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Abstract Spike-timing dependent plasticity (STDP) is a
type of synaptic modification found relatively recently, but
the underlying biophysical mechanisms are still unclear. Sev-
eral models of STDP have been proposed, and differ by their
implementation, and in particular how synaptic weights sat-
urate to their minimal and maximal values. We analyze here
kinetic models of transmitter-receptor interaction and derive
a series of STDP models. In general, such kinetic models pre-
dict progressive saturation of the weights. Various forms can
be obtained depending on the hypotheses made in the kinetic
model, and these include a simple linear dependence on the
value of the weight (“soft bounds”), mixed soft and abrupt
saturation (“hard bound”), or more complex forms. We ana-
lyze in more detail simple soft-bound models of Hebbian
and anti-Hebbian STDPs, in which nonlinear spike interac-
tions (triplets) are taken into account. We show that Hebbian
STDPs can be used to selectively potentiate synapses that
are correlated in time, while anti-Hebbian STDPs depress
correlated synapses, despite the presence of nonlinear spike
interactions. This correlation detection enables neurons to
develop a selectivity to correlated inputs. We also examine
different versions of kinetics-based STDP models and com-
pare their sensitivity to correlations. We conclude that kinetic
models generally predict soft-bound dynamics, and that such
models seem ideal for detecting correlations among large
numbers of inputs.
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1 Introduction

Over the past years, growing experimental evidence has
demonstrated that both the amplitude and the direction of
synaptic plasticity can depend on the precise timing of pre-
synaptic and post-synaptic action potentials (Levy and Stew-
ard 1983; Debanne et al. 1994; Bell et al. 1997; Markram
et al. 1997; Magee and Johnston 1997; Bi and Poo 1998), a
form of synaptic modification, which is termed spike-timing
dependent plasticity (STDP). This type of plasticity was dem-
onstrated by using dual recordings of connected neurons and
using stimulation protocols in which the excitatory postsyn-
aptic potential (EPSP) arising from presynaptic cell’s firing
is coupled with postsynaptically elicited spikes at different
latencies. Typically, potentiation is observed when the EPSP
precedes the postsynaptic spike, whereas the reversed tempo-
ral order induces depression of the EPSP. Such a “Hebbian”
STDP with similar characteristics was observed in neocorti-
cal slices (Markram et al. 1997), hippocampal slices (Magee
and Johnston 1997) and cell cultures (Bi and Poo 1998),
whereas the opposite temporal window (“anti-Hebbian”) was
observed in the electrosensory lobe of the electric fish (Bell
et al. 1997).

Computational models of STDP were proposed both at the
biophysical (Castellani et al. 2001; Senn et al. 2001; Shou-
val et al. 2002; Karmarkar and Buonomano 2002; Abarbanel
et al. 2003; Badoual et al. 2006; Rubin et al. 2005; Shouval
and Kalantzis 2005) and phenomenological levels (Gerst-
ner et al. 1996; Kistler and van Hemmen 2000; Song et al.
2000; van Rossum et al. 2000; Rubin et al. 2001; Gerstner
and Kistler 2002; Karbowski and Ermentrout 2002; Gütig
et al. 2003; Badoual et al. 2006; Pfister and Gerstner 2006).
Biophysical models attempt to find plausible biophysical or
biochemical pathways to account for STDP, while phenom-
enological models provide algorithmic rules that account for
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the dynamics of STDP without necessarily trying to explain
them. An advantage of biophysical models is that they can
also account for more complex paradigms of interaction
between pairs of pre- and post-synaptic spikes, such as the
frequency-dependence of STDP (Sjöström et al., 2001) or
nonlinear interactions between successive pairs (Froemke
and Dan 2002), which can emerge from biophysical mod-
els (Badoual et al. 2006).

Generally, phenomenological models can be implemented
either additively (Song et al. 2000; Gütig et al. 2003; Badoual
et al. 2006) or multiplicatively (van Rossum et al. 2000; see
also discussion in Gerstner and Kistler 2002). However, treat-
ing the interaction between multiple pairs of spikes either
way makes no qualitative difference (Izhikevich and Desai
2003). In other words, it does not matter whether each pair-
ing changes the conductance by a percentage of its existing
value or by a fixed amount. What does matter is the bound-
ary of the updating rules. For example, in Song and Abbott’s
model of STDP, the synaptic weight is artificially clipped
to minimal and maximal values. Such “hard bounds” retain
inherently unstable dynamics while exhibiting strong com-
petition between afferent synapses. The synaptic weights are
driven to the bounds, which leads to a bimodal distribution
(Song et al. 2000). This model has been used, for example,
to account for cortical remapping during development (Song
and Abbott 2001).

In contrast, the dynamics of synaptic weights can saturate
progressively to its boundaries. Such “soft bound” models
(Kistler and van Hemmen 2000; van Rossum et al. 2000;
Rubin et al. 2001; Gütig et al. 2003; Badoual et al. 2006; Mor-
rison et al. 2007), generate a stable, unimodal distribution
of synaptic weights with reduced competition, while both
potentiation and depression attenuate as the corresponding
upper or lower boundary is approached (van Rossum et al.
2000). A model generalizing soft and hard bounds was pro-
posed by Gütig et al. (2003), by using an ad-hoc scaling of
the weight dependence of evolution equations. This model
can be switched between unimodal or bimodal weight distri-
butions. Finally, a model was proposed based on a power-law
dependence of synaptic weights, which is also consistent with
experimental data (Morrison et al. 2007).

In this paper, we explore kinetic models of STDP based
on either presynaptic or postsynaptic changes. We consider
simple kinetic schemes for the changes in weight, triggered
by either pre- or post-synaptic mechanisms. We investigate
which type of dynamics (soft-bound or hard-bound) emerges,
and to what extent the models obtained are consistent with
the available experimental data. We next analyze the behav-
ior of one of those models in detail, and in particular, with
respect to processing correlated inputs. We terminate
by a comparison of the different STDP rules identified in
kinetic models with respect to their ability to detect
correlations.

2 Methods

Kinetic models of transmitter-receptor interaction were
based on previous models of synaptic transmission and post-
synaptic receptors (Destexhe et al. 1994, 1998). STDP will
be integrated in such models, as shown in Results. Several
kinetic models of STDP will be proposed, and several of
these kinetic models will be investigated numerically. We
detail below the methods used in these different steps.

2.1 Soft-bound and hard-bound models of STDP

The equation describing the time evolution of the synaptic
weight ω for a synapse with soft bounds can be written as:

dω

dt
= − FLTP(t) (ω − ωLTP) − FLTD(t) (ω − ωLTD), (1)

where ωLTP and ωLTD are respectively the maximal and min-
imal values of the synaptic weight. In this type of model, the
weight is necessarily bounded between ωLTP and ωLTD and
the saturation to these values is “soft”, in the sense that the
derivative of the weight is attenuated linearly as it approaches
its bounds. Similar models were introduced before (Kistler
and van Hemmen 2000; van Rossum et al. 2000; Rubin et al.
2001; Gütig et al. 2003; Badoual et al. 2006). The functions
FLTP(t) and FLTD(t) describe the interaction between pre-
and post-synaptic activity and will be described below.

