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MIMO Wireless Linear Precoding 
Mai Vu and Arogyaswami Paulraj 1 

1 INTRODUCTION 
The benefits of using multiple antennas at both the transmitter and the receiver in a wireless system are well 

established. Multiple-input multiple-output (MIMO) systems enable a growth in transmission rate linear in the 

minimum of the number of antennas at either end [1][2]. MIMO techniques also enhance link reliability and 

improve coverage [3]. MIMO is now entering next generation cellular and wireless LAN products with the 

promise of widespread adoption in the near future. 

 

While the benefits of MIMO are realizable when the receiver alone knows the communication channel, these 

are further enhanced when the transmitter also knows the channel. The value of transmit channel knowledge 

can be significant. For example, in a 4-transmit 2-receive antenna system with i.i.d. Rayleigh flat-fading, 

transmit channel knowledge can more than double the capacity at -5dB SNR and add 1.5bps/Hz additional 

capacity at 5dB SNR. Such SNR ranges are common in practical systems such as WiFi and WiMax 

applications. In a non-i.i.d. channel (such as correlated Rician fading), channel knowledge at the transmitter 

offers even greater leverage in performance. Therefore, exploiting transmit channel side information is of great 

practical interest in MIMO wireless. In this article, we assume full channel knowledge at the receiver and 

study how channel side information at the transmitter (CSIT) can be used to improve link performance. While 

the origins of using CSIT at the transmitter or precoding  dates back to Shannon [4], MIMO precoding has 

been an active research area during the last decade, fueled by  applications in commercial wireless technology. 

 

Precoding is a processing technique that exploits CSIT by operating on the signal before transmission. For 

many common forms of partial CSIT, a linear precoder is optimal from an information theoretic view point 

[4]-[6]. A linear precoder essentially functions as a multi-mode beamformer, optimally matching the input 

signal on one side to the channel on the other side. It does so by splitting the transmit signal into orthogonal 

spatial eigen-beams and assigns higher power along the beams where the channel is strong, but reduced or no 

power along the weak. Precoding design varies depending on the types of CSIT and the performance criterion. 
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1.1 Types of CSIT 

The random time-varying wireless medium makes it difficult and often expensive to obtain CSIT. In closed-

loop methods, the limited feedback resources, associated feedback delays and scheduling lags degrade CSIT 

for mobile users with small channel coherence time. In open-loop methods, antenna calibration errors and 

turn-around time lags again limit CSIT accuracy. Therefore, we often only have imperfect instantaneous 

channel state information. We may, however, decide to exploit only certain parameters of the channel such as 

the Rician K factor or channel condition number to reduce the amount of information to be tracked 

instantaneously. In some cases such as fast fading channels or systems with long delay, we may give up 

tracking real time information and provide CSIT in terms of the channel statistics, such as the channel mean 

and covariance or antenna correlations. Statistical CSIT is obtained from channel observations over multiple 

channel coherence times. In this article, we use CSIT to mean channel side information at the transmitter, 

which includes not only instantaneous channel state information, but also the channel parameters and statistics. 

 

To understand different types of CSIT in wireless, it is necessary to know how the CSIT is obtained. There are 

two principles for obtaining CSIT: reciprocity and feedback. Reciprocity involves using the reverse channel 

information (open-loop), while feedback requires sending the forward channel information back to the 

transmitter (closed-loop). These techniques are discussed in detail in Sections 2.1. In both cases, there exists a 

delay, such as a scheduling or a feedback delay, between when the channel information is obtained and when it 

is used by the transmitter. The information accuracy will depend on this delay and on the channel estimation 

technique. Channel estimation either at the receiver or transmitter is the starting point for deriving CSIT and its 

accuracy will depend on the estimation technique and SNR. Since for most applications, channel estimation is 

also required for receiver processing, it is usually sufficiently accurate for precoding purposes. Depending on 

the type of information and how fast the channel changes with time, however, the delay in CSIT acquisition 

can significantly affect the CSIT accuracy. 

 

Error-free instantaneous channel state information or perfect CSIT therefore is usually difficult to obtain in 

wireless; more often, only incomplete or partial channel information is available to the transmitter. 

Instantaneous CSIT can be characterized by a channel estimate and an associated error covariance [7][8]. Both 

quantities are dependent on the delay in acquiring CSIT. As this delay increases, the CSIT approaches the 

channel statistics [8]. Thus, both instantaneous and statistical CSIT can be expressed in the same form: a 

channel estimate or mean, and an error or channel covariance. 
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1.2 Approaches to precoding design2 

Since the work of Shannon [4], more recent results show that, for a flat-fading wireless channel, provided a 

mild condition that the current channel state is independent of the previous CSIT when given the current CSIT, 

the capacity can be achieved by CSIT-independent coding together with CSIT-dependent linear precoding 

[5][6]. The linear precoder directs signal spatially and allocate power in a water-filling fashion over both space 

and time. Power allocation over time can slightly increase the capacity of a fading channel at low SNRs, but 

has diminishing impact as the SNR increases beyond roughly 15dB [9]. Depending on the antenna 

configuration, allocation over space, on the other hand, can significantly increase the capacity at all SNRs. 

This motivates precoding designs to exploit spatial CSIT. 

 

In designing the precoder, various performance criteria have been used. To achieve the ergodic capacity, the 

precoder shapes the covariance matrix of the optimal transmit signal to match the CSIT [7][10]-[17]. Precoders 

can also be designed according to more practical measures, such as the mean-square error (MSE), an error 

probability (PEP, SER, BER), or the received SNR [7],[18]-[31]. These different precoder designs can be 

analyzed using the common linear precoding structure. 

1.3 Scope of this article 

This article provides a tutorial of linear precoding for a frequency-flat, single-user MIMO wireless system, 

examining both theoretical foundations and practical issues. The article first discuses principles for CSIT 

acquisition and develops a dynamic CSIT model, which spans perfect to statistical CSIT, taking into account 

channel temporal variation. It then presents the capacity benefits of CSIT and information theoretic arguments 

for exploiting the CSIT by linear precoding. A precoded system structure is next described, involving an 

encoder and a linear precoder. Criteria for designing the precoder are then discussed, followed by specific 

designs for different CSIT scenarios. These designs are analyzed in terms of the linear precoding structure, and 

their performance is illustrated by numerical examples. A brief survey of application follows, involving 

practical channel acquisition techniques and precoding deployment in current wireless standards. Finally, the 

article concludes with a discussion of other partial CSIT types and the continuing role of precoding. The paper 

has a minimum mathematical content. The aim is to build intuition and insight into this important field of 

MIMO linear precoding while leaving the details to references. 

                                                 
2 Although the term “precoding” is sometimes used in the literature to represent any transmit processing besides channel 
coding, we clarify its use here to strictly mean the transmit signal processing that involves CSIT. MIMO techniques 
without CSIT are clarified as space-time coding. 
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2 CSIT ACQUISITION AND MODELLING 

2.1 CSIT acquisition techniques 

In a communication system, since the signal enters the channel after leaving the transmitter, the transmitter can 

only acquire channel information indirectly. The receiver, however, can estimate the channel directly from the 

channel-modified received signal. Pilots are usually inserted in the transmitted signal to facilitate channel 

estimation by the receiver. Fortunately, modern communication systems are usually full-duplex with a 

transceiver at each end. The transmitter thus can acquire CSIT based on the channel estimates at a receiver, by 

either invoking reciprocity or using feedback. 

2.1.1 Open-loop channel acquisition 

The reciprocity principle in wireless communication states that the channel from an antenna A to another 

antenna B is identical to the transpose of the channel from antenna B to antenna A, provided the two channels 

are measured at the same time, the same frequency, and the same antenna locations. This principle suggests 

that the transmitter can obtain information of the forward (A to B) channel from the reverse (B to A) channel 

measurements, which the receiver at A can measure. This information can involve the instantaneous channel 

or other channel parameters, including the channel statistics. In real full-duplex communications, however, the 

forward and reverse links cannot use all identical frequency, time, and spatial instances. The reciprocity 

principle may still hold approximately if the difference in any of these dimensions is relatively small, 

compared to the channel variation across the referenced dimension. 

 

Consider a base node for example in practice. The node measures the reverse channel during reception and 

uses this measurement for the CSIT of the next transmission. In voice applications, the forward and reverse 

links to all the users operate in back-to-back time slots. Therefore, reverse channel measurements can be made 

regularly using embedded pilots. These measurements periodically refresh the CSIT. In data communications, 

the forward and reverse links may not operate back-to-back; hence, specially scheduled reverse-link 

transmissions for channel measurements, known as channel sounding, are used. A subset of the users, for 

whom CSIT is required, is scheduled to send a sounding signal. The sounding signals are orthogonal among 

simultaneously scheduled users, using orthogonal sub-carriers in OFDM or orthogonal codes as in CDMA. 

Channel sounding is efficient for systems with many antennas at the base node. 

 

One complication in using reciprocity methods is that the principle only applies to the radio channel between 

the antennas, while in practice, the “channel” is measured and used at the baseband processor. Different 

transmit and receive RF hardware chains therefore become part of the forward and reverse channels. Since 
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these chains have different frequency transfer characteristics, reciprocity requires transmit-receive chain 

calibration to equalize the two chains (see [32] for example). Calibration is expensive and has made open-loop 

methods less attractive in practice. 

2.1.2 Closed-loop channel acquisition 

Another method of obtaining CSIT is using feedback from the receiver of the forward link. The channel 

information is measured at the receiver at B during the forward link (A to B) transmission, then sent to the 

transmitter at A on the reverse link. In practice, the forward-link transmission from a base node includes pilot 

signals, received by all active users. These users can thus measure their respective receive channels. The 

required users then send their channel information on a reverse link back to the base node for use as their CSIT. 

