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Abstract. Case-based reasoning is a paradigm inmachine learningwhose
idea is that a new problem can be solved by noticing its similarity to a set
of problems previously solved. We propose a new approach to case-based
reasoning. It is based on rough set theory that is a mathematical theory for
reasoning about data. More precisely, we adopt Dominance-based Rough
Set Approach (DRSA) that is particularly appropriate in this context for
its ability of handling monotonicity relationship between ordinal proper-
ties of data related to monotonic relationships between attribute values in
the considered data set. In general terms, monotonicity concerns relation-
ship between different aspects of a phenomenon described by data: for ex-
ample, “the larger the house, the higher its price” or “the closer the house
to the city centre, the higher its price”. In the perspective of case-based rea-
soning, we propose to consider monotonicity of the type “the more similar
is y to x, the more credible is that y belongs to the same set as x”. We show
that rough approximations and decision rules induced from these approx-
imations can be redefined in this context and that they satisfy the same
fundamental properties of classical rough set theory.

1 Introduction

Case-based reasoning (for a general introduction to case-based reasoning see
e.g. [10]; for a fuzzy set approach to case-based reasoning see [3]) regards the
inference of some proper conclusions related to a new situation by the analysis of
similar cases from a memory of previous cases. It is based on two principles [11]:

a) similar problems have similar solutions;
b) types of encountered problems tend to recur.

Gilboa and Schmeidler [4] observed that the basic idea of case-based reasoning
can be found in the following sentence of Hume [9]: “From causes which appear
similar we expect similar effects. This is the sum of all our experimental con-
clusions.” Rephrasing Hume, one can say that “the more similar are the causes,
the more similar one expects the effects.” Therefore, measuring similarity is the
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essential point of all case-based reasoning and, particularly, of fuzzy set approach
to case-based reasoning [3]. This explains the many research problems that mea-
suring similarity generates within case-based reasoning. Problems of modelling
similarity are relative to two levels:

– at level of similarity with respect to single features: how to define a mean-
ingful similarity measure with respect to a single feature?

– at level of similarity with respect to all features: how to properly aggregate
the similarity measure with respect to single features in order to obtain a
comprehensive similarity measure?

Taking this into account we propose an approach to case-based reasoning
which tries to be possibly “neutral” and “objective” with respect to similarity
relation, in the sense that at level of similarity concerning single features, we
consider only ordinal properties of similarity, and at level of aggregation, we do
not impose any specific functional aggregation based on very specific axioms (see
for example [4]), but we consider a set of decision rules based on the very general
monotonicity property of comprehensive similarity with respect to similarity of
single features. Therefore our approach to case-based reasoning is very little
“invasive”, comparing to the many other existing approaches.

Our approach to case-based reasoning is based on rough set theory ([12, 13]).
Rough set theory relies on the idea that some knowledge (data, information) is
available about elements of a set. For example, knowledge about patients suf-
fering from a certain disease may contain information about body temperature,
blood pressure, etc. All patients described by the same information are indis-
cernible in view of the available knowledge and form groups of similar cases.
These groups are called elementary sets and can be considered as elementary
building blocks of the available knowledge about patients. Elementary sets can be
combined into compound concepts. Any union of elementary sets is called crisp
set, while other sets are referred to as rough set. Each rough set has boundary
line cases, i.e. objects which, in view of the available knowledge, cannot be classi-
fied with certainty as members of the set or of its complement. Therefore, in the
rough set approach, any set is associated with a pair of crisp sets called the lower
and the upper approximation. Intuitively, the lower approximation consists of all
objects which certainly belong to the set and the upper approximation contains
all objects which possibly belong to the set. The difference between the upper
and the lower approximation constitutes the boundary region of the rough set.

