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Summary
Brain adenosine A2A receptors have recently attracted
considerable attention because of their interaction with
the dopaminergic system and as potential targets for
Parkinson's disease pharmacotherapy. Post mortem
adenosine A2A receptor mRNA and [3H]SCH 58261-
speci®c binding to adenosine A2A receptor were studied
in the brain of Parkinson's disease patients using in situ
hybridization and receptor binding autoradiography,
respectively. Fourteen levodopa-treated Parkinson's
disease patients, of which seven developed dyskinesias
and seven did not, were compared with nine controls.
Nigrostriatal denervation was similar between dys-
kinetic and non-dyskinetic Parkinson's disease patients,
as assessed with catecholamine concentrations and
[125I]RTI-121-speci®c binding to dopamine transporters.
A2A receptor mRNA levels (+129%; P < 0.01) and
[3H]SCH 58261-speci®c binding (+32%, P < 0.01) were
increased in the putamen (lateral and medial) of

dyskinetic patients compared with controls. The
increase of adenosine A2A receptor mRNA in dyskinetic
Parkinson's disease patients was also signi®cant com-
pared with non-dyskinetic Parkinson's disease patients
(+60%; P < 0.05) in the lateral putamen. Moreover,
[3H]SCH 58261-speci®c binding to adenosine A2A recep-
tors was increased in the external globus pallidus
(+24%; P < 0.001) of Parkinson's disease patients com-
pared with controls, regardless of the dyskinesigenic
response to levodopa. No change of adenosine A2A

receptors was observed in the caudate nucleus, whereas
adenosine A2A receptor protein and mRNA levels in the
internal globus pallidus were not different from back-
ground. These ®ndings suggest that increased synthesis
of adenosine A2A receptors in striatopallidal pathway
neurons is associated with the development of dys-
kinesias following long-term levodopa therapy in
Parkinson's disease.
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Introduction
Despite marked ef®ciency in the treatment of Parkinson's

disease symptoms, sustained therapy with levodopa and

dopamine agonists also induces motor complications such as

levodopa-induced dyskinesias (LID) (Fahn, 2000; Obeso

et al., 2000a; Rajput et al., 2002). These motor complications

limit considerably the pharmaceutical care of Parkinson's

disease patients, as they can be as debilitating as the

Parkinson's disease symptoms.

One of the most attractive strategies for treating LID is

to use adjunct pharmacological tools that can modulate
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non-dopaminergic neurotransmitter systems in the basal

ganglia, such as cannabinoids, GABA, neuropeptides,

glutamate and adenosine (Brotchie, 1998, 2003; Blanchet

et al., 1999; Grondin et al., 1999; Henry et al., 2001; Calon

and Di Paolo, 2002). Drugs interacting with receptors

involved in these systems could then be used in combination

with levodopa to improve the motor response and dyskinesi-

genic pro®le of levodopa alone. In this regard, adenosine A2A

receptor (A2AR) has received increasing attention recently as

a potential pharmacological target because of the close

interaction between A2AR and the dopaminergic systems

(Ferre et al., 2001).

A2AR are G protein-coupled receptors that are predomin-

antly found in the GABAergic striatopallidal neurons

projecting from the caudate nucleus and the putamen, mainly

to the external segment of the globus pallidus (indirect

pathway) (Martinez-Mir et al., 1991; Schiffmann et al., 1991;

Svenningsson et al., 1999; Kase, 2001). In primates, this

group of neurons coexpress preproenkephalin (PPE), gluta-

mic acid decarboxylase (GAD) and D2 receptors along with

A2AR (Svenningsson et al., 1998; Aubert et al., 2000), and

play an important role in the pathogenesis of Parkinson's

disease symptoms and LID (Richardson et al., 1997;

Crossman, 2000; Jenner, 2000; Obeso et al., 2000b; Calon

et al., 2002). Owing to the recent development of speci®c

agonists and antagonists to A2AR, it is now becoming

possible to selectively target striatopallidal neuron function in

motor behaviour with limited effects on other components of

the brain.

Several behavioural analyses demonstrate the potential

usefulness of A2AR antagonism in the treatment of

Parkinson's disease and LID. Studies in non-human primate

models of Parkinson's disease suggest that the A2AR

antagonist KW-6002 has an antiparkinsonian activity and

potentiates the activity of levodopa (Kanda et al., 1998;