The feedback communication can either be scheduled separately or piggybacked on on-going transmissions. In 

data communications, CSIT may be needed for only a subset of users, who are then scheduled to transmit their 

channel information. 

 

Feedback is not limited by the reciprocity requirements. However, it imposes additional system overhead by 

using up transmission resources. Techniques to reduce the amount of feedback have been a subject of intense 

study, for example, designing vector codebooks, quantizing channel information, or selecting only the 

important information. See the conclusion section for further discussion on this topic. 

 

Furthermore, feedback information is susceptible to channel variation due to the delay in the feedback loop. 

The usefulness of feedback depends on this delay and the channel Doppler spread. For a fast time-varying 

channel in mobile communications, feedback techniques are usually effective up to a certain mobile speed, 

depending on the carrier frequency, the transmission frame length, and the turn-around time. The effects of 

feedback delay and error have been analyzed for various precoding techniques in 3GPP [33], revealing 

potentially severe performance degradation. Therefore, the optimal use of feedback must account for the 

information quality. 

2.1.3 Application and overheads in MIMO CSIT acquisition 

Both reciprocity and feedback methods are used in practical wireless systems, including time-division-duplex 

(TDD) and frequency-division-duplex (FDD). TDD systems may use reciprocity techniques. While the 

forward and reverse links in a TDD system often have identical frequency bands and antennas, there is a time 

lag between these two links. In voice systems, this lag is the ping-pong period; in asynchronous data systems, 

the lag is the scheduling delay between the reception of the signal from a user and the next transmission to that 

user. Such time lags must be negligible compared to the channel coherence time for reciprocity techniques to 

be applicable. FDD systems, on the other hand, usually have identical temporal and spatial dimensions on the 
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forward and reverse links, but the link frequency offset (normally at 5% of the carrier frequency) is often much 

larger than the channel coherence bandwidth, making reciprocity techniques infeasible. FDD systems therefore 

commonly use feedback techniques. 

 

An important practical issue is the pilot related overhead when using multiple antennas. While there is no 

penalty for multiple receive antennas, with the exception of transmit beam forming, multiple transmit antennas 

require additional pilot overhead proportional to the number of transmit antennas, if the receiver needs to learn 

the complete MIMO channel. In the case of transmit beam forming, this overhead can be avoided if the pilots 

are also beam-formed along with the signal (data associated pilots). In an open-loop system, the overhead is 

the product of the number of training pilots on the reverse link and the number of users participating in reverse 

channel sounding. In a closed-loop system, the overhead consists of both the training pilots and the feedback. 

The training overhead is independent of the number of users. The feedback overhead is proportional to the 

number of designated users on the reverse link multiplied with the size of their feedback information. For 

OFDM systems, the amount of feedback is further increased due to the multiple sub-carriers. Exploiting 

frequency continuity by tone sampling can help reduce this overhead, making it sub-linear in the number of 

OFDM sub-carriers. The overhead comparison in open- vs. closed-loop systems typically favors open-loop. 

However, when the number of receive antennas on the forward link is much larger than the number of transmit 

antennas, closed-loop systems may be more efficient. 

2.2 The MIMO channel and CSIT modeling 

A wireless channel exhibits time, frequency, and space selective variations, known as fading. This fading 

arises due to Doppler, delay, and angle spreads in the scattering environment [34][3]. The channel spreading 

can be observed by sending a single impulse in frequency or time (CW signal) or angle (point source) through 

the channel and receiving a signal spread along the spectral, temporal, or spatial dimension, respectively. In 

this article, we focus on a time-selective channel, assuming frequency-flat and negligible angle-spread. A 

frequency-flat solution, however, can be applied to a frequency-selective channel by decomposing the 

transmission band into multiple narrow, frequency-flat sub-bands. Specifically, we can apply the solution per 

sub-carrier in systems employing orthogonal frequency division modulation (OFDM). 

 

In a rich scattering environment, a frequency-flat MIMO wireless channel can be modeled as a complex 

Gaussian random process, represented as a time-varying matrix. The channel at a time instance is a Gaussian 

random variable, specified by the mean and its covariance. A non-zero channel mean signifies the presence of 

a direct line-of-sight or a cluster of strong paths, and the channel envelop has the Rician statistics, while zero 

mean corresponds to the Rayleigh statistics. The channel covariance, on the other hand, captures the 

correlation among the antennas at both the transmitter and the receiver. Assuming the channel is stationary, the 
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channel temporal variation can be captured by the channel auto-covariance, measuring the correlation between 

two channel instances separated by a delay. At zero delay, the channel auto-covariance coincides with the 

channel covariance. 

 

This article considers CSIT at the transmit time in the form of a channel estimate and the estimation error 

covariance, derived from a channel measurement at an initial time and the channel statistics [8]. Since the 

main source of irreducible error in channel estimation is the random time-variation of the channel between the 

initial measurement and its use by the transmitter, we assume that the initial channel measurement is error-free. 

The error in the channel estimate therefore depends only on the time delay and the channel time selectivity, or 

the Doppler spread. 

 

Let H ( NM × ) denote the channel matrix in a system with N transmit and M receive antennas. The channel 

has mean H and covariance 0R , defined as 

,][
][

**
0 hhhhER

HEH
−=

=
  (1) 

where the lower-case letter denotes the vectorized version of the upper-case matrix variable, and (.)* denotes 

conjugate transpose. Assume that we have an initial, accurate channel measurement 0H . The channel auto-

covariance sR at time delay s then indicates the correlation between this initial measurement 0H and the 

current channel sH , defined as 

.][ **
0 hhhhER ss −=   (2) 

Intuitively, when this correlation is strong ( sR is large when measured in a suitable norm) then 0H is useful 

for estimating sH . The strongest correlation is when the delay is 0; that is, if 0→s , then 0RRs → .   In a 

scalar system, Rs and R0 reduce to scalars rs and r0, respectively. They are related as 0)( rsrs ρ= , where 

1|)(| ≤sρ  is the temporal correlation coefficient. 

 

We now make an important assumption about channel temporal homogeneity. We assume that the temporal 

correlation coefficient )(sρ   between any pair of transmit and receive antennas is identical. This assumption is 

based on the premise that the channel temporal statistics can be expected to be the same for all antenna pairs.  

It is now possible to separate the temporal correlation from the spatial correlation in the channel auto-

covariance as 

.)( 0RsRs ρ=    (3) 
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The temporal correlation ρ is a function of the time delay s and the channel Doppler spread. In Jake’s model 

for example, )2(0 dsfJ πρ = , where fd is the channel Doppler spread and J0(.) is the zeroth-order Bessel 

function of the first kind [35]. 

 

An estimate of the channel at time s together with the estimation error covariance then follow from MMSE 

estimation theory [36] as 

.)1(

)1(ˆ

0
2

0

RR

HHH

e ρ

ρρ

−=

−+=
   (4) 

The two quantities Ĥ  and eR  function effectively as a new channel mean and a new channel covariance, and 

thus are referred to as the effective mean and the effective covariance, respectively. Together, they constitute 

the CSIT. This CSIT ranges from perfect channel knowledge when ρ = 1 to pure statistics when ρ = 0. Since 

the CSIT depends on ρ which captures the channel time-variation, it is called dynamic CSIT. Here, ρ functions 

as a measure of CSIT quality. When ρ = 1, the channel estimate coincides with 0H and is error-free. As ρ 

decreases to 0, the influence of the initial channel measurement diminishes, and the estimate moves toward the 

channel mean H . In parallel, the estimation error covariance eR  is zero when ρ = 1, and grows to 0R  as ρ 

decreases to 0. Figure 1 illustrates this CSIT evolution as a function of the time delay s. 

 

Several special cases of dynamic CSIT are of interest. First is perfect CSIT, in which the effective covariance 

is zero, and the effective mean is the instantaneous channel. Second is mean CSIT, in which the effective mean 

is non-zero and arbitrary, but the effective covariance is the identity matrix, corresponding to uncorrelated 

antennas. Third is covariance CSIT, in which the effective covariance matrix is non-identity and arbitrary, but 

the effective mean is zero, corresponding to Rayleigh fading. The general case in which both the mean and 

covariance matrices are arbitrary is referred to as statistical CSIT (at a given ρ). 
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Figure 1. Dynamic CSIT model. 
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3 BENEFITS AND OPTIMAL USE OF CSIT 
In a frequency-flat MIMO channel, CSIT can be exploited in both the spatial and temporal dimensions, in 

contrast to the scalar case, in which only temporal CSIT is relevant. It is well known that temporal CSIT – 

channel information across multiple time instances – provides little capacity gain, which becomes negligible at 

medium-to-high SNRs (approximately above 15dB) [9]. Spatial CSIT, on the other hand, can offer a 

significant increase in channel capacity at all SNRs. 

 

Figure 2 provides an example of the capacity increase based on spatial CSIT for two 4×2 Rayleigh fading 

(zero-mean) channels. For the i.i.d channel, capacities with perfect CSIT and without are plotted. For the 

correlated channel with a rank-one transmit covariance matrix (and uncorrelated receive antennas), capacities 

with the covariance knowledge and without are shown. The capacity gain from CSIT at high SNRs here is 

significant, reaching almost 2 bps/Hz at 15 dB SNR. At lower SNRs, although the absolute gain is not as high, 

the relative gain is much more pronounced. For both channels, CSIT helps to double the capacity at –5 dB 

SNR. Subsequently, exploiting spatial CSIT, particularly in the form of an effective channel mean and 

covariance (4), will be the focus of this article. 
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Figure 2. Capacity of 4×2 Rayleigh fading channels without and with perfect CSIT. 