Similarly, one can define the time evolution of the synaptic
weight ω for a synapse with “hard bounds”:

dω

dt
=

[
FLTP(t) − FLTD(t)

]ωLTP

ωLTD
, (2)

where the operator [. . .]ωLTP
ωLTD represents a clipping of the syn-

aptic weight so that it is bounded between ωLTP and ωLTD

(“hard bounds”). In this case, there is no modulation of the
amount of change as a function of the value of the weight.
This model is similar to Song et al. (2000).

2.2 Interaction between pre- and post-synaptic spikes

FLTP(t) and FLTD(t) are functions describing the coincidence
between pre- and post-synaptic spikes. When the pre/post
spike timing should lead to long-term potentiation (LTP),
FLTP(t) > 0 and FLTD(t) = 0; conversely, for long-term
depression (LTD), FLTP(t) = 0 and FLTD(t) > 0. These func-
tions are zero otherwise. As in a previous model
(Badoual et al. 2006), these functions are given by:

FLTP =
∑
ti ,t j

P(t − t j ) δ(t − ti ) (3)
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Fig. 1 Scheme of the plasticity windows and correlations used in the
model. a Hebbian and anti-Hebbian STDP functions. The percentage
change of the peak conductance at a synapse following paired pre-
and post-synaptic spikes is plotted as a function of �t, the time of
the post-synaptic spike minus the time of the pre-synaptic spike. The
STDP function is shown for the classic Hebbian rule (left), as well as
for anti-Hebbian STDP (right). b Illustration of the correlation par-
adigms used in the model. A model neuron was submitted to excit-

atory and inhibitory synapses, releasing randomly according to Poisson
processes. The synaptic release events (indicated here by vertical bars)
could be either uncorrelated (left) or correlated (right). In the case of
correlated release, the release frequency was unchanged at individual
synapses, but the probability of co-releasing (gray shades in the right
diagram) was increased. The postsynaptic activity (dashed box) may
show correlations with presynaptic activity

FLTD =
∑
ti ,t j

Q(t − ti ) δ(t − t j ) , (4)

where t j and ti are the times of pre- and post-synaptic spikes,
respectively, and the sums run over all possible pairs of pre-
and post-synaptic spikes. P(t) = Ap exp(−t/τp) and
Q(t) = Aq exp[−(t)/τq ] define the time window of inter-
action between spikes (τp = 14.8 ms, τq = 33.8 ms, Ap = 0.1,
and Aq = 0.05). These functions define the “STDP function”
represented in Fig. 1a.

The model investigated numerically incorporates a very
important property of STDP identified recently: multiple
pairs of spikes do not interact linearly but follow a nonlinear
rule. This was demonstrated by experiments using spike trip-
lets (Froemke and Dan 2002). The same study also showed
that such nonlinear spike interactions can be accounted for
by introducing “spike eligibility” factors (Froemke and Dan
2002). Including such effects in the soft-bound STDP model
leads to the following set of equations:

dω j i

dt
= −εi ε j

[
FLTP(t) (ω j i − ωLTP)

+ FLTD(t) (ω j i − ωLTD)
]
, (5)

where εi and ε j are spike eligibility factors given by:

εi = 1 − exp

[
−

( t − t last
i (t)

τ
post
s

)]
,

ε j = 1 − exp

[
−

( t − t last
j (t)

τ
pre
s

)]
,

where τ
pre
s = 28 ms, τ

post
s = 88 ms and t last

k gives the time
of the last spike in neuron k (Froemke and Dan 2002).

Equations 5 constitute the main model investigated numer-
ically, and they were integrated using an optimized algorithm
described in Appendix 1. Note that these equations use accel-
erated weight changes for convenience. The simulations were
checked with 10 times slower changes, which led to slower
convergence but the steady-state weight distributions were
unchanged (see Results).

2.3 Neuron model

To investigate the properties of STDP, we simulated sin-
gle compartment models that included voltage-dependent
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conductances described by Hodgkin and Huxley (1952) type
kinetics:

Cm
dV

dt
= −gleak(V − Eleak) − INa − IKd − IM − Isyn

INa = gNa m3h (V − ENa)

IKd = gKd n4 (V − EK)

IM = gM p (V − EK), (6)

where Cm = 1 µF/cm2 is the specific membrane capacitance,
gleak = 0.045 mS/cm2 is the leak conductance density, and
Eleak = −80 mV is the leak reversal potential. INa is the volt-
age-dependent Na+ current and IKd is the ’delayed-rectifier’
K+ current responsible for action potentials. IM is a non-inac-
tivating K+ current responsible for spike frequency adaption.
These currents and parameter settings were the same as in
a biophysical model cortical regular-spiking cell (Destexhe
and Paré 1999; Destexhe et al. 2001).

Synaptic currents were simulated by two-state kinetic
models of glutamatergic (AMPA) and GABAergic (GABAA)
receptor types (Destexhe et al. 1994, 1998):

Isyn j i
= ω j i m (V − Esyn) , (7)

where ωji is the synaptic weight as above (which also plays
the role of the maximal conductance), m is the fraction of
postsynaptic receptors in the open state (see below), V is
the postsynaptic membrane potential, and Esynis the reversal
potential of the synaptic current.

The fraction of activated receptors m is calculated accord-
ing to a simple two-state model of transmitter/receptor
interaction:

Ru + T
α
��

β

Rb , (8)

where Ru and Rb are the unbound and bound receptor forms,
respectively, T is the transmitter, while α and β are rate con-
stants. The corresponding kinetic equation for this system
is:

dm

dt
= α [T ] (1 − m) − β m , (9)

where [T ] is the concentration of transmitter in the synaptic
cleft. We assume that the transmitter concentration occurs
as a pulse of 1 ms and 1 mM amplitude, and we use stan-
dard parameters to describe AMPA and GABAA receptors
(Destexhe et al. 1998). Quantal conductances were of 25 nS
for AMPA and 10 nS for GABAA. α = 0.94 ms−1mM−1

and β = 0.18 ms−1 for AMPA, α = 10.5 ms−1mM−1 and β

= 0.166 ms−1 for GABAA. Metabotropic and N-methyl-D-
aspartate (NMDA) receptors were not included.

2.4 Generating and detecting correlations

Both excitatory and inhibitory synapses were driven by Poiss-
on-distributed random spike trains. In some simulations, a
correlation between some pre-synaptic spike trains was
introduced, as illustrated in Fig. 1b. To generate correlated
pre-synaptic spike trains, a set of N2 independent Poisson-
distributed random variables was generated and distributed
randomly among the N pre-synaptic trains. Every time step
the Poisson trains were redistributed. Correlation arose from
the fact that N2 ≤ N and the ensuing redundancy within the
N pre-synaptic trains (Destexhe and Paré 1999).

To calculate cross-correlations between two spike trains
x(i) and y(i), we used Pearson’s correlation:

r(d) =
∑

i [ (x(i) − x̄) (y(i + d) − ȳ) ]√∑
i (x(i) − x̄)2

√∑
i (y(i) − ȳ)2

, (10)

where x̄ and ȳ are the mean spike numbers of the correspond-
ing spike trains and d is a time-delay. The denominator nor-
malizes the correlation coefficient such that −1 ≤ r(d) ≤1.
The correlation values obtained were in the range 0.005 to
0.05, as found experimentally in awake monkeys (Zohary
et al. 1994).