Grondin et al., 1999; Kanda et al., 2000). More interestingly,

these effects are seen without exacerbation of dyskinesias

(Grondin et al., 1999; Kanda et al., 2000). Comparable effects

of A2AR antagonists on levodopa-induced motor complica-

tions are found in rats with a unilateral 6-hydroxydopamine

(OHDA)-induced dopaminergic lesion (Morelli and Pinna,

2001; Pinna et al., 2001; Bove et al., 2002; Bibbiani et al.,

2003; Lundblad et al., 2003). Moreover, behavioural

sensitization to repeated levodopa administration is markedly

reduced in transgenic mice lacking the A2AR gene (Fredduzzi

et al., 2002). Although de®nite data on antidyskinetic

propriety of A2AR antagonists are still unavailable in

human, a recent study showed that KW-6002 potentiates

the bene®cial effect on parkinsonian symptoms of a low dose

of levodopa, with a only mild increase in dyskinesia severity

(Bara-Jimenez et al., 2003). The non-selective adenosine

antagonist theophylline induced signi®cant motor improve-

ment and slightly increased ON time in small open-label

clinical studies in Parkinson's disease patients (Mally and

Stone, 1994; Kostic et al., 1999). However, theophylline

failed to modulate the response to levodopa in a more recent

double-blind, crossover, placebo-controlled trial in

Parkinson's disease patients (Kulisevsky et al., 2002).

The frequency of LID in Parkinson's disease patients

varies according to the studies, but ranges between 20 and

50% of patients after years of treatment in most recent reports

(Blanchet et al., 1996; Miyawaki et al., 1997; Rascol et al.,

2000; Ahlskog and Muenter, 2001; Rajput et al., 2002). These

studies and clinical experience also show that a small but

signi®cant proportion of Parkinson's disease patients do not

develop dyskinesias, despite prolonged therapy with levo-

dopa. We have used post mortem brain tissue of patients who

had suffered from Parkinson's disease and in whom detailed

clinical variables (age of death, sex, delay to autopsy,

pharmacological treatment, age of Parkinson's disease

onset, duration of Parkinson's disease, duration of levodopa

use, cumulative levodopa dose, duration of clinical follow-

up, age at levodopa initiation, duration of Parkinson's disease

at the initiation of levodopa and average daily dose of

levodopa), as well as the occurrence of motor complications

(dyskinesias and wearing-off), had been prospectively

recorded by the same neurologist (A.H.R.) (Calon et al.,

2002; Rajput et al., 2002). Biochemical indices (brain pH,

putaminal dopamine concentration, autoradiography of

[125I]RTI-121-speci®c binding to dopamine transporter and

expression of PPE mRNA) were also determined previously

(Calon et al., 2002, 2003). Using post mortem brain tissue

from these patients and controls, we have addressed the

question of whether changes of A2AR are associated with

LID, by comparing patients who suffered from LID with

patients who never developed this adverse effect.

Material and methods
Clinical data
The patients included in this study have been described previously

(Calon et al., 2002, 2003) and were selected from a large prospective

study on motor complications associated with levodopa treatment

(Rajput et al., 2002). Brie¯y, data including the age and mode of

onset, severity of the disease, drug therapy, response to treatment

and adverse effects of treatment (dyskinesias, wearing-off and on-

off) were entered prospectively after each clinical assessment of the

patients (Rajput et al., 2002). LID were evaluated by the same

neurologist (A.H.R.) in all patients. The presence of dyskinesia was

based on: (i) history of abnormal movements (as distinct from

tremor) that coincided with levodopa ingestion, reported by the

family/other observer or the family physician. This information was

considered valid only if it was con®rmed by the neurologist during

personal interview with the patient or family at subsequent

assessment; or (ii) evidence of choreic/dystonic movements

observed at the time of examination by the neurologist. Any patient

who was documented to have dyskinesias on one occasion was

classi®ed as having LID, regardless of whether subsequent

therapeutic manipulations resolved the dyskinesias (Rajput et al.,

2002). All Parkinsonian patients received levodopa and were divided

into groups according to the development of motor complications

(Table 1). These groups were not statistically different with respect

to sex, delay to autopsy, terminal Parkinson's disease severity, as
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assessed with the Hoehn and Yahr scale (Hoehn and Yahr, 1967;

Rajput et al., 2002), age of Parkinson's disease onset, duration of

Parkinson's disease, duration of levodopa use, cumulative levodopa

dose, duration of follow-up, age at levodopa initiation, duration of

Parkinson's disease at the initiation of levodopa, average daily dose

of levodopa, timing of last dose of levodopa before death, brain pH

and time delay in the freezer (Table 1 and data not shown). The

dosages of levodopa in Table 1 are expressed in equivalent in grams

of levodopa-only (without decarboxylase) formulation according to

Markham and Diamond (1981). Some patients were receiving other

antiparkinsonian drugs, such as a dopamine agonist (bromocriptine),

amantadine, anticholinergic drugs or selegiline, but the use of these

alternate drugs was similar in the dyskinetic and the non-dyskinetic

groups of patients (Calon et al., 2003). Although no records of

theophylline treatment or high caffeine consumption was found in

our patient ®les, the effect of these common adenosine receptor

modulators on A2AR expression cannot be ruled out, and could be a

confounding variable in the present study.

