Vh, q̃h, p̃h ∈ Qh, μ̃
−
h , ν̃−h ∈ Q−,h, μ̃

+
h , ν̃+

h ∈ Q+,h as well as
μ̃−, ν̃− ∈ Q−, μ̃+, ν̃+ ∈ Q+ are arbitrarily chosen and R3 is a remainder term given
by

(4.42) R3 =
1

2

∫ 1

0

M′′′((χh, ψh) + se)(e, e, e)s(s− 1) ds,

with e = (χ− χh, ψ − ψh).
Proof. From (4.22) and the analog discrete result we obtain

I(q, u) − I(qh, uh) = M(χ, ψ) −M(χh, ψh) =

∫ 1

0

M′((χh, ψh) + se)(e) ds.

Approximation by the trapezoidal rule gives

(4.43) I(q, u) − I(qh, uh) =
1

2
M′(χ, ψ)(e) +

1

2
M′(χh, ψh)(e) + R3,

with the remainder term R3 as in (4.42). For the first term we have

M′(χ, ψ)(e) =M′
u(χ, ψ)(u− uh) + M′

v(χ, ψ)(v − vh)

+ M′
z(χ, ψ)(z − zh) + M′

y(χ, ψ)(y − yh)

+ M′
q(χ, ψ)(q − qh) + M′

p(χ, ψ)(p− ph)

+ M′
μ−(χ, ψ)(μ− − μ−

h ) + M′
ν−(χ, ψ)(ν− − ν−h )

+ M′
μ+(χ, ψ)(μ+ − μ+

h ) + M′
ν+(χ, ψ)(ν+ − ν+

h ).

Using the identities

M′
u(χ, ψ)(·) = Ñ ′

v(χ, p, v, y)(·), M′
v(χ, ψ)(·) = L̃′

u(χ)(·),
M′

z(χ, ψ)(·) = Ñ ′
y(χ, p, v, y)(·), M′

y(χ, ψ)(·) = L̃′
z(χ)(·),

M′
q(χ, ψ)(·) = Ñ ′

p(χ, p, v, y)(·), M′
p(χ, ψ)(·) = L̃′

q(χ)(·),

we see that the first six terms on the right-hand side vanish due to (2.18a)–(2.18c)
and (4.32a)–(4.32c). Furthermore we see from (2.18d), (2.18e) and (4.32d), (4.32e)
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that with arbitrary μ̃−, ν̃− ∈ Q− and μ̃+, ν̃+ ∈ Q+ the following identities hold:

M′
μ−(χ, ψ)(μ− − μ−

h ) =M′
μ−(χ, ψ)(μ̃− − μ−

h ) = ρ̃ν−(χ, ψ)(μ̃− − μ−
h ),(4.44)

M′
ν−(χ, ψ)(ν− − ν−h ) =M′

ν−(χ, ψ)(ν̃− − ν−h ) = ρ̃μ−(χ)(ν̃− − ν−h ),(4.45)

M′
μ+(χ, ψ)(μ+ − μ+

h ) =M′
μ+(χ, ψ)(μ̃+ − μ+

h ) = ρ̃ν+(χ, ψ)(μ̃+ − μ+
h ),(4.46)

M′
ν+(χ, ψ)(ν+ − ν+

h ) =M′
ν+(χ, ψ)(ν̃+ − ν+

h ) = ρ̃μ+(χ)(ν̃+ − ν+
h ).(4.47)

Thus we obtain

M′(χ, ψ)(e) = ρ̃μ−(χ)(ν̃− − ν−h ) + ρ̃μ+(χ)(ν̃+ − ν+
h )

+ ρ̃ν−(χ, ψ)(μ̃− − μ−
h ) + ρ̃ν+(χ, ψ)(μ̃+ − μ+

h ).

For the second term we obtain from (3.15a)–(3.15e) and (4.32a)–(4.32e) that

M′(χh, ψh)(e) = M′(χh, ψh)(χ− χ̃h, ψ − ψ̃h)

for each χ̃h, ψ̃h ∈ Ỹad,h, which completes the proof.
Remark 4.8. Note that in the case I = J the solution (p, v, y) to (4.29) is given

by (0, 0, z), which can be seen after some calculations. Using this, one obtains that
for I = J the estimates in Theorems 4.2 and 4.3 coincide.

We define the projection onto the admissible set by

PPad,h
(p) = max

(
ph,−,min(p, ph,+)

)
.

To obtain a computable error estimator we introduce p̃ ∈ Pad as an approximation to
p by
(4.48)

p̃ = PPad,h

(
1

α
(a′q()(·, πyh) + a′′qu()(·, πvh, πzh) + a′′qq()(·, ph, πzh) − I ′q(q̃, πuh)(·))

)
,

where () is an abbreviation for (q̃, πuh), and ν̃ is introduced as an approximation to
ν by

(4.49) ν̃ = −αp̃ + a′q()(·, πyh) + a′′qu()(·, πvh, πzh) + a′′qq()(·, ph, πzh) − I ′q(q̃, πuh)(·),

which is an analogue to the construction of the approximations q̃ and μ̃ in (4.7) and
(4.19).

