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Abstract

Visibility determination, the process of deciding what surfaces can be seen
from a certain point, is one of the fundamental problems in computer graphics.
Its importance has long been recognized, and in network-based graphics, virtual
environments, shadow determination, global illumination, culling, and interactive
walkthroughs, it has become a critical issue. This course reviews fundamental is-
sues, current problems, and unresolved solutions, and presents an in-depth study of
the visibility algorithms developed in recent years. Its goal is to provide students
and graphics professionals (such as game developers) with effective techniques for

visibility culling.
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Visibility Problems for
Walkthrough Applications

Daniel Cohen-Or

Computer Science Department

Tel-Aviv University

http://www.math.tau.ac.il/~daniel/

Virtual Reality Applications

# The user "walks" interactively in a virtual
polygonal environment.
Examples: model of a city, museum, mall,
architectural design

The goal: to render an updated
image for each view point and for
each view direction in interactive
frame rate




The Model

# Composed of 3D
geometric objects - [
Lots of simple parts |

¢ Large and complex - f:;f{:-_'.-'
hundreds thousands
or even millions of

polygons

The Visibility Problem

¢ Selecting the (exact?)
set of polygons from the
model which are visible
from a given viewpoint




The Visibility Problem is important

+ Average number of
polygons, visible from a

viewpoint, is much smaller
than the model size

Indoor scene




Oil-tanker ship

Copying Machine




The Visibility Problem

IS hot easy...

A small change of the viewpoint might
causes large changes in the visibility




Far details Close details

Culling

Avoid processing polygons which
contribute nothing to the
rendered image

A primitive can be culled by:

View
Frustum
Culling

Back Face
Culling

Occlusion
Culling




Pass through
scene
primitives
entirely
inside

odify remaining
primitives so as to
pass through only
the portion inside
view frustum

Remove

entirely

primitives

outside the
field of view

Backface Culling
~

cull away polygons
whose front sides face
away from the viewer

<90




Occlusion Culling

# Cull the polygons occluded
by other objects in the
scene

+ Very effective in densely
occluded scenes

Global: involves
interrelation between the

polygons

Visibility Culling

View-frustum culling

Back- face culling Q

O : Occlusion culling




Hidden Surface Removal

Output

Polygon; over'l.ap, so sqmehow, we must sensitive
determine which portion of each | ith
polygon to draw (is visible to the eye) algorithms

Exact Visibility

Includes all the polygons which are at
least partially visible and only these
polygons. D
Approximate Visibility
Includes most of the visible polygons plus
maybe some hidden ones.
@




Conservative Visibility

Includes at least all the visible objects

plus maybe some additional invisible
objects

O

May classify invisible object as visible

but may never classify visible object as
invisible

Point Visibility

From this point only the red objects are

visible

23




Compute the set of all
polygons visible from
every possible
viewpoint from a region
(view-cell)

: = Cell Visibility

/" From this cell the red objects are visible

as well as orange ones
24

The Aspect Graph

Isomorphic graphs

25




The Aspect Graph

¢ ISG — Image Structure graph
The planner graph, defined by the outlines
of an image, created by projection of a
polyhedral object, in a certain view direction

e

The Aspect Graph (Cont.)

& Aspect
Two different view directions of an object
have the same aspect iff the corresponding
Image Structure graphs are isomorphic

e




The Aspect Graph (Cont.)

¢ VSP — Visibility Space Partition
+ Partitioning the viewspace intfo maximal connected

regions in which the viewpoints have the same view
or aspect

¢ Visual Event
A boundary of a VSP region called a VE for it marks a
change in visibility

The Aspect Graph (Cont.)

¢ Aspect Graph
o A vertex for each region of the VSP
¢ An edge connecting adjacent regions

Regions of the VSP are not maximal but maximal connected regions.




Aspect graph (Cont.)

2 polygons - 12 aspect regions

Aspect graph (Cont.)

3 polygons - "many"” aspect regions




Different aspect regions can have
equal sets of visible polygons

Supporting & Separating Planes

S~ 1./. Separating -
Zf\\\': _ _--"" Supporting
3 “\A\Z:w:" /T
i 2= RISV A Supporting
2s..-7 7% el :
-7 et “~~._ Separating

T is not occluded in region 1 _
T is partially occluded in region 2 _

T is completely occluded in region 3




Visibility from the light source

The Art Gallery Problem

See: ftp://ftp.math.tau.ac.il/pub/~daniel/pg99.pdf




Classification of visibility
algorithms

‘Exact vs. Approximated
-Conservative vs. Exact
‘Precomputed vs. Online

‘Point vs. Region

‘Image space vs. Object space
-Software vs. Hardware
-Dynamic vs. Static scenes

Visibility is important and
iIntferesting

*Only a small fraction of the scene
is visible from a given point.

-Small changes in the view point can
cause large changes in the visibility




Thanks for Listening
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% From-region

Visibility

Daniel Cohen-Or
Tel-Aviv University

GTEC20001, Hong Kong

Point Visibility

From this point only the red objects
are visible

SIGGRAPH 2001




polygons visible
from every possible
viewpoint from a
region (view-cell)

Fr ﬁion Visibility
% Compute the set of all

7 From this cell the red objects are

visible as well as orange ones
SIGGRAPH 2001

Web-based system

SIGGRAPH 2001




Web-based client-server
system

A huge 3D scene

T

SIGGRAPH 2001

!

A walkthrough frame

i | ¥ B H

Latency!
Latency!
Latency!
Y 4
.
viewcell

SIGGRAPH 2001
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p A
ﬁﬂ Qf:f

Is the green
building visible
from some point
in the viewcell?

viewncell
- o
S _F Sampling?
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ﬁ ﬁ PVS - potentially

visible set




Cost effective analysis
of the view cell size (Cohen-Or et al, EG98)

Cell size:1.0x1.0 Cell size:0.8x0.8
.] .
Cell size:0.5x0.5 Cell size:0.2x0.2

- = Y

Larger cell - no strong
AL occluders
o

Tr >
- T

"N 4

SIGGRAPH 2001
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Individual negative
umbrae are not
effective...

SIGGRAPH 2001

Often the union of the umbrae of the individual
objects is insignificant, while their aggregate
umbra is large and can be represented by a single
virtual occluder

"t‘w" N

nt
N

Lo
virtual r

uctlwder

SIGGRAPH 2001




Occluder fusion

Occluder

Fused umbra

View
cell

Single Occluder umbra
SIGGRAPH 2001

Virtual Occluders

‘ a positive umbra of a

‘. cluster of occluders.

SIGGRAPH 2001




None of the
individual umbrae
(with respect to the
yellow viewcell) of
object 1,2 and 3
intersect.

How to aggregate
their occlusion into
the large umbra (in
light blue) ?

SIGGRAPH 2001

Occluder Fusion

Fredo Durand et. al. SIGGRAPH 2000
Gernot Schaufler et. al. SIGGRAPH 2000
Peter Wonka et. al. EGRW' 2000

Vladlen Koltun et. al. EGRW'2000

SIGGRAPH 2001
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Virtual Occluders:
A from-region visibility technique

Vladlen Koltun
Daniel Cohen-Or
Yiorgos Chrysanthou (UCL)

EGRW 2000

SIGGRAPH 2001

Virtual Occluders -
Aggregate occlusion

W4

Cluster

SIGGRAPH 2001
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The effectiveness of Virtual Occluders

The London Model from UCL

12



SIGGRAPH 2001
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How to compute the virtual occluders

vy

=
w»

SIGGRAPH 2001
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How to compute the virtual occluders

SIGGRAPH 2001

How to compute the virtual occluders

SIGGRAPH 2001
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How to compute the virtual occluders

SIGGRAPH 2001

How to compute the virtual occluders

Select a subset of
the best virtual occluders

SIGGRAPH 2001
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Although none of the
individual umbrae
intersect, the virtual
occluder aggregates
their occlusion into
the large umbra.

SIGGRAPH 2001

The Space Problem

‘Precomputing the visibility sets requires
a huge storage space

*This can be alleviated by using
larger cells (negative umbrae)

*The PVS can be represented by
an intermediate "light" set
of Virtual Occluders.

SIGGRAPH 2001
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Advantages

‘Larger umbrae - more occlusion
‘Faster object-space from-region occlusion

‘Lighter (intermediate) representation of the
the PVS

SIGGRAPH 2001

Visibility Streaming

Building Virtual Occluders I

Computing the potential visibility set
Stream

Rendering the potential visibility set l

SIGGRAPH 2001
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- Koltun et.al., EGWR 2000
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A Survey of Visibility for Walkthrough Applications

DanielCohen-Of*

1Tel Aviv University

Abstract

The last few yearshave withessedremendougrowth in the
compleity of computergraphicsmodelsaswell asnetwork-

basedcomputing. Although significant progresshas been
madein the handling of specific types of large polygonal
datasetdi.e., architecturaimodels)on single graphicswork-

stationspnly recentlyhave researcherstartedo turntheir at-

tentionto moregenerabkolutionswhichnow includenetwork-

basedgraphicsand virtual environments. The situation is

likely to worsenin the future since,dueto technologiesuch
as 3D scanning graphicalmodelsare becomingincreasingly
complex. One of the most effective ways of managingthe
compleity of virtual environmentsis throughthe application
of smartvisibility methods.

Visibility determinationthe processof decidingwhat sur
facescanbeseerfrom acertainpoint, is oneof thefundamen-
tal problemsin computergraphics.It is requirednot only for
the correctdisplay of imagesbut alsofor suchdiverseappli-
cationsasshada determinationglobalillumination, culling
andinteractive walkthrough. Theimportanceof visibility has
long beenrecognized,and much researchhas beendonein
this areain the last threedecades.The proliferationof solu-
tions, however, hasmadeit difficult for the non-expertto deal
with this effectively. Meanwhile,in network-basedgraphics
andvirtual ernvironments,visibility hasbecomea critical is-
sue,presentinghewn problemsthatneedto be addressed.

In this surey we review the fundamentalssuesn visibil-
ity andconductan overvien of thework performedin recent
years.

1 Introduction

Thetermyvisibility is very broadandhasmary meaningsand
applicationsin variousfields of computerscience.Here,we
focuson visibility algorithmsin supportof virtual reality ap-
plications. For a more generalsuney see[23] (alsoappears
in [14]). For thoseinterestedin the computationalgeome-
try literature,see[21, 20, 22]. Zhangs thesis[80] contains
a shortsuney of computergraphicsvisibility work. Moller
andHaines[50, Chapter7] cover several aspectof visibility
culling.

We deal primarily with algorithmsrelatedto walkthrough
applicationswherewe assumehata sceneconsistsof a very
large numberof primitives. Moreover, we assuméahatmodels

*School of Computer Science, Tel Aviv University Tel Aviv
69978, Israel,daniel@math.tau.ac.il

TDepartmentof Computer Science, University College Lon-
don, Gower Street, London WC1E 6BT, United Kingdom,
y.chrysanthou@cs.ucl.ac.uk

*AT&T Labs-Research180 Park Ave., PO Box 971, Florham
Park,NJ07932;csilva@research.att.cam

YiorgosChrysanthoé'

2 University College London

ClaudioT. Silva>*
SAT&T Labs-Research

keepgetting larger and more comple< and that userappetite
will never besatisfiedvith thecomputationapower available.
Forvery complex modelswe canusuallydobetterwith asmart
renderingalgorithmthanwith fastemrmachines.

Oneof the mostinterestingvisibility problemsin this con-
text is the oneof selectinga setof polygonsfrom the model
thatis visible from a given viewpoint. More formally (after
[21]), let the scene,S, be composedbf modelingprimitives
(e.q., triangles)$ = {%, P4, ..., Bn}, andaviewing frustum
defininganeye position,a view direction,anda field of view.
The visibility problemencompassefinding the visible frag-
mentswithin thescenethatis, connectedo the eyepointby a
line sgmentthatmeetsthe closureof no otherprimitive. One
of the obstacledo solving the visibility problemis its com-
plexity. For a scenewith n= O(|S|) primitives,the complex-
ity of the setof visible fragmentsmight be ashigh asO(n?)
(i.e.,quadratidn thenumberof primitivesin theinput).

What malkes visibility an interestingproblemis that for
large scenesthe numberof visible fragmentss usuallymuch
smallerthanthetotal sizeof theinput. For example,in a typi-
cal urbanscenespnecanseeonly avery smallportionof the
entiremodel,regardles®f oneslocation. Suchscenesresaid
to bedenselyoccludedin thesensehatfrom ary givenview-
point, only a smallfraction of the sceneis visible [15]. Other
examplesinclude indoor sceneswherethe walls of a room
occludemostof the sceneandin fact,from ary viewpointin-
sidethe room, one may only seethe detailsof that room or
thosevisible throughtheportals seeFigure 1. A differentex-
ampleis a copying machine,shavn in Figure 2, wherefrom
the outsideone canonly seeits external parts. Although in-
tuitive, this informationis not available as part of the model
representatiorandonly a non-trivial algorithmcandetermine
it automatically Notethatoneof its doorsmightbeopen.