Autopsy and handling of the brain material
The brains of the 14 Parkinson's disease patients were obtained, as

well as those from nine controls (including one from the Douglas

Hospital Research Center brain bank, Montreal, Canada) who died

with no neurological disorders. All autopsies were carried out within

24 h of death. One half of the brain was immediately frozen at

±80°C. The other half of the brain was ®xed in formalin and

histologically examined. Only those individuals who had Lewy body

Parkinson's disease were included in this report. The frozen half of

the brain was cut by hand in the frontal plane into 2- to 3-mm thick

slices. Slices containing the basal ganglia portion from the patients

and controls were provided blindly to the analysts.

Biochemistry
Small punches (15±100 mg) of the cerebral cortex were used for the

determination of pH, as previously described, to assess the

preservation of the tissue (Kingsbury et al., 1995). The brain slices

containing the caudate, putamen, external and internal globus

pallidus from all the subjects were cut into coronal sections (20 mm)

on a cryostat (±18°C). The slices were thaw-mounted onto

SuperFrostPlusÔ (Fisher, Quebec, Canada) 75 3 50 mm slides,

desiccated overnight at 4°C and stored at ±80°C until assayed. In

addition, small extracts of putamen were dissected, stored at ±80°C

and processed for measures of catecholamine concentrations.

Measures of denervation
The concentration of dopamine was measured by high-performance

liquid chromatography with electrochemical detection according to

previously published procedures (Calon et al., 2003). The dopamine

transporter was evaluated with [125I]RTI-121 [3b-(4-125I-iodo-

phenyl)tropane-2b-carboxylic acid isopropyl ester] (2200 Ci/

mmol; NEN-DuPont, Boston, MA, USA) speci®c binding according

to previously published procedures in human brain sections (Staley

et al., 1995; Calon et al., 2003).

In situ hybridization
The oligonucleotide probes used corresponded to bases 593±637 and

714±757 of human A2AR cDNA (Schiffmann et al., 1991; Furlong

et al., 1992). Three oligonucleotides corresponding to bases 77±121,

293±337 and 931±975 according to published cDNA sequences were

used to assess the b-actin mRNA content in adjacent sections (Ponte

et al., 1984). Oligonucleotides were labelled with [35S]dATP (NEN-

DuPont) using a 3¢-terminal deoxynucleotidyl transferase enzyme kit

(Amersham-Pharmacia Biotech, Baie d'UrfeÂ, QueÂbec, Canada). The

reaction was carried out at 37°C for 40 min and labelled

oligonucleotides were puri®ed using a QIAquick Nucleotide

Removal Kit (Qiagen Inc., QueÂbec, Canada). The puri®ed probe

was kept at ±20°C until the assay on the next day.

After drying under vacuum with a desiccant (4°C) for 2 h, the

sections were ®xed for 5 min in 4% paraformaldehyde (Electron

Microscopy Sciences, Fort Washington, PA, USA) prepared in 0.1 M

sodium phosphate buffered-saline (PBS, pH 7.4) at room tempera-

ture and then rinsed twice for 5 min in PBS at room temperature. The

sections were incubated in a fresh solution of 0.25% acetic anhydride

in 0.1 M triethanolamine (pH 8.0) for 10 min at room temperature.

They were then rinsed (2 min) twice in 23 standard saline citrate

(SSC: 13 SSC is 0.15 M NaCl, 0.015 M trisodium citrate, pH 7.0)

and dehydrated through a series of ascending concentrations of

ethanol (70, 85 and 95%, 1 min each), air-dried, and stored for 2±3 h

under vacuum with desiccant at room temperature. In addition, a few

sections were hybridized in the presence of a 100-fold excess of

unlabelled probe to displace speci®c labelling.

The oligonucleotide probe mixtures were diluted (5 6 106 cpm/

ml) in the hybridization buffer containing 50% deionized

formamide, 10% dextran sulphate, 13 Denhardt's solution,

0.25 mg/ml yeast tRNA, 0.5 mg/ml denaturated salmon sperm

DNA and 43 SSC. Hybridization was performed at 40°C for 18 h in

a humid chamber with each slide covered with a glass coverslip.