 

3.1 Benefits of CSIT 

The capacity gain from CSIT is different at low and high SNRs [8]. At low SNR, CSIT can help increase the 

ergodic capacity multiplicatively. The transmitter relies on the CSIT to focus transmit power only on strong 

channel modes, whereas without CSIT, the optimal strategy for ergodic capacity is to transmit with equal 

power in every direction. For example, with perfect CSIT at low SNRs, only the strongest eigen-mode of the 

channel is used. The low-SNR capacity ratio r between perfect CSIT and no CSIT is given by 
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,
])[(tr
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HHE
HHNE
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r λ
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where N is the number of transmit antennas and tr(.) is the trace of a matrix. For an i.i.d. Rayleigh fading 

channel, as the number of antennas increases to infinity, provided the transmit to receive antenna ratio N/M 

stays constant, this ratio approaches a fixed value as 

2

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+→

M
Nr .  (6) 

The ratio r is always larger than 1 and can be significant in systems with more transmit than receive antennas 

(N > M). Examples of the capacity ratio versus the SNR for several systems with twice the number of transmit 

as receive antennas are given in Figure 3. This ratio increases at lower SNRs and at larger numbers of antennas. 

For these systems, it asymptotically approaches 5.83. 
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Figure 3. Capacity ratio gain from perfect CSIT for i.i.d. channels. Asymptotically as the number of antennas 

increases, the ratio approaches 5.83. 
 
 
With statistical CSIT, similarly, the CSIT helps to increase the low-SNR capacity multiplicatively. The 

capacity ratio between statistical CSIT and no CSIT is given by 

,
)(tr

)(max

CSIT no

CSIT lstatistica

G
GN

C
Cr λ

==    (7) 

where ][ *HHEG = . Again, the statistical CSIT helps the transmitter to focus its energy along the dominant 

eigen-mode of G at low SNRs. 

 

At high SNRs, the capacity gain from CSIT is incremental and dependent on the relative antenna configuration. 

For systems with equal or fewer transmit than receive antennas, the capacity gain from perfect CSIT 
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diminishes at high SNRs, since the optimal input signal with CSIT then also approaches equi-power. For 

systems with more transmit than receive antennas, however, CSIT helps increase the capacity even at high 

SNRs. Since the channel rank here is smaller than the number of transmit antennas, CSIT helps the transmitter 

direct the signal to avoid the channel null-space and achieve an incremental capacity gain at high SNRs as 

⎟
⎠
⎞

⎜
⎝
⎛=∆

M
NMC log   (8) 

This gain is proportional to the number of receive antennas M and depends on the ratio of the number of 

transmit to receive antennas N/M. For example, for systems with twice the number of transmit as receive 

antennas, the capacity incremental gain approaches the number of receive antennas in bps/Hz and can be 

achieved at an SNR as low as 20dB, as illustrated in Figure 4. 
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Figure 4. Incremental capacity gain from perfect CSIT for i.i.d. channels. The dashed lines are the respective 

limits at high SNRs. 
 

3.2 Optimal use of CSIT 

The optimal use of CSIT for achieving the capacity of a frequency-flat fading channel can be established by 

first examining the scalar channel [5]. Assume that the transmitter has causal channel state information U1
s = 

{U1, … Us}, provided that the channel is independent of the past CSIT given current CSIT: 

)|Pr()|Pr( 1 ss
s

s UhUh =   (9) 

The channel capacity is then a stationary function of the CSIT, but not dependent on the entire CSIT history. 

This condition covers the dynamic CSIT model (4). The receiver knows the channel perfectly, it also knows 

how the CSIT is used at the transmitter. Such assumptions are practically reasonable since the receiver can 

obtain channel information more readily than the transmitter, and they can both agree on a precoding 

algorithm. The capacity of the channel with CSIT can then be achieved by a single Gaussian codebook 
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designed for a channel without CSIT, provided that the code symbols are dynamically scaled by a power-

allocation function determined by the CSIT: 

( )⎥⎦
⎤

⎢⎣
⎡ += )(1log
2
1max UhfEC f  (10) 

where the expectation is taken over the joint distribution of h and U. In other words, the combination of this 

power-allocation function f(U) and the channel creates an effective channel, outside of which coding can be 

applied as if the transmitter had no CSIT. This insight, in fact, can be traced back to Shannon in [4]. For a 

scalar fading channel, therefore, the optimal use of CSIT is for temporal power allocation. 

 

This result has been subsequently extended to the MIMO fading channel [6]. Under similar assumptions, the 

capacity-optimal input signal with CSIT can be decomposed as the product of a codeword optimal for a 

channel without CSIT and a weighting matrix dependent on the CSIT. The optimal use of CSIT is now linear 

precoding, which allocates power in both spatial and temporal dimensions. In other words, the capacity-

optimal signal is zero-mean Gaussian distributed with the covariance determined by means of the precoding 

matrix. This optimal configuration is shown in Figure 5. 
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Figure 5. An optimal configuration for exploiting CSIT. 

 

These results establish important properties of capacity-optimal signaling for a fading channel with CSIT. First, 

it is optimal to separate the function that exploits CSIT and the channel code, which is designed for a channel 

without CSIT. Second, a linear precoder is optimal for exploiting the CSIT. These separation and linearity 

properties are the guiding principles for MIMO frequency-flat precoder designs. In particular, this article 

focuses on designing a precoder based on the CSIT, given pre-determined channel coding and detection 

technique. Before discussing about specific designs, however, the structure of a system with precoding is 

analyzed next. 

4 PRECODING SYSTEM STRUCTURE 
The transmitter in a system with precoding consists of an encoder and a precoder, as depicted in Figure 5. The 

encoder intakes data bits and performs necessary coding for error correction by adding redundancy, then maps 

the coded bits into vector symbols. The precoder processes these symbols before transmission from the 
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antennas. At the other side, the receiver decodes the noise-corrupted received signal to recover the data bits, 

treating the combination of the precoder and the channel as an effective channel. The structures of these 

processing blocks are discussed in detail next. 

4.1 Encoding structure 

An encoder contains a channel coding and interleaving block and a symbol-mapping block, delivering vector 

symbols to the precoder. We classify two broad structures for the encoder: spatial multiplexing and space-time 

coding, based on the symbol mapping block. The spatial multiplexing structure de-multiplexes the output bits 

of the channel coding and interleaving block to generate independent bit streams. These bit streams are then 

mapped into vector symbols and fed directly into the precoder, as shown in Figure 6. Since the streams are 

independent with individual SNR, per-stream rate adaptation can be use. 

Symbol
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Input C

D
E

M
U

X

k
b

 
Figure 6. A multiplexing encoding structure. 

 

In space-time (ST) coding structure, on the other hand, the output bits of the channel coding and interleaving 

block are first mapped directly into symbols. These symbols are then processed by a ST encoder (such as in 

[38][39]), producing vector symbols as input to the precoder, shown in Figure 7. From Section 3.2, if the ST 

code is capacity lossless for a channel with no CSIT (for example, the Alamouti code for a 2×1 channel [38]), 

then this structure is also capacity optimal for the channel with CSIT. The ST coding structure contains a 

single data stream; hence, only a single rate adaptation is necessary. The rate is controlled by the FEC-code 

rate and the constellation design. 
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Figure 7. A space-time encoding structure. 

 

The difference between these two encoding structures therefore lies in the temporal dimension of the symbol-

level code. Spatial multiplexing spreads symbols over the spatial dimension alone, resulting in a 1-symbol-

long input block, while ST coding usually spreads symbols over both the spatial and the temporal dimensions. 

While these two structures have different implications on rate adaptation, this issue is not discussed in this 

article. Therefore, for precoding analysis and design, we will treat spatial multiplexing as a special case of ST 
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coding with the block length of 1. Assuming a Gaussian-distributed codeword C of size N×T with a zero mean, 

we define the codeword covariance matrix as 

[ ]*1 CCE
TP

Q = ,  (11) 

where P is the transmit power (here we assume that the codeword has been scaled by the transmit power, so 

this definition provides the normalized covariance), and the expectation is taken over the codeword 

distribution. When C is spatial multiplexing, Q = I. 

 

Of particular interest is ST block code (STBC), usually designed to capture the spatial diversity in the channel, 

assuming no CSIT. Diversity determines the slope of the error probability versus the SNR and is related to the 

number of spatial links that are not fully correlated [42]. High diversity is useful in a fading link since it 

reduces the fade margin, which is needed to meet required link reliability. A STBC can be characterized by its 

diversity order; a full-diversity code achieves the maximum diversity MN in a channel with N transmit and M 

receive antennas. There is, however, a fundamental trade-off between the diversity and the multiplexing orders 

in ST coding [43]. The multiplexing order relates to rate-adaptation; it is the scale at which the transmission 

rate asymptotically increases with the SNR. A fixed rate system therefore has a zero multiplexing order3. 

Without CSIT, STBC design achieving the optimal diversity-multiplexing trade-off is an active research area 

(see [44][45] for some examples). With CSIT, on the other hand, precoding focuses on extracting a coding 

gain (an SNR advantage) from the CSIT; hence it is independent of, and complementary to, the diversity-

multiplexing trade-offs for ST codes. 

4.2 Linear precoding structure 
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Figure 8. A linear precoder structure as a multi-mode beamformer. 