Visibility is notaneasyproblem sinceasmallchangen the
viewpoint might causdargechangesn thevisibility. It means
that solving the problemat one point doesnot help muchin
solving it at a nearbypoint. An exampleof this canbe seen
in Figure 3. The aspectgraph describedn Section 2, and
the visibility complex (describedin [23]) shedslight on the
complex characteristicsf visibility.

Therestof this paperis organizedasfollows. Wefirst give
a shortdescriptionof the aspecigraph,whichis a fundamen-
tal conceptin visibility, in Section2. Then,we briefly review
some3D graphicshardware featureswhich areimportantfor
visibility culling (Section 4). Next, we presenta taxonomy
of visibility culling algorithmsin Section 5. This introduc-
tory partis thenfollowed by a more detaileddescriptionand
analysisof recentvisibility-culling algorithms.



(@) (b)

Figure1l: With indoorscene®ftenonly avery small partof the geometryis visible from ary givenviewpoint. Courtesyof Craig
GotsmanTechnion.

Figure2: A copying machinejonly afractionof the geometryis visible from the outside.Courtesyof Craig GotsmanTechnion.

@) (b)

Figure3: A smallchangen theviewing positioncancausdargechangesn thevisibility.
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Figure4: Two differentview directionsof an objecthave the
sameaspectf andonly if the correspondindmageStructure
Graphsareisomorphic. Note that (a) and (b) have the same
aspectwhichis differentto (c).

2 The aspect graph

When dealingwith visibility, it is usefulto consideran im-
portanttheoreticakonceptalledtheaspecgraph[26]. Letus
look atthetwo isomorphicgraphsn Figure 4. They areapro-
jectionof a 3D object;however, we treatthemas2D entities.
First,let usdefinethelmage Structue Graph(ISG) asaplanar
graph,definedby the outlinesof animagecreatedoy project-
ing a polyhedralobjectin a certainview direction. Thentwo
differentview directionsof an objecthave the sameaspeciif
andonly if their correspondingSGsareisomorphic.Now we
can partition the viewspaceinto maximal connectedregions
in which the viewpoints have the sameview or aspect. This
partitionis the VSP - the visibility spacepartition, wherethe
boundaryof aVSPregionis calledavisualeventasit marksa
changan visibility (seeFigure 5).

The term, aspectgraph,refersto the graphcreatedby as-
signinga vertex to eachregion of the VSR, wherethe edges
connectadjacentegions.

Figure5: 2 polygons- 12 aspectegions.

Figures5 and 6 shav a visibility spacepartition in 2D,
whichis createdoy justtwo andthreeseggments(the 2D coun-
terpartsof polygons),respectiely. Onecanobsere thatthe
numberof aspectregionsis alreadylarge, andin fact,canbe
shavn to grow quiterapidly.

Plantingaand Dyer [57] discussaspectgraphsand their
worst-casecompleity, including algorithms for efficiently
computingaspectgraphs. The worst compleity of aspect
graphsis quite high, andin threedimensionscanbe aslarge
asO(ng). For atypical numberof sggments(saytensof thou-
sands)jn termsof spaceandtime it turnsoutthatcomputing
the aspectgraphis computationallyimpractical. (Plantinga

Figure6: 3 polygons- “many” aspectegions.

[58] proposesn early conserative visibility algorithmbased
on his aspecgraphwork.)

Figure7: Differentaspectegionscanhave equalsetsof visi-
ble polygons.

However, as canbe seenin Figure 7, differentaspectre-
gionscanhave equalsetsof visible polygons.This meanghat
therearefar fewer differentregionsof differentvisibility sets
thandifferentaspects.

Looking onceagainat the aspectpartition of the two seg-
mentsin Figure 8, we cantreatoneasan occluderandthe
otherasthe occludeedefiningtheir endpointconnectindines
assupportinglinesandsepaating lines Thesedlinespartition
the spacento threeregions: (i) theregion from which no por-
tion of theoccludess visible, (ii) theregionfrom which only
a portion of the occludeeis visible, and (iii) the region from
which the occluderdoesnot occludeary partof the occludee
[17].

1 A - occluder «
T - occludee qua@“
3 \A

2
1

Supporting

T
Supporting

Seﬁa’ar,h
T is not occluded from region 1 9
T is partially occluded from region 2
T is fully occluded from region 3

Figure8: Supportingandseparatinglanes.

The 3D visibility comple [23] is anotherway of describ-
ing andstudyingthe visibility of 3D spaceby a dual spaceof
3D lines,in which all thevisibility eventsaredescribedThis
structureis global, spatially coherentand complete,sinceit
encodesll thevisibility relationsin 3D. It allows efficientvis-
ibility computationssuchasview extraction,computationof
theaspecgraph,discontinuitymeshingandform-factorcom-
putation.



3 Hidden-surface removal methods

As mentionedn theintroduction,oneof the fundamentais-
ibility problemsin computergraphicsis the determinatiorof
thevisible partsof the scenethe so-calledhidden-surfacee-
moval (HSR)(alsoknown asvisible-surfcedeterminationjl-
gorithms.Assumingthescends composedf andrepresented
by triangles thesealgorithmsnot only definethe setof visible
triangles but alsotheexactportionof eachvisible trianglethat
hasto bedrawn into theimage.

An early classificationwas proposedby Sutherlandet al.
[69]. Laterit wasreviewed in [28] andalsoin the compu-
tational geometryliterature[22]. The HSR methodscanbe
broadlyclassifiednto threegroups:objectprecisionmethods,
image precisionmethodsand hybrid methods. Objectpreci-
sion methodscompareobjectsto decideexactly which parts
of eachoneis visible in theimage. Oneof the first examples
of this classwaspresentedby Weiler andAtherton[74]. They
useda generalclipping methodto partition polygonswhich
were further away from the viewpoint using the boundaries
of thosecloser discardingthe regionswherethey overlapped.
Objectprecisionalgorithmscanbeconsideredsacontinuous
solution(to the extentthatmachineprecisionallows) but often
suffer from scalabilityproblemsasthesizeof theervironment
grows, andaredifficult to implementrobustly.

Image precisionalgorithmson the other hand operateon
the discreterepresentatiomf the image. The overall ideais
to producea solution at the resolutionof the requiredimage
by determiningthe visible objectat eachpixel. Ray castingis
oneexampleof thisclasq3]. Otherexamplesarethescan-line
methodd9, 73], variationsof which arepopularin gamesand
flight simulators,andthe z-buffer [10] whoseimplementation
in hardware hasmadeit the de-facto standardHSR method
today

Finally, in thethird class,arehybrid methodghatcombine
objectandimageprecisionoperationsOf mostinterestarethe
so-calledlist-priority algorithms. Their underlyingideais to
quickly determinea partial orderlist of all polygonssuchthat
for ary givenpairp, q, if p canoccludesomepartof g, thenp
comesearlierin thelist. In otherwords,if q is afterp in the
list, g cannotoccludep. Thenduring rendering,the ordered
polygonsaredravn back-to-frontthusoccludingpolygonsare
correctlydrawvn into theimage,covering only thosepartsthat
areoccluded.Someof the earlymethodswerethoseof Schu-
macler etal. [61] andNewell et al. [54] andlater Fuchset
al’s BSPtrees[29]. Oneof the additionalfeaturesof thelist-
priority techniquess thatthey areableto correctlyhandlethe
renderingof transparenbbjects. Although the methodswere
originally designedor depthorderingof individual polygons,
someof theirideashave beenusedin occlusionmethodgi.e.,
[34]).

4 3D graphics hardware

In this section,we briefly review somecommonfeaturesof
modern3D graphicshardware which are helpful in visibility
calculations.

We do not cover theimportanttopic of efficientuseof spe-
cific graphicshardware,in particular the optimizationof spe-
cific applicationsto specifichardware. A goodstartingpoint
is the text by Moeller andHaines[50]. Theinterestedeader
shouldalso consultthe OpenGLtutorialsgiven every yearat
Siggraph.

Hardware featuresfor specific visibility calculationsare
usuallybare-bonesyecausef theneedfor graphicshardware
to bestreamlinedandvery simple.Mostoften,by carefulanal-
ysisof thehardware,it is possibleto combinea softwaresolu-
tion which exploits the basichardwarefunctionality, but atthe
sametime alsoimprovesit considerably

4.1 Graphics pipeline

Thegraphicsipelineis thetermusedfor the patha particular
primitive takesin thegraphicshardwarefrom thetime theuser
definesit in 3D to thetime it actuallycontritutesto the color
of aparticularpixel onthescreen.At avery high level, given
a primitive, it mustundego several simple tasksbeforeit is
dravn onthescreen.

Often, suchasin the OpenGLgraphicspipeline,a triangle
primitive is first transformedrom its local coordinateframe
to a world coordinateframe; thenit is transformedagainto
a normalizedcoordinateframe, whereit is clippedto fit the
view volume. At this point, a division by w is performedto
obtain non-homogeneousormalizedcoordinateswhich are
thennormalizedagainto bein screen-spaceDependingon a
setof userdefinedstateflags,thehardwarecanrejecttheprim-
itive basedamongotherthings)onthedirectionof its normal.
This is calledback-faiceculling, andis a very primitive form
of visibility culling.

Oncea primitive haspassedll thesephasestherasteriza-
tion phasecanstart. It is herethatthe colors(andotherprop-
erties)of eachpixel are computed. During rasterizationwe
usuallyreferto the primitivesas“fragments”. Moderngraph-
icsarchitecturehave several perfragmentoperationghatcan
be performedon eachfragmentasthey aregenerated.

As fragmentsare computed, they passthrough further
processingand the hardware will incrementallyfill several
buffersin orderto computethe image. The actualimagewe
seeonthescreeris only oneof thesebuffers: the color buffer.
Other buffers include the stencil buffer and the depth (or z-
) buffer. Thereare other buffers, suchas the accumulation
buffer, etc.,but we do notusethemin therestof this paper In
OpenGL,updatego the differentbuffers canbe toggledby a
setof functioncalls,e.g. glEnable(GL _DEPTHTEST).

Oneview of the OpenGLbuffersis asa simple processor
with little memory(justafew bytes),andalimited instruction
set.Recentlytechniquedor performinggeneraktomputations
using the OpenGL pipeline have beenproposed. Two such
examplesarePeerg etal. [56] andTrendallandStevart[71].

4.2 Stencil buffer

The stencilbuffer is composedf a small setof bits (usually
morethan4) that can be usedto control which areasof the
otherbuffers, )textite.g. color buffer), arecurrentlyactive for
drawing. A commonuseof thestencilbufferis to drav apiece
of staticgeometryonce(the cockpitof anairplane),andthen
maskthe areasothatno furtherchangesanbe madeto those
pixels.

But the stencilbuffer is actuallymuchmoreflexible, since
it is possibleto changethe value of the pixels on the stencil
buffer dependingon the outcomeof the testperformed. For
instancea very usefulcomputatiorthatuseshestencilbuffer
is to computethe“depth-compleity” of ascene For this,one
cansimply programthe stencilbuffer asfollows:

glStencilFunc(GL_ALWAYS, "0, "0);



(@)
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Figure9: Depthcompleity of the sceneasrenderedy (a) view-frustumculling, (b) a conserative occlusionculling technique.
Thedepthcomplity rangesfrom light green(low) to brightred (high). If the occlusion-cullingalgorithmwere“exact”, (b) would

be completelygreen.

gIStencilOp(GL_KEEP, ~ GL_INCR, GL_INCRY);

whichessentiallyneanghestencilbuffer will getincremented
everytime apixel is projectedontoit. Figure 9 shavs avisual
representatiomf this. The stencilbuffer is usefulin several
typesof visibility computationssuchasreal-timeCSGcalcu-
lations[31], occludercalculationd25], andsoon.

4.3 Z-buffer

The z-buffer is similar to the stencilbuffer, but senesa more
intuitive purpose.Basically the z-buffer savesits “depth” at
eachpixel. Theideais thatif anew primitive is obscuredy a
previously dravn primitive, the z-buffer canbe usedto reject
theupdate Thez-huffer consistsof anumberof bits perpixel,
usually24 bitsin mostcurrentarchitectures.

The z-huffer provides a brute-forceapproachto the prob-
lem of computingthe visible surfaces. Justrenderingeach
primitive, andthe z-huffer will take careof notdrawing in the
color buffer of thoseprimitivesthat are not visible. The z-
buffer providesa greatfunctionality since(onfully hardware-
acceleratedrchitecturesit is ableto solve thevisibility prob-
lem (upto screen-spacesolution)of asetof primitivesin the
time it would take to scan-cowmert themall.

As avisibility algorithm,the z-buffer hasa few dravbacks.
Onedrawbackis thateachpixel in the z-buffer is touchedpo-
tentially) asoftenasits depthcompleity, althoughonesimply
needsthe top surface of eachpixel. Becauseof this poten-
tially excessve overdraving alot of computatiorandmemory
bandwidthis wasted.A visibility pre-filteringtechniquesuch
asback-faceculling, canbe usedto improve the speedof ren-
deringwith a z-buffer.