In our approach to case-based reasoning we do not consider classical rough set
theory but its extension called Dominance-based Rough Set Approach (DRSA)
[5, 6] that has been proposed to handle ordinal properties of data related to
preferences in decision problems. The monotonicity, which is crucial for DRSA,
is also meaningful for problems where preferences are not considered. Gener-
ally, monotonicity concerns relationship between different aspects of a phenom-
enon described by data. More specifically, it concerns mutual trends between
different variables like distance and gravity in physics or inflation rate and in-
terest rate in economics. Whenever we discover a relationship between different
aspects of a phenomenon, this relationship can be represented by a monotonicity
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with respect to some specific measures of the considered aspects. So, in general,
the monotonicity is a property translating in a formal language a primitive in-
tuition of interaction between different concepts in our knowledge domain. As
discovering is an inductive process, it is illuminating to remember the following
Proposition 6.363 of Wittgenstein [17]: “The process of induction is the process
of assuming the simplest law that can be made to harmonize with our experi-
ence”. We claim that this simplest law is just monotonicity and, therefore, each
data analysis method can be seen as a specific way of dealing with monotonicity.

Let us observe that monotonicity is also present in classical rough set theory.
In fact, rough set philosophy employs approximation for describing relationships
between concepts. For example, coming back to above example of medical diag-
nosis, the concept of “disease Y” can be represented in terms of such concepts
as “low blood pressure and high temperature” or “muscle pain and headache”.
The approximation is based on a very coarse representation in the sense that,
for each aspect characterizing concepts (“low blood pressure”, “high tempera-
ture”, “muscle pain”, etc.), only its presence or its absence is considered relevant.
Therefore, rough approximation within classical rough set theory involves a very
primitive idea of monotonicity related to a scale with only two values: “presence”
and “absence”.

Monotonicity gains importance when a finer representation of the concepts
is considered. A representation is finer when for each aspect characterizing con-
cepts, not only its presence or its absence is taken into account, but also the
graduality of its presence or absence is considered relevant. Due to graduality,
the idea of monotonicity can be exploited in the whole range of its potential.
Graduality is typical for fuzzy set philosophy [18] and, therefore, a joint consid-
eration of rough sets and fuzzy sets is worthwhile. In fact, rough set and fuzzy set
capture the two basic complementary features of the idea of monotonicity: rough
set deals with relationships between different aspects and fuzzy sets deal with
expression of different dimensions representing the considered concepts. For this
reason, many approaches have been proposed to combine fuzzy sets with rough
sets (see for example [2, 16]).

Greco, Matarazzo and Slowinski [7] showed how the framework of DRSA can
be very naturally extended to represent any relationship of monotonicity in rea-
soning about data. In this context one can envisage a knowledge representation
model composed of a set of decision rules with the following syntax:

“if object y presents feature fi1 in degree at least hi1, and feature fi2 in degree
at least hi2 . . . , and feature fim in degree at least him, then object y belongs to
set X in degree at least α”.

Greco, Matarazzo and Slowinski [7] proved also that the classical rough set
approach [12, 13] can be seen as specific case of the general DRSA model. This
is important for several reasons; in particular, this interpretation of DRSA gives
an insight into fundamental properties of the classical rough set approach and
permits to further generalize the rough set approach.
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In this paper, we show that in the framework of DRSA a rough set approach
to case-based reasoning can be developed very naturally. Here, the monotonic-
ity concerns the relationships between similarity to some reference objects and
membership to some specific sets. In this context we envisage a knowledge rep-
resentation model composed of a set of decision rules with the following syntax:

“if object y is similar to object x w.r.t. feature fi1 in degree at least hi1, and
w.r.t. feature fi2 in degree at least hi2, and . . . , and w.r.t. feature fim in degree
at least him, then object y belongs to set X in degree at least α”,
where w.r.t. means “with respect to”.

These decision rules are similar to the gradual decision rules [1] being state-
ments of the form “the more object z is X , the more it is Y ” or, equivalently,
but more technically,

µX(z) ≥ α ⇒ µY (z) ≥ α

where X and Y are fuzzy sets whose membership functions are µY and µX , and
α ∈ [0, 1].