Table 1 Relevant clinical and biochemical data in relation to Parkinson's disease and LID

n Age at
death

Delay to
autopsy

Brain tissue
(pH)

Age of
PD onset

Duration
of PD

Duration of
levodopa

Cumulative
levodopa

Putamen

(years) (h) (years) (years) use (years) dose (g) [125I]RTI-121-
speci®c binding
(amol/mg tissue)

Dopamine
concentration
(ng/mg protein)

Controls 9 68 6 3 <24 6.37 6 0.07 ± ± ± ± 830 6 68 63.87 6 4.89
PD 14 78 6 2* 12 6 2 6.37 6 0.03 62 6 4 16.2 6 2.1 11.2 6 1.6 13 651 6 3413 69 6 6** 0.77 6 0.14**

PD, LID 7 80 6 3 14 6 2 6.36 6 0.05 63 6 3 17.4 6 3.5 11.9 6 2.8 15 316 6 6422 70 6 10 0.72 6 0.22
PD, no LID 7 77 6 2 11 6 3 6.39 6 0.04 61 6 2 15.4 6 2.4 10.7 6 1.8 11 984 6 2884 69 6 9 0.82 6 0.17

Values are expressed as mean 6 SEM. *P < 0.01 and **P < 0.001 versus controls. PD = Parkinson's disease; LID = levodopa-induced
diskinesias.
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Sections were then washed successively in 23 SSC (90 min at room

temperature), 13 SSC (120 min at room temperature), 0.53 SSC

(30 min, 42°C), 0.53 SSC (30 min at room temperature) and 0.53
SSC (30 min, 50°C). Finally, the slides were dehydrated in a series of

ascending concentrations of ethanol (70, 85 and 95%, 1 min each),

air-dried, and exposed to Kodak BIOMAX MR ®lm for 14 days at

room temperature. Hybridization products were obtained from

Sigma (St Louis, MO, USA).

[3H]SCH 58261 binding autoradiography
A2AR were evaluated using a high-af®nity selective antagonist,

[3H]SCH 58261 (77 Ci/mmol; Schering Plough, Kenilworth, NJ,

USA), according to previously published procedures (Dionisotti

et al., 1997; Svenningsson et al., 1997). Brain sections were

preincubated for 30 min in a 170 mM Tris±HCl buffer (pH 7.4)

with 2 U/ml adenosine deaminase (Roche Diagnostics Corp.,

Indianapolis, IN, USA) and 1 mM EDTA (Sigma) at room

temperature to remove endogenous adenosine. After two additional

20 min preincubations in 170 mM Tris±HCl buffer (pH 7.4), the

sections were incubated for 120 min at room temperature with 2 nM

[3H]SCH 58261 in 170 mM Tris±HCl (pH 7.4) with 2 U/ml

adenosine deaminase, and then washed twice (5 min) in 170 mM

Tris±HCl buffer (pH 7.4) at 4°C and rinsed brie¯y (10 s) in ice-cold

distilled water. Non-speci®c binding was determined by adding 2 3
10±4 M 5¢-N-ethylcarboxamidoadenosine (RBI Inc, Natick, MA,

USA) to the incubation buffer. After postincubation washes, the

slide-mounted tissue sections were dried overnight at room

temperature and then exposed to 3H-sensitive ®lms (Hyper®lm;

Amersham, Baie d'UrfeÂ, Quebec, Canada) along with tritium

standards (3H-microscales, Amersham) over 8 weeks.

Image, data and statistical analysis
Quantitation of all autoradiograms was performed on a power

Macintosh 7100 connected to a Sony video camera (model XC-77)

and a constant illumination light table using computerized

densitometry with the software package NIH Image 1.62 (developed

at the US National Institutes of Health and available on-line at http://

rsb.info.nih.gov/nih-image/). For autoradiography, optical grey

densities were transformed into nCi/mg of tissue equivalent using

a standard curve generated with tritium standards and then converted

into fmol/mg of tissue using the speci®c activity of the radioligand.

For in situ hybridization data, a standard transmission density scale

(Stouffer Graphic Arts Equipments Inc., South Bend, IN, USA) was

used, and the results were expressed as arbitrary optical density

units. Non-speci®c signal, as assessed with excess of unlabelled

probe, was subtracted from these values.

For analysis, caudate nucleus and putamen were divided in two

subregions along the medial-lateral axis, whereas external segments

of the globus pallidus (GPe) were divided along the dorso-ventral

axis (see Fig. 2C). These subdivisions were based on the somatotopic

representation of corticostriatal projections to the striatopallidal

complex (see Fig. 2D) (Yoshida et al., 1993; Parent and Hazrati,

1995). Data were computed separately for each subregions and were

grouped when regional effects were similar. Statistical comparisons

of data were performed using an analysis of variance (ANOVA)

followed by post hoc pairwise comparisons with Fisher's probability

of least signi®cant difference test. P < 0.05 was considered

signi®cant. At ®rst, the nine control subjects were compared with

the 14 parkinsonian subjects. In subsequent analysis, comparisons

were made between controls, parkinsonian non-dyskinetic and

parkinsonian dyskinetic subjects. Coef®cients of correlation and

signi®cance of the degree of linear relationship between various

clinical and biochemical parameters were determined with a simple

regression model. All correlations were made independently for

controls, Parkinson's disease patients, and then Parkinson's disease

patients with controls altogether.