2.5 High-conductance state

To simulate the intense synaptic activity similar to in vivo
conditions (Destexhe et al. 2003), we considered AMPA
and GABAergic synapses with the same density (1 syn-
apse per 200 µm2 of membrane): 190 synapses for total
38013.27 µm2 membrane area (Destexhe and Paré 1999),
low and high-conductance states were generated by differ-
ent conditions of release for GABAergic and glutamatergic
synapses. The release conditions corresponding to in vivo–
like activity were estimated based on a series of intracellu-
lar recordings during active states (Destexhe and Paré 1999;
Paré et al. 1998; Steriade et al. 2001). From these mea-
surements, the relative ratio of contribution of excitatory
and inhibitory conductances during high-conductance states
were estimated: 〈gi0〉/〈ge0〉, is between 4 and 5. (reviewed
by Destexhe et al. 2003). Assuming that synaptic conduc-
tances and release properties are uniform and described by
Poisson processes, we found that the constraints above led
to estimates of the average release frequency during active
states, which was about 2.4 and 3.2 Hz for glutamatergic and
GABAergic synapses, respectively (these particular values
were taken from a previous estimate based on intracellular
recordings in anesthetized rats; see Zou et al.). These input
rates were used in all simulations throughout the paper, unless
explicitly stated.

We also tested the model in low-conductance states defined
by lower release conditions. However, in this case simu-

123



Biol Cybern (2007) 97:81–97 85

lations took considerably longer time because less spikes
were produced (sometimes leading to complete silence). In
high-conductance states, the activity of the neurons can be
maintained more robustly and avoid this drawback.

All simulations and analyses were performed in the NEU-
RON simulation environment (Hines and Carnevale 1997)
under the LINUX operating system.

3 Results

We start by analyzing kinetic models of synaptic transmission
and STDP, and in which case they lead to hard- or soft-bound
dynamics. We then analyze numerically and analytically such
models and emphasize the role of correlations in affecting
synaptic weights, differentially for Hebbian or anti-Hebbian
STDPs.

3.1 Kinetic models of STDP

The pre-synaptic or post-synaptic localization of changes
underlying synaptic plasticity is a subject of intense inves-
tigation and debate (for recent reviews, see Anwyl 2006;
Dan and Poo 2006; Duguid and Sjostrom 2006; Nicoll 2003;
Soderling and Derkach 2000). Here, we successively con-
sider pre- and post-synaptic mechanisms for plasticity, in the
framework of simple kinetic models of transmitter/receptor
interaction, and how this affects the hard- or soft-bound char-
acter of the dynamics.

3.1.1 Postsynaptic models of STDP

We first investigate a purely postsynaptic model of STDP,
in which synaptic changes solely depend on the regulation
of postsynaptic receptors. We consider a simple model of
the regulation kinetics of postsynaptic receptors, which main
assumption is that synaptic strength depends on the num-
ber of “active” postsynaptic receptors, and that there are
activity-dependent mechanisms to activate or inactivate these
receptors. Active and inactive forms may represent the phos-
phorylated and dephosphorylated forms of AMPA receptors
identified experimentally (reviewed in Roche et al. 1994;
Wang et al. 2005). Calling R1 the inactive form, and R∗ the
active form of the receptor, one can write the synaptic weight
ω as:

ω = ω̄ (r0 + r∗) , (11)

where ω̄ is the maximal weight of the synapse (if all recep-
tors were in active form), and r∗ is the fraction of receptors
in active form R∗. r0 is the fraction of receptors in a “sta-
ble” form (i.e., non activable or inactivable), which gives
a minimal strength of the synapse (this factor is included

for convenience and has no effect on the following, besides
imposing a non-zero lower bound).

According to a simple first-order mechanism, the regula-
tion of receptors from inactive to active form, and vice-versa,
obeys the kinetic equation:

R1

FLTP(t)
��

FLTD(t)
R∗ , (12)

where the rate functions FLTP(t) and FLTD(t) are function of
time as well as pre- and post-synaptic activities (see below).
According to the choice of the functions FLTP(t) and FLTD(t),
one can implement any STDP learning rule.

Using the relation r1 = 1 − r∗ − r0, one can write Equa-
tion 12 as:

dr∗

dt
= FLTP(t) (1 − r∗ − r0) − FLTD(t) r∗ . (13)

Using relation (11), the synaptic weight evolves according
to:

dω

dt
= − FLTP(t) (ω − ω̄) − FLTD(t) (ω − ω̄r0) . (14)

Thus, by identifying ωLTP = ω̄ and ωLTD = ω̄ r0, this
equation is identical to Eq. 1. The soft bounds of this model
come from the fact that the resources (the total number of
available receptors) are necessarily limited. Note that the
above results are valid for any model of transmitter/recep-
tor interaction and receptor kinetics, provided the postsyn-
aptic receptors exist in active and inactive forms (Eq. 12).
We also tested more complex versions of this equation with
more states and obtained qualitatively the same results (not
shown).

3.1.2 Experimentally measurable synaptic weights

To link the above model of STDP to experimentally mea-
surable parameters, we take Eq. 7 for the synaptic current at
synapse i j , Isyn j i

, together with the simplest model of trans-
mitter/receptor interaction (two-state open/close scheme as
in Eqs. 8 and 9). According to this scheme, if the pulse of
transmitter T is of duration Tdur and amplitude Tmax, the max-
imum of the fraction of open receptors m during an isolated
synaptic current is given by:

mpeak = 1 − e−α Tmax Tdur . (15)

Thus, because the peak synaptic conductance is given by:

gpeak = ω j i

[
1 − e−α Tmax Tdur

]
, (16)

the soft bound dynamics of the synaptic weight ωji will
linearly translate into the dynamics of the peak conductance.
As the peak of synaptic conductance is probably the best
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measure of synaptic weight,1 we conclude that this type
of postsynaptic model necessarily implies soft bounds for
synaptic weights.

3.1.3 Presynaptic models of STDP

To check whether other mechanisms can give models with
hard bounds, similar to the Song et al. (2000) model, one must
consider alternative biologically-plausible mechanisms. The
most obvious alternative to the postsynaptic model above is a
purely presynaptic model, where the amount of postsynaptic
receptors is fixed, but the quantity of transmitter (or equiv-
alently its peak concentration) varies. In this case, one can
see that from Eq. 7 that this is equivalent to assume that the
maximal conductance of the synapse (ωji) is bounded (by the
fixed amount of receptors), whereas the fraction of receptors
in the open state (m) is allowed to be modulated by STDP
(instead of following stereotyped dynamics as above). If we
take the same model of transmitter/receptor interaction as
above, but allow the amplitude of the transmitter concentra-
tion in the cleft, Tmax to vary (but that in the context of a
single release event, Tmax remains constant, so that we still
have a pulse of transmitter), then the relations derived above
apply, in particular the peak conductance is given by:

gpeak = gmax

[
1 − e−α Tji Tdur

]
. (17)

Here, we have replaced the previous dynamic term ωji by a
constant term gmax, and the previous constant term Tmax by
Tji , which is allowed to vary according to STDP.

Comparing this situation with the previous postsynaptic
model (Eq. 16), we can see that there is no longer a linear
dependence between the variables undergoing STDP and the
peak synaptic conductance. If the synapse becomes maxi-
mally depressed, gpeak tends to zero as expected, but if the
transmitter concentration reaches arbitrarily high values, the
value of the postsynaptic conductance will be necessarily
bounded by gmax. So even if the “output” of the presyn-
aptic compartment, the amount of transmitter released, is
not bounded, the synaptic conductance will be necessarily
bounded by the constraints of the kinetics of postsynaptic
receptors. Thus, in the framework of the assumptions made
above, any model of either pre- or post-synaptic plasticity
will necessarily be bounded.