Within the context of case-based reasoning gradual decision rules assume the
following syntax [3]:

“the more object z is similar to a referent object x w.r.t. condition attribute
s, the more z is similar to a referent object x w.r.t. decision attribute t”

or, equivalently, but more technically,

s(z, x) ≥ α ⇒ t(z, x) ≥ α

where s and t measure the credibility of similarity with respect to condition
attribute and decision attribute, respectively.

When there is a plurality of condition attributes and decision attributes, func-
tions s and t aggregate similarity with respect to these attributes.

Let us observe that the decision rules we propose do not need the aggregation
of the similarity with respect to different features in one comprehensive similar-
ity. This is important because it permits to avoid using aggregation operators
(weighted average, min, etc.) which are always arbitrary to some extend. More-
over, the decision rules we propose permit to consider different thresholds for
degrees of credibility in the premise and in the conclusion. This is not considered
in the gradual decision rules, where the threshold is the same, α, in the premise
and in the conclusion.

This article is organized as follows. Section 2 introduces DRSA approach to
case-based similarity. Section 3 contains conclusions.

2 Rough Approximation for Case Based Reasoning

In this section, we consider rough approximation of a fuzzy set using a similarity
relation in the context of case-based reasoning. The introduced rough approxi-
mation is inspired by the rough approximation of a pairwise comparison table
within the Dominance-based Rough Set Approach (DRSA).
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Let us consider a pairwise fuzzy information base being the 3-tuple

B = < U ,F ,σ>,

where U is a finite set of objects (universe), F={f1,f2,...,fm} is a finite set
of features, and σ:U × U × F →[0,1] is a function such that σ(x,y,fh) ∈[ 0, 1]
expresses the credibility that object x is similar to object y w.r.t. to feature fh.
The minimal requirement function σ must satisfy is that, for all x ∈ U and for all
fh ∈ F , σ(x,x,fh)=1. Therefore, each pair of objects (x,y) ∈ U × U is described
by a vector

DesF (x,y)=[σ(x,y,f1), . . . , σ(x,y,fm)]

called description of (x,y) in terms of the evaluations of the attributes from
F ; it represents the available information about similarity between x and y.
Obviously, similarity between x and y, x, y ∈ U , can be described in terms of
any non-empty subset E ⊆ F and in this case we have

DesE(x,y)=[σ(x,y,fh), fh ∈ E].

With respect to any E ⊆ F we can define the dominance relation DE on
U × U as follows: for any x,y,w,z ∈ U , (x,y) dominates (w,z) with respect to E
(denotation (x,y)DE(w,z)) if for any fh ∈ E

σ(x,y,fh) ≥ σ(w,z,fh).

Given E ⊆ F and x,y ∈ U , let

D+
E(y, x) = {w ∈ U : (w, x)DE(y, x)},

D−
E(y, x) = {w ∈ U : (y, x)DE(w, x)}.

In the pair (y, x), x is considered as reference object, while y can be called
limit object because it is conditioning the membership of w in D+

E(y, x) and in
D−

E(y, x).
Let us also consider a fuzzy set X in U , characterized by the membership

function µX : U → [0, 1]. For each cutting level α ∈ [0, 1], the following sets can
be defined:

X≥α={y ∈ U : µX(y) ≥ α}, X>α={y ∈ U : µX(y) > α},
X≤α={y ∈ U : µX(y) ≤ α}, X<α={y ∈ U : µX(y) < α}.

For each α∈[0,1] and ∗ ∈ {≥, >}, we can define the E-lower approximation
of X∗α, Eσ(X∗α), and the E-upper approximation of X∗α, Eσ(X∗α), based on
similarity σ with respect to E ⊆ F , respectively, as:

Eσ(X∗α) = {(y, x) ∈ U × U : D+
E(y, x) ⊆ X∗α},

Eσ(X∗α) = {(y, x) ∈ U × U : D−
E(y, x) ∩ X∗α 	= ∅}.
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For the sake of simplicity, in the following we shall consider Eσ(X≥α) and
Eσ(X≥α). Of course, analogous considerations hold for Eσ(X>α) and Eσ(X>α).
Let us remark that the lower approximation of X≥α contains all the pairs (y, x) ∈
U × U such that any object w being similar to x at least as much as y is similar
to x w.r.t. all the considered features E ⊆ F also belongs to X≥α. Thus, on the
basis of the data from the fuzzy pairwise information base B , if the similarity
of an object w to x is not smaller than the similarity of y to x w.r.t. all the
considered features E ⊆ F , then w belongs to X≥α. In other words, in each pair
(y, x) ∈ Eσ(X≥α), x is a reference object and y is a limit object which belongs
“certainly” to set X with credibility at least α; the limit is understood such that
all objects w that are similar to x w.r.t. considered features at least as much as
y is similar to x, also belong to X with credibility at least α.

Analogously, the upper approximation of X≥α contains all the pairs (y, x) ∈
U ×U such that there is at least one object w being similar to x at least as much
as y is similar to x w.r.t. all the considered features E ⊆ F which belongs to
X≥α. Thus, on the basis of the data from the fuzzy pairwise information base
B , if the similarity of an object w to x is not smaller than the similarity of y
to x w.r.t. all the considered features E ⊆ F , then it is possible that w belongs
to X≥α. In other words, in each pair (y, x) ∈ Eσ(X≥α), x is a reference object
and y is a limit object which belongs “possibly” to set X with credibility at
least α; the limit is understood such that there is at least one object w that is
similar to x w.r.t. considered features at least as much as y is similar to x and
has membership in set X with credibility at least α.

For each α∈[0,1] and ∗ ∈ {≤, <}, we can define the E-lower approximation
of X∗α, Eσ(X∗α), and the E-upper approximation of X∗α, Eσ(X∗α), based on
similarity σ with respect to E ⊆ F , respectively, as:

Eσ(X∗α) = {(y, x) ∈ U × U : D−
E(y, x) ⊆ X∗α},

Eσ(X∗α) = {(y, x) ∈ U × U : D+
E(y, x) ∩ X∗α 	= ∅}.

For the sake of simplicity, in the following we shall consider Eσ(X≤α) and
Eσ(X≤α). Of course, analogous considerations hold for Eσ(X<α) and Eσ(X<α).
Let us remark that the lower approximation of X≤α contains all the pairs (y, x) ∈
U ×U such that any object w being similar to x at most as much as y is similar
to x w.r.t. all the considered features E ⊆ F also belongs to X≤α. Thus, on the
basis of the data from the fuzzy pairwise information base B , if the similarity
of an object w to x is not greater than the similarity of y to x with respect to
all the considered features E ⊆ F , then w belongs to X≤α. In other words, in
each pair (y, x) ∈ Eσ(X≤α), x is a reference object and y is a limit object which
belongs “certainly” to set X with credibility at most α; the limit is understood
such that all objects w that are similar to x w.r.t. considered features at most
as much as y is similar to x, also belong to X with credibility at most α.

Analogously, the upper approximation of X≤α contains all the pairs (y, x) ∈
U × U such that there is at least one object w being similar to x at most as
much as y is similar to x with respect to all the considered features E ⊆ F
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which belongs to X≤α. Thus, on the basis of the data from the fuzzy pairwise
information base B , if the similarity of an object w to x is not greater than the
similarity of y to x w.r.t. all the considered features E ⊆ F , then it is possible
that that w belongs to X≤α. In other words, in each pair (y, x) ∈ Eσ(X≤α), x
is a reference object and y is a limit object which belongs “possibly” to set X
with credibility at most α; the limit is understood such that there is at least one
object w that is similar to x w.r.t. considered features at most as much as y is
similar to x and has membership in set X with credibility at most α.