There have beenseveral proposalsfor improving the z-
buffer, suchasthe hierarchicalz-buffer [35] (seeSection7.1
andrelatedtechniques)A simple,yeteffective hardwaretech-
niguefor improving the performanceof the visibility compu-
tationswith a z-buffer hasbeenproposeddy Scottetal. [62],
seeSection?.5.

5 Visibility culling algorithms

Visibility algorithmshave recentlyregainedattentionin com-
putergraphicsasatool for handlinglargeandcomple scenes,
which consistof millions of polygons.In the early 1970shid-
densurfaceremoval (HSR) algorithms(seeSection3) were
developedto solve the fundamentalproblemof determining
the visible portionsof the polygonsin the image. In light of
the Z-buffer beingwidely available,andexactvisibility com-
putationsbeingpotentiallytoo costly, oneideais to usethe Z-
buffer asafilter, anddesignalgorithmsthatlower theamount
of overdrav by computinganapproximatiorof thevisibleset
In more preciseterms,definethe visible set?’ c S to bethe
subsebf primitiveswhich contrikute to at leastone pixel of
thescreen.

In computemgraphicsyisibility-culling researchmainly fo-
cuseson algorithmsfor computing(hopefully tight) estima-
tionsof ¥/, thenusingthe Z-buffer to obtaincorrectimages.

5.1 View frustum and back-face culling

The simplestexamplesof visibility culling algorithms are
back-ficeand view-frustum culling [28]. Back-faceculling
algorithmsavoid renderinggeometrythatfacesaway from the
viewer, while viewing-frustumculling algorithmsavoid ren-
dering geometrythat is outsidethe viewing frustum. These
culling operationscan be left to the graphicshardware with-
out affecting the final image. However, thatcomesat a great
costsincethe polygonswill be processedhroughmostof the
pipelineonly to berejectedust beforescancorverting.
Back-facing polygonscan be identified with a simple dot
product,sincetheir normal points away from the view-point.
On averagewe expect half the scenepolygonsto be back-
facing, so ideally we would like to avoid processingall of
them. Kumaret al. [45] presenta methodwhich hasa sub-
linear numberof polygons. The input modelis partitioned
into a hierarchyof clustersbasedn bothsimilarity of orienta-
tion andphysicalproximity of the polygons.Theviewspaceds
alsopartitionedwith respecto the clusters At eachframethe
viewpoint positionis hierarchicallycomparedwith the clus-
tersin orderto quickly rejectthebulk of theback-fcingpoly-
gons. Frame-to-framecoherencés further usedto accelerate
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Figure 10: Threetypesof visibility culling techniques: (i)
view frustumculling, (ii) back-ficeculling and(iii) occlusion
culling.

theprocess.

View frustumculling is usuallyperformedusingeitherahi-
erarchyof boundingvolumesor a spatialdatastructure such
asa KD-tree, octreeor BSPtree. This is hierarchicallycom-
paredwith theview frustumto quickly rejectpartsof thescene
thatareclearlyoutside[13].

Slateret al. [65] presentan alternatve approachwhich
malkes heary useof frame-to-framecoherence.lt relies on
the fact that the setsof objectsthat are completelyoutside,
completelyinside, or intersectthe boundaryof the view vol-
ume, changeslowly over time. This coherencds exploited
to develop analgorithmthatquickly identifiesthesethreesets
of objects,and partitionsthosecompletelyoutsideinto sub-
setswhich areprobabilisticallysampledaccordingo their dis-
tancefrom theview volume.A statisticalobjectrepresentation
schemes usedto classifyobjectsinto thevarioussets.Theal-
gorithmis implementedn the contect of aBSPtree.

Very recently Assarssorand Moller [4] proposeda new
view-frustum culling technique. Their work is basedon
shrinking the view frustum to enable the use of point-
containmentjueriesto efficiently acceptor rejectprimitives.

5.2 Occlusion culling

Eventhoughbothof theabove techniquesrevery effective in
culling geometry more comple techniquesanleadto sub-
stantialimprovementsin renderingtime. Theterm Occlusion
culling is usedfor visibility techniqueghat avoid rendering
primitivesthat are occludedby someotherpart of the scene.
Thistechniques globalasit involvesinterrelationshipamong
polygonsandis thus far more complex than local visibility
techniquesThethreekindsof visibility culling canbeseenn
Figure 10.

It is importantto note the differencesbetweenocclusion
culling and HSR. HSR algorithmsdeterminewhich portions
of thesceneneedto be dravn onthescreenThesealgorithms
eventuallyremove the occludedparts,but in doingso, areex-
pensve, sincethey usuallyhave to touchall the primitivesin
S (andactuallyhave a runningtime thatis superlineain the
sizeof §). Occlusion-cullingtechniquesare supposedo be
outputsensitive thatis, their runningtime shouldbe propor
tional to the size of 7/, which for mostcomplex scenesijs a
smallsubset.

Let us definethe following notationfor a sceneconsisting
of polygons.

e The exact visibility set 7/, is the set of all polygons
which areat leastpartially visible, andonly thesepoly-
gons.

e The appoximatevisibility set 4, is a setthatincludes
most of the visible polygonsplus maybesomehidden
ones.

e Theconservativevisibility set C, is thesetthatincludes
atleastall thevisible objectsplusmaybesomeadditional
invisible objects. It may classify an invisible objectas
visible, but may never classifya visible objectasinvisi-
ble.

5.3 Conservative visibility

A veryimportantconcepis theideaof conservativevisibility.
Theideais to designefficient output-sensitie algorithmsfor
computingC, thento usea standardHSR as a back-endfor
computingthe correctimage.

Thesemethodsyield a potentialvisibility set(PVS)which
includesall the visible polygons,plus a small numberof oc-
cluded polygons. Then the HSR processeghe (hopefully
small) excessof polygonsincludedin the PVS. Conserative
occlusionculling techniqueshave the potentialto be signifi-
cantly more efficient thanthe HSR algorithms. Conserative
culling algorithmscanalso be integratedinto the HSR algo-
rithm, aimingtowardsan outputsensitve algorithm[35].

To reducethe computationakost, the conserative occlu-
sion culling algorithmsusually usea hierarchicaldatastruc-
turewherethe scends traversedtop-davn andtestedfor oc-
clusionagainsta smallnumberof selectedccluderq18, 39].
In thesealgorithmsthe selectionof the candidateoccluderss
donebeforetheonlinevisibility calculationsTheefficiengy of
thesemethodss directly dependentn the numberof occlud-
ersandtheir effectiveness.Sincethe occlusionis testedfrom
apoint, thesealgorithmsareappliedin eachframeduringthe
interactive walkthrough.

5.4 A taxonomy of occlusion culling tech-
nigques

In orderto roughly classifythe differentvisibility-culling al-
gorithms,we will employ aloosely-definedaxonomy:

e Conservativess. Appoximate

Few visibility-culling algorithmsattemptto find the ex-
actvisible set,sincethey aremostly usedasa front-end
for anotherhidden-surdceremoval algorithm, most of-
ten the Z-buffer. Most techniquedescribedn this pa-
per areconserative, thatis, they overestimatethe visi-
ble set. Only afew approximatethe visible set,but are
not guaranteedf finding all the visible triangles,e.qg.,
PLP[43, 42] (thereis alsoa conserative versionof PLP
which is describedn [40]). Otherscanbe tunedto be
conserative or approximatedependingpn thetime con-
straintandavailableresourcesln anattemptto acceler
atetheculling stepthey mightactuallymisssmallvisible
primitives,suchasHOM [81, 8], andalsothe OpenGL
assisteacclusionculling of Bartzetal. [6, 5].

e Pointvs. Region.

The major differencehereis whetherthe particularal-
gorithmperformscomputationshatdependnthe exact
locationof theviewpoint, or performsbulk computations
which canbere-usedarywherein aregion of space.



Olwviously, from-region algorithmsperformtheir visibil-

ity computationn a region of spacethatis, while the
viewer is insidethatregion, thesealgorithmstendto ren-
derthe samegeometry The strengthof the from-region
visibility setis thatit is valid for anumberof framesand
thusits costis amortizedover a numberof frames(see
Section8).

Most other algorithms attemptto perform visible-set
computationghat dependon the exact location of the
viewpoint.

Precomputeds. Online

Most techniquesneedsomeform of preprocessinghut
whatwe meanby “precomputed’arethe algorithmsthat
actuallystorevisibility computationsspartof their pre-
processing.

Almostall of thefrom-region algorithmsshouldbeclas-
sifiedas“precomputed” A notableexceptionis [44].

In generalthe otheralgorithmsdescribeddo their visi-
bility computation‘online”, althoughmuch of the pre-
processingnight have beenperformedbefore. For in-
stance,HOM [81, 80], DDO [7], Hudsonet al. [39],
Coog and Teller [18], perform someform of occluder
selectionwhich might take a considerableamountof
time (in theorderof hoursof preprocessinghut in gen-
eralhave to save verylittle informationto beusedduring
rendering.

Image spacevs. Objectspace

Almostall of thealgorithmsusesomeform of hierarchi-
cal datastructure. We classify algorithmsas operating
in “image-space”versus“object-space”’dependingon
wheretheactualvisibility determinatioris performed.

For instance HOM [81, 80] andHZB [35, 36] perform

the actualocclusiondeterminatiorin image-spacée.qg.,
in HOM, theocclusionmapsarecomparedvith a2D im-

ageprojectionandnot the 3D original representation.).

Othertechniqueghatexploreimage-spacare DDO [7]

(which also exploresa form of object-spacecclusion-
culling by performinga view-dependenbccludergener

ation)and[6, 5].

Most othertechniquesvork primarily in object-space.

Softwae vs. Hardware.

Several of thetechnigueslescribedcantake further (be-
sidesthe final z-buffer pass)adwantageof hardware as-
sistanceeitherfor its precomputatiomr duringtheactual
rendering.

For instancethe from-region techniqueof Durandet al.

[25] makes non-trivial use of the stencil buffer; HOM

[81, 8Q] usesthetexture hardwareto generatenipmaps;
[6, 5] usesthe OpenGLselectiormode;andMeissneret
al. [49] usesthe HP occlusion-cullingtest.

The HP occlution-cullingtest[62] is not actuallyanal-
gorithmonits own, but abuilding block for furtheralgo-
rithms. It is alsoexploited (andexpanded)n [40].

Dynamicvs. Staticscenes.

A few of thealgorithmsin theliteratureareableto han-
dle dynamicscenessuchas[68] andHOM [81].

One of the main difficulties is handlingchangedo ob-
ject hierarchieghat mostvisibility algorithmsuse. The
more preprocessingised,the harderit is to extendthe
algorithmto handledynamicscenes.

e Individual vs. Fusedoccludes.

Given three primitives, A, B, and C, it might hap-
penthat neitherA nor B occludeC, but togetherthey
do occlude C. Some occlusion-cullingalgorithms are
able to perform occluderfusion while othersare only
ableto exploit single primitive occlusion. citeCohen-
0Or:1998:C\,Coorg:1997:ROC,ct-tccv-96 give exam-
ples of techniquesthat use a single (fixed numberof)
occluder(s)Paperq79, 35,42] supportoccluderfusion.

5.5 Related problems

Thereare mary otherinterestingvisibility problems,for in-
stance:

6

— Shadow algorithms. The partsthatarenot visible from
thelight sourcearein the shadav. Soocclusionculling
and shadwv algorithmshave a lot in commonand in
mary waysareconceptuallysimilar [78, 12]. It is inter
estingto note that conserative occlusionculling tech-
nigueshave not beenas widely usedin shadw algo-
rithms.

— The Art Gallery Problem. Oneclassicvisibility prob-
lemis thatof positioninga minimal numberof guardsin
a gallery sothatthey cover all the walls of the gallery
This classof problemhasbeenextensiely studiedin
computationalgeometry see, for instance, O’'Rourke
[55].

In this contet, “cover” can have a different meaning.
Much is known aboutthis problemin 2D, but in 3D, it

getsmuchharder Fleishmaretal. [27] proposesanal-

gorithm for automaticallyfinding a setof posingcam-
eraswhich cover a 3D ervironment. Stuerzlinger{66]

proposes techniquefor a similar problem.

— Radiosity solutions. Thisis amuchmoredifficult prob-
lem to computeaccurately In radiosity enegy needs
to be transferedfrom eachsurfaceto every other visi-
ble surfacein the ervironment[32, 37]. This requires
a from-region visibility determinationto be appliedat
eachsurfaceor patch. Exactsolutionsare not practical,
andtechniquesuchasclustering[64] areoftenused.

Object-space culling algorithms

Work on object-spac@cclusionculling datesbackat leastto
the work of Teller and Sequin[70] and Airey et al. [1] on
indoorvisibility.