The question of whether these bounds are “hard” or “soft”
can be approached by studying how synaptic weights vary in
time. Starting from Eq. 17, we can derive the time derivative
of the peak synaptic conductance:

dgpeak

dt
= α Tdur gmax e−α Tji Tdur

dTji

dt
, (18)

1 Another measure of synaptic weight is the integral of synaptic conduc-
tance, but it is proportional to the peak value, because the the synaptic
current decays exponentially.

which, by using the relation gmax e−α Tji Tdur = (gmax −
gpeak), simplifies to:

dgpeak

dt
= α Tdur (gmax − gpeak)

dTji

dt
. (19)

Assuming a hard-bound rule for the transmitter concen-
tration, similar to Eq. 2 yields

dTji

dt
=

[
FLTP(t) − FLTD(t)

]TLTP

TLTD
, (20)

where TLTP and TLTD are the “hard” bounds of transmitter
concentration. Combining with Eq. 19 gives

dgpeak

dt
= α Tdur (gmax − gpeak)

×
[

FLTP(t) − FLTD(t)
]TLTP

TLTD
. (21)

Here, we can easily recognize a similar functional form as
for soft bound models (compare with Eq. 1). The first term
(FLTP(t)) will drive the peak conductance towards the max-
imal value gmax, similar to the drive towards ωLTP in Eq. 1.
In contrast, the second term (FLTD(t)) will drive gpeak down,
and this drive may appear as unbounded. It is bounded, how-
ever, because T must remain positive by definition (TLTD

≥ 0), so by Eq. 20, the hard bound to the derivative of T
must necessarily ensure that gpeak always remains positive.

Thus, in the case of presynaptic models, the peak conduc-
tance will not vary according to a hard-bound model, even
if presynaptic release is subject to hard-bound STDP. The
peak conductance is saturating softly to its maximal value,
whereas its minimal value is hard bounded. If we assume a
soft-bound presynaptic rule for Tmax, then the peak synaptic
conductance will obey a more complex form of soft-bounded
dynamics. Note that for all models tested, the only way to
obtain hard bounds was to assume that some variable of the
model is itself hard-bounded (such as in Eq. 20), but we were
unable to find any plausible biophysical or kinetic mechanism
naturally leading to hard-bound dynamics.

3.1.4 Are experimental data consistent with hard-bound
or soft-bound STDP?

Before turning to numerical simulations, we discuss the con-
sistency of the above considerations with experiments. Exper-
imental data have shown that the relative weight increase
(defined as the weight increase divided by the initial weight)
varies nonlinearly with initial weight (Bi and Poo 1998; see
also Montgomery et al. 2001 for LTP). The authors typically
represent the relative weight change as a function of the loga-
rithm of initial weight, ω0. However, the type of nonlinearity
observed will be highly dependent on the type of model con-
sidered, so we investigated this issue here for kinetic models
of STDP.

123



Biol Cybern (2007) 97:81–97 87

For hard-bound models, the change of weight will be
independent on the initial value ω0:

ω − ω0 = C , (22)

where C is a constant (positive for LTP, negative for LTD).
The relative weight change is then given by:

(ω − ω0)/ω0 = C/ω0 . (23)

Such a behavior is represented in Fig. 2a, where the 1/ω0

dependence in Eq. 23 gives rise to a decreasing exponential
dependence as a function of log(ω0).

In soft-bound models, integrating the generic equation

dω

dt
= (ωS − ω0) F(t) , (24)

where ωS is the steady-state value of the weight, leads to:

ω − ω0 = A (ωS − ω0) , (25)

where A > 0 is a constant. The relative weight change is
given by

(ω − ω0)/ω0 = A (ωS − ω0)/ω0 . (26)

Thus, for soft-bound models, the relative weight change will
also be an exponential function of log(ω0), as shown in
Fig. 2b. A particular case is for LTD, if ωS = 0, the rela-
tive weight change becomes independent of ω0 and equals
−A (Fig. 2b, LTD, solid line). If the steady-state weight ωS

for LTD is non-zero, a small nonlinearity appears (Fig. 2b,
LTD, dashed line)

Experimental data (see Fig. 5 of Bi and Poo 1998) show
that the relative weight change indeed decreases nonlinearly
with initial weight for LTP (see also Montgomery et al. 2001).
However, in this logarithmic representation, it is not possi-
ble to distinguish between hard- and soft-bound models. For
LTD, the data seem more consistent with soft-bound models
with ωS = 0 (see also van Rossum et al. 2000; Morrison et al.
2007). To unambiguously distinguish between the two type
of models, it is preferable (when experimentally possible)
to use the absolute weight change, ω − ω0, and represent it
against initial weight ω0, as shown in Fig. 2c. For hard-bound
models, the weight change is independent of ω0 (dotted lines
in Fig. 2c) while for soft-bound models, this representation
will reveal the type of weight dependency, which is linear in
the type of model considered here (see Fig. 2c, solid lines).

3.2 Behavior of the soft bound model of STDP

We now turn to numerical investigations of the soft-bound
model of STDP by using a Hodgkin–Huxley type model
driven by conductance-based synapses subject to STDP (see
Methods). The synaptic weight change as a function of the
delay between pre- and post-synaptic spikes is shown in
Fig. 1a for Hebbian (left panel) and anti-Hebbian STDP
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Fig. 2 Weight-dependence of kinetic models of STDP. a Relative
weight change represented as a function of the logarithm of initial
weight for a hard-bound model of STDP (Eq. 23 with C = 200 for
LTP and C = −50 for LTD). b Same representation for a soft-bound
model of STDP (Eq. 26) with A = 3 and log(ωS)=7.5 for LTP and for
LTD: log(ωS)=-1000 (solid line) and log(ωS)=2 (dashed line). c Repre-
sentation of the absolute weight change (ω−ω0) as a function of initial
weight (ω0) for the two type of models (dashed lines for hard-bound
model, solid lines for soft-bound model). The hard-bound models plot-
ted the expression ω − ω0 = A(ωS − ω0) with ωS = Wmax for LTP
and ωS = 0 for LTD

(right panel). This function will be called here STDP func-
tion for simplicity, and was modeled by two exponentials
(see Methods), similar to previous studies (Song et al. 2000;
van Rossum et al. 2000; Gütig et al. 2003). The decay time
constant of the exponentials determines the extent of the tem-
poral window in which STDP operates. Following experi-
mental measurements (Bi and Poo 1998; Froemke and Dan
2002), we let τp = 14.8 ms, and τq = 33.8 ms for Hebbian plas-
ticity (Fig. 1a, left). The temporal asymmetry of the synaptic
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modification is represented by the opposite signs of weight
changes for positive and negative time differences. The anti-
Hebbian plasticity rule is obtained by simply reversing the
signs of weight changes for �t (Fig. 1a, right), but keeping
the decay time constants unchanged.2

In this numerical investigation, we consider nonlinear
spike interactions (triplets) through the use of spike-eligi-
bility factors (Froemke and Dan 2002; see Sect. 2). Previous
models emphasized the sensitivity of STDP to correlations
(Song et al. 2000; van Rossum et al. 2000; Gütig et al. 2003)
but did not incorporate such nonlinear interactions. We inves-
tigate here the correlation sensitivity of soft-bound STDP
models endowed with nonlinear spike interactions (see Eq. 5
in Sect. 2).