Let us remark that we can rewrite the rough approximations Eσ(X≥α),
Eσ(X≥α), Eσ(X≤α) and Eσ(X≤α) as follows:

Eσ(X≥α)={(y, x) ∈ U × U : ∀w ∈ U , (w,x)DE(y,x) ⇒ w ∈ X≥α},

Eσ(X≥α) = {(y, x) ∈ U × U : ∃w ∈ U such that (w, x)DE(y, x) and w ∈ X≥α},

Eσ(X≤α)={(y, x) ∈ U × U : ∀w ∈ U , (y,x)DE(w,x) ⇒ w ∈ X≤α},

Eσ(X≤α) = {(y, x) ∈ U × U : ∃w ∈ U such that (y, x)DE(w, x) and w ∈ X≤α}.

This formulation of the rough approximation is concordant with the syntax
of the decision rules induced by means of DRSA in a pairwise fuzzy information
base. More precisely:

– Eσ(X≥α) is concordant with decision rules of the type:
“if object w is similar to object x w.r.t. feature fi1 in degree at least hi1
and w.r.t. feature fi2 in degree at least hi2 and . . . and w.r.t. feature fim in
degree at least him, then object w belongs to set X in degree at least α”,

– Eσ(X≥α) is concordant with decision rules of the type:
“if object w is similar to object x w.r.t. feature fi1 in degree at least hi1
and w.r.t. feature fi2 in degree at least hi2 and . . . and w.r.t. feature fim

in degree at least him, then object w could belong to set X in degree at
least α”,

– Eσ(X≤α) is concordant with decision rules of the type:
“if object w is similar to object x w.r.t. feature fi1 in degree at most hi1
and w.r.t. feature fi2 in degree at most hi2 and . . . and w.r.t. feature fim in
degree at most him, then object w belongs to set X in degree at most α”,

– Eσ(X≤α) is concordant with decision rules of the type:
“if object w is similar to object x w.r.t. feature fi1 in degree at most hi1
and w.r.t. feature fi2 in degree at most hi2 and . . . and w.r.t. feature fim

in degree at least him, then object w could belong to set X in degree at
most α”,

where {i1, . . . , im} = E and hi1, . . . , him ∈ [0, 1].
The above definitions of rough approximations and the syntax of decision rules

are based on ordinal properties of similarity relations only. In fact, no algebraic
operations, such as sum or product, involving cardinal properties of function σ
measuring credibility of similarity relations is considered. This is an important
characteristic of our approach in comparison with alternative approaches to case-
based reasoning.
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Let us remark that in the above approximations, even if for two fuzzy sets
X and Y we have X≥α= Y ≤α, their approximations are different due to the
different directions of cutting the membership function of sets X and Y . Of
course, a similar remark holds also for X<α and Y >α.

The following theorem states some properties of the rough approximations in
a pairwise fuzzy information base.

Theorem. Given a fuzzy pairwise information base B=< U, F,σ > and a fuzzy
set X in U with membership function µX(·), the following properties hold for
any E ⊆ F :

1. For any α, 0 ≤ α ≤ 1,
Eσ(X≤α) ⊆ X≤α×X≤α ⊆ Eσ(X≤α), Eσ(X≥α) ⊆ X≥α×X≥α ⊆ Eσ(X≥α),
Eσ(X<α) ⊆ X<α×X<α ⊆ Eσ(X<α), Eσ(X>α) ⊆ X>α×X>α ⊆ Eσ(X>α).

2. For any α, 0 ≤ α≤1,
Eσ(X≤α) = U × U − Eσ(X>α), Eσ(X≥α) = U × U − Eσ(X<α).

3. For any α, β, 0≤α≤β≤1,

Eσ(X≤α) ⊆ Eσ(X≤β), Eσ(X<α) ⊆Eσ(X<β),
Eσ(X≥α) ⊇Eσ(X≥β), Eσ(X>α) ⊇Eσ(X>β),
Eσ(X≤α) ⊆ Eσ(X≤β), Eσ(X<α) ⊆ Eσ(X<β),
Eσ(X≥α) ⊇ Eσ(X≥β), Eσ(X>α) ⊇ Eσ(X>β).