                                                 
3 Recently there has been new development of the diversity-multiplexing trade-off at finite (low) SNRs with a modified 
definition of multiplexing order [46]. 
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The precoder is a separate transmit processing block from channel and space-time coding. It depends on the 

CSIT, but a linear precoder has a general structure. A linear precoder functions as a combination of an input 

shaper and a multi-mode beamformer with per-beam power allocation. Consider the singular value 

decomposition of the precoder matrix  

FF DVUF = .    (12) 

The orthogonal beam directions are the left singular vectors UF, of which each column represents a beam 

direction (pattern). Note that UF is also the eigenvectors of the product FF*, thus the structure is often referred 

to as eigen-beamforming. The beam power loadings are the squared singular values D2. The right singular 

vectors VF mix the precoder input symbols to feed into each beam and hence is referred to as the input shaping 

matrix. This structure is illustrated in Figure 8. To conserve the total transmit power, the precoder must satisfy 

tr ( ) 1* =FF .   (13) 

In other words, the sum of power over all beams must be a constant. The individual beam power, however, can 

differ according to the SNR, the CSIT, and the design criterion. 
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Figure 9. Orthogonal eigen-beam patterns of a uniform linear array with 4 transmit antennas and unit distance 

between them. Left: equal beam power; right: unequal beam power. The purple dotted line is the total radiated 

pattern from the antenna array. 

 
Essentially, a precoder has two effects: decoupling the input signal into orthogonal spatial modes, in the form 

of eigen-beams, and allocating power over these beams, based on the CSIT. If the precoded, orthogonal 

spatial-beams match the channel eigen-directions (the eigenvectors of H*H), there will be no interference 

among signals sent on different modes, thus creating parallel channels and allowing transmission of 

independent signal streams. This effect, however, requires the full channel knowledge at the transmitter. With 

partial CSIT, the precoder tries to approximately match its eigen-beams to the channel eigen-directions and 
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therefore reduces the interference among signals sent on these beams. This is the decoupling effect. Moreover, 

the precoder allocates power on the beams. For orthogonal eigen-beams, if all the beams have equal power, the 

radiation pattern of the transmit antenna array is isotropic. Figure 9 shows an example of this pattern using a 

uniform linear antenna array. If the beam powers are different, however, the overall transmit radiation pattern 

will have a specific, non-circular shape, as shown on the right in Figure 9. By allocating power, the precoder 

effectively creates a radiation shape to match to the channel based on the CSIT, so that higher power is sent in 

the directions where the channel is strong and reduced or no power in the weak. More transmit antennas will 

increase the ability to finely shape the radiation pattern and therefore will likely to deliver more precoding gain. 

4.3 Receiver structure 

Consider a system with an encoder producing a codeword C, and a precoder F at the transmitter, as shown in 

Figure 5. The codeword C is normalized according to the transmit power, which is constant over time, with 

zero mean and covariance as defined in (9). This codeword may contain channel coding, it may also represent 

only a space-time codeword. An analysis for a system without a channel code is referred to as uncoded, 

otherwise it is coded. A system with ST coding alone thus qualifies for uncoded analysis. In this system, we 

assume that C is pre-determined and hence is not a design parameter. In other word, the input codeword 

covariance Q (11) is given and fixed. 

 

At the receiver, the received signal then is 

NHFCY += ,   (14) 

where N is a vector of additive white Gaussian noise. The receiver knows à prior the precoding matrix F and 

treats the combination HF as an effective channel. It detects and decodes the received signal to obtain an 

estimate of the transmitted codeword C. The receiver can use one of several detection methods, depending on 

the performance and complexity requirements. Here we discuss two representative methods, maximum-

likelihood (ML) and linear MMSE. ML detection is optimal, in which the receiver obtains the codeword 

estimate Ĉ  as 
2||||minargˆ
FC

HFCYC −= .   (15) 

ML requires the receiver to consider all possible codewords before making the decision and hence can be 

computationally expensive. A simpler, although sub-optimal, receiver is the linear MMSE. In this case, the 

receiver contains a weighting matrix W, which is designed according to 
22 ||)(||||ˆ||min FFW

WNCIWHFECCE +−=− ,  (16) 

where the expectation is taken over the input signal and noise distributions. For zero-mean signal with 

covariance (3.22), the optimum MMSE receiver is given as 
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1**** )( −+= IHHFQFHQFW γγ ,  (17) 

where γ is the SNR.  Due to its attractive simplicity, the linear MMSE receiver has often been used in 

designing a precoder [26]-[28]. A weighted MSE design, giving different weights to different received signal 

streams, can yield different criteria, such as maximum rate and target SNRs [26]. Other structures that are less 

computationally demanding than ML include the sphere decoder, successive cancellation receiver, and, if a 

channel code is present, iterative receiver iterating between the channel decoder and a simple symbol level 

detector (such as the MMSE). 

 

In this article, however, to emphasize precoding at the transmitter and its potential gains, we assume the 

optimal ML receiver in the following analysis. 

5 PRECODING DESIGNS 
The precoder connects between the encoder and the channel. Depending on the code used, the encoder 

produces codewords with a certain covariance Q. We assume that this encoder, and hence Q, is pre-determined 

and is not a design target here. Such a configuration is supported by the optimal principle of separating the 

channel coding (assuming no CSIT) and precoding (exploiting the CSIT), discussed in Section 3.2. It includes 

the case Q = I, in which the input code can be capacity-optimal without CSIT and the precoder then represents 

a linear transmitter. Further motivation comes from the practical consideration of keeping the same channel 

and S-T coding in an existing system and adapting the precoder alone to available CSIT. In all cases, the 

precoder transforms the codeword covariance into the transmit signal covariance. A precoder design 

essentially aims at producing the optimal signal covariance according to the CSIT and a performance criterion. 

5.1 Design criteria 

There are alternate precoding design criteria based on both fundamental and practical measures. The 

fundamental measures include the capacity and the error exponent, while the practical measures contain, for 

example, the pair-wise error probability (PEP), detection mean square-error (MSE), symbol error rate (SER), 

bit error rate (BER), and the received SNR. Fundamental measures usually assume ideal channel coding; the 

ergodic capacity implies that the channel evolves through all possible realizations over arbitrarily long 

codewords, while the error exponent applies for finite codeword-lengths. Analyses using practical measures, 

on the other hand, usually apply to uncoded systems and assume a quasi-static block fading channel. The 

choice of the design criterion depends on the system setup, operating parameters, and the channel (fast or slow 

fading). For example, systems with strong channel coding, such as turbo or low-density parity check codes 

with long codeword lengths, may operate at close to the capacity limit and thus are qualified to use a coded 

fundamental criterion. Those with weaker channel codes, such as convolutional codes with small free distances, 
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are more suitable using a practical measure with uncoded analysis. The operating SNR is also important in 

deciding the criterion. As the SNR increases, the shortest-distance input pairs increasingly dominate the error 

rate, requiring coding for better average performance. Thus, a high SNR usually favors coded criteria for 

designing precoders, while at low SNRs, uncoded criteria can yield better performance. 

 

Precoding design maximing the channel ergodic capacity has been studied extensively for various scenarios: 

perfect CSIT [37], mean CSIT [7][10]-[12], transmit covariance CSIT [7][14][16], both transmit and receive 

covariance CSIT [15][17], and both mean and transmit covariance CSIT [8]. For more practical measures, 

many of the earlier designs focused on perfect CSIT, often jointly optimizing both a linear precoder and a 

linear decoder based on the MSE, the SNR, or the bit-error-rate (BER) (see [26]-[29] and references therein). 

More recent work considered partial CSIT. Precoding with mean CSIT was designed to maximize the received 

SNR [7], or minimize the symbol error rate (SER) [19], the MSE [20], or the pair-wise error probability (PEP) 

[18][21]. Precoding with transmit covariance CSIT was similarly developed to minimize the PEP [22], the 

SER [23], or the MSE [24]. Precoding for both mean and transmit covariance CSIT has been developed to 

minimize the PEP [25]. In this article, we focus on two example criteria, one from each measure: the ergodic 

capacity and the PEP. 

5.1.1 Maximizing the system ergodic capacity 

The system ergodic capacity criterion aims at maximizing the average transmission rate with a vanishing error 

probability, assuming asymptotically long codewords and an ideal ML receiver. With perfect channel 

knowledge at the receiver, the capacity-optimal input signal is zero-mean Gaussian distributed with an optimal 

covariance [37]. For the system under study in Figure 5, the input codeword covariance Q is pre-determined, 

hence we can only design the precoder F to produce a signal covariance that achieves the maximum system 

transmission rate, called the system capacity. This system capacity depends on Q. When Q is the capacity-

optimal covariance for the channel without CSIT, then the system capacity coincides with the channel 

capacity; otherwise, it is strictly smaller. 

 

With a given Q (11), the signal covariance for system in Figure 5 is S = FQF*. The capacity-optimal precoder 

F then is the solution of the optimization problem 

( )[ ]
,1)(    trsubject to

detlog             max
*

**

=

+

FF

HHFQFIEH γ
  (18) 

where γ is the SNR. This formulation maximizes the mutual information, averaged over the channel 

distribution, subject to transmit power constraint. Since the codeword covariance Q is pre-determined and is 

not part of the design, the constraint is over the precoder F alone. When Q = I, this constraint is the same as 
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total transmit power constraint and the system capacity coincides with the channel ergodic capacity, such as 

the formulation in [13]. Note that in (18), the objective function usually cannot be simplified any further with  

partial CSIT and the optimization problem is stochastic. 