Thework of TellerandSéquinis mostlybasecdn 2D, since

it dealswith computingpotentially visible setsfor cells in
anarchitecturakrvironment. Their algorithmfirst subdvides
spacédnto cellsusinga 2D BSPtree. Thenit usesthe connec-
tivity betweenthe cells, and computesvhetherstraightlines
canhit asetof “portals” (mostlydoors)in themodel. They el-
egantly modelthe stabbingproblemasa linear programming
problem,andin eachcell save thecollectionof potentiallyvis-
ible cells. Figure 11shavs oneof theresultspresentedh their



Figure 11: Resultsfrom [70] shaving the potentiallyvisible
setfrom agivencell. Courtesyof SethTeller, UC, Berkeley.

paper Thelinear programmingsolutioncomputescell-to-cell
visibility, which doesnot constrairthe positionof aviewerin-
sidethecell, nor thedirectionin which heis looking, andthus
is far too conserative. They also proposetechniquesvhich
further constrainthe PVS by computingeye-to-cellvisibility,
which take into consideratiorthe view-coneemanatingrom
theviewer.

Anothertechniquethat exploits cells and portalsin mod-
elsis describedn Luebke and Geoges[48]. Insteadof pre-
computingthe visibility, Luebke andGeogesperformanon-
the-fly recursve depth-firstiraversalof the cellsusingscreen-
spaceprojectionsof the portalsto overestimatehe portal se-
quences. In their techniquethey usea “cull box” for each
portal, which is the axial 2D boundingbox of the projected
verticesof the portal. Any geometrywhichis notinsidea cull
box of the portal cannotbe visible. The basicideais then
to clip the portallscull boxes asthe cells are traversed,and
only to continuethetraversalinto cellswhich have anon-zero
(intersection)portal-sequenceTheir techniques simpleand
quite effective; the sourcecode(an SGI Performeribrary) is
availablefor downloadfrom David Lueble’s webpage.!

6.1 Coorg and Teller

Coog and Teller [17, 18] have proposedobject-spaceech-
niguesfor occlusionculling. The techniquein [18] is most
suitablefor usein thepresencef largeoccludersn thescene.
Their algorithm exploresthe visibility relationshipsbetween
two convex objectsasin Figure 12. In brief, while anobserer
is betweerthetwo supportingplanego theleft of A, it is never
possibleto seeB. The Cooig andTellertechniquausessimple
conceptssuchasthis to develop a techniquebasedon track-
ing visibility eventsamongobjectsasthe usermavesandthe
relationshipsamongobjectschange.The algorithmproposed
in [17] is conserative, andexplorestemporalcohereng asit
tracksthevisibility events.

In [17], Coomg and Teller give sufiiciengy conditionsfor

1pfportalscanbe obtainedat http://pfPortals.cs.vjinia.edu.
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Figure 12: The figure highlights the visibility propertiesex-
ploited by the algorithmof Coorg and Teller[17, 18]. While
an obserer is betweenthe two supportingplanesto the left
of A, it is never possibleto seeB. Courtesyof SatyanCoorg,
MIT.

computingthe visibility of two objects(thatis, whetherone
occludegheother),basedntrackingrelationshipamongthe
silhouetteedgessupportingand separatinghe planesof the
differentobjects. They build an algorithmwhich incremen-
tally trackschangesdn thoserelationships. There,they also
shav how to useobjecthierarchiegbasedon octrees}o han-
dlethepotentialquadraticcompleity computationaincrease.
Onedrawbackof thistechniqugaspointedout by the authors
in their subsequenwork[18]) is preciselythefactthatit needs
to reconstructhe visibility information for a continuousse-
gquenceof viewpoints.

In [18], Coorg and Teller proposean improved algorithm.
(It is still basedon thevisibility relationshipshowvn in Figure
12.) Insteadof keepinga large numberof continuousvisibil-
ity events,in [18], they dynamicallychoosea setof occluders,
which is usedto determinewhich portionsof the restof the
scenecannotbeseen.Thescends insertednto anobjecthier-
archy andthe occludersareusedto determinewhich portions
of thehierarchycanbe pruned,andnotrendered.

Coog and Teller [18] develop several useful building
blocksfor implementingthis idea,includinga simplescheme
to determinewhen the fusion of multiple occluderscan be
addedtogether(seeFigure 13), anda fasttechniquefor de-
termining supportingand separatingplanes. They proposea
simplemetric for identifying the dynamicoccluderswhich is
basedbn approximatinghe solid angleanobjectsubtends:
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, WhereA is the areaof the occluder N the normal,V the
viewing direction,andD the vectorfrom the viewpoint to the
centerof theoccluder
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Figure 13: The figureillustratesthat the algorithmdescribed
in [18] canperformocclusionfusionif the occluderscombine
to be alarger“convex” occluder Courtesyof SatyanCoor,

MIT.

6.2 Culling using shadow frusta

Thework describedy Hudsonetal. in [39] is in severalways
similar to the work of Coorg and Teller [18]. Their scheme
alsoworks by dynamicallychoosinga setof occludersthen

usingthoseoccludersas the basisfor culling the restof the

scheme Thedifferencesetweerthe two workslie primarily

in the details. In [39], the authorsproposeextra criteria for

choosingthe occluders. Besidesthe Coorg and Teller solid-

angleheuristic they alsoproposeakinginto accounthedepth
compleity andcoherencef theoccludersThey useaspatial
partitionof thesceneandfor eachcell, identifyingtheocclud-
ersthatwill be usedarytime the viewpoint is insidethatcell,

andstorethemfor lateruse.

A separatelatastructure a hierarchyof boundingvolumes
is usedfor theocclusionculling. Theway Hudsonetal. deter
mine which partsof the hierarchyareoccludedis differentto
thatof Coorg andTeller. For eachof the n bestoccluderghat
fall within the view frustum,the authorsbuild a shadev frus-
tum usingthe viewpoint asthe apex and passingthroughthe
occludersilhouette. The scenehierarchyis testedtop-davn
againsteachof theseshadev frusta.If anodeof thehierarchy
is found to be totally enclosedby oneof the frustathenit is
occludedandhencediscardedfor this frame). If it is found
not to intersectary of themthenit totally visible andall the
objectsbelow it arerendered.If however it partially overlaps
even one of themthenits childrenneedto be further tested.
Interferenceletectiontechniquesreusedfor speedingip the
tests.

6.3 BSP tree culling

The methoddescribedn Hudsonet al. [39] canbe improved
usingBSPtrees.Bittner et al. [8] combinethe shadav frusta
of the occluderdnto anocclusiontree Thisis donein avery
similar way to the SVBSPtreeof Chin andFeiner[11]. The
tree startsas a single lit (visible) leaf and occludersare in-
serted,in turn, into it. If anoccluderreaches lit leaf then
it augmentghe tree with its shadev frustum; if it reachesa
shadowedinvisible) leaf thenit is justignoredsinceit means
it alreadyliesin anoccludedregion. Oncethetreeis built the
scenehierarchycanbe comparedvith it. The cuberepresent-
ing thetop of thescenehierarchyis insertedinto thetree. If it
is foundto befully visible or fully occludedthenwe stopand
actappropriatelyotherwisdts childrenarecomparedvith the
occlusiontreerecursvely. This methodhasanadwantageover
[39] in thatinsteadof comparingthe scenewith eachof theN
shadev frusta, it is comparedwith onetree of depth(poten-
tially) O(N).

The above techniqueis conserative; an alternatve exact
methodwas proposedmuchearlierby Naylor [53]. Thatin-
volved a meging of the occlusiontreewith the BSPtreerep-
resentinghe scenegeometry

6.4 Prioritized-layered projection

Prioritized-Layeed Projection (PLP) is a techniquefor fast
renderingof high-depthcompleity scenes.It works by esti-
matingthevisible polygonsof ascene€rom a givenviewpoint
incrementallyoneprimitive atatime. Onits own, PLPis not
aconsenrative techniquebutinsteads suitablefor thecompu-
tationof partially correctimagedor useaspartof time-critical
renderingsystems. At a very high level, PLP amountsto
the modificationof a simple view-frustum culling algorithm.
However, it requiresthe computationof a specialoccupang-
basedtessellation,and the assignmenbf a solidity value to
eachcell of thetessellationwhich is usedto computea spe-
cial orderingon how primitivesgetprojected.

Thecoreof the PLPalgorithmconsistof a space-traersal
algorithm, which prioritizes the projectionof the geometric
primitivesin sucha way asto avoid (actuallydelay) project-
ing cellsthathave a smalllikelihoodof beingvisible. Instead
of explicitly overestimatingthealgorithmworkson abudget.
At eachframe,the usercanprovide the maximumnumberof
primitivesto berendereda polygonbudget,andthealgorithm
will deliver whatit considergo bethesetof primitiveswhich
maximizesheimagequality (usinga solidity-basednetric).

PLP is composedf two parts. First, PLP tessellateshe
spacethat containsthe original input geometrywith corvex
cells. During this one-timepreprocessing collectionof cells
is generatedn suchaway asto roughly keepa uniform den-
sity of primitivespercell. The samplingleadsto largecellsin
unpopulatechreas,andsmall cellsin areasthat containa lot
of geometry Using the numberof modeling primitives as-
signedto a given cell (e.g., tetrahedron)a solidity value p
is defined. The accumulatedsolidity value usedthroughout
the priority-driven traversalalgorithmcanbe largerthanone.
The traversalalgorithm prioritizes cells basedon their solid-
ity value.Preprocessing fairly inexpensve, andcanbedone
on large datasetgaboutone million triangles)in a coupleof
minutes.

Therenderingalgorithmtraverseghecellsin roughlyfront-
to-backorder Startingfrom the seedcell, which in general
containsthe eye position,it keepscarvingcellsout of thetes-
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Figure 14: The Prioritized-LayeredProjectionAlgorithm. PLP attemptsto prioritize the renderingof geometryalong layersof
occlusion.Cellsthathave beenprojectedby the PLP algorithmarehighlightedin red wireframeandtheir associate@deometryis
renderedwhile cells that have not beenprojectedareshavn in green. Notice thatthe cells occludedby the deskareoutlinedin
green,ndicatingthatthey have notbeenprojected.
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Figure15: Theinput geometryis a modelof anoffice. (a) snapshobf the PLP algorithmhighlightsthe spatialtessellatiorused.
The cellswhich have not beenprojectedin the spatialtessellatiorarehighlightedin green.(b) This figureillustratesthe accurag
of PLP. Shawn in redarethe pixelswhich PLP missesIn white, we shaw the pixels PLPrenderscorrectly



sellation.Thebasicideaof thealgorithmis to cane thetessel-
lation alonglayers of polygons We definethe layeringnum-
berl € O of amodelingprimitive 2 in thefollowing intuitive
way. If we ordereachmodelingprimitive alongeachpixel by
its positive (assumewithoutlossof generalitythat? is in the
view frustum)distanceto the eye point, we define((?) asthe
smallestrank of 2 over all the pixels to which it contritutes.
Clearly, {(?) = 1 if andonly if 2 is visible. Finding rank 1
primitivesis equialentto solving the visibility problem. In-
steadof solvingthis difficult problem,the PLP algorithmuses
simpleheuristics. The traversalalgorithmattemptsto project
themodelingprimitivesby layers thatis, all primitivesof rank
1, then2, andsoon. We do this by always projectingthe cell
in thefront F (we call thefront, the collectionof cellsthatare
immediatecandidatedor projection)which is leastlikely to
be occludedaccordingto its solidity value. Initially, the front
is empty and as cells are inserted,we estimateits accumu-
lated solidity valueto reflectits positionduring the traversal.
Everytime acell in thefront is projected all of the geometry
assignedo it is rendered.

PLPis very effective in finding the visible polygons. For
moredetailsaboutPLP including comprehense results,see
[43,42).

7 Image-space occlusion culling

As the name suggestsmage-spacelgorithms perform the
culling in the viewing coordinates.The key featurein these
algorithmsis thatduringrenderingof the scengheimagegets
filled up and subsequenobjectscanbe culled away quickly
by the already-filledpartsof the images. Sincethey operate
onadiscretearrayof finite resolutionthey alsotendto besim-
plerto implementandmorerobustthanthe object-spacenes,
which tendto have numericalprecisionproblems.
Sincetestingeachindividual polygonagainstthe imageis
too slow, almostall the algorithmsthatwe will describehere,
useconserative tests. They placea hierarchyon the scene,
with the lowestlevel usuallybeingthe boundingboxes of in-
dividual objectsandthey performtheocclusiontestonthathi-
erarchy Approximatesolutionscanalsobe producedoy some
of theimage-spacelgorithmsby classifyingasoccludedge-
ometry partswhich are visible throughan insignificantpixel
count. Thisinvariablyresultsin anincreasen runningspeed.
When the scenesare composedof mary small primi-
tiveswithout well-definedarge occluderghenperformingthe
culling in image-spacdecomesmore attractve. The pro-
jectionsof mary small andindividually insignificantocclud-
erscanbe accumulatean theimageusingstandardyraphics
rasterizinghardware, to cover a significantpart of the image
whichcanthenbeusedor culling. Anotheradvantageof these
methodsds thattheoccludergdonothaveto bepolyhedral;ary
objectthatcanberasterisedcanbeused.