3.2.1 Distributions of synaptic weights

We first investigated the steady-state distribution of synap-
tic weights in this soft-bound model of STDP. We simulated
a Hodgkin–Huxley neuron receiving random (Poisson-dis-
tributed) synaptic inputs at AMPA and GABAA synapses
(see Methods). Synaptic weights were initially distributed
randomly between the two extreme values ωLTD (which was
zero unless otherwise stated) and ωLTP. As time evolves, syn-
aptic weights converge towards a stable steady-state distri-
bution due to soft-bound STDP dynamics.3 This distribu-
tion is unimodal, consistent with previous observations with
soft-bound STDP models (van Rossum et al. 2000; Rubin
et al. 2001; Gütig et al. 2003). The extent and position of
the weight distribution depends on the different parameters
of the model. One of those parameters is the integral of the
STDP function, as shown in Fig. 3. For Hebbian STDP, the
steady-state weight distribution converged to large values
of weights if the positive lobe (potentiation) was prominent
(Fig. 3a,c), which corresponds to a small ratio Aqτq/Apτp.
Conversely, if the integral tends to be negative (depression
lobe dominant), the distribution tends to smaller values of
weights. A similar behavior was also found for anti-Hebbian
STDP models (not shown).

To explain these observations, we first define the mean
steady-state synaptic weight, 〈 g 〉, as the mean value of the
steady-state weight distribution. To better understand how the
exact shape of the STDP function affects this parameter, we
constructed surrogate postsynaptic spike trains by randomly
reshuffling postsynaptic spikes, thereby completely decor-
relating them with the pre-synaptic AMPA inputs. In this
case, the STDP operates between two uncorrelated (pre- and

2 Note that the anti-Hebbian STDP is not simply the inverse of the
Hebbian STDP because of the inclusion of nonlinear spike interactions.
3 It must be noted that only the weight distribution is reaching steady-
state, while individual synaptic weights continue to vary.
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Fig. 3 Unimodal distributions of synaptic weights in a soft-bound
kinetic model of STDP. The steady-state distribution of synaptic weights
is shown for different parameters of the STDP function. The release
rates at synapses were fixed (γAM P A=2.4 Hz, γG AB A=3.2 Hz), but
different values of A−/A+ were used (see legend in inset). a Steady-
state distributions obtained in a model neuron using soft-bound Hebbian
STDP models. b Distribution obtained in the same model, but when pre-
and post-synaptic spikes were decorrelated by reshuffling post-synaptic
spikes (surrogate analysis). c Mean of the steady-state distribution of
synaptic weights, 〈g〉, for different conditions (see legend), plotted as
a function of the value of A−/A+ in log scale. The prediction was
obtained from Eq. 27. All simulations were run over 3,600 s, and the
distribution was sampled from the last 600 s, to make sure the equilib-
rium was reached

post-synaptic) random trains of spikes. A similar dependency
as described above was still present (Fig. 3b,c). In such a case,
the mean synaptic weight could be predicted by using the
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Fig. 4 Effect of the release rate on the distribution of synaptic weights.
a Effect of release rate on the steady-state distribution of synaptic
weights for Hebbian STDP with uncorrelated random inputs. b Same set
of simulations for anti-Hebbian STDP. c Mean synaptic weight (aver-
age value of the steady-state distribution) represented as a function of

the rate. The data represented are from (a) (“Simulated”, squares), and
are compared to the analytic estimate (“Predicted”, triangles) obtained
from Eq. 28. The same simulations were also done without the spike
eligibility factors (“No ε”, circles). d Same representation as in (c), but
for anti-Hebbian STDP (data from b)

following relation for the steady-state synaptic weight (see
Appendix 2):

〈 g 〉 = ωLTP

1 + (A−/A+)
, (27)

where A+ = Ap τp and A− = Aq τq are the positive and neg-
ative areas under the STDP function, respectively. The mean
steady-state synaptic weight calculated numerically (Fig. 3c,
circles) was well predicted by this analytic estimate (Fig. 3c,
continuous line).4

We next used this surrogate analysis to directly appreciate
the effect of causality between pre- and post-synaptic spikes.
With Hebbian STDP on excitatory synapses, the mean weight
was always larger than for the surrogate case (Fig. 3c, com-
pare open squares with continuous line). On the other hand,
anti-Hebbian plasticity gave rise to smaller mean weights
(see Fig. 3c, filled squares). Another interesting difference
is that the weight distribution remains almost flat for very
low firing rates (Fig. 3b), showing that STDP is ineffective
at modifying synapses when there are too few post-synaptic

4 Note that for some parameters (A−/A+ = 5, 10 in Fig. 3), depression is
much larger than potentiation and the distributions are very broad, partly
due to the fact that equilibrium was not reached because depression pre-
vented postsynaptic spiking to drive synaptic weights to equilibrium.

spikes, as noted earlier (Song et al. 2000). However, this was
only the case for surrogate postsynaptic spikes, as the distri-
butions for the same firing rates were significatively differ-
ent in the control condition (Fig. 3a, leftmost distributions),
while the other distributions were similar. Thus, the effect
of causality between pre- and post-synaptic spikes is most
prominent for low firing rates.

Similar results hold for GABAergic synapses (not shown),
except that in this case, the dependency is opposite to that
shown in Fig. 3c. Hebbian STDP on GABAergic synapses
leads to mean weights that are lower than for surrogate post-
synaptic spikes, while the anti-Hebbian STDP produces the
opposite.

3.2.2 Effect of release rates

We next investigated the effect of the release rate at AMPA
synapses by simulating a HH neuron model subject to ran-
dom excitatory and inhibitory release events at different rates
(Fig. 4). For Hebbian STDP, the mean synaptic weight
decreases as the input rates increases (from 2 to 10 Hz; see
Fig. 4a; Fig. 4c, squares). The opposite is seen for anti-Heb-
bian STDP (Fig. 4a; Fig. 4c, squares).

To explain this paradoxical effect (see also Song et al.
2000; Burkitt et al. 2004), we used the following relation
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to predict the mean synaptic weight (see Appendix 2 for
details):

〈 g 〉 = ωLTP

1 +
∫

Q(τ ) Ci j (τ ) dτ∫
P(τ ) C ji (τ ) dτ

, (28)

where Cij(τ ) and Cji(τ ) are cross-correlations between pre-
and post-synaptic spikes. Cij(τ ) is proportional to the prob-
ability that a pre-synaptic spike occurs at a time delay τ

after a post-synaptic spike, and inversely, Cji(τ ) is related
to the probability that a post-synaptic spike occurs at a time
delay τ after a pre-synaptic spike. Thus, the mean synaptic
weight depends on the integral of the STDP function and
the cross-correlations between pre- and post-synaptic activi-
ties (a similar relation was obtained in another model (Gütig
et al. 2003). Note that large values of the mean weight can
still be obtained when cross-correlation values are very small,
because it is given by the ratio of these values integrated—
see Eq. 28. These cross-correlations can easily be calculated
from the model for different release rates (Fig. 5a). Using
this expression led to a good prediction of the mean weight
obtained by numeric simulations (Fig. 4c; compare circles
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Fig. 5 Cross-correlation between pre- and post-synaptic spikes. a
Cross-correlation between pre- and post-synaptic activity (Cji(τ )), rep-
resented as a function of the time delay (τ ) for the model of Hebbian
STDP at two release rates (3 Hz, solid line; 10 Hz dashed line; same sim-
ulations as in Fig. 4a,c). b Same representation for two different values
of the correlation index (0=uncorrelated, solid line; 0.8=highly corre-
lated presynaptic activity, dashed line; same simulations as in Fig. 6a,c)

with triangles). Note that we performed this prediction by
running the model with εi = ε j = 1 in Eq. 5 (in agreement
with the assumptions of Eq. 28; see Appendix 2), but both
models had the same trend.