5.1.2 Minimizing the pair-wise error probabilities 

The pair-wise error criterion, on the other hand, concerns the probability of a codeword Ĉ  having a better 

detection metric at the receiver than the transmitted codeword C. In this case, a parameter of interest is the 

distance product between the two codewords 

*)ˆ)(ˆ(1 CCCC
P

A −−= ,   (19) 

which is related to the codeword covariance. With ML detection, the PEP can be upper-bounded by the well-

known Chernoff bound (similar to [39]) 

( )⎟
⎠
⎞

⎜
⎝
⎛−≤→ **

4
exp)ˆ( HHFAFtrCCP γ

,  (20) 

which provides an analytical framework for precoding design. We consider two choices in minimizing the 

Chernoff bound on the PEP: minimizing for a chosen codeword distance A, and minimizing the average over 

the codeword distribution. The corresponding criterion is referred to as the PEP per-distance and the average 

PEP, respectively. In both cases, the performance averaged over channel fading is of interest. 

 

For the PEP per-distance criterion, with a chosen A matrix, the precoder F is designed to minimize the 

Chernoff bound, averaged over the channel distribution as 

( )

.1)(    trsubject to

4
exp             min

*

**

=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−

FF

HHFAFtrE γ
  (21) 

For a fading channel with Gaussian distribution, the above objective function can be explicitly evaluated as a 

function of the channel mean and covariance [18]. In particular, for a channel with mean Hm and transmit 

antenna correlation Rt, but no receive correlation (i.e., Rr = I), the above problem is equivalent to [25] 

.1)(        tr          
4

    subject to

)det(log)(  tr          min

*

*

*1

=

+=

−−

FF

RRFAFRW

WMHWH

ttt

mm

γ
  (22) 

In this case, the objective function becomes deterministic. The convexity of this problem, which helps in 

providing analytical solutions, depends on the distance matrix A (19). An often used A is the minimum 

codeword distance, which corresponds to the maximum PEP. For some codes, the minimum A is well-defined 
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and can be a scaled-identity matrix, for which the problem has closed-form solution. Other choices of A 

include, for example, the average codeword distance. Depending on the code, the choice of A can significantly 

affect the performance of the resulting precoder. 

 

For the average PEP criterion, the Chernoff bound is averaged over both the codeword distribution and the 

fading statistics. This average PEP criterion is independent of the specific codeword distance A (19). Noting 

that E[A] = 2Q (11), the precoder optimization problem in this case becomes 

.1)(    trsubject to

2
det             min

*

**

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
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⎞

⎜
⎝
⎛ +

−

FF

HHFQFIE
M

H
γ

  (23) 

Note the similarity between this formulation and the capacity formulation (18), both involve the expectation of 

functions of similar forms without a closed-form expression. Again, this formulation includes a pre-

determined code with covariance Q, and the constraint therefore is imposed over the precoder F alone (see 

[18]-[25]). When Q = I, the formulation becomes similar to those in [27]-[29] in the sense that F then 

represents the whole linear transmitter. Thus it can be thought of as a generalization of such setups to include a 

pre-determined code with covariance Q. 

5.1.3 Criteria grouping 

In general, the precoder design problems can be divided into two categories, stochastic or deterministic. 

Stochastic optimization problem usually involves as the objective the expected value of a function over the 

channel distribution, in which the expectation has no closed-form expression [57]. Often, the function is 

convex in a matrix variable, for example, logdet(.)−1, det(.)−1, or tr(.)−1. While the statistical properties of the 

underlying channel distribution sometimes allow partial closed-form solution (such as the beam directions), 

the full solution usually requires numerical methods, in which the objective function is approximated by, for 

example, sampling or bounding. Deterministic problems, on the other hand, involves a deterministic objective 

function, obtained in closed-form from the problem formulation, with parameters given by the CSIT. 

Examples of stochastic problems include the capacity, the error exponent, the average PEP and the MSE 

criteria; while the deterministic includes the PEP per-distance and the SNR criteria. (The connection among 

the mutual information, the sum MSE, and the Chernoff bound for STC, is recently analyzed in [58].) In both 

categories, some formulations lead to closed-form analytical precoder solutions, while others may require 

numerical optimal solutions (often the stochastic ones). Next, we will discuss typical precoder solutions for 

these problems with different CSIT scenarios. 
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5.2 Optimal precoder designs 

A linear precoder composes of an input shaping matrix, a beamforming matrix, and the power allocation over 

these beams, as discussed in Section 4.2. For both criteria mentioned in Section 5.1, the capacity and the PEP, 

together with other criteria such as the error exponent, MSE, and SNR [56], the optimal input shaping matrix 

is determined by the input code alone, the beamforming matrix by the CSIT alone, and the power allocation by 

both. We first discuss the optimal input shaping matrix solution, which is independent of CSIT; then discuss 

the optimal beam directions and power allocation for different CSIT scenarios: perfect CSIT, covariance CSIT, 

mean CSIT, and statistical CSIT consisting of both mean and covariance information. 

5.2.1 The input-shaping matrix 

The encoder shapes the covariance (or the product distance matrix) of the codeword input to the precoder; the 

precoder in response chooses its input-shaping matrix to match this covariance. Suppose the input codeword 

covariance matrix Q (9) has the eigenvalue decomposition QQQ UUQ Λ= , the optimal input-shaping matrix is 

then given by [55] 

QF UV = .   (24) 

This optimal input-shaping matrix results directly from the predetermined input code covariance Q, which is 

not an optimization variable nor involved in the power constraint (1.5). The covariance Q characterizes the 

code chosen for the system. By matching the input codeword covariance, the precoder spatially de-correlates 

the input signal and optimally collects the input energy. In the special case of isotropic input (Q = I), such as 

with spatial multiplexing, the optimal VF depends on the optimization criterion. For all aforementioned criteria, 

including the capacity, error exponent, MSE, PEP per-distance, average PEP, and SNR, VF becomes an 

arbitrary unitary matrix and can usually be omitted. For some other criteria (which can be characterized using 

Schur convexity [54]), such as minimizing the maximum MSE among the received streams or minimizing the 

average BER, however, the optimal input-shaping matrix with Q = I must be a specific rotational matrix 

[28][29]. When channel coding such as a turbo-code is considered with a practical constellation, a rotational 

matrix can also improve performance [31]. 

5.2.2 The beamforming matrix 

Unlike the input-shaping matrix, which is independent from the CSIT, the beamforming matrix is a function of 

the CSIT. We now present the optimal beamforming solutions for the CSIT models developed in Section 2.2: 

perfect CSIT, mean CSIT, covariance CSIT, and statistical CSIT. 

 

With perfect CSIT 
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Given perfect CSIT, the MIMO channel can be decomposed into independent and parallel additive-white-noise 

channels [37]. The number of parallel channels equals the minimum between the numbers of transmit and 

receive antennas. These parallel channels are established by first performing the singular value decomposition 

(SVD) of the channel matrix as 
*

HHH VUH Σ= ,  (25) 

then multiplying the signal at the transmitter with VH and at the receiver with UH. The parallel channels can be 

processed independently, each with independent modulation and coding, allowing per-mode rate control and 

simplifying receiver processing. 

 

The optimal beam directions with perfect CSIT for all aforementioned criteria are matched to the channel right 

singular vectors as 

HF VU = .   (26) 

The optimality can be established using matrix inequalities that show function extrema obtained when the 

matrix variables have the same eigenvectors [54]. Therefore, the optimal beam directions are given by the 

eigenvectors of H*H, or the channel eigen-directions. For multiple-input single-output (MISO) systems, the 

solution reduces to the well-known scheme: transmit maximum-ratio-combined single-mode beamforming 

[35]. These optimal beam directions are independent of the SNR. 

 

Consequently, the optimal precoder matrix for perfect CSIT, under all criteria and at all SNRs, has the left and 

right singular vectors determined separately by the eigenvectors of the channel gain H*H and the input 

codeword covariance Q, respectively. Therefore, the precoder spatially matches both sides. It effectively re-

maps the spatial directions of the input code into those optimally matched to the channel given the CSIT, as 

shown in Figure 10. 
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Figure 10. The precoder matches both the input code structure and the channel. 

 

With mean CSIT 

Mean CSIT composes of an arbitrary effective mean matrix Hm and an identity effective covariance. This  

model can correspond to an uncorrelated Rician channel or to a channel estimate with uncorrelated errors. Let 
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the singular value decomposition of mH be *
mmmm VUH Σ= , then the optimal precoding beam directions for all 

criteria are given by the right singular vectors of this effective mean4 

mF VU = .   (27) 

Note that these directions are also the eigenvectors of mmHH * . In effect, because the identity channel 

covariance is isotropic, the channel mean eigen-directions become the statistically preferred directions. They 

are the channel eigen-directions on average, and signaling along these directions is optimal. 

 

With covariance CSIT 

Covariance CSIT composes of a zero effective-mean and an arbitrary effective-covariance. From the model 

developed in Section 2.2, the effective covariance is a linear function of the antenna correlation matrix. This 

matrix captures the correlations among all the transmit antennas, among all the receive antennas, and between 

the transmit and receive antennas. A common, simplified correlation model assumes that the transmit and the 

receive antenna arrays are uncorrelated, often occurred when these arrays are sufficiently far apart with enough 

random scattering between them [47]. The transmit antenna correlation Rt and the receive antenna correlation 

Rr can then be separated according to a Kronecker structure as 

r
T
t RRR ⊗=0 .   (28) 

This Kronecker correlation model has been experimentally verified for indoor channels of up to 3×3 antennas 

[48][49], and for outdoor of up to 8×8 [50]. More general antenna correlation models have also been proposed 

in [51][52], in which the transmit covariances (Rt) corresponding to different reference receive antennas are 

assumed to have the same eigenvectors, but not necessarily the same eigenvalues; similarly for Rr. 