4. For any x,y,w,z ∈ U and for any α, 0≤α≤1,

[(y,x)DE(w,x) and (w,x) ∈Eσ(X≥α)]⇒ (y,x) ∈Eσ(X≥α),

[(y,x)DE(w,x) and (w,x) ∈Eσ(X>α)]⇒ (y,x) ∈Eσ(X>α),

[(y,x)DE(w,x) and (w,x) ∈ Eσ(X≥α)]⇒ (y,x) ∈ Eσ (X≥α),

[(y,x)DE(w,x) and (w,x) ∈ Eσ (X>α)]⇒ (y,x) ∈ Eσ (X>α),

[(w,x)DE(y,x) and (w,x) ∈Eσ(X≤α)]⇒ (y,x) ∈Eσ(X≤α),

[(w,x)DE(y,x) and (w,x) ∈Eσ(X<α)]⇒ (y,x) ∈Eσ(X<α),

[(w,x)DE(y,x) and (w,x) ∈ Eσ (X≤α)]⇒ (y,x) ∈ Eσ (X≤α),

[(w,x)DE(y,x) and (w,x) ∈ Eσ (X<α)]⇒ (y,x) ∈ Eσ (X<α).

5. For any E1 ⊆ E2 ⊆ F and for any α, 0≤α≤1,

E1σ(X≤α) ⊆ E2σ(X≤α), E1σ(X<α) ⊆E2σ(X<α),
E1σ(X≥α) ⊆E2σ(X≥α), E 1σ(X>α) ⊆ E2σ(X>α),
E1σ(X≤α) ⊇ E2σ(X≤α), E1σ(X<α) ⊇ E2σ(X<α),
E1σ(X≥α) ⊇ E2σ(X≥α), E1σ(X>α) ⊇ E2σ(X>α).
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Proof. 1. For all x, y ∈ U ,

x ∈ D+
E(y, x). (i)

Thus, D+
E(y, x) ⊆ X≥α implies x ∈ X≥α and y ∈ X≥α. For the definition of

Eσ(X≥α), we have that (y, x) ∈ Eσ(X≥α) if D+
E(y, x) ⊆ X≥α, thus we conclude

that, ∀(y, x) ∈ U × U ,

(y, x) ∈ Eσ(X≥α) ⇒ (y, x) ∈ X≥α × X≥α

i.e.
Eσ(X≥α) ⊆ X≥α × X≥α.

Moreover, from (i) we get that for all (y, x) ∈ X≥α × X≥α, y ∈ D−
E(y, x). For

the definition of Eσ(X≥α) we have that (y, x) ∈ Eσ(X≥α) if D−
E(y, x)∩X≥α 	= ∅,

thus we conclude that, ∀(y, x) ∈ U × U ,

(y, x) ∈ X≥α × X≥α ⇒ (y, x) ∈ Eσ(X≥α)

i.e.
X≥α × X≥α ⊆ Eσ(X≥α).

Consequently, we proved that

Eσ(X≥α) ⊆ X≥α × X≥α ⊆ Eσ(X≥α).

Other cases can be proved analogously.
2. Remembering that X<α = U − X≥α and observing that

D+
E(y, x) ⊆ X≥α ⇔ D+

E(y, x) ∩ (U − X≥α) = ∅ ⇔ D+
E(y, x) ∩ X<α = ∅

we get
Eσ(X≥α) = {(y, x) ∈ U × U : D+

E(y, x) ⊆ X≥α} =

= U × U − {(y, x) ∈ U × U : D+
E(y, x) ∩ X<α 	= ∅} =

= U × U − Eσ(X<α).

Analogous proof holds for Eσ(X≥α) = U × U − Eσ(X<α).
3. Let us observe that for any α, β, 0≤α≤β≤1

X≥α = {x ∈ U : µ(x) ≥ α} ⊇ {x ∈ U : µ(x) ≥ β} = X≥β.

Taking this into account, we get

{(y, x) ∈ U × U : D+
E(y, x) ⊆ X≥α} ⊆ {(y, x) ∈ U × U : D+

E(y, x) ⊆ X≥β}

i.e.
Eσ(X≥α) ⊆ Eσ(X≥β).