Results
Table 1 shows an extensive decrease in dopamine concen-

trations (±98.8%) and [125I]RTI-121-speci®c binding (±92%)

in the putamen of Parkinson's disease patients (for more

details see Calon et al., 2003). Clinical data, markers of

dopaminergic denervation and brain pH were similar between

dyskinetic and non-dyskinetic levodopa-treated Parkinson's

disease patients (Table 1). However, parkinsonian subjects

were older than controls. Correlation between age of death

and A2AR mRNA or [3H]SCH 58261-speci®c binding to

A2AR were tested, and no signi®cant correlation was found

in either controls or Parkinson's disease patients (data not

shown). No signi®cant correlation was found between

[3H]SCH 58261-speci®c binding and A2AR mRNA levels

and other clinical variables such as development of wearing-

off, duration of disease, duration of levodopa therapy, delay

to autopsy, age of Parkinson's disease onset, cumulative

levodopa dose, duration of follow-up, age at levodopa

initiation, duration of Parkinson's disease at the initiation of

levodopa, average daily dose of levodopa, brain pH or time

delay in the freezer (data not shown).

Figures 1A and 2A show increased A2AR mRNA levels in

the putamen (lateral and medial) of dyskinetic patients in

comparison with controls (medial: mean difference = +0.20,

critical difference = 0.017, P = 0.0191; lateral: mean

difference = +0.033, critical difference = 0.020, P =

0.0022). This increase of A2AR mRNA labelling in the

lateral putamen was signi®cant in dyskinetic patients com-

pared with non-dyskinetic patients (mean difference =

0.0211, critical difference = 0.0208, P = 0.0470) (Figs 1A

and 2A). No alterations of A2AR mRNA levels were seen in

the caudate of dyskinetic Parkinson's disease patients.

Comparison between controls and Parkinson's disease

patients pooled in one group (n = 14) showed an increase

of A2AR mRNA levels in the lateral putamen in Parkinson's

disease patients (mean difference = +0.023, critical

difference = 0.018, P = 0.0154), but not elsewhere in the

caudate/putamen (data not shown). In contrast, there was no

signi®cant difference in levels of b-actin mRNA (which was

used as a control mRNA) between the subgroups studied

(data not shown). Present data were compared with a previous

in situ hybridization study of PPE expression in the same

patients (Calon et al., 2002), and a signi®cant positive

correlation between A2AR and PPE mRNA expression levels

was found in the caudate nucleus (n = 23, r2 = 0.28, P < 0.01)

and in the putamen (n = 23, r2 = 0.46, P < 0.001) (data not

shown).
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[3H]SCH 58261-speci®c binding to A2AR was also

increased in both lateral and medial putamen of dyskinetic

patients compared with controls (medial: mean difference =

+45.98, critical difference = 28.37, P = 0.0030; lateral: mean

difference = +47.76, critical difference = 29.78, P = 0.0032)

(Figs 1B and 2B), but was not signi®cantly different between

dyskinetic and non-dyskinetic Parkinson's disease patients

(medial: mean difference = +25.60, critical difference =

30.09, P = 0.0912; lateral: mean difference = +20.277, critical

difference = 31.587, P = 0.1956). In addition, as shown in

Figs 1B and 2B, [3H]SCH 58261-speci®c binding to A2AR

was also increased in the ventral and dorsal GPe of

Parkinson's disease patients (dyskinetic and non-dyskinetic)

compared with control subjects (Parkinson's disease versus

controls comparison, ventral: mean difference = +41.27,

critical difference = 24.42, P =0.0021; dorsal: mean differ-

ence = +39.81, critical difference = 19.94, P = 0.0005). In

contrast, no changes in [3H]SCH 58261 binding sites were

observed in the caudate of dyskinetic Parkinson's disease

patients (Figs 1 and 2). Other statistical analyses show that the

increase in [3H]SCH 58261-speci®c binding is also present in

the putamen when all Parkinson's disease patients pooled

together are compared with controls (medial: mean

difference = +33.18, critical difference = 25.18, P = 0.0123;

lateral: mean difference = +37.63, critical difference = 25.64,

P = 0.0061) (data not shown). Grouping Parkinson's disease

patients revealed a signi®cant decrease of [3H]SCH 58261-

speci®c binding in the medial caudate compared with controls

Fig. 1 Representative autoradiograms of human brain sections at the level of the caudate, putamen, and
external and internal segments of the globus pallidus, showing (A) A2AR mRNA and (B) [3H]SCH
58261 binding to A2AR in a control subject and in levodopa-treated parkinsonian patients with or without
dyskinesias. CD = caudate; GPe = external segment of the globus pallidus; Put = putamen;
A2AR =adenosine A2A receptor; PD = Parkinson disease.