7.1 Hierarchical Z-buffer

The HierarchicalZ-buffer (HZB) [35, 36] is an extensionof
the popularHSR method,the Z-buffer. In this method,oc-
clusionis determinedby testingagainstthe Z-pyramid The
Z-pyramidis alayeredbuffer with differentresolutionat each
level. At thefinestlevel it is just the contentof the Z-buffer,
eachcoarsellevel is createdoy halvingthe resolutionin each
dimensionand eachelementholding the furthestZ-value in
the correspondin@x2 window of thefiner level belov. This

is doneall the way to the top, whereit is just onevalue cor

respondingo thefurthestZ-valuein the buffer. During scan-
corversion of the primitives, if the contentsof the Z-buffer

changethenthe new Z-valuesare propagatedip the pyramid
to thecoarselevels.

In [35] the sceneis arrangednto an octreewhich is tra-
versedtop-davn front-to-backandeachnodeis testedfor oc-
clusion. If atary point a nodeis foundto be occludedthenit
is skipped;otherwiseary primitivesassociatedavith it areren-
deredandthe Z-pyramidis updated.To determinewhethera
nodeis visible, eachof its facess testechierarchicallyagainst
the Z-pyramid. Startingfrom the coarsestevel, the nearesz
valueof thefaceis comparedvith thevaluein the Z-pyramid.
If thefaceis foundto befurtheraway thenit is occluded;oth-
erwiseit recursvely descendslowvn to finer levelsuntil its vis-
ibility canbedetermined.

To allow for real-time performancea modificationof the
hardware Z-buffer is suggestedhat allows for much of the
culling processingo bedonein the hardware. In theabsence
of the customhardware the processcan be somevhat accel-
eratedthroughthe useof temporalcoherenceby first render
ing thegeometrythatwasvisible from the previousframeand
building the Z-pyramid from its Z-buffer.

7.2 Hierarchical occlusion map

Thehierarchicabcclusionmapmethod[80] is similarin prin-
ciple to the HZB, though,it wasdesignedo work with cur
rentgraphicshardwareandalsosupportsapproximatevisibil-
ity culling; objectsthat are visible throughonly a few pixels
can be culled using an opacity threshold. The occlusionis
arrangechierarchicallyin a structurecalled the Hierarchical
OcclusionMap (HOM) and the boundingvolume hierarchy
of thescenes testedagainstt. However, unlike the HZB, the
HOM storeonly opacityinformationwhile thedistanceof the
occluders(Z-values)is storedseparately The algorithmthen
needgso independentlyestobjectsfor overlapwith occluded
regionsof the HOM andfor depth.

During preprocessinga databasef potentialoccluderss
assembled.Thenat run-time, for eachframe, the algorithm
performstwo steps:constructionof the HOM and occlusion
culling of the scenegeometryusingthe HOM.

To build the HOM, a setof occludersis selectedrom the
occluderdatabas@andrenderednto the frame-huffer. At this
pointonly occupang informationis requiredthereforeextur-
ing, lighting andZ-buffering areall turnedoff. The occluders
arerenderedas pure white on a black background. The re-
sult is readfrom the buffer and forms the highestresolution
in the occlusionmap hierarchy The coarserlevels are cre-
atedby averagingsquaref 2x2 pixelsto form a mapwhich
hashalf theresolutionon eachdimension.Texturing hardware
canprovide someacceleratiorof the averagingif the size of
themapis largeenoughto warrantthe set-upcostof thehard-
ware. As we proceedo coarsetlevels the pixels are not just
blackor white (occludedor visible) but canbe shade®f grey.
Theintensityof apixel at suchalevel shavs theopacityof the
correspondingegion.

An object is testedfor occlusionby first projecting its
boundingbox onto the screenandfinding the level in the hi-
erarchywherethe pixels have approximatelythe samesizeas
the extent of the projectedbox. If the box overlapspixels of
the HOM which are not opaque,it meansthat the box can-
notbeculled. If the pixelsareopaquegor have opacityabore
thespecifiedhresholdvhenapproximatevisibility is enabled)



Figure 16: A hierarchyof occlusionmapscreatedby recur
sively averagingblocksof pixels. Courtesyof HansondgZhang,
UNC.

thentheobjectis projectecon aregion of theimagethatis cov-
ered. In this casea depthtestis neededo determinewhether
theobjectis behindtheoccluders.

In paper80] anumberof methodsareproposedor testing
thedepthof the objectsagainsthatof theoccluders Thesim-
plesttestmalesuseof a planeplacedbehindall theoccluders;
ary objectthat passeghe opacitytestis comparedwith this.
Although this is fastand simpleit canbe over-conserative.
An alternatve is the depthestimationbuffer wherethe screen
spaceis partitionedinto a setof regionsanda separatelane
is usedfor eachregion of the partition.

7.3 Directional discretized occluders

The Directional discretizedoccluders(DDOs) approachis
similarto theHZB andHOM methodsn thatit alsousesboth
object- and image-spacdiierarchies. In their preprocessing
stage Bernardiniet al. [7] approximatethe input modelwith
anoctreeandcomputesimple,view-dependenpolygonaloc-
cludersto replacethe complex input geometryin subsequent
visibility queries. Eachfaceof every cell of the octreeis re-
gardedas a potentialoccluderandthe solid anglesspanning
eachof the two halfspaceson the two sidesof the faceare
partitionedinto regions. For eachregion, they computeand
storea flag that recordswhetherthat faceis a valid occluder
for ary viewpoint containedn thatregion. Eachsquareaxis-
alignedfaceis a view-dependenpolygonaloccluderthatcan
be usedin placeof the original geometryin subsequentisi-
bility queries.

The renderingalgorithm visits the octreein a top-davn,
front-to-backorder Valid occluderdoundduringthetraversal
are projectedand addedto a two-dimensionaldatastructure,
suchas a quadtree. Eachoctreenodeis first testedagainst
the currentcollection of projectedoccluders:if the nodeis
notvisible, traversalof its subtreestops.Otherwise recursion
continuesandif avisible leaf nodeis reachedits geometryis
rendered.

The DDO preprocessingtageis notinexpensve, andmay
take in the orderof hoursfor modelscontaininghundredsof
thousand®of polygons. However, the methoddoeshave sev-
eraladwantagesf onecantoleratethe costof the preprocess-
ing step.Thecomputedccludersareall axis-alignedsquares,
afactthat canbe exploited to designefficient datastructures
for visibility queries. The memoryoverheadof the DDOs s
only six bitmasksper octreenode. The DDO approachalso
benefitsfrom occluderfusion and doesnot requireary spe-
cial or advancedgraphicshardware. The approachcould be
usedwithin the framework of othervisibility culling methods

aswell. Culling methodswhich needto pre-selectarge oc-
cluders,(e.g. Coomg andTeller [18]), or which pre-rendenc-
cludersto computeocclusionmaps,(e.g. Zhang,etAl. [81]),
could benefitfrom the DDO preprocessingtepto reducethe
overheadof visibility tests.

| |

Figurel7: lllustrationof the DDO approachTheinputgeom-
etry, AandB, is dravn asdashedines. Thevalid occludergor
thetwo viewpointsareshavn asthick solid lines. Courtesyof
Jamelosowski, IBM.

Figurel7is atwo-dimensionalllustration of the DDO ap-
proach. The grid is a discretizationof the spacesurrounding
the scene;it representour octreenodes. The input geome-
try, A andB, is shavn usingdashedines. For the purposeof
occlusionculling, the geometryA canbe replacedby a sim-
plerobject(shavn usingthick solid lines)whichis a subsebf
the grid edgesthatis, the octreefaces.The two figuresshav
thesamescendrom differentviewpointsandview directions.
Notethatthe subsebf grid edgeshatcanactasoccludergin
placeof geometryA) changesstheviewpoint changes.

7.4 OpenGL-assisted occlusion culling

Bartzetal. in [6, 5] describea different methodof image-
spaceculling. The sceneis arrangedn a hierarchicalrepre-
sentationand testedagainstthe occludedpart of the image,
whichresemblesheHZB andthe HOM. However, in contrast
to thesemethodsthereis no hierarchicarepresentatioof the
occlusionratherOpenGLcallsareusedto querythehardware
for visibility information. Both view-frustum and occlusion
culling aredonein thatway.

For view-frustum culling the OpenGL selectionmodeis
used. The selectionmode cantrack a certainregion of the
screenand identify whethera given objectis renderedonto
it. By settingthe tracked region to be the entire screenand
renderinghierarchicallythe boundingvolumesof the objects,
it canquickly be decidedon which to intersectthe view vol-
ume. Of coursetherenderingof the boundingvolumeshereis
purelyfor selectingthe objectsanddoesnot contrituteto the
frame-huffer.

Totestfor occlusionaseparatéuffer, thevirtual occlusion
buffer, is associatedvith the frame-huffer to detectthe possi-
ble contritution of ary objectto the frame-luffer. This was
implementedwith a stencilbuffer. The boundingboxesof the
sceneare hierarchicallysentdown the graphicspipeline. As



they arerasterisedthe correspondingixelsaresetin the vir-
tual occlusionbuffer wheneer the z-buffer testsucceedsThe
frame-huffer andthe z-buffer remainunaltered¢hroughouthis
process.

The virtual occlusionbuffer is thenreadand ary bound-
ing box thathasa footprintin it is consideredo be (at least
partially) visible andthe primitiveswithin it canberendered.
Sincethe operationof readingthe virtual occlusionbuffer can
beveryexpensve, it wasproposedo sampldt by readingonly
spandrom it. The samplinginevitably makesthe algorithma
non-conserative test.

As in the methodsabove, approximateculling canbe im-
plementedf we allow boxesthathave a smallfootprintin the
occlusionbuffer to be considerednvisible. The performance
of thealgorithmdepend®n the hardwarebeingused.In low-
to mid-rangegraphicsworkstationswherepart of the render
ing processis in software, the reductionin renderedobjects
canprovide significantspeed-upsOn high-endmachineghe
set-upfor readingthe buffer becomesa moresignificantpor
tion of theoveralltime, reducingtheusefulnessf themethod.

7.5 Hardware assisted occlusion culling

Hardwarevendorshave startedadoptingocclusion-cullingea-
turesinto their designs. Greeneet al. [35] reportthat the
KubotaPacific Titan 3000 was an early exampleof graphics
hardwarethatsupportedcclusion-cullingfeatures.

A hardvarefeatureavailableon HP machinegwhichseems
quite similar to the KubotaPacific Titan 3000) malesit pos-
sible to determinethe visibility of objectsascomparedo the
currentvaluesin the z-buffer. Theideais to adda feedback
loop to the hardwarewhichis ableto checkif changeswill be
madeto the z-buffer whenscan-cowerting a given primitive.
Onepossibleuseof this hardwarefeatureis to avoid rendering
avery complex setmodelby first checkingif it is potentially
visible. In generalthis canbe donewith the HP occlusion-
culling extensionby checkingwhetheranenvelopingprimitive
(usuallytheboundingbox of theobject,butin generalit might
bemoreefficientto useanenclosingk-dop[41]) is visible,and
only renderingheactualobjectif thesimplerenclosingobject
isindeedvisible.

The actualhardvwarefeatureasimplementedon the HP fx
serieggraphicsacceleratorss explainedin [62] and[63]. One
way to usethe hardwareis to querywhetherthe boundingbox
of anobjectis visible. This canbedoneasfollows:

glEnable(GL_OCCLUSION_TEST_HP);
glDepthMask(GL_FALSE);
glColorMask(GL_FALSE,
DrawBoundingBoxOfObject();
bool isVisible;
glGetBooleanv(GL_OCCLUSION_RESULT_HP,
glDisable(GL_OCCLUSION_TEST_HP);
glDepthMask(GL_TRUE);
glColorMask(GL_TRUE,

GL_FALSE, GL_FALSE, GL_FALSE);

&isVisible);

GL_TRUE, GL_TRUE, GL_TRUE);

Clearly if the boundingbox of anobjectis not visible, the
objectitself, which potentiallycould containalargeamountof
geometrymustnotbevisible. This hardwarefeatureis imple-
mentedin several of HP’s graphicsacceleratorsfor instance,
the HP fx6 graphicsaccelerator Severson[63] estimateghat
performinganocclusion-queryvith a boundingbox of anob-
ject on the fx6 is equivalentto renderingabout190 25-pixel
triangles. This indicatesthat a naive approachwhereobjects

areconstantlychecled for occlusionmight actually hurt per

formance,and not achieve the full potential of the graphics
board. In fact, it is possibleto slow down the fx6 consid-
erablyif oneis unlucky enoughto projectthe polygonsin a
back-to-frontorder(becausaoneof the primitiveswould be
occluded).

Meissneret al. [49] proposean effective occlusionculling
techniqueusing this hardware test. In a preprocessingtep,
a hierarchicaldatastructureis built which containsthe input
geometry (In their paper they proposeseveral differentdata
structuresandstudytheir relative performance.)Their algo-
rithm is asfollows:

(1) traversethe hierarchicaldatastructureto find the leaves
which areinsidetheview frustum;

(2) sorttheleafcellsby the distancebetweerthe viewpoint
andtheir centroids;

(3) for eachsortedcell, renderthegeometrycontainedn the
cell only if thecell boundaryis visible.