Moreover, we also obtain

{(y, x) ∈ U ×U : D−
E(y, x)∩X≥α 	= ∅} ⊆ {(y, x) ∈ U ×U : D+

E(y, x)∩X≥β 	= ∅}
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i.e.
Eσ(X≥α) ⊆ Eσ(X≥β).

Other cases can be proved analogously.
4. Let us observe that for the transitivity of DE, for any x,y,w,z ∈ U and for

any E ⊆ F

[(z, x)DE(y, x) and (y, x)DE(w, x) ⇒ (z, x)DE(w, x)]
⇔

[(z, x) ∈ D+
E(y, x) and (y, x)DE(w, x) ⇒ (z, x) ∈ D+

E(w, x)]
⇔

[(y, x)DE(w, x) ⇒ D+
E(y, x) ⊆ D+

E(w, x)].

From this we get that if (y, x)DE(w, x), then

D+
E(w, x) ⊆ X≥α ⇒ D+

E(y, x) ⊆ X≥α

i.e.

[(y, x)DE(w, x) and (w, x) ∈ Eσ(X≥α)] ⇒ (y, x) ∈ Eσ(X≥α).

Other cases can be proved analogously.
5. For any E1 ⊆ E2 ⊆ F and for any x, y, w, z ∈ U

(x, y)DE2(w, z) ⇒ (x, y)DE1(w, z)

and thus

D+
E1

(x, y) ⊇ D+
E2

(x, y) and D−
E1

(x, y) ⊇ D−
E2

(x, y).

From this we get that for all α, 0 ≤ α ≤ 1,

D+
E1

(y, x) ⊆ X≥α ⇒ D+
E2

(y, x) ⊆ X≥α

and

D−
E2

(y, x) ∩ X≥α 	= ∅ ⇒ D−
E1

(y, x) ⊆ X≥α 	= ∅,

which give, respectively,

E1σ(X≥α) ⊆ E2σ(X≥α) and E1σ(X≥α) ⊇ E2σ(X≥α).

Other cases can be proved analogously. �

3 Conclusions

We presented a model of case-based reasoning using Dominance-based Rough Set
Approach (DRSA). This model is based only on ordinal properties of similarity
relations and membership functions of fuzzy sets. Moreover, we did not impose
any specific aggregation functional based on specific axioms (see for example [4]),
but we considered a set of decision rules based on the very general monotonicity
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property of comprehensive similarity with respect to similarity of single features.
From this viewpoint our approach to case-based reasoning is as much “neutral”
and “objective” as possible and it is very little “invasive” comparing to many
other existing approaches. Future research on rough set approach to case-based
reasoning can be focused on

– comparison of our approach with other case-based reasoning methodologies
and

– the use of our approach for extension of other concepts, results and method-
ologies of rough set theory.

With respect to comparison of our approach with other case-based reasoning
methodologies, an important future research concerns axiomatic considerations.
As observed by Gilboa and Schmeidler [4] the interest of axiomatic consideration
can be summarized in the following points:

1) meta-scientific reasons: axiomatization provides a link between theoretical
terms and observable terms in order to rend the latter meaningful;

2) descriptive reasons: it supplies the basis for testing the empirical validity of
the theory because axioms permit to conceive experiments able to falsify the
theory rendering the theory falsifiable as requested by Popper [15];

3) normative reasons: a simple set of axioms is often more understandable than
the mathematical formulation of the theory and from this viewpoint can be
the basis for a discussion with a decision maker about acceptance or rejection
of the theory.

With respect to our approach to case-based reasoning, the axiomatic consid-
erations have the further merits of permitting a comparison with the axiom-
atization of Gilboa and Schmeidler [4] and of pointing out the fact that only
monotonic properties of similarity measures are considered.