Adenosine A2A receptors in Parkinson's disease 1079
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(mean difference = ±22.09, critical difference = 21.68,

P = 0.0462) (data not shown). No signi®cant correlations

were found between A2AR mRNA levels or [3H]SCH 58261-

speci®c binding and markers of dopaminergic denervation

(dopamine content or [125I]RTI-121-speci®c binding) in

Parkinson's disease patients (n = 14). A2AR mRNA level

and [3H]SCH 58261-speci®c binding in the internal segment

of the globus pallidus were not signi®cantly different from

background.

Discussion
The dyskinetic patients included in this study suffered from

Parkinson's disease for an extended time (mean duration

15.4 6 2.4 years), and received a prolonged therapy with

levodopa (mean duration 10.7 6 1.8 years), which was

stopped on average a few days before the time of death. The

fact that the present increase of A2AR mRNA level and

[3H]SCH 58261-speci®c binding to A2AR in the putamen of

dyskinetic patients was observed post mortem after years of

treatment indicates that it is a long-lasting pathological

adaptive alteration, and not a transient phenomenon. It is

consistent with the hypothesis that chronic treatment with

levodopa induces persistent changes in the brain, and with

the observation that LID are generally considered poorly

reversible in standard clinical practice (Calon et al., 2000;

Rascol and Fabre, 2001). Moreover, our data showed no

link between A2AR levels and other variables such as

normal ageing, duration of Parkinson's disease, daily dose

of levodopa or duration of levodopa treatment. Increased

A2AR was, rather, selectively linked to the occurrence of

dyskinesias.

Previous studies in human have aimed to de®ne the general

distribution of A2AR mRNA (Schiffmann et al., 1991;

Peterfreund et al., 1996; Svenningsson et al., 1998) and the

A2AR binding sites using selective radioligands (Martinez-

Mir et al., 1991; Svenningsson et al., 1997). Our data show a

distribution pattern consistent with these reports, with a

selective distribution of A2AR mRNA in the caudate/

putamen and a localization of [3H]SCH 58261 binding

Fig. 2 (A) A2AR mRNA expression in the caudate nucleus and the putamen of post mortem human tissue
from control and parkinsonian subjects in relation to the development of dyskinesias following levodopa
therapy. Values are mean 6 SEM, expressed in relative OD units. *P < 0.05 and **P < 0.01 versus
control subjects; ²P < 0.05 versus Parkinsonian patients without dyskinesias using an ANOVA followed
by post hoc pairwise comparisons with Fisher's probability of least signi®cant difference test.
(B) [3H]SCH 58261-speci®c binding to A2AR in the caudate nucleus, the putamen and the GPe of post
mortem human tissue from control and parkinsonian subjects in relation to the development of
dyskinesias following levodopa therapy. Values shown are expressed in fmol/mg of tissue as the mean 6
SEM. *P < 0.05, **P < 0.01 and ***P < 0.005 versus control subjects. (C) Actual division of the caudate
nucleus, putamen and GPe used for quantitation of autoradiograms. GPe = external segment of the globus
pallidus; Put = putamen; L = lateral; M = medial; v = ventral; d = dorsal. (D) Schematic representation of
the caudate, putamen, and external and internal segments of the globus pallidus showing localization of
associative (AS), sensorimotor (SM) and limbic (LI) striatal territories in primates based on corticostriatal
projections (adapted from Parent and Hazrati, 1995).
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mostly con®ned to the caudate/putamen and the GPe (Figs 1

and 2).

Other analyses have focused on the effect of dopaminergic

lesions on A2AR. In situ hybridization studies in rat brain

sections show either no changes or a 20% increase of A2AR

gene expression in the striatum after lesion of the dopamin-

ergic pathways with 6-OHDA (Kaelin-Lang et al., 2000;

Pinna et al., 2002). A previous reverse transcription

polymerase chain reaction (RT±PCR) study compared the

levels of A2AR mRNA in some regions of the caudate/

putamen of Parkinson's disease patients with matched

controls (Hurley et al., 2000). A signi®cant decrease in the

level of A2AR mRNA was described in the anterior and

posterior caudate nucleus and anterior dorsal putamen in

Parkinsonian brain compared with controls. However, no

change was seen in the ventral posterior part of the putamen

in parkinson's disease patients, a region that corresponds

approximately to the putaminal areas studied in the present

work. Overall, these data are slightly different from the

present results, as we show an increase in A2AR mRNA

transcripts in the posterior putamen in Parkinson's disease

patients, and that the increase is more prominent in

Parkinson's disease patients with LID. Although it is

known that the patients from that previous analysis received

levodopa, data on LID were not available. Therefore,

methodological difference (i.e. regular RT±PCR versus in

situ hybridization) and difference in the motor complication

pro®le of patients may explain these discrepancies. On the

other hand, consistent with our data, Zeng et al. (2000)

previously found a link between increased A2AR mRNA

expression in the putamen and the development of dyskine-

sias in normal monkeys following a high dose of levodopa.