 

The optimal beamforming matrix has been established for covariance CSIT assuming the Kronecker 

correlation model (19). Furthermore, since precoding is primarily affected by transmit correlation, we assume 

uncorrelated receive antennas (Rr = I) in most cases, unless otherwise specified. Let the eigenvalue 

decomposition of Rt be *
tttt UUR Λ= , then the optimal beamforming matrix for all criteria is given by the 

transmit correlation eigenvectors5 

tF UU = .    (29) 

Thus for a zero-mean channel, the correlation between the transmit antennas dictates the beam directions: its 

eigenvectors are the statistically preferred directions. When the antennas are uncorrelated, the beamforming 

                                                 
4 The proof for the capacity criterion can be found in [10]-[12] and can be extended to other stochastic formulations. The 
proof for the PEP criterion, which has a deterministic formulation, is first established in [18]. 
5 The proof can be found for the capacity criterion in [10] and [14], and for the PEP criterion in [22]. The techniques in 
these proofs can be applied to other criteria. 
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matrix becomes an arbitrary unitary matrix and can be omitted. For the channel capacity criterion, even if the 

receive antenna correlation exists (Rr ≠ I), it has no effect on the optimal beamforming directions [15]. The 

optimal beam directions for a non-Kronecker correlation structure, however, is still an open problem. 

 

With statistical CSIT 

For statistical CSIT involving an arbitrary effective-mean and an arbitrary effective-covariance matrix, the 

optimal beamforming matrix has been established for only a few criteria, the PEP per-distance and the SNR. 

For the PEP per-distance criterion (21), assuming transmit antenna correlation alone, if the input codeword is 

isotropic such that Q = µ0I, the optimal beamforming matrix can be obtained as part of the optimal precoder as 

( )1

0

* 4 −−Φ= tRFF
γµ

   (30) 

where Φ is given by 

( )[ ]2/11*12 4
2
1 −−++=Φ tmmt RHHRIMMI ν
ν

  (31) 

in which ν is the Lagrange multiplier associated with the power equality constraint in (21). Solving for ν is 

carried out using a dynamic water-filling process [25]. This process is similar to the standard water-filling, in 

that at each iteration, the weakest eigen-mode of FF* may be dropped to ensure its positive semi-definiteness, 

and the total transmit power is re-allocated among the remaining modes. There is, however, a significant 

difference in that the mode directions here also evolve at each iteration. Details of the solving algorithm for ν 

can be found in [25]. 

 

The optimal beam directions of (30) depend on both the channel mean and covariance and are complicated 

functions of the channel K factor and the SNR. At high K, the channel mean Hm tends to dominate the beam 

directions; but as K drops, the channel covariance Rt
-1 has more dominant effect. The SNR also influences the 

beam directions here, in contrast to the previous special CSIT cases. At low SNR, the PEP-optimal beam 

directions depend on both the mean and the covariance, but as the SNR increases, they asymptotically depend 

on the covariance alone. This effect shows that at high SNRs, the channel variation becomes more dominant in 

affecting the precoder. 

 

For the SNR criterion, on the other hand, the precoder aims to maximized the received SNR by single-mode 

beamforming at all SNRs, with the beam as the dominant eigenvector of the average channel gain E[H*H]. 

 

For other criteria such as the capacity, a sub-optimal solution for the beamforming matrix with statistical CSIT 

can be obtained by using the eigenvectors of the average channel gain E[H*H]. At low SNRs, this solution is 
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asymptotically capacity-optimal, while also being optimal for the PEP and SNR criteria. At high SNRs, if the 

number of transmit antennas is no more than the receive, it is also asymptotically capacity-optimal since the 

optimal input then becomes isotropic with an arbitrary set of beams. (With more transmit than receive 

antennas, however, the optimal solution may still require specific beamforming, for example, when there is a 

strong antenna correlation or a strong channel mean [8].) Note that when applied to the special cases, mean 

CSIT and covariance CSIT, this beamforming solution becomes optimal. 

5.2.3 The power allocation 

In contrast to the beam directions, the optimal power allocation across the beams varies for each design 

criterion and is a function of the SNR. With perfect CSIT, for example, it varies from water-filling for capacity 

to single-mode for the PEP criterion. The difference reflects the selectivity in power allocation, in which the 

more selective scheme allocates power to fewer modes at the same SNR. The power allocation tends to 

become more selective when the criterion shifts from fundamental (coded) towards practical (uncoded). In 

other words, this selectivity depends on the strength of the channel code. Systems with strong codes tend to 

allocate power to more channel eigen-modes, while those with weak codes tend to activate fewer, only strong 

modes, and drop the rest at the same SNR. 

 

CSIT also affects the optimal power allocation. With perfect CSIT, the optimal power allocation is known in 

analytical closed-form for all criteria; while for partial CSIT, the solution may require numerical methods,  

depending on the criteria. However, the optimal power allocation often follows the water-filling principle, in 

which higher power is allocated to the beams corresponding to known strong channel directions, and reduced 

or no power to the weak. Next, we discuss the power solution each CSIT scenario, perfect CSIT, mean CSIT, 

covariance CSIT, and statistical CSIT. 

With perfect CSIT 

As established in the previous two sections, the precoder with perfect CSIT matches to the input codeword 

covariance Q on the one side and to the channel H on the other. Because of this direction matching, the 

optimal power allocation depends only on the eigenvalues of both the input codeword covariance and the 

channel, but not their eigenvectors. Denote the eigenvalue product of these two matrices as 

( ) ( )QHH iii λλλ *= ,   (32) 

where the eigenvalues of each matrix are sorted in the same order. The power pi allocated to beam number i, 

which is the square of the precoder singular value number i, is a function of these iλ  and the SNR. 
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For the capacity criterion (18), the optimal power allocation is obtained through water-filling on the composite 

eigenvalues iλ  as [37] 

+
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⎞
⎜⎜
⎝

⎛
−=

i
i

N
p

λ
µ 0 ,   (33) 

where N0 is the noise power per spatial dimension, and µ is chosen such that the sum of all pi equals the total 

transmit power. Notation (.)+ represents the value inside the parenthesis if this value is positive, and zero 

otherwise. 

 

Similarly, for the average PEP criterion (23), the optimal power allocation is water-filling as for the capacity, 

but with the noise scaled-up by a factor of 2. This solution thus is a more selective power allocation scheme. 

At low SNRs, weak modes tend to have a high error rate; therefore, dropping these modes and allocating 

power to stronger modes leads to better overall system error performance. As the SNR increases, power is 

allocated across more modes, but again, at a slower rate than is the case for the capacity solution. 

 

For the PEP per-distance criterion (21), the optimal solution is to allocate all power to the strongest eigen-

mode of the channel, 

p1 = 1,  and pi = 0  for i ≠ 0,    (34) 

thus effectively reducing the precoder to single-mode beamforming. This scheme is an extreme case of 

selective power allocation; it also maximizes the received SNR. Furthermore, it achieves the full transmit-

diversity (see proof in [3], Section 5.4.4). 

 

Perfect CSIT usually simplifies the power allocation problem significantly and allows for closed-form solution 

for most criteria (for other examples, see [24],[26]-[29]). With partial CSIT, however, the power allocation 

often requires numerical solutions, especially with the stochastic problems. 

 

With mean CSIT 

With mean CSIT, the power allocation depends only on the singular values of the effective channel mean, but 

not its singular vectors. The capacity criterion (18) requires numerical, convex search for the optimal power. 

For the PEP per-distance criterion (21), the power allocation has a semi-analytical solution, obtained as a form 

of water-filling [55] 
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where λi(.) are the eigenvalues of the corresponding matrix, sorted in the same order, and ν is the Lagrange 

multiplier associated with the equality power constraint. Simple binary search algorithm for finding ν can be 

found in [55][56]. The solution with A = I can also be found in [18]. 

 

For all criteria, the channel K factor and the rank of the mean matrix can have a strong influence here. A larger 

K factor causes the power allocation to depend strongly on the channel mean; for example, a rank-one mean 

then is likely to result in single-mode beamforming. Specifically for the channel capacity criterion ((18) with 

Q = I), if the K factor is above a certain threshold increasing with the SNR, single-mode beamforming is 

optimal for MISO systems [7]. When K approaches infinity, mean CSIT becomes equivalent to perfect CSIT. 

As K decreases, however, the impact of the channel mean diminishes. If K reduces to zero, the optimal 

allocation approaches equi-power, hence the precoder becomes an arbitrary unitary matrix and can be omitted. 

 

With covariance CSIT 

With covariance CSIT, in which the antenna correlation has a Kronecker structure, the optimal power 

allocation depends only on the eigenvalues of the correlations, but not their eigenvectors. Both transmit and 

receive correlation eigenvalues affect the optimal power allocation for the capacity criterion [15], which 

requires convex numerical solving techniques.  For the PEP per-distance criterion (21) without receive 

correlation, the optimal power allocation can be obtained analytically by water-filling over the transmit 

correlation eigenvalues [22] 

+

−−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= )()(4 11

tiii RAp λλ
γ

µ    (36) 

where λi(.) are the (nonzero) eigenvalues of the corresponding matrix, and µ is chosen such that the sum of all 

pi equals the total transmit power. 

 

For all criteria, the stronger the antenna correlation, measured by a larger condition number for example, the 

more selective the optimal power allocation becomes.  An extreme case of selectivity is single-mode 

beamforming. Thresholds for its optimality are observed for covariance CSIT in MIMO systems [14][15], in 

which two largest eigenvalues of Rt must satisfy an inequality related to the dominance of the largest 

eigenvalue. Intuitively, if this largest mode is sufficiently dominant, then water-filling will drop all other 

modes. At higher SNRs, the required eigenvalue dominance must increase, implying a more correlated channel. 