In their recentofferings, HP hasimproved the occlusion-
culling features Thefx5 andfx10 hardwarecanperformser-
eral occlusionculling queriesin parallel[19]. Also, HP re-
portsthat their OpenGLimplementationdave beenchanged
to usethe occlusion-cullingfeaturesautomaticallywhenpos-
sible. For instance beforerenderinga long displaylist, HP
software would actually perform an occlusionquery before
renderingall thegeometry

ATI's HyperZ technology[51] is anotherexample of a
hardware-baseacclusion-cullingfeature. HyperZ hasthree
differentoptimizationswhich they claim greatlyimprove the
performanceof 3D applications.The maintruston all the op-
timizationsis on loweringthe memorybandwidthrequiredfor
updatingthe Z-values(which they claim is the single largest
userof bandwidthon their cards).Oneoptimizationis atech-
niquefor losslessompressiomf Z-values.Anotheris a“f ast”
Z-buffer clear which performsa lazy clearof depthvalues.
ATI alsoreportson the implementatiorof the hierarchicalz-
buffer of Greeneetal. [35] in hardware. Detailsof the actual
featuresaresketchy andatthis point ATl hasnot exposedary
of the functionality of their hardwareto applicationsthatis,
applicationsareblind, andshouldautomaticallygetimproved
performance.

Therearereportsthatothervendorsjncluding SGI, Nvidia,
andso on, areworking on similar occlusion-cullingfeatures
for their upcominghardvare.

7.6 Discussion

Thereare several otheralgorithmswhich aretargetedat par
ticular typesof scenes.For example,the occludershadavs
proposedby Wonkaand Schmalstig [75] specificallytarget
urbanervironments. In this work the sceneis partitionedin
a regular 2D grid. During run-time a numberof occluders
are selectedand their 'shadavs’ - the planesdefinedby the
view-point and the top edgeof eachoccluder- arerendered
into anauxiliary buffer calledthe cull-map. Eachpixel in the
cull-map(image-spacejorrespondso agrid cell of thescene
grid (object-space)lf the cull-map pixel is not coveredthen
objectsin thecorrespondingcengyrid cell arepotentiallyvis-
ible.

Hongetal. [38] useanimage-basegortaltechniquesim-
ilar in somerespectgo the cells-and-portalsvork of Luebke



and Geoges|[48]) to be ableto fly througha virtual human
colonin real-time. The colonis partitionedinto cells at pre-
processingandtheseareusedto acceleratéhe occlusionwith
thehelpof a Z-buffer atrun-time.

Onedrawback of the techniquedescribedn this section
is that they rely on being ableto readinformation from the
graphicshardware. Unfortunately on mostcurrentarchitec-
tures,usingary sortof feedbackfrom the graphicshardware
is quite slow andplacesa limit on the achievable framerate
of suchtechniques.As Bartz et al. [5] shav, thesemethods
areusuallyonly effective whenthe scenecompleity is above
alargethreshold.

Thereare othershortcomingdo thesetechniques.One of
the main problemsis the needfor preselectiorof occluders.
SometechniquessuchasHOM, needto createdifferentver-
sionsof the actualobjects(throughsomesort of “occlusion-
preserving’simplificationalgorithm)to beableto generatéhe
occlusion-mapsAnotherinterestingissueis how to dealwith
dynamicscenes.The more preprocessingised,the more ex-
pensve it is to dealwith dynamicervironments.

The BSP tree methodintroducedby Naylor [53] already
in 1992 can be thought of as somevhere betweenimage-
precisionand object-precisionsincealthoughhe useda 2D
BSP treein image-spacdor culling the 3D scene this was
done using object-precisionoperationsrather than image-
precision.

8 From-region visibility

In atypical visibility culling algorithmthe occlusionis tested
from a point [18, 39]. Thus,thesealgorithmsare appliedin
eachframe during the interactive walkthrough. A promising
alternatve is to find the PVSfrom aregion or viewcell, rather
thanfrom a point. The computationcostof the PVS from a
viewcell would thenbe amortizedover all the framesgener
atedfrom thegivenviewcell.

Effective methodshave beendevelopedfor indoor scenes
[70, 30Q], but for generalarbitrary scenesthe computationof
the visibility setfrom a region is more involved than from
a point. Sampling the visibility from a number of view
points within the region [33] yields an approximatedPVS,
which may then causeunacceptabldlickering artifacts dur-
ing the walkthrough. Conserative methodswereintroduced
in[15, 59]whicharebasedntheocclusionof individuallarge
corvex objects.

In thesemethodsa given objector collection of objectsis
culledaway if andonly if they arefully occludedby a single
corvex occluder It wasshavn thatacorvex occluderis effec-
tive only if it is larger thanthe viewcell [52]. However, this
conditionis rarely metin real applications.For example,the
objectsin Figure 18 are smallerthanthe viewcell, andtheir
umbrae(with respecto the viewcell) arerathersmall. Their
uniondoesnot occludea significantportion of the sceng(see
in (a)), while their aggrgateumbrais large (seein (b)).

Recentlynew techniquesveredevelopedin whichthevisi-
bility culling from aregionis basednthecombineddcclusion
of a collectionof objects(occluderfusion). The collectionor
clusterof objectsthat contribtutesto the aggregate occlusion
hasto be neitherconnectechor corvex. The effective from-
region culling of thesetechniquess significantly larger than
previous from-region visibility methods. Below, four tech-
niquesaredescribedollowedby adiscussion.

8.1 Conservative volumetric visibility with oc-
cluder Fusion

Schaufleetal. [60] introducea conserative techniqueor the
computationof viewcell visibility. The methodoperatesn a
discreterepresentationf spaceandusesheopaquenterior of
objectsasoccluders.This choiceof occluderdacilitatestheir
extensioninto adjacentopaqueregions of space,in essence,
maximizingtheir sizeandimpact.

Themethodefficiently detectsandrepresenttheregionsof
spacehiddenby occludersandis thefirst to usethe property
thatoccludersanalsobe extendednto emptyspaceprovided
this spacdtself is occludedfrom theviewcell. Thisis proved
to be effective for computingthe occlusionby a setof occlud-
ers,successfullyealizingoccluderfusion.

Initially, the boundaryof objectsis rasterizednto the dis-
cretizationof spaceand the interior of theseboundariesis
filled with opaquevoxels. For eachviewcell, theocclusionde-
tectionalgorithmiteratesovertheseopaquevoxels,andgroups
themwith adjacenbpaquevoxelsinto effective blockers. Sub-
sequentlya shaftis constructedaroundthe viewcell andthe
blocker to delimit the region of spacehiddenby the blocker.
This classificationof regionsof spaceinto visible andhidden
is notedin the spatialdatastructure.As regionsof spacehave
alreadybeenfoundto be hiddenfrom the viewcell, extension
of blockersinto neighboringvoxelscanalsoproceednto these
hiddenregionsrealizingoccluderfusionwith all theoccluders
which causedhis regionto be hidden.

As an optimization, opaquevoxels are usedin the order
from largeto smallandfrom front to back. Occludedopaque
voxelsarenot consideredurtherasblockers.

To recover the visibility statusof objectsin the original
scenedescription,the spacethey occuyy is looked up in the
spatialdatastructureand,if all the voxels intersectecby the
objectareclassifiedas hidden,the objectis guaranteedo be
hiddenaswell.

Theauthorspresenspecializedrersionsfor thecaseof 2D
and?2 1/2Dvisibility, andmotivatethe easeof extensionto 3D:
becausenly two convex objectsat a time are consideredn
thevisibility classificationtheviewcell andthe occluder) the
usualdifficulties of extendingvisibility algorithmsfrom 2D to
3D, causedby triple-edgeevents,are avoided. Exampleap-
plicationsdescribedn the paperincludevisibility preprocess-
ing for real-timewalkthroughsandreductionin thenumberof
shadev raysrequiredby aray-tracer(see[60] for details).

8.2 Conservative visibility preprocessing us-
ing extended projections

Durandetal. [25] (seealso[47]) presentnextensionof point-
basedimage-spacenethodssuchas the HierarchicalOcclu-
sion Maps[81] or the HierarchicalZ-buffer [35] to volumet-
ric visibility from a view-cell, in the contet of preprocessing
PVScomputationOccludersandoccludeesreprojecteconto
aplane,andanoccludeds declaredhiddenif its projectionis
completelycovered by the cumulatve projectionof occlud-
ers (andif it lies behind). The projectionis however more
involvedin the caseof volumetricvisibility: to ensureconser
vativenessthe ExtendedProjectionof an occluderunderesti-
matesits projectionfrom ary pointin the view-cell, while the
ExtendedProjectionof an occludees an overestimationsee
Figure 20(a)). A discrete(but conserative) pixel-basedep-
resentatiorof extendedprojectionss used calledanextended
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Figure 18: The union of the umbraeof the individual objectsis insignificant,while their aggr@ate umbrais large and canbe

representedly a singlevirtual occluder

depthmap Extendedprojectionsof multiple occludersaggre-
gate,allowing occludesfusion, thatis, the cumulative occlu-
sioncausedyy multiple occluders.For convex view-cells, the
extendedprojectionof a convex occluderis theintersectiorof

its projectionsfrom the verticesof the cell. This canbe com-
putedefficiently usingthe graphicshardware (stencil buffer)

anda conserative rasterization Concae occludersntersect-
ing the projectionplanearesliced(see[25] for details).

A singlesetof six projectionplanescanbeusedasdemon-
stratedby anexampleinvolving a city databaseThe position
of theprojectionplaneis however crucialfor the effectiveness
of ExtendedProjections.This is why a reprojectionoperator
was developedfor hard-to-treatcases. It permitsa group of
occludersto be projectedonto one planewherethey aggre-
gate,andthenreprojectthis aggrgatedrepresentatioonto a
new projectionplane(seeFigure 20(b)). This re-projectionis
usedto defineanocclusion-sweewherethescends sweptby
parallelplanedeaving the cell. The cumulative occlusionob-
tainedon the currentplaneis reprojectednto the next plane
aswell asnew occluders Thisallows thehandlingof very dif-
ferentcasesuchastheocclusioncausedy leavesin aforest.

8.3 Virtual occluders

Koltun et al. [44] introducethe notion of from-region virtual

occluders. Given a sceneand a viewcell, a virtual occluder
is a view-dependen{simple) corvex object, which is guar

anteedto be fully occludedfrom ary given point within the
viewcell andwhich senes as an effective occluderfrom the
givenviewcell. Virtual occluderscompactlyrepresenthe ag-
gregateocclusionfor a given cell. The introductionof such
view-dependentirtual occludersenablesto apply an effec-
tive region-to-region or cell-to-cell culling techniqueand to
efficiently computea potentialvisibility set(PVS)from are-
gion/cell. The paperpresentsan object-spacdechniquethat
synthesizesuchvirtual occludersby aggreatingthe visibil-

ity of a setof individual occluders. It is shavn that only a

smallsetof virtual occluderss requiredto computethe PVS
efficiently on-the-flyduringthereal-timewalkthrough.

In the preprocessingtagesereral objectsareidentified as
seedobjects.For eachseedobject,a clusterof nearbyobjects
is constructedothatasinglevirtual occluderfaithfully repre-
sentgthe occlusionof this clusterof objects.At first, the clus-
teris definedto includeonly the seedobject. Then,iteratively,
at eachstep,moreobjectswhich satisfya geometriccriterion
areaddedto the clusterof occludersthusaugmentinghe ag-
gregateumbraof the cluster The virtual occluderis placed
justbehindthefurthestobjectin thecluster andis completely
containedn the aggrgateumbraof the cluster(seeFigs. 18
and21).

Onevirtual occluderis storedat eachstepof theiteration.
As aresult,attheendof theprocessthereis alargeandhighly
redundangroupof virtual occluders.This groupcanbe well
representetly a smallsubsebf the mosteffective virtual oc-
cluders.

In the real-timerenderingstage,the PVS of a viewcell is
computedust beforethe walkthroughentersthe viewcell. It
is doneby hierarchicallytestingthe scene-graphodesagainst
thevirtual occluders Sinceonly avery smallnumberof them
areused thistestis extremelyfast.

The3D problemis solvedby a2.5Dimplementationwhich
provesto be effective for mosttypical scenessuchasurban
andarchitecturaalkthroughs The2.5Dimplementatiomper
forms a seriesof slicesin the heightdimension,andusesthe
2D algorithmto construct2D virtual occludersin eachslice.
Theseoccludersarethenextendedto 3D by giving themthe
heightof their respectie slices.

8.4 Occluder fusion for urban walkthroughs

Wonkaet al. [76] presenian approactbasedon the obsera-
tionthatit is possibleo computeaconserative approximation
of the umbrafor a viewcell from a setof discretepoint sam-
plesplacedon the viewcell's boundary A necessarythough



Figure19: Theindividual umbraeg(with respecto theyellow viewcell) of objectsl, 2 and3 do notintersectjput yettheir occlusion

canbe aggregatedinto alargerumbra.)

not sufficient conditionthat an objectis occludedis thatit is
completelycontainedn the intersectionof all samplepoints’
umbrae. Obviously, this conditionis not suficient asthere
may be viewing positionsbetweenthe samplepoints where
theconsideredbijectis visible.