Using these approximations we obtain the following computable error estimator:

ηQI =
1

2
ρu(χh)(πy − yh) +

1

2
ρz(χh)(πv − vh) +

1

2
ρ̃q(χh)(p̃− ph)

+
1

2
ρ̃μ−(χh)(ν̃− − ν−h ) +

1

2
ρ̃μ+(χh)(ν̃+ − ν+

h )

+
1

2
ρ̃v(χh, ψh)(πz − zh) +

1

2
ρ̃y(χh, ψh)(πu− uh) +

1

2
ρ̃p(χh, ψh)(q̃ − qh)

+
1

2
ρ̃ν−(χh, ψh)(μ̃− − μ−

h ) +
1

2
ρ̃ν+(χh, ψh)(μ̃+ − μ+

h )

+
1

2
ρ̃μ−(χ̃)(ν̃− − ν−h ) +

1

2
ρ̃μ+(χ̃)(ν̃+ − ν+

h )

+
1

2
ρ̃ν−(χ̃, ψ̃)(μ̃− − μ−

h ) +
1

2
ρ̃ν+(χ̃, ψ̃)(μ̃+ − μ+

h ),

where χ̃ = (q̃, πu, πz, μ̃−, μ̃+) and ψ̃ = (p̃, πv, πy, ν̃−, ν̃+).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

528 B. VEXLER AND W. WOLLNER

Remark 4.9. We would like to point out that in case of strict complementarity,
e.g., if the set

{x ∈ ω | q(x) = q−(x) or q(x) = q+(x)} \ {x ∈ ω | μ(x) �= 0}

has zero measure, the auxiliary problem (4.23), (4.24) does not involve inequality
constraints for the controls. In that case the set Pad is not only convex but in fact a
real subspace of Q.

Remark 4.10. The constrained linear-quadratic optimization problem (4.23),
(4.24) can be solved using primal-dual active set strategy. In the case of strict com-
plementarity the algorithm will converge in one step due to the fact that Pad is a
linear subspace of Q is this case.

Remark 4.11. Due to the definition of Pad (4.25), the solution p ∈ Q of auxiliary
optimization problem (4.23)–(4.24) is usually discontinuous. Therefore, a cellwise
constant discretization of the control space Q seems to be more suitable than a dis-
cretization with continuous trial functions if the error with respect to a quantity of
interested is estimated.

5. Numerical examples. In this section we discuss two numerical examples
illustrating the behavior of our method. For both examples we use bilinear (H1-
conforming) finite elements for the discretization of the state variable and cellwise
constant discretization of the control space. The optimization problems are solved by
primal-dual active set strategy as sketched in section 2, where the equality-constrained
problems in the inner loop are solved using Newton’s method for the reduced cost
functional.

All examples have been computed using the optimization library RoDoBo [5] and
the finite element toolkit Gascoigne [3].

5.1. Example 1. We consider the following nonlinear optimization problem:

(5.1) Minimize
1

2
‖u− ud‖2

L2(Ω) +
α

2
‖q‖2

L2(Ω), u ∈ V, q ∈ Qad,

subject to

(5.2)
−Δu + 30u3 + u = f + q in Ω,

u = 0 on ∂Ω,

where Ω = ω = (0, 1)2 \ [0.4, 0.6]2, V = H1
0 (Ω), Q = L2(Ω), and the admissible set

Qad is given by

Qad = {q ∈ Q | − 7 ≤ q(x) ≤ 20 a.e. on Ω}.

The desired state ud and the right-hand side f are defined as

ud(x) = x1 · x2, f(x) =
(
(x1 − 0.5)2 + (x2 − 0.5)2

)−1
,

and the regularization parameter is chosen as α = 10−4. We note that the state
equation (5.2) is a monotone semilinear equation, which possesses a unique solution
u ∈ V for each q ∈ Q. The proof of the existence of a global solution as well
as derivation of necessary and sufficient optimality conditions for the corresponding
optimization problem (5.1)–(5.2) can be found, e.g., in [34].
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In section 4 we derived two different error estimators for the error with respect
to the cost functional and one error estimator with respect to a quantity of interest.
In this example, we choose the quantity of interest as

(5.3) I(q, u) =
1

2

∫
(0.7,0.8)2

|∇u(x)|2 dx +

∫
(0.2,0.3)2

q(x) dx.

In order to check the quality of the error estimators, we define the following effectivity
indices:
(5.4)

Ieff(η1) =
J(u) − J(uh)

η1
, Ieff(η2) =

J(u) − J(uh)

η2
, Ieff(ηQI) =

I(q, u) − I(qh, uh)

ηQI
.

In Table 5.1 these effectivity indices are listed for different types of mesh refine-
ment: random refinement and refinement based on the error estimator ηQI for the
quantity of interest.

Table 5.1

Effectivity indices.