A similar trend is observed for an increasing number of receive antennas. If Rt is full-rank, however, the 

capacity-optimal power allocation for systems with equal or fewer transmit than receive antennas always 

asymptotically approaches equi-power as the SNR increases. 
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Furthermore, the impact of correlation, particularly the eigenvalues of Rt, on the average mutual information 

under different CSIT conditions – perfect, covariance, and no CSIT – can be described using majorization 

theory [16]. Transmit antenna correlation generally reduces the channel ergodic capacity at high SNRs, 

compared to an i.i.d channel, but the loss is bounded as the number of transmit antennas increases. At low 

SNRs, on the other hand, transmit correlation can help increase the capacity (see [8] and references therein). 

 

With statistical CSIT 

For the ergodic capacity (18), as with most stochastic criteria, in contrast to the beamforming matrix, the 

optimal power allocation is so far unavailable in closed-form for statistical CSIT, including both mean and 

covariance CSIT as special cases. It often requires a numerical solution, which can usually be efficiently 

implemented because of the convexity of the problem [53]. The power solution now depends on both the 

eigenvalues and the eigenvectors of the mean and covariance matrices. At low SNRs, the optimal power 

allocation concentrates all power in a single beam, often the dominant eigenvector of E[H*H]. As the SNR 

increases, transmit power is spread to an increasing number of beams to a maximum that depends on the 

antenna configuration and the CSIT parameters. With statistical CSIT, a N-transmit antenna system can 

activate up to N orthogonal beams. When there are equal or fewer transmit than receive antennas (N ≤ M), all 

N beams will be activated and the allocation approaches equi-power at high SNRs, at which the precoder can 

usually be omitted. When there are more transmit than receive antennas (N > M), however, CSIT parameters 

strongly influence the optimal power allocation. Channels with a strong mean or a strong transmit antenna 

correlation may activate only a fraction of the beams (fewer than N) even at high SNRs. Simple thresholds on 

the channel K factor and the transmit covariance condition number for mode-dropping at all SNRs can be 

derived [8]. For a transmit covariance matrix with two levels of eigenvalues, for example, mode-dropping 

always occurs when its condition number satisfies 

ML
L
−

≥κ    (37) 

where L is the number of stronger eigenmodes, provided that N > L > M. Using the inverted non-central 

complex Wishart distribution, a threshold on the channel K factor can also be established, independent of the 

number of receive antennas. 

 

For the PEP criterion (21), the optimal power, as part of the optimal precoder, has a semi-analytical solution 

given in (30), obtained using a dynamic water-filling algorithm [25], in which both the beam power and the 

beam direction evolve with the water-filling iterations. The asymptotic behavior of this precoder when the 

channel K factor or the SNR increases is worth noting. When K increases, the precoder converges to a solution 

dependent on the channel mean alone; furthermore, it becomes a single-mode beamformer aligned to the 
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dominant right-singular-vector of Hm, hence maximizing the received signal power. As the SNR increases, 

however, the precoder approaches a solution dependent on the transmit correlation alone, and the power 

allocation approaches equi-power. If both the K factor and the SNR increase, then there exists a K factor 

threshold increasing with the SNR, above which the optimal power allocation results in a single-beam 

precoder. In the numerical section, we show an example of this single-beam threshold. 

5.2.4 Discussion 

The presented precoding designs lead to several observations. First, the optimal input shaping matrix, 

composing of the precoder right-singular-vectors, is the same for all CSIT scenarios at all SNR. It is matched 

to the covariance of the precoder input signal. This input shaping matrix ix optimal for most criteria, including 

the ergodic capacity, the PEP, and others such as the SNR, MSE, or error exponent [56]. When the precoder 

input covariance is the identity matrix, the optimal input shaping matrix becomes an arbitrary unitary matrix 

and can be omitted for these criteria; but for some others, a fixed rotation matrix is required [28]. Second, the 

beamforming matrix, composing of the precoder left-singular-vectors, is independent of the design criteria and 

the SNR for most CSIT scenarios, except the general statistical CSIT case. These optimal beam directions are 

matched to the channel according to the CSIT, often as the eigenvectors of the channel mean or transmit 

covariance matrix. When both the mean and transmit covariance are present, however, the beam directions 

becomes dependent on the criterion and the SNR. Third, the main difference among the precoding solutions 

under different criteria is the power allocation. For both the ergodic capacity and the PEP criteria, the optimal 

power allocation follows the water-filling principle, in which higher power is allocated to stronger modes and 

reduced or none to weaker ones as a function of the SNR. This power selectivity, however, depends on the 

criterion. More selective schemes tend to drop more modes at low SNR. For examples, the selectivity 

increases going from the capacity to the PEP criterion. As the SNR increases, most power allocation schemes 

approach equi-power, but at different rates. A more selective scheme approaches equi-power more slowly. 

Schemes that do not approach equi-power at high SNR occur under the PEP criterion with perfect CSIT, or 

generally with statistical CSIT involving a strong mean or a strong antenna correlation in channels with more 

transmit than receive antennas. Power allocation according to the water-filling principle also applies to other 

criteria such as the error exponent [56], the SER [19][23], but by no means to all criteria. The MSE criterion, 

for example, tends to allocate more power to weaker channel modes [24]. The beam power allocation depends 

strongly on the performance criterion and the SNR and can be the main factor in differentiating the 

performance of different precoders. 

 

A linear precoder therefore has two main effects: decoupling the signals into orthogonal spatial directions to 

reduce the interference between them, and allocating power to these directions according to the channel 
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strength. In short, the precoder optimally collects the input signal power and spatially redistributes this power 

into the channel according to the design criterion and the CSIT. 

 

The water-filling type power allocation leads to mode-dropping at low SNR. For a practical constellation, care 

should be taken in system design to ensure that the employed encoder functions in such a situation, especially 

for high rate codes. In most cases, the input-shaping matrix combines input codeword symbols such that all 

symbols are transmitted even with mode-dropping. With an identity codeword covariance (Q = I), even though 

the input shaping matrix can theoretically be omitted, some rotation matrix may still be necessary for practical 

constellations to ensure the transmission of all distinct symbols. An initial study of this rotation effect for 

spatial multiplexing can be found in [31]. The precoder input shaping matrix, thus, helps to prevent the adverse 

effect of mode-dropping with practical constellations on the system performance. 

6 PRECODING NUMERICAL PERFORMANCE 

6.1 Simulation setup 

The simulation system has 4 transmit and 2 receive antennas and employs the quasi-orthogonal STBC [40][41]. 

Although a 4 × 2 system can support up to a spatial rate of 2, this STBC has only the spatial rate 1. With this 

STBC, the precoder input shaping matrix (24) is the identity matrix and is omitted. The system employs the 

[133, 171] convolutional code with rate 1/2, used in the IEEE 802.11a wireless LAN standard, a block 

interleaver, and QPSK modulation. The receiver uses maximum-likelihood (ML) detection and a soft-input 

soft-output Viterbi decoder. 

 

System performance is measured for two representative CSIT scenarios: perfect CSIT, and dynamic CSIT 

(2.25) involving both channel mean and transmit covariance information. Assume quasi-static block-fading 

channels, the block-length for the perfect CSIT is 96 bits, and for dynamic CSIT is 48 bits. Performance 

without and with different precoders, based on the PEP per minimum-distance (4.12), average PEP (4.15), and 

system capacity (4.16) criteria, are studied. 

6.2 Precoding with perfect CSIT 

Precoding with perfect CSIT can be viewed as the ideal case for reference. Although precoding with perfect 

CSIT has been studied under different criteria, comparative performance of the different designs using the 

same system setup can draw some useful observations. For these simulations, the channel is assumed to be 

i.i.d. Rayleigh fading (Hm = 0 and R0 = I). 
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Figure 11 shows the error rate performance of the different precoders. All three precoder designs achieve 

substantial gains, measured in both uncoded and coded domains, with larger gain in the latter (up to 6dB SNR 

gain at 10−4 coded bit-error-rate). Such a gain is consistent with the analytical capacity gain (8). Since the 

QSTBC provides only partial diversity, some additional diversity gain is obtained by the precoder, evident 

through the higher slopes of the precoded error curves in the uncoded systems. In both uncoded and coded 

systems, however, most of the precoding gain appears in the form of a coding gain. This coding gain is 

attributed to the optimal beam directions and the water-filling-type power allocation. To differentiate the gain 

from each effect, a 2-beam precoder with the optimal directions, given by the channel right singular vectors, 

but equal beam-power allocation is also studied. Results show that with perfect CSIT, optimal beam directions 

alone achieve a significant portion of the precoding gain. A water-filling-type power allocation further 

improves the gain, especially at low SNRs. Thus, both the precoder beam directions and the power allocation 

contribute to the performance gain. 

 
Figure 11. Precoding performance with perfect CSIT: uncoded (left) and coded (right). 

 

These results also reveal only minor performance differences among precoder designs according to the three 

criteria. The minimum-distance PEP precoder, which also maximizes the received SNR, achieves the best gain 

here, attributed to the small number of receive antennas. The other two precoders, based on the capacity and 

the average PEP criteria, perform similarly. This relative performance order is dependent on the CSIT and the 

system configurations, including the number of antennas, channel coding, and the STBC; it may change for a 

different system. 