However, shrinkinganoccluderby € providesasmallerum-
brawith auniqueproperty:anobjectclassifiecasoccludedoy
the shrunkoccluderwill remainoccludedwith respecto the
original larger occluderwhen maoving the viewpoint no more
thane from its original position.

Consequentlya point sampleusedtogetherwith a shrunk
occluderis a conserative approximatiorfor asmallview cell
with radiuse centeredatthe samplepoint. If theoriginal view
cell is coveredwith samplepoints so that every point on the
boundaryis containedin an € -neighborhoodf at leastone
samplepoint, then an objectlying in the intersectionof the
umbraefrom all samplepointsis occludedfor the original
viewcell.

Using this idea, multiple occluderscan be consideredsi-
multaneously If the objectis occludedby the joint umbraof
the shrunkoccludersfor every samplepoint of the viewcell,
it is occludedfor the whole view cell. In thatway, occluder
fusionfor an arbitrary numberof occludersis implicitly per
formed(seeFigure22 andFigure23).

8.5 Discussion

When the visibility from a region is concerned,occlusion
causedy individual occludersn a generakettingis insignif-
icant. Thus, it is essentiato take advantageof aggrgateoc-
clusion causeddy groupsof nearbyobjects. The above four
papersaddresshe problemof occlusionaggreationalsore-
ferredto asoccluderfusion.

All four techniquesareconserative; they aggr@ateocclu-
sionin mostcaseshut notin all possibleones.In sometech-
niguesthecriterionto fusetwo occludersr to aggreatetheir
occlusionss basedon the intersectionof two umbrae.How-
ever, in [44, 77], amoreelaboratecriterionis used which per

mitsaggr@ationof occlusionsvenin casewheretheumbrae
arenot necessarilyintersected.Thesecasesareillustratedin
Figurel19.

To copewith the compleity of the visibility in 3D scenes,
all thetechniquesisesomediscretizations.

The first methoddiscretizeghe spaceinto voxels, andop-
eratesonly on voxels. This leadsto the underestimatiorof
occlusionwhenthe umbraof occluderss relatively smalland
partially overlapssomelarge voxels, but doesnot completely
containary. The advantageof this approactis its generality:
it canbe appliedto ary representationf 3D scenesandnot
necessarilypolygonal.

Thesecondnethoddiscretizeshespacen two ways.First,
it projectsall objectsonto a discretesetof projectionplanes,
and second,the representatiorof objectsin thoseplanesis
alsodiscrete. Moreover, 3D projectionsarereplacedby two
2D projections(seeFigure20), to avoid performinganalytical
operationson objectsin 3D space.The advantageof this al-
gorithmis that,sincemostoperationsareperformedn image-
spacethey canbehardware-assistetb shorterthepreprocess-
ing time.

Thethird methodis object-spacanalyticalin the 2D case.
It treatsthe 3D casesasa 2.5D sceneandsolvesit by a series
of 2D casedy discretizingthe heightdimension.It is shavn
thatin practicethevisibility of 2.5D entitiesapproximatevell
thevisibility of the original 3D models.

The forth method samplesthe visibility from a viewcell
from adiscretenumberof samplepoints. Althoughit underes-
timatesocclusion,it is alsoa conserative method. This may
be insignificantin the caseof closeandlarge occluders but
in caseawherethe occlusionis createdby a large numberof
smalloccludersthe approximatiomrmight betoo crude.

Somethinghatcould prove usefulwhencomputingvisibil-
ity from aregion is a methodfor depth-orderingbjectswith
respecto theregion. Finding suchanorderingcanbe a chal-
lengingtask,if atall possible sinceit might vary at different
samplepointsin the givenregion. Chrysanthotin [12] (Sec-
tion 3.2) suggests hybrid methodbasedn GraphTheoryand
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Figure21: Growing thevirtual occludersby intersectingobjectswith the active separatingindsupportingines.
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BSPtreeswhich will sorta setof polygonsasfaraspossible
andreportunbreakableycleswherethey arefound.

8.6 Approximate from-region visibility

In [2] a schemeto combine approximateocclusionculling
with levels-of-detail(LOD) techniquess presentedTheidea
is to identify partially-occludedobjectsin additionto fully-
occludedones. The assumptioris that partially-occludecbb-
jectstake lessspaceon the screen andthereforecanbe ren-
deredusinga lower LOD. The authorsusethe term Hardly-
\isible Set(HVS) to describea setconsistingof bothfully and
partially visible objects.

A setof occludersis selectedand simplified to a collec-
tion of Partially-overlappingboxes. Occlusionculling is per
formed from the viewcell using theseboxes as occludersto
find the "fully-visible” partof the HVS. It is performedcon-
sideringonly occlusionby individual boxes[15, 59]. There
is no occlusionfusion, but a singlebox may represenseveral
connectedccluderobjects.

To compute partially-visible objects, all the occluders
(boxes)areenlagedby a certainsmalldegree,andocclusion
culling is performedagainusing thesemagnifiedoccluders.
The objectsthat are occludedby the enlaged occludersand
notby theoriginalonesareconsideredo bepartially occluded
from theviewcell, andarethuscandidateso berenderedat a
lower LOD.

Several partsof the HVS are computedby enlaging the
occludersseveraltimes,eachtime by a differentdegree,thus,
classifyingobjectswith a differentdegreeof visibility. During
real-timerendering,the LOD is selectedwith respectto the
degreeof visibility of theobjects.

It shouldbenotedthatthis basicassumptiomf thedegreeof
visibility is solelyheuristic,sinceanobjectpartially occluded
from aregion doesnot meanit is partially occludedfrom ary
point within theregion. It could be fully visible at onepoint
andpartially visible or occludedat another

Occluder

Vi 11
iew ce Fused

:
T
Single
Sample occluder
point umbra

Figure23: Thefusedumbrafrom thefive points(in thefigure
above) is theintersectiorof theindividual umbrae.lt is larger
thanthe unionof umbraeof theoriginal viewcell. Courtesyof
PeterWonka.

In [33] anotherapproximatefrom-region visibility tech-
niqueis proposedCastingraysfrom afive-dimensionaspace
sampleshe visibility. The paperdiscusseiow to minimize
the numberof rays castto achieve a reliable estimateof the
visibility from aregion.

8.7 The PVS storage space problem

PrecomputinghePVSfrom aregionrequiressolvingapromi-
nentspaceproblem. The sceneis partitionedinto viewcells
andfor eachcell a PVSis precomputec@ndstoredreadily for
the online renderingstage. Sincethe numberof viewcells is
inherentlylarge,the total sizeof all thevisibility setsis much
largerthanthe original size of the scene.Aside for a few ex-
ceptionsthis problemhasnot receved enoughattentionyet.
VandePanneandStewvart[72] presentaitechniqueio compress
precomputedisibility setsby clusteringobjectsandviewcells
of similar behaior. Gotsmaretal. [33] presenta hierarchi-
cal schemdo encodehevisibility efficiently. Cohen-Oretal.
[16, 15] dealwith the transmissiorof visibility setsfrom the
senerto theclientandin [15, 52] discusghe selectionof the
bestviewcell sizein termsof the sizeof the PVS.

A completelydifferentapproactwastakenby Koltun etal.
[44]. The PVS of eachviewcell doesnot needto be stored
explicitly. An intermediateaepresentatiothat requiresmuch
lessstoragespacehanthePVSis createcandusedto generate
the PVSon-the-flyduringrendering.

9 Conclusion

In this paperwe have suneyedmostof thevisibility literature
availablein the context of walkthroughapplications.We see
thata considerablemountof knowvledgehasbeenassembled
in the lastdecade;in particular the numberof papersin the
areahasincreasedsubstantiallyin the last coupleof years. It
is hardto sayexactly wherethefield is heading but thereare
someinterestingrendsandopenproblems.

It seemdurtherresearclis necessarinto techniquesvhich
lowerthe amountof preprocessingequired.Also, memoryis
abig issuefor large scenesespeciallyin the context of from-
regiontechniques.



It is expectedthat more hardware featureswhich can be
usedto improve visibility computationswill be available. At
presenta majorimpedimentis the fact that readingbackin-
formation from the graphicsboardsis very slow. It is ex-
pectedthat this will get muchfaster enablingimprovements
in hardware-basedisibility culling algorithms. The efficient
handlingof dynamicsceness anopenareaof researchat this
point.

Acknowledgements

We would like to thank all the authorswho have helped
us with material from their work. In particular we thank
Fredo Durand, Vladlen Koltun, Pere Brunet, Seth Teller,
JameKlosawski, GraigGotsmanGernotSchauflemandPeter
Wonka,for helpinguswith text andfiguresfrom their papers,
andJoseptMitchell for usefulcommentson this surey.

This researctwaspartially supportedy the IsraelScience
Foundationfoundedby The Israel Academyof Sciencesand
Humasnities-Centesf ExcellenceProgramandby a grantof
thelsraeliMinistry of Science.

References

[1] J.M. Airey, J.H. Rohlf,andF. P. Brooks,Jr. Towardsim-
agerealismwith interactive updateratesin comple vir-
tual building environments. ComputerGraphics (1990
Symposiunon Interactive 3D Graphics) 24(2):41-50,
March1990.

[2] C. Andujar C. Saona-¥zquez, |. Navazo, and P.
Brunet.Integratingocclusionculling andlevelsof details
throughhardly-visiblesets. ComputerGraphicsForum,
19(3),2000.

[3] A. Appel. Sometechniquedor shadingmachinerender
ings of solids. In AFIPS 1968 Spring Joint Computer
Conf, volume32, pages37-45,1968.

[4] U. Assarssonand T. Moller. Optimized view frus-
tum culling algorithmsfor boundingboxes. Journal of
GraphicsTools 5(1),2000.

[5] D.Bartz,M. Meiner, andT. Httner. Opengl-assistedc-
clusionculling for large polygonalmodels.Computer&
Graphics 23(5):667-6791999.

[6] D.Bartz,M. MessnerandT. Httner. Extendinggraphics
hardwarefor occlusionqueriesn opengl.In Proc. Work-
shopon GraphicsHardware '98, page97-104,1998.

[7]1 F Bernardini, J. T. Klosowski, and J. El-Sana. Di-
rectionaldiscretizedoccludersfor accelerateacclusion
culling. ComputerGraphicsForum 19(3),2000.

[8] J.Bittner, V. Havran,andP. Slavik. Hierarchicalvisibil-
ity culling with occlusiontrees.In Proceeding®f Com-
puter Graphicsinternational’98, pages207-219,June
1998.

[9] W. JackBouknight.A procedurdor generatiorof three-

dimensionahalf-tonedcomputemgraphicgpresentations.

CommunicationsftheACM, 13(9):527-536September
1970.

[10] E. E. Catmull. A SubdivisionAlgorithm for Computer
Display of CurvedSurfaces Ph.d.thesis,University of
Utah,Decembetl974.

[11] N.ChinandS.Feiner Nearreal-timeshadev generation
using BSPtrees. ACM ComputerGraphics 23(3):99—
106,1989.

[12] Y. Chrysanthou.ShadowComputationfor 3D Interac-
tion and Animation PhDthesis,QueenMary andWest-
field College, University of London,Februaryl1996.

[13] J. H. Clark. Hierarchicalgeometricmodelsfor visi-
ble surface algorithms. Communication®f the ACM,
19(10):547-554Qctober1976.

[14] D.Cohen-OrY. ChrysanthouC. Silva,andG. Drettakis.
Visibility, problems techniquesandapplications. SIG-
GRAPH2000CourseNotes,July 2000.

[15] D. Cohen-OrG. Fibich, D. Halperin,andE. Zadicario.
Conserative visibility and strongocclusionfor views-
pacepartitioningof denselyoccludedscenes Computer
GraphicsForum, 17(3):243-2541998.

[16] D. Cohen-OrandE. Zadicario. Visibility streamingfor
network-basedwalkthroughs. Graphics Interface '98,
pagesl—7,Junel998.

[17] S.CoomandS.Teller. Temporallycoherentonserative
visibility. In Proc. 12th Annu. ACM SymposComput.
Geom, pages/8-87,1996.

[18] S.Coom andS. Teller. Real-timeocclusionculling for
modelswith large occluders.1997 Symposiunen Inter-
active3D Graphics pages83-90,April 1997.

[19] R. Cunniff. Visualizefx graphicsscalablearchitecture.
In presentatiorat Hot3D Proceedingspart of Graphics
Hardware Workshop 2000.

[20] M. de Berg, M. van Kreveld, M. Overmars, and O.
Schvarzlopf. ComputationalGeometry: Algorithms
andApplications SpringerVerlag,Berlin, 1997.

[21] D. P. DobkinandS. Teller. Computergraphics. In Ja-
cob E. Goodmanand JosephO’Rourke, editors,Hand-
book of Discrete and ComputationalGeometry chap-
ter42,pages’79-796 CRCPresd LC, BocaRatonFL,
1997.

[22] S.E.Dorward. A suney of object-spacdiddensurface
removal. Internat.J. Comput.Geom.Appl, 4:325-362,
1994.

[23] F. Durand. 3D Msibility: Analytical studyand Applica-
tions PhDthesis,UniversiteJosephFourier, Grenoble,
FranceJuly 1999.