A previous study showed no change of [3H]CGS 21680

binding sites to A2AR in the striatum of guinea pig with

chronic 6-OHDA lesion of dopaminergic system (Martinez-

Mir et al., 1991). Accordingly, no alteration of [3H]CGS

21680 binding to A2AR was observed in the striatum and

pallidum of Parkinson's disease patients compared with

controls (Martinez-Mir et al., 1991). However, the number of

Parkinson's disease patients included in the study was limited

(n = 3±7), and [3H]CGS 21680 is a A2AR agonist that has

been shown to be less reliable than SCH 58261 for

quantitative studies of A2AR (Cunha et al., 1996;

Lindstrom et al., 1996; Fredholm et al., 1998). Moreover,

the relation with dyskinesia and [3H]CGS 21680 was not

studied directly. These factors may account for the

differences from our present results.

The changes in A2AR mRNA and [3H]SCH 58261-speci®c

binding to A2AR in the present analysis were predominantly

observed in the putamen, and more speci®cally in the lateral

putamen. Studies in non-human primate at a rostro-caudal

level comparable to our report demonstrate that inputs from

sensorimotor areas innervate mainly the putamen and its

lateral parts, whereas inputs from associative cortical areas

terminate in caudate nucleus (Kemp and Powell, 1970;

Parent, 1990; Parent and Hazrati, 1995). This topographic

organization of cortical projections in the striatum is depicted

in Fig. 2D. Furthermore, compared with the rest of the

striatum, the lateral putamen is associated with the larger

dyskinesia-related increase in PPE mRNA (Morissette et al.,

1997; Calon et al., 2002), and with the more prominent loss of

[125I]RTI-121-speci®c binding to dopamine transporter in the

same Parkinson's disease patients (Calon et al., 2003). The

fact that these changes are restricted to a striatal region

involved in motor behaviour strengthens the hypothesis that

A2AR alterations are linked to the pathophysiology of a

motor disorder such as LID.

As described in the Introduction, A2AR antagonist

administration in MPTP monkeys was reported to improve

the antiparkinsonian effect and the dyskinesigenic pro®le of

levodopa (Grondin et al., 1999; Kanda et al., 2000).

Moreover, data gathered from rodent models of levodopa-

induced motor complications and in dyskinetic monkeys

suggest a role of A2AR in these adverse effects of levodopa

(Zeng et al., 2000; Morelli and Pinna, 2001; Pinna et al.,

2001; Bove et al., 2002; Fredduzzi et al., 2002; Bibbiani et al.,

2003; Lundblad et al., 2003). As our results show an

abnormal expression of A2AR in dyskinetic levodopa-treated

Parkinson's disease patients, it is possible that A2AR

antagonist treatment works against the pathophysiological

effect of this increase. This action might contribute to the

mechanism of action of the antidyskinesigenic effect of

A2AR antagonists.

It has been shown that A2AR activation regulates PPE

mRNA expression in rat striatopallidal neurons, and that this

regulatory role is strongly in¯uenced by dopamine depletion

(Svenningsson et al., 1999). For instance, administration of

A2AR antagonist reverses the PPE mRNA increase induced

in the rat striatum by dopaminergic lesions alone or the

combination of dopaminergic lesions and subsequent dopa-

minergic treatment (Schiffmann and Vanderhaeghen, 1993;

Aoyama et al., 2002; Carta et al., 2002; Lundblad et al.,

2003). Genetic inactivation of A2AR also partially blocks the

increase in PPE expression in the striatum caused by D2

dopamine receptor de®ciency or haloperidol treatment (Chen

et al., 2001). Association between increased expression of

PPE and the development of LID has been well documented

in MPTP monkeys (Morissette et al., 1997; Calon et al., 2000;

Zeng et al., 2000). Although a causal link between enkephalin

and LID has not been proven, dopaminomimetic treatments

that induce dyskinesias in MPTP monkey consistently fail to

correct the increased PPE expression induced by dopamin-

ergic depletion (Calon et al., 2000; Quik et al., 2002). In a

previous analysis in the same patients, increased PPE mRNA

expression was also found in the lateral putamen of dyskinetic

subjects (Calon et al., 2002). Our results further show that the

levels of A2AR mRNA correlate positively with those of PPE

in the putamen of these same Parkinson's disease patients.