The research field seems very promising also with respect to rough set theory
and we envisage interesting developments with respect to three following issues:

1) generalizations of other rough set fundamental concepts such as reducts and
core [13];

2) algebraic properties of the proposed rough approximations (for a general
introduction of algebraic properties of classical rough set approach see [14]);

3) application of the absolute and relative rough membership concept (see [8])
in a generalized variable precision model based on the proposed rough ap-
proximations in order to admit decision rules with a limited number of coun-
terexamples, which is particularly useful when dealing with large data sets.

Acknowledgements. The research of the first two authors has been supported
by the Italian Ministry of Education, University and Scientific Research (MIUR).
The third author wishes to acknowledge financial support from the Polish Min-
istry of Education and Science.



18 S. Greco, B. Matarazzo, and R. Slowinski

References

1. Dubois, D., Prade, H., Gradual inference rules in approximate reasoning, Informa-
tion Sciences, 61 (1992) 103-122

2. Dubois, D., Prade, H., Putting rough sets and fuzzy sets together, in: R. Slowinski
(ed.), Intelligent Decision Support: Handbook of Applications and Advances of the
Sets Theory, Kluwer, Dordrecht, 1992, pp. 203-232

3. Dubois, D., Prade, H., Esteva, F., Garcia, P., Godo, L., Lopez de Mantara, R.,
Fuzzy Set Modelling in Case-based Reasoning, International Journal of Intelligent
Systems, 13 (1998) 345-373

4. Gilboa, I., Schmeidler, D., A Theory of Case-Based Decisions, Cambridge Univer-
sity Press, 2001

5. Greco, S., Matarazzo, B., Slowinski R., Rough set theory for multicriteria decision
analysis, European Journal of Operational Research, 129 (2001) 1-47

6. Greco, S., Matarazzo, B., Slowinski R., Decision rule approach, in: J. Figueira, S.
Greco and M. Ehrgott (eds.) Multiple Criteria Decision Analysis: State of the Art
Surveys, Springer, Berlin, 2005, pp. 507-563

7. S. Greco, B. Matarazzo, R. Slowinski. Generalizing Rough Set Theory through
Dominance-based Rough Set Approach. In D. Slezak, J. Yao, J. Peters, W. Ziarko,
X. Hu (eds.), Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing,
LNAI 3642, Springer, Berlin, 2005, pp. 1-11

8. Greco, S., Matarazzo, B., Slowinski R., Rough membership and Bayesian confir-
mation measures for parametrized rough sets, In D. Slezak, J. Yao, J. Peters, W.
Ziarko, X. Hu (eds.), Rough Sets, Fuzzy Sets, Data Mining, and Granular Com-
puting, LNAI 3641, Springer, Berlin, 2005, pp. 314-324

9. Hume, D., An Enquiry concerning Human Understanding, Oxford, Clarendon
Press, 1748

10. Kolodner, J., Case-Based Reasoning, Morgan Kaufmann, San Mateo, CA, 1993
11. Leake, D. B., CBR in Context: The Present and Future, in: D. Leake (ed.) Case-

Based Reasoning: Experiences, Lessons, and Future Directions, AAAI Press/MIT
Press, Menlo Park, 1996, pp. 1-30

12. Pawlak, Z., Rough sets, International Journal of Computer and Information Sci-
ences, 11 (1982) 341-356

13. Pawlak, Z., Rough Sets, Kluwer, Dordrecht, 1991
14. Polkowski, L., Rough Sets: Mathematical Foundations, Physica-Verlag, 2002
15. Popper, K. R., The Logic of Scientific Discovery, Hutchinson and Co., London,

1958
16. Slowinski, R., Rough set processing of fuzzy information, in: T. Y. Lin, A. Wild-

berger (eds.), Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncer-
tainty Management, Knowledege Discovery, Simulation Councils, Inc., San Diego,
CA, 1995, pp. 142-145

17. Wittgenstein, L., Tractatus Logico-Philosophicus, Routledge and Kegan Paul, Lon-
don, 1922; fifth impression 1951

18. Zadeh, L., Fuzzy Set, Information and Control, 8 (1965) 338-353


	Introduction
	Rough Approximation for Case Based Reasoning
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