Thus, this effect of the decrease of the mean steady-state
weight with increasing rates can be explained by examining
the cross-correlations in Fig. 5a. The correlation function
is narrower with higher release rates, presumably because
the neuron reaches threshold faster with higher-frequency
inputs.5 It is straightforward to see that integrating those
functions with the STDP functions will lead to a lower steady-
state values for higher rates.

3.2.3 Effect of correlations

We next investigated the effect of introducing correlations
between release events (see Sect. 2). In contrast with the
effect of release rate, the mean steady-state synaptic weight
increased as the correlation coefficient increased from 0 to
0.8 (Fig. 6a; Fig. 6c, squares). The opposite behavior was
observed for anti-Hebbian STDP models (Fig. 6b; Fig. 6d,
squares). Computing cross-correlations (Fig. 5b) and using
Eq. 28 to predict the mean weight led to a reasonably
good agreement between simulated and predicted values
(Fig. 6c-d; note that the errors for anti-Hebbian STDP mod-
els is due to poor statistics because of low firing rates in this
case). We also found that the postsynaptic firing rate fol-
lowed the value of the pre-synaptic correlation (not shown),
although the total number of inputs did not change (the release
rate was constant). This is consistent with previous findings
(Rudolph and Destexhe 2001) showing that pre-synaptic cor-
relations are very efficiently detected by neurons. When syn-
apses were endowed with STDP, this correlation detection
was even more prominent. The opposite effect on postsyn-
aptic firing rate was observed for anti-Hebbian STDP (not
shown).

3.2.4 Correlation processing

The above results show that the soft-bound STDP model
endowed with nonlinear spike interactions can reliably detect
correlations, consistent with previous models which did not
include this nonlinearity (van Rossum et al. 2000; Gütig et al.
2003). This correlation sensitivity was also present when
only a subset of synapses were correlated. In this case, only
this specific subset of synapses was potentiated (for Hebbian
STDP) or depressed (for anti-Hebbian STDP; not shown).

To further test the ability to process correlations, we
simulated a paradigm in which the correlation was dynami-

5 Note that this is not due to a conductance effect, because simulating
the same model with current-based inputs led to nearly identical results
(not shown).

123



Biol Cybern (2007) 97:81–97 91

<
g>

(n
S

)
a

c

Hebbian Anti-Hebbian

d

<
g>

( n
S

)

Simulated
No

Predicted
ε

Simulated
No

Predicted
ε

b

Fig. 6 Effect of presynaptic correlations on the distribution of syn-
aptic weights. a Effect of correlations on the steady-state distribution
of synaptic weights for Hebbian STDP. Excitatory and inhibitory input
rates were fixed at 2.4 and 3.2 Hz, respectively. b Same representation
for anti-Hebbian STDP models. c Mean synaptic weight represented as

a function of the value of the correlation index (“Simulated”, squares;
data from a), compared to the analytic estimate (“Predicted”, trian-
gles; Eq. 28). The same simulations were also done without the spike
eligibility factors (“No ε”, circles). d Same representation as in c for
anti-Hebbian STDP models (data from b)

cally changed within different groups of synapses. As shown
in Fig. 7a, two group of synapses were simulated with differ-
ent correlations, leading to convergence of the weights to
two sets of values. At a given time (first arrow in Fig. 7a),
the correlations were switched between the two groups. As
expected, this induced relaxation of the weights to a new equi-
librium state corresponding to the new values of correlations.
At a further time (second arrow in Fig. 7a), the correla-
tions were switched back to the initial values, again lead-
ing to relaxation towards steady-state.6 Interestingly, these
dynamic changes in synapses occurred with no change in
mean firing rate (Fig. 7, right panel). A similar paradigm also
applies to inhibitory synapses, in which case the changes in
weight are opposite (Fig. 7b). Anti-Hebbian STDP models

6 Slight differences in kinetics appear between the two transitions in
Fig. 7a, the relaxation to upper values is faster than to lower values.
This is presumably attributable to the asymmetry of the STDP func-
tion. Inverse results were obtained using anti-Hebbian STDP, with faster
relaxation to lower values (not shown).

also gave opposite changes as Hebbian STDP models (not
shown).

We next investigated the effect of STDP on “correlation
transfer” between pre-synaptic neurons and post-synaptic
neurons. If presynaptic neurons become correlated, they
could drive the firing of the postsynaptic neuron, such that
this neuron also becomes correlated with the presynaptic pop-
ulation of correlated neurons, and in some sense becomes
“recruited” into the assembly of correlated neurons. Since
STDP is sensitive to correlations, it could be a good candi-
date to realize such a recruitment. We tested this idea by
calculating the “output” correlation between postsynaptic
spikes and presynaptic trains (“post-pre correlation”), and
comparing it to the “input” correlation between presynap-
tic trains (“pre-pre correlation”). Without STDP, the output
correlation was increasing as a function of the input correla-
tion (Fig. 8a, circles), while the time to peak decreased (not
shown). Hebbian STDP reinforced these relations (Fig. 8a,
squares), while anti-Hebbian STDP weakened it (Fig. 8a,
triangles). An effect of correlations was also present if the
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Fig. 7 Dynamic changes in correlation can modify synapses with no
change in mean firing rate. a Correlation alternation within two subsets
of excitatory synapses (50% each). Initially, Group A was correlated
at 0.5, while Group B was non-correlated. The neuron converged to
a steady firing rate (right panel). At t = 200 ms, the correlation was

switched between the two groups, leading to a decrease of the synaptic
weights in group A and an increase for group B (left panel, first arrow).
200 ms later, the correlation was switched back to initial values (second
arrow). b Same paradigm for GABAergic synapses. Hebbian STDP
was used in all cases

same paradigm was applied to inhibitory synapses (Fig. 8b),
but there was no significant effect of plasticity in this case. In
all cases, however, the output correlation remained smaller
in magnitude compared to the input correlation, and this
was independent on the total number of synapses simulated
(Fig. 8c) or maximal weight (Fig. 8d).

Finally, we compared the correlation sensitivity of differ-
ent STDP rules, some of which were predicted by kinetic
models. Figure 9 shows a comparison of the effect of cor-
relation on weight distributions for different combinations
of hard- and soft-bounds for LTP and LTD, in the pres-
ence of nonlinear spike interactions. As seen above, correla-
tions affect the weight distribution for the soft-bound model
of STDP (Fig. 9a). Correlations also affect a mixed model
with hard-LTD combined with soft-LTP (Fig. 9b), which
model was predicted when changes occur presynaptically
and assuming presynaptic hard bounds. The mirror situation,
with soft-LTD and hard-LTP is also sensitive to correlations,
which tend to saturate the weight towards their maximal value

(Fig. 9c). The hard-bound model of STDP, similar to Song
et al. (2000), is only weakly sensitive to correlations (Fig. 9d).
In contrast, the hard-bound model was reported to be sensitive
to correlations (Song et al. 2000). We indeed observed this
sensitivity, but only if nonlinear spike interactions were not
included by setting εi = 1 (not shown). Thus, we conclude
that the weak sensitivity of hard-bound STDP to correlations
is due here to the presence of nonlinear spike interactions.