6.3 Precoding with dynamic CSIT 

This section examines precoding performance with dynamic CSIT. For the system capacity and average-PEP 

criteria, unfortunately, no analytical solutions exist for the optimal precoders. The optimal precoder based on 
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the minimum-distance PEP (30) is used. The transmit correlation matrix has the eigenvalues [2.717 , 0.997 , 

0.237 , 0.049], representing a relatively strong correlation with the condition number of 55.5, and the channel 

mean has K = 0.1. System performance is obtained for different values of the estimate quality ρ between 0 and 

1. The error probabilities are averaged over multiple initial channel measurements H0, randomly and 

independently drawn from the simulated channel distribution, and multiple channel estimates given each initial 

measurement. 

 
Figure 12. Performance with dynamic CSIT for a precoded 4 × 1 system using OSTBC. 

 

Performance results for different values of ρ are given in Figure 12. The precoding gain increases with a better 

CSIT quality. Depending on ρ, the gain ranges between statistical CSIT and perfect CSIT gains. When ρ=0, 

the precoder achieves a performance gain based on statistical CSIT alone (channel mean and covariance 

information); as ρ approaches 1, the precoding gain increases to that with perfect CSIT. It is also noted through 

simulations that in dynamic CSIT, the initial channel measurement H0 helps increase the precoding gain over 

the statistical CSIT gain only when its correlation with the current channel is sufficiently strong: ρ ≥ 0.6; 

otherwise, precoding on the channel statistics alone can extract most of the gain. Furthermore, when the CSIT 

is imperfect (ρ < 1), the precoder does not provide diversity gain, in contrast to the perfect CSIT case. This 

observation is confirmed by analyses showing that the high-SNR asymptotic BER slope is independent of ρ for 

ρ ≠ 1 [55]. Thus with partial CSIT (ρ < 1), the precoder only achieves an SNR gain, and the system transmit 

diversity is determined by the ST code (and the channel code if that exists). With perfect CSIT (ρ = 1), the 

precoder also delivers the maximum transmit diversity gain of order N. 

 

For comparison, we also study a single-beam scheme that relies only on the initial channel measurement, 

shown in Figure 13. This scheme coincides with the optimal PEP precoder for perfect CSIT (ρ = 0.99 in the 

simulation). For other ρ values, however, the scheme performs poorly. It looses all transmit diversity 
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regardless of the STBC and performs worse than no precoding at high SNRs. The optimal precoder exploiting 

dynamic CSIT, on the other hand, provides gain at all SNRs for all ρ. This result demonstrates the robustness 

of the dynamic CSIT model. 
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Figure 13. Performance comparison between optimal precoding and H0 beamforming. 

 

Figure 4.11 shows the regions of different number of precoding beams, as a function of the channel K factor 

and the SNR. A higher K factor leads to fewer beams, whereas a higher SNR leads to more beams. The 

thresholds in K factor for different beam regions increase with the SNR; at very low K factors, however, the 

regions appear to depend little on K but only on the SNR.  Other design criteria may lead to different 

precoding beam regions. 
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Figure 14. Regions of different number of precoding beams. 

 

These numerical results illustrate significant precoding gains. The gain depends on the CSIT, the number of 

antennas, the system configuration (encoder and receiver), and the SNR. It usually increases with better CSIT, 
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quantified by the estimate quality ρ in the dynamic CSIT model, and with more antennas. The gain, however, 

is less dependent on the design criteria: similar BER performance among precoders based on different criteria 

has been observed numerically [56]. While with perfect CSIT, the precoders achieve the maximum transmit 

diversity, the main benefit of precoding in all CSIT scenarios comes from the SNR gain (also called the coding 

gain). Two factors contribute to the precoding gain: the optimal beam directions and the water-filling type 

power allocation. Both of these result in an SNR advantage. 

6.4 Precoding applications in emerging wireless standards 

Precoding has been successfully integrated into the IEEE 802.16e standard for broadband mobile wireless 

metropolitan networks (WiMax). Both open- and close-loop techniques are included. In the open-loop 

technique, a subset of users are scheduled to transmit a sounding signal. The base station then estimates the 

channels for these users and determines the CSIT for precoding use after transmit-receive RF calibration. In 

the closed-loop technique, the precoder uses either an initial channel measurement or the channel statistics. 

The users measure the channel using the forward-link preambles or pilots, then feed back the best codeword, 

usually a unitary-fit, representing this channel measurement from a codebook, along with a time-to-live 

parameter. The precoder uses the unitary-fit until the time-to-live expires; thereafter, it relies on the channel 

statistics information, which is updated at a much slower rate and is always valid. 

 

MIMO is expected to enter the IEEE 802.11n standard for wireless local area networks (WLAN), with support 

for both space-time coding and spatial multiplexing. The current precoding proposals use an open-loop method, 

based on the reciprocity principle implying that the best beam on reception must be the best beam for 

transmission. The base uses pre-formed beams for receiving and transmitting and records the beam(s) with the 

best signal strength on reception from each user, then uses the same beam(s) during the next transmission to 

that user. 

 

The 3GPP standard uses a closed-loop beamforming technique, based on the quantized feedback of the 

channel phase and amplitude. Precoding is under discussion in High-Speed Downlink Packet Access (HSDPA) 

for mobile communication. Channel-sounding appears to be the preferred technique for obtaining CSIT. 

7 CONCLUSION 

7.1 MIMO linear precoding 

This article has provided an overview of linear precoding techniques for exploiting CSIT in single-user, 

frequency-flat MIMO wireless systems. It discusses principles and methods for acquiring the CSIT, including 

open- and closed-loop techniques, and related issues such as sources of error, system overhead, and 
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complexity. A dynamic CSIT model is formulated as an estimate of the channel at the transmit time with the 

associated error covariance. Dynamic CSIT can be obtained using a potentially outdated channel measurement, 

the first- and second-order channel spatial statistics, and the channel temporal correlation, thereby taking into 

account the channel time-variation. This CSIT model delivers robust precoding gain for different CSIT 

qualities. 

 

Information theoretic foundation establishes the optimality of a linear precoder in exploiting dynamic CSIT. A 

linear precoder functions as the combination of an input shaper and a multimode beamformer that contains 

orthogonal beam-directions, each with a defined beam-power. We discuss linear precoder solutions under 

different design criteria for several CSIT scenarios: perfect CSIT, mean CSIT, covariance CSIT, and statistical 

CSIT, as parts of the dynamic CSIT model. Simulation examples, using a spatial rate 1 QSTBC transmission, 

demonstrate that precoding can improve error performance significantly. For higher spatial rate transmissions 

(such as spatial multiplexing), although not discussed in this article, precoding can also improve the capacity 

and error performance at all SNRs for systems with more transmit than receive antennas, and at low SNRs for 

others. 

 

The essential value of precoding in exploiting CSIT is to add an SNR gain. This gain is achieved by the 

optimal eigen-beam patterns and the spatial power allocation across these beams. Both features help increase 

the transmission rate (the system capacity) and reduce the error probability. If the CSIT is perfect, precoding 

can also deliver a diversity gain; in addition, it helps reduce receiver complexity for higher spatial-rates by 

allowing parallel channel transmissions. 

7.2 Related results 

Looking beyond the scope of this article, precoding theory has been developed for other types of CSIT, 

limited-feedback scenarios, frequency-selective channels, and multi-user communications. We now briefly 

mention a few key ideas and selected references for interested readers. 

 

While this article models CSIT as an estimate of the entire channel and its error covariance, there are also 

other types of less complete CSIT. For example, in a high-K channel, the K factor and the antenna-to-antenna 

phase statistics offer near-optimal precoding performance using beamforming and antenna power allocation 

[59]. A known channel condition number suggests adapting the transmission spatial rate [60]. These types of 

parametric CSIT help reduce the amount of overhead incurred in CSIT acquisition. 

 

For feedback techniques in slow time-varying channels, the problem of overhead also motivates data 

compression techniques to minimize feedback. The compressed feedback information can be, for example, 



Accepted to IEEE Signal Processing Magazine. Submitted Feb 2006, revised Nov 2006 and Dec 2006. 

DRAFT 36

selected and important channel information for precoding [33], the index of the precoder from a codebook 

[61][62], or quantized channel information [63][64] (and references therein). Often in such cases, the feedback 

information is tied to the specific precoding technique. The feedback overhead has motivated the area of finite-

rate or limited feedback precoding (see [65] for an overview). 

 

When the channel is frequency-selective, the precoder can also exploit this selectivity and become frequency-

dependent. For single-carrier systems, non-linear precoding techniques using spatial extensions of the 

Tomlinson-Harashima precoder can be employed [66][67]. For multi-carrier systems such as OFDM, 

frequency-flat precoding techniques discussed in this article can be applied on a per tone (sub-carrier) basis. 

To reduce feedback overhead in OFDM, the CSIT feedback is sampled and interpolated in the frequency 

domain [68]. Exploiting the OFDM structure and tone correlation results in precoders with frequency-

dependent eigen-beam directions and frequency-beam dependent power allocation [69][70]. 

 

In wireless multi-user communications, partial CSIT is also highly relevant, since the channel time-variation 

makes it impractical to have perfect CSIT at all users. Initial research has shown that the loss of degrees of 

freedom due to no CSIT reduces the capacity region of an isotropic vector broadcast channel to that of a scalar 

one [71]. Imperfect CSIT also severely reduces the growth of the sum-rate broadcast capacity at high SNRs 

[72]. Schemes such as opportunistic scheduling, which requires only an SNR feedback, can achieve an optimal 

throughput growth-rate in broadcast channels with a large number of users [73]. With finite-rate feedback, 

however, the feedback rate needs to be increased with the SNR to achieve the full multiplexing gain [74]. 

 

With these results, precoding techniques that exploit partial CSIT continue to be an important research area 

with direct practical applications. 
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