This leads to the intriguing possibility that A2AR elevation

might be a pathological event that precedes increased PPE

expression. Indeed, increased numbers of A2AR in striato-

pallidal cells may enhance their sensitivity to adenosine

Adenosine A2A receptors in Parkinson's disease 1081
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stimulation and contribute to a chronic state of PPE

overexpression. Therefore, the mechanism of action of

A2AR antagonists in the treatment of LID may involve a

recti®cation of the increase of PPE gene expression. Further

studies on the relationship between the antidyskinetic action

of A2AR antagonist and the expression of PPE in animal

models of LID are needed to address this issue. Moreover,

this interpretation relies on the assumption that increased PPE

expression plays a causal role in LID, which remains to be

established.

According to the present data, patients experiencing LID

have increased A2AR mRNA and, to a lesser extent,

increased [3H]SCH 58261, in their putamen. This suggests

that a chronic acceleration in the synthesis of the A2AR is

present in the striatopallidal projection of these patients. This

increase of mRNA was partly translated at the level of the

protein, consistent with the view that A2AR undergoes

important post-transcriptional regulation in vitro (Lee et al.,

1999). Transcriptional regulation of the A2AR gene is a

potential mechanism, since sequences known to bind the

transcription factors NF-kB, activator protein-1 (AP-1) and

AP-2 have been identi®ed in the 5¢ ¯anking sequence of the

gene (Chu et al., 1996). Interestingly, the promoter sequences

of PPE and other important genes expressed in striatal

neurons, including NR2B, NR1 and prodynorphin, contain an

AP-1 consensus site (Bai and Kusiak, 1993; Cole et al., 1995;

Weisinger, 1995; Klein et al., 1998). Hence, both A2AR and

PPE gene expression in LID may be ampli®ed by a common

transcription factor. For example, FosB-related transcription

factors interact with Jun-D to form an AP-1 dimer (Vallone

et al., 1997; Andersson et al., 2001) that could in theory

regulate A2AR and PPE mRNA transcription. DFosB-related

proteins have been suggested to play a important role in the

pathogenesis of LID (Calon et al., 2000), based on series of

studies in 6-OHDA rats (Cenci, 2002) and on the fact that

DFosB is increased in the striatum of dyskinetic MPTP

monkeys (Doucet et al., 1996). To test this hypothesis, DFosB

immunoreactivity was measured in the putamen of the

patients included in the present study, and was found to be

increased in Parkinson's disease patients, without differen-

tiating the dyskinetic from the non-dyskinetic Parkinson's

disease patients (Tekumalla et al., 2001). FosB levels did not

correlate with A2AR mRNA levels or [3H]SCH 58261

binding sites (data not shown). Although FosB-related

transcription factors may still play a role in short-term

generation of dyskinesias, other unknown transcription

factors may be more likely to be involved in the chronic

upregulation of A2AR seen in the present study after

sustained levodopa therapy.

It is common sense to think that increased A2AR

expression in neurons of the striatopallidal pathway would

modulate their activity. Recent indications of a close

association between A2AR and D2 dopamine receptor also

suggest that an alteration in A2AR would affect the motor

response to levodopa treatment (Ferre et al., 2001; Hillion

et al., 2002). However, it is dif®cult to predict the exact motor

consequences on LID of such change based on existing

functional anatomy models of basal ganglia in LID (Albin

et al., 1989; Blanchet et al., 1994; Crossman, 2000; Obeso

et al., 2000b; Yelnik et al., 2000). Indeed, there is no

consensus on whether it is an increase or a decrease of the

striatopallidal activity that is causally linked with LID.

Therefore, our data reveal an important pathological link

between A2AR and LID, but the exact mechanism underlying

this link remains unknown.

Conclusions
The results of this study are consistent with the following

conclusions. First, the development of dyskinesias is associ-

ated with post mortem increased levels of A2AR mRNA and

[3H]SCH 58261-speci®c binding to A2AR in the putamen of

human Parkinson's disease patients. Secondly, A2AR mRNA

in the lateral putamen in dyskinetic Parkinson's disease

patients is higher than in non-dyskinetic patients. Thirdly,

[3H]SCH 58261-speci®c binding to A2AR is increased in the

GPe of Parkinson's disease patients, regardless of the

development of motor complications to levodopa. These

observations suggest that putaminal A2AR overexpression is

persistently involved in the pathogenesis of LID and

Parkinson's disease in human. These adaptative changes

may be causally linked to LID per se or through regulation of

PPE expression, but may also be a consequence of the

dyskinetic process. Overall, our data substantiate the notion

that A2AR antagonists may be useful in the treatment of

Parkinson's disease and LID.
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