4 Discussion

In this paper, we have analyzed simple kinetic models of
STDP and found that postsynaptic changes predict soft-
bound dynamics because of the resources (such as the number
of receptors) are necessary limited. The situation is, how-
ever, different for presynaptic models, which do not lead
to such clear-cut conclusion. If the amount of transmitter
released is assumed to obey hard bounds, the rate of change
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Fig. 8 Correlation transfer from pre-synaptic neurons to post-synap-
tic neuron during STDP. Model neuron receiving 190 glutamatergic
and GABAergic synapses. The Pearson cross-correlation was calcu-
lated either between presynaptic and postsynaptic spike trains (“output
correlation”) or within presynaptic trains (“input correlation”, Cinput),
and the ratio between these two values (Coutput/input) was represented for
various conditions. a Correlation transfer for STDP at excitatory syn-
apses (maximal conductance gAMPA = 25 nS, rate of 2.4 Hz; inhibitory
synapses fixed at 10 nS, rate of 3.2 Hz). The different curves show the
ratio of cross-correlations (Coutput/input) for Hebbian STDP (squares),
no STDP (circles) and anti-Hebbian STDP (triangles) at excitatory syn-

apses, as a function of input correlation (Cinput). b Similar protocol of
simulations, but when inhibitory synapses were subject to STDP. c Same
simulations as in (a), but Coutput/input is represented as a function of the
number of excitatory synapses (ranging from 57 to 247), while releasing
at a rate which was scaled such that the total effective synaptic conduc-
tance was unchanged. The input correlation was kept to similar values
for each set of synapses (Pearson correlation included between 0.014
and 0.021). D. Same simulation as in (a) for different maximal values
of excitatory synaptic weight (ωLTP). The input correlation was in this
case fixed at 0.018

of the synaptic conductance will be a mixture of hard and
soft bounds, with soft upper bound and hard lower bound.
Such a rule was, to our knowledge, never tested and consti-
tutes one interesting prediction of such kinetic models worth
being explored in more detail in future work.

We next performed a series of numerical simulations to
explore these models of STDP, with emphasis to explain their
dynamics. The main originality of this numerical investi-
gation is that the simulated models incorporated the non-
linear spike interactions identified experimentally (Froemke
and Dan 2002). For soft-bound models, we found that a
critical parameter is the total area under the STDP func-
tion. The STDP functions used here (Fig. 1a) were fit to
a biophysical model and to different experimental measure-
ments (see details in Badoual et al. 2006), which gave the
result that the integral of the STDP function was negative for

Hebbian STDP and positive for anti-Hebbian STDP (Fig. 1a).
A negative integral requires Aqτq>Apτp, which is an impor-
tant assumption in Song et al. model: the synaptic weaken-
ing through STDP is, overall, slightly larger than synaptic
strengthening and this is a requisite for stability (Song et al.
2000). This requirement is relaxed for soft-bound STDP as
there is no such instability, since the weights necessarily con-
verge to a steady-state distribution comprised in between the
two extreme values.

We also found a paradoxical effect that augmenting the
release rate led to a decrease of the mean synaptic weight
(see Fig. 4a,c), while the opposite holds for anti-Hebbian
STDP models(Fig. 4b,d). This effect was also observed pre-
viously in STDP models (Song et al. 2000; Burkitt et al.
2004; but see Rubin et al. 2001), and is confirmed here in the
presence of nonlinear spike interactions. This effect could
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Fig. 9 Effect of correlations in the synaptic weight distribution for
different STDP rules. The neuron model received 190 glutamater-
gic and GABAergic synapses with fixed releasing rate of 2.4 and
3.2 Hz, respectively. Each graph compares the distribution obtained with
uncorrelated synaptic inputs (black) with that obtained when inputs
were correlated (gray; Pearson correlation of 0.018). a Soft-bound
model identical to that predicted by a postsynaptic kinetic model of

STDP. b Soft-bounded LTP with hard-bounded LTD, as predicted by
kinetic models when changes occur presynaptically. c Hard-bounded
LTP with soft bounds for LTD. d Hard-bound model of STDP. In both
(b) and (c), to achieve the balance of dynamic between potentiation and
depression, the maximal modification of STDP curve (Apand Aq) was
scaled appropriately

be explained by the broadening of the cross-correlations for
low rates, which leads to higher mean weights (the same can
also be deduced from the analysis given in Gütig et al. 2003).
Interestingly, this situation implements a type of homeostasis
with respect to postsynaptic firing rate. For low input rates,
the mean synaptic weight shifts to high values, which give
large post-synaptic firing rates. Conversely, for high input
rates, the mean synaptic tends to lower values, which in turn
gives low post-synaptic firing rates. This indicates that Heb-
bian STDP could rescue the neuron firing at low input rates,
but inhibits it at high input rates (and conversely for anti-
Hebbian STDP).

The equation for the steady-state weight (Eq. 28) directly
includes the cross-correlations between pre- and post-syn-
aptic activities. If inputs are correlated, this cross-correla-
tion increases dramatically (Fig. 5b) and the mean synaptic
weight is thus directly affected by input correlations (Fig. 6).
This effect of correlations is interesting, and is clearly due
to the fact that correlated release events have more chance
to fire the neuron (Rudolph and Destexhe 2001), and thus,
to fulfill the condition for being potentiated (for Hebbian
STDP) or depressed (for anti-Hebbian STDP). This is a good
example of cooperativity between synapses, because at a
given synapse, the statistical characteristics of the release
pattern remains unchanged, but it is the respective timing of
release events at different synapses which is effective in being

detected by the STDP window, leading to changes in synaptic
weight. Such changes would not have occurred for uncorre-
lated synapses releasing with the same characteristics.

This ability for STDP to “pick-up” timing information was
further illustrated by including correlations only within sub-
sets of inputs, and in this case, only the correlated subsets are
subject to changes with STDP (not shown). This shows that
STDP can very efficiently detect groups of correlated synap-
tic inputs and selectively potentiate (or depress) them. Such
synaptic modifications can occur between different groups of
synapses, without necessarily observing changes in the mean
firing rate of the neuron (Fig. 7). Such correlation changes
have been observed experimentally in various systems and
such correlation changes are related to the behavior of the
animal (Vaadia et al. 1995; de Charms and Merzenich 1996;
Riehle et al. 1997).

In line with this potentially important role of correlation
for representing information, we investigated how correla-
tions can be processed and transmitted from pre- to post-
synaptic activity. We found that STDP enhances the “output”
correlation (Fig. 8), enabling the postsynaptic neuron to
become correlated with those presynaptic neurons that were
already correlated, and in a sense be recruited in the popu-
lation of correlated cells. On the other hand, anti-Hebbian
STDP will tend to opposite this effect by reducing the out-
put correlation. These results suggest that groups of neurons
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connected with excitatory synapses endowed with soft-bound
STDP can easily form assemblies of correlated firing. Such
formation of correlated assemblies is facilitated by Hebbian
STDP, which is also in line with the original ideas of Hebb
(Hebb 1949). This formation of assemblies is also consistent
with the synfire chains concept (Abeles 1991). However, in
the present case there is no strict synchronous firing, but the
correlation is defined as occasional coincidences in the spik-
ing of neurons (which is exactly what was simulated by our
distributed correlation algorithm).