N Ieff(η1) Ieff(η2) Ieff(ηQI)
432 1.1 1.1 1.2
906 1.1 1.1 1.1
2328 1.3 1.2 2.3
5752 1.2 1.2 1.4
13872 1.3 1.3 1.5
33964 1.3 1.3 1.4
83832 1.2 1.2 1.5

(a) Random refinement

N Ieff(η1) Ieff(η2) Ieff(ηQI)
432 1.1 1.1 1.1
824 1.1 1.1 1.4
1692 1.0 1.0 0.3
3992 1.0 1.0 0.2
11396 1.0 1.0 0.5
30604 1.0 1.0 1.0
80354 1.0 1.0 1.3

(b) Refinement according to ηQI

We observe that the error estimators provide quantitative information about the
discretization error. We note that the results for η1 and η2 are very close to each
other in this example; cf. Remark 4.3.

In addition, our results show that the local mesh refinement based on error esti-
mators derived above leads to substantial saving in degrees of freedom for achieving a
given level of the discretization error. In Figure 5.1 the dependence of discretization
error on the number of degrees of freedom is shown for different refinement criteria:
global (uniform) refinement, refinement based on the error estimator η1 for the cost
functional, and refinement based on the error estimator ηQI for the quantity of in-
terest. In Figure 5.1(a) the error with respect to the cost functional (5.1) and in
Figure 5.1(b) the error with respect to the quantity of interest (5.3) are considered,
respectively.

We observe the best behavior of error with respect to the cost functional if the
mesh is refined based on η1 and the best behavior of error with respect to the quantity
of interest for the refinement based on ηQI.

A series of meshes generated according to the information obtained from the
error estimators are shown in Figure 5.2 together with the optimal control q and the
corresponding state u.
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1e-04

0.001
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1000 10000 100000

global
local η1

local ηQI

(a) Error in J

1e-06

1e-05

1e-04

0.001

0.01

1000 10000 100000

global
local η1

local ηQI

(b) Error in I

Fig. 5.1. Discretization error for different refinement criteria.

5.2. Example 2. Our second example is motivated by a parameter identification
problem. The minimization problem is given by

(5.5) Minimize
1

2
‖u− ud‖2

L2(Ω) +
α

2
‖q‖2

L2(Ω), u ∈ V, q ∈ Qad,

subject to

(5.6)
−Δu + qu = f in Ω,

u = 0 on ∂Ω,

where Ω = ω = (0, 0.5) × (0, 1) ∪ (0, 1) × (0.5, 1), V = H1
0 (Ω), Q = L2(Ω), and the

admissible set Qad is given by

Qad = {q ∈ Q | q−(x) ≤ q(x) ≤ q+(x) a.e. on Ω}, with q−(x) = 0, q+(x) = 0.3 .

The desired state ud and the right-hand side f are defined as

ud(x) =
1

8π2
sin(2πx1) sin(2πx2), f(x) = 1,

and the regularization parameter is chosen α = 10−4. Note that for any given q ∈ Qad

the state equation (5.6) possesses a unique solution u ∈ V due to q ≥ 0.
We are interested in the error in the unknown parameter, and thus we choose

I(q, u) =

∫
ΩO

q(x) dx,

where ΩO = (0, 0.25) × (0.75, 1).
In Table 5.2 the effectivity indices, defined as in (5.4), are listed for different types

of mesh refinement: global (uniform) refinement, random refinement, refinement based
on the error estimator η1 for the cost functional, and refinement based on the error
estimator ηQI for the quantity of interest. As in the first example we observe that the
error estimators provide quantitative information on the discretization errors.
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(a) Mesh 3 from η1 (b) Mesh 4 from η1

(c) Mesh 4 from ηQI (d) Mesh 5 from ηQI

(e) Optimal control (f) State

Fig. 5.2. Locally refined meshes and solution.
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Table 5.2

Effectivity indices.

N Ieff(η1) Ieff(η2) Ieff(ηQI)
65 1.2 1.2 2.0
225 1.3 1.2 1.9
833 1.4 1.4 1.5
3201 1.5 1.5 1.7

(a) Global refinement

N Ieff(η1) Ieff(η2) Ieff(ηQI)
65 1.2 1.2 2.0
225 1.3 1.3 1.9
785 1.4 1.4 1.6
2705 1.5 1.5 1.7

(b) Refinement according to η1

N Ieff(η1) Ieff(η2) Ieff(ηQI)
65 1.2 1.2 2.0
141 1.2 1.2 2.0
307 1.2 1.2 0.5
763 1.4 1.4 2.0

(c) Random refinement

N Ieff(η1) Ieff(η2) Ieff(ηQI)
65 1.2 1.2 2.0
173 1.2 1.2 1.8
509 1.2 1.2 1.3
1317 1.2 1.2 1.3

(d) Refinement according to ηQI

From Figure 5.3(a), where the discretization error with respect to the quantity
of interest is plotted for different refinement criteria, we again observe that the local
mesh refinement based on the appropriate error estimator leads to a certain saving in
degrees of freedom for achieving a given tolerance for the discretization error. A typical
mesh generated using the information obtained from ηQI is shown in Figure 5.3(b).

(a) Error in I (b) Mesh 5 from ηQI

Fig. 5.3. Discretization error and mesh.
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