[24] F. Durand,G. Drettakis,and C. Puech. The visibility
skeleton: A powerful andefficient multi-purposeglobal
visibility tool. In Turner Whitted, editor, SIGGRAPH
97 ConfeenceProceedingsAnnual ConferenceSeries,
pages89-100.ACM SIGGRAPH,AddisonWeslgy, Au-
gust1997.



[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

F. Durand,G. Drettakis,J. Thollot, andC. Puech.Con-
senative visibility preprocessingsingextendedprojec-
tions. Proceeding®f SIGGRAPH00Q page239-248,
July 2000.

D. Eggert,K. Bowyer, andC. R. Dyer. Aspectgraphs:
State-of-the-artand applicationsin digital photogram-
metry. In Proc. ISPRS17th Cong: Int. ArchivesPho-
togrammetryRemoteSensingpages$33-645,1992.

S. Fleishman,D. Cohen-Or andD. Lischinski. Auto-
matic cameraplacemenfor image-baseanodeling. In
Proceeding®of Pacific Graphics99, pagesl2—20,0cto-
ber1999.

J. D. Foley, A. van Dam, S. K. Feiner and J. F.
Hughes. Computer Graphics, Principles and Prac-
tice, SecondEdition. Addison-Weslg/, Reading,Mas-
sachusetts1990. Overview of researcho date.

H. Fuchs,Z. M. Kedem,andB. F. Naylor. On visible
surfacegeneratiorby apriori treestructuresACM Com-
puterGraphics 14(3):124-1331980.

T. A. FunkhouserDatabasenanagemerfor interactve
display of large architecturaimodels. GraphicsInter-
face pagesl-8,May 1996.

J. Goldfeather J. P. M. Hultquist, andH. Fuchs. Fast
constructve-solidgeometrydisplayin the Pixel-Pavers
graphicssystem. ComputerGraphics(SIGGRAPH86
Proceedings)volume20, pagesl07-116 August1986.

C. M. Goral, K. E. Torrance,D. P. Greenbgy, and B.
Battaile. Modelling the interactionof light betweerdif-
fusesurfaces. In ComputerGraphics(SIGGRAPH84
Proceedings)volume18, pages212—-22 July 1984.

C. Gotsmanp. Sudarsk, andJ. Fayman.Optimizedoc-
clusionculling. Computer& Graphics 23(5):645-654,
1999.

N. Greene. Hierarchicalpolygontiling with coverage
masks.SIGGRAPH6 ConfeenceProceedingsAnnual
Conferencé&eriespages$5-74 ACM SIGGRAPH Ad-
disonWeslg/, August1996.

N. GreeneM. Kass,andG. Miller. Hierarchicalz-buffer
visibility. Proceedingsof SIGGRAPH93, pages231—
240,1993.

N. GreeneandM. Kass. Error-boundedantialiaseden-
dering of complex ervironments. Proceedingof SIG-
GRAPH94 (Orlando,Florida, July 24—29,1994) Com-
puterGraphicsProceedingsAnnual ConferenceSeries,
pagess9-66.ACM SIGGRAPH,ACM Press,July 1994,

P. HanrahanpD. SalzmanandL. Aupperle. A rapid hi-
erarchicaradiosityalgorithm.In Thomasw. Sederbeg,
editor, ACM ComputeiGraphics volume25, pagesl 97—
206,July 1991.

L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T.
He. Virtual voyage: Interactve navigationin thehuman
colon. In TurnerWhitted,editor SIGGRAPH7 Confer
enceProceedingsAnnual ConferenceSeries page7—
34.ACM SIGGRAPH,AddisonWesleg/, August1997.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

T. Hudson,D. ManochaJ. CohenM. Lin, K. Hoff, and
H. Zhang. Acceleratedbcclusionculling usingshadev
frustra. In Proc. 13th Annu. ACM Sympos.Comput.
Geom, pagesl-10,1997.

J. T. Klosowski andC. T. Silva. Efficient conserative
visibility culling usingthe prioritized-layeredorojection
algorithm. Technicalreport. submittedfor publication,
2000.

J.T. Klosowski, M. Held, Josepls.B. Mitchell, H. Sow-
izral, andK. Zikan. Efficient collision detectionusing
boundingvolumehierarchiesof k-dops. IEEE Transac-
tionson Misualizationand ComputerGraphics 4(1):21—
36, January-Marchi998.

J.T. Klosowski andC. T. Silva. The prioritized-layered
projection algorithm for visible set estimation. IEEE

Transactionson Misualizationand ComputerGraphics

6(2):108—123April - June2000.1SSN1077-2626.

J.T. Klosowski andC. T. Silva. Renderingon abudget:
A framework for time-critical rendering. IEEE Visual-
ization’'99, pagesl15-1220October1999.

V. Koltun, Y. Chrysanthouand D. Cohen-Or Virtual
occluders:An efficient intermediatepvs representation.
RenderingTechniques2000: 11th Eurographics Work-
shopon Rendering pages59-70,June2000. ISBN 3-
211-83535-0.

S.Kumar D. ManochaW. Garrett,andM. Lin. Hierar
chicalback-ficecomputation Computes andGraphics
23(5):681-6920ctober1999.

F.-A. Law and T.-S. Tan. Preprocessin@cclusionfor
real-timeselectve refinement(color plate S. 221). In
StephenN. Spencereditor, Proceedingf the Confer
enceon the 1999 Symposiunon interactive 3D Graph-
ics, pagesA7-54,New York, April 26-281999.ACM
Press.

H. L. Lim. Towardafuzzy hiddensurfacealgorithm. In
ComputerGraphicsinternational Tokyo, 1992.

D. Lueblke andC. Geoges.Portalsandmirrors: Simple,
fastevaluationof potentiallyvisible sets. 1995 Sympo-
siumon Interactive3D Graphics pagesl05-106 ACM
SIGGRAPH,April 1995.

M. Meissner D. Bartz, T. Huttner G. Muller, and
J. Einighammer Generatiorof subdvision hierarchies
for efficientocclusionculling of largepolygonalmodels.
Computer& Graphics To appear

T. Moeller andE. Haines. Real-Time Rendering A.K.
Peterd_td., 1999.

S. Morein. Ati radeonhyperz technology In presenta-
tion at Hot3D Proceedingspart of GraphicsHardware
Workshop 2000.

B. Nadler G. Fibich, S. Lev-Yehudi,andD. Cohen-Or
A qualitative andquantitatve visibility analysisn urban
scenesComputer& Graphics 23(5):655-6661999.



[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

B. F. Naylor. Partitioningtreeimagerepresentatioand
generatiorfrom 3D geometricmodels. In Proceedings
of Graphicslinterface’92, pages201-212,1992.

M. E.Newell, R. G. Newell, andT. L. SanchaA solution
to the hiddensurface problem. Proc. ACM Nat. Mtg.,
1972.

J.O’Rourke. Art Gallery TheoemsandAlgorithms The
InternationalSeriesof Monographson ComputerSci-
ence.Oxford University PressNew York, NY, 1987.

M. S. Peerg, M. Olano,J. Airey, andP. Jefrey Ungar
Interactve multi-passprogrammableshading. Proceed-
ingsof SIGGRAPH200Q pagest25-432,July 2000.

H. PlantingaandC. R. Dyer. Visibility, occlusion,and
theaspecgraph. Internat.J. Comput.Msion, 5(2):137—
160,1990.

H. Plantinga. Consenrative visibility preprocessindor
efficient walkthroughsof 3D scenes.In Proceedingof
Graphics Interface '93, pages166—173,Toronto, On-
tario, CanadaMay 1993.CanadiarinformationProcess-
ing Society

C.Saona-¥zquez|. Navazo,andP. Brunet. Thevisibil-
ity octree:A datastructurefor 3d navigation. Computer
& Graphics 23(5):635-6441999.

G. Schaufler J. Dorsgy, X. Decoret,andF. X. Sillion.
Conserative volumetricvisibility with occluderfusion.
Proceedingof SIGGRAPH200Q pages229-238,July
2000.

R. Schumackr, B. Brand, M. Gilliland, andW. Sharp.
Studyfor applyingcomputergeneratedmagesto visual
simulation. TechnicalReportAFHRL-TR-69-14,NTIS
AD700375,U.S. Air ForceHumanResources$ab., Air
ForceSystemsCommandBrooksAFB, TX,, September
1969.

N. Scott,D. Olsen,andE. Gannet. An overview of the
visualizefx graphicsacceleratohardware. TheHewlett-
Packard Journal, May:28-34,1998.

K. Severson. VISUALIZE Workstation Graphicsfor
Windows NT. HP productliterature.

F. Sillion andG. Drettakis.Feature-basecbntrol of vis-
ibility error: A multi-resolutionclusteringalgorithmfor
globalillumination. In RobertCook, editor, ACM Com-
puter Graphics Annual ConferenceSeries,pagesl45—
152. ACM SIGGRAPH,AddisonWesleg/, August1995.
heldin Los Angeles,California,06-11August1995.

M. SlaterandY. Chrysanthou.View volumeculling us-
ing a probabilisticcashingscheme. In S. Wilbur and
M. Bergamascoeditors,Proceedingof Framevork for
ImmesiveVirtual Ervironmentd=1VE, Decembe996.

W. Stuerzlinger Imagingall visible surfaces. Graphics
Interface’99, pagesl15-122 Junel999.

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

(80]

B. Smits,J. Arvo, andD. Greenbgg. A clusteringalgo-
rithm for radiosityin comple ervironments.In Andrew
Glassner editor, Proceedingsof SIGGRAPH'94 (Or-
lando, Florida, July 24-29,1994) ComputerGraphics
ProceedingsAnnualConferenceseriespagest35—442.
ACM SIGGRAPH,ACM Press,July 1994.

0. Sudarsl andC. Gotsman.Dynamicsceneocclusion
culling. IEEE Transactionson Visualizationand Com-
puterGraphics 5(1):13-29 January March 1999.

I. E. SutherlandR. F. Sproull,andR. A. Schumakr. A
characterizationf tenhiddensurfacealgorithms. ACM
ComputerSurvegs 6(1):1-55March1974.

S.J.TellerandC. H. Sequin.Visibility preprocessingpr
interactive walkthroughs ComputerGraphics(Proceed-
ingsof SIGGRAPHD1), 25(4):61-69,July 1991.

C. TrendallandA. JamesStewvart. Generalcalculations
usinggraphicshardwarewith applicationgo interactve
caustics.RenderingTechniques2000: 11th Eurograph-
ics Workshopon Renderingpages287-298,June2000.

M. van de PanneandJ. Stewvart. Efficient compression
techniquedor precomputedisibility. In Proceeding®f
EurographicsWorkshopon Rendering99, 1999.

G. S. Watkins. A real-timevisible surface algorithm.
Technical Report UTECH-CSc-70-101,University of
Utah, SaltLake City, Utah,1970.

K. Weiler and K. Atherton. Hidden surface removal
using polygon areasorting. ACM ComputerGraphics
11(2):214-222July 1977.

P. WonkaandD. Schmalstig. Occludershadavs for fast
wakthroughf urbanervironments.In Hans-PeteBei-
del and SabineCoquillart, editors, ComputerGraphics
Forum volume18, pages<C51-C60 Eurographic#\sso-
ciationandBlackwell Publisherd td 1999,1999.

P. Wonka, M. Wimmer, and D. Schmalstig. Visibil-
ity preprocessingvith occluderfusion for urbanwalk-
throughs.Renderinglechniques2000: 11th Eurograph-
ics Workshopon Rendering pages71-82, June 2000.
ISBN 3-211-83535-0.

P. Wonka, M. Wimmer, and D. Schmalstig. Visibil-
ity preprocessingvith occluderfusion for urbanwalk-
throughs.TechnicalReportTR-186-2-00-06|nstituteof
ComputerGraphics,ViennaUniversity of Technology
Karlsplatz13/186,A-1040Vienna,Austria,March2000.
humancontact:technical-report@cg.tuwien.ac.at.

A. Woo, P. Poulin,andA. Fourier A surey of shadov
algorithms.|[EEE ComputerGraphicsand Applications
10(6):13-311990.

H. Zhang,D. Manocha,T. HudsonandK. Hoff. Visibil-

ity culling usinghierarchicalocclusionmaps. In Com-
puter Graphics (Proceedingsof SIGGRAPH97, pages
77-88,1997.

H. Zhang.EffectiveOcclusionCulling for thelnteractive
Display of Arbitrary Models Ph.D.thesis,Department
of ComputerScience UNC-ChapeHill, 1998.



[81] H. Zhang,D. Manocha,T. Hudson,andK. E. Hoff IlI.
Visibility culling using hierarchicalocclusionmaps. In
TurnerWhitted, editor, SIGGRAPH97 ConfeencePro-
ceedingsAnnualConferenc&eriespages’7-88. ACM
SIGGRAPH,AddisonWeslg/, August1997.



Visibility, Problems, Techniques and Applications

Analytical visibility

Frédo Durand
MIT- Lab for Computer Science

Introduction

Why bother with analytical visibility?