Finally, we compared different STDP rules, such as soft-
bound, hard-bound, or mixed hard and soft bounds. We found
that either soft-bound or mixed rules are able to detect corre-
lations. The hard-bound STDP model, which was previously
reported to be sensitive to correlations (Song et al. 2000),
was only weakly sensitive when nonlinear spike interactions
were taken into account. Interestingly, the two types of STDP
dynamics predicted by kinetic models, soft-bound or mixed
hard-soft bounds, are both efficient to detect correlations.
We did not consider more complex cases, such as power-law
dependence, as suggested recently (Morrison et al. 2007).
The types of kinetic models of STDP that we considered here
predict a simple dependence on synaptic weights, and even
with nonlinear spike interactions, such models are entirely
consistent with time-based computing paradigms based on
temporal or spatial correlations.

Appendix 1: Integration algorithm

Since the algorithm must examine all possible pairs of pre-
and post-synaptic spikes, one needs to optimize the calcu-
lations to avoid combinatorial explosion of spike pairs as
time evolves. We used an iterative scheme, which we explain
below for potentiation. This procedure is similar to that pre-
sented in Song et al. (2000), with the important difference that
we take here the nonlinear spike interactions into account.

Potentiation is calculated at the time a post-synaptic spike
occurs (ti ), and is theoretically a function of the pairs made
with all pre-synaptic spikes (tk

j ) that occurred at time ti . This
amounts to calculate the following expression:

m∑
k=0

P[ti − tk
j ] εi εk

j , (29)

where the index k runs over all presynaptic spikes that
occurred at time ti .

This sum can be calculated by introducing modulation
factors Sm

j which obey the following iteration:

Sm
j = Sm−1

j × exp[−(tm
j − tm−1

j )/τp] + εm
j . (30)

The idea is to calculate Expression (29) for each spike
by only updating the modulation factor obtained from the

preceding spike. This is done by evaluating the expression
Sm

j P(ti − tm
j ) εi . Since P(t) = Ap exp[−t/τp], we can

expand this expression as follows:

Sm
j P(ti − tm

j ) εi =
[

Sm−1
j exp[−(tm

j − tm−1
j )/τp] + εm

j

]

×Ap exp[−(ti − tm
j )/τp] εi

= Sm−1
j P(ti − tm−1

j ) εi

+ P(ti − tm
j ) εi εm

j

= Sm−2
j P(ti − tm−2

j ) εi

+ P(ti − tm−1
j ) εi εm−1

j

+ P(ti − tm
j ) εi εm

j

. . .

=
m∑

k=0

P[ti − tk
j ] εi εk

j (31)

Similarly, LTD occurs at the time of each pre-synaptic
spike t j , and is determined by all pairs made by all post-
synaptic spikes tk

i that occurred at that time, which is given
by:

m∑
k=0

Q[t j − tk
i ] εk

i ε j . (32)

This expression can also be calculated using modulation
factors, by evaluating Sm

i Q(tm
i − t j ) ε j using the iteration

Sm
i = Sm−1

i × exp[−(tm
i − tm−1

i )/τq ] + εm
i . (33)

Thus, at each time a spike occurs, either pre- or post-
synaptically, all previous spikes can be taken into account
by updating the corresponding modulation factor Sk . This
enables us to calculate an all-to-all pairing scheme using a
minimum of computations (the total number of exponentials
to be calculated equals 1 + ns at each post-synaptic spike,
where ns is the number of synapses, while only two expo-
nentials must be calculated for each pre-synaptic spike). Note
that this algorithm is exact.

Appendix 2: Steady-state synaptic weight

In this appendix, we provide expressions for the steady-state
synaptic weight of the particular model studied here (for sim-
ilar derivations, see Gütig et al. 2003; Burkitt et al. 2004).

To obtain the steady-state synaptic weight 〈ωji〉, we start
from Eq. 5, neglect the spike eligibility factors (εi = ε j = 1),
and take the limit of t → ∞. In this limit, dωji/dt → 0,
which gives:

F̄LTP (〈ω j i 〉 − ωLTP) + F̄LTD (〈ω j i 〉 − ωLTD) = 0 , (34)

where F̄LTP = limt→∞ FLTP(t) and similarly for F̄LTD =
limt→∞ FLTD(t).
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If we assume that ωLTD = 0, we have the following:

〈 ω j i 〉 = ωLTP

1 + F̄LTD
F̄LTP

. (35)

Thus, predicting the steady-state synaptic weight 〈ωji〉
amounts to calculate the term F̄LTD/F̄LTP. To calculate this
term, we expand F̄LTP as:

F̄LTP = lim
t→∞

∑
ti ,t j

P(t − t j )δ(t − ti ) (36)

= lim
t→∞

∑
ti ,t j

⎡
⎣

∞∫

−∞
P(t − t ′)δ(t ′ − t j )dt ′

⎤
⎦ δ(t − ti ).

(37)

Reorganizing the sums, we have the following:

F̄LTP = lim
t→∞

∞∫

−∞
P(t − t ′)

⎡
⎣∑

t j

δ(t ′ − t j )

⎤
⎦

×
[∑

ti

δ(t − ti )

]
dt ′ (38)

= lim
t→∞

∞∫

−∞
P(t − t ′) ρ j (t

′) ρi (t) dt ′ , (39)

where ρ j (t) = ∑
t j

δ(t − t j ) and ρi (t) = ∑
ti δ(t − ti ) are

the pre- and post-synaptic spike trains, respectively.
Following the change of variables t ′ = t − τ , one can

write this expression as:

F̄LTP = lim
t→∞

∞∫

−∞
P(τ ) ρ j (t − τ) ρi (t) dτ . (40)

The term ρ j (t −τ) ρi (t) can be expressed as a function of
the cross-correlation between pre- and post-synaptic spikes:

C ji (τ ) = lim
t→∞

1

N ji

[
ρ j (t) ρi (t + τ)

]
(41)

= lim
t→∞

1

N ji

[
ρ j (t − τ) ρi (t)

]
, (42)

where 1
N ji

is a normalization factor. Inserting this relation
into Eq. 40, we obtain the expression:

F̄LTP = N ji

∞∫

−∞
P(τ ) C ji (τ ) dτ , (43)

and similarly for F̄LTD:

F̄LTD = N ji

∞∫

−∞
Q(τ ) Ci j (τ ) dτ . (44)

The steady-state synaptic weight is then given by:

〈 ω j i 〉 = ωLTP

1 +
∫

Q(τ ) Ci j (τ ) dτ∫
P(τ ) C ji (τ ) dτ

. (45)

In particular, when pre-synaptic and post-synaptic spikes
are decorrelated by using surrogate postsynaptic trains (see
text), Cij(τ ) = Cji(τ ) = cst., and we have the following:

〈 ω j i 〉 = ωLTP

1 + Aq τq
Ap τp

= ωLTP

1 + (A−/A+)
, (46)

where A+ =Ap τp and A− =Aq τq are the positive and
negative areas under the STDP function, respectively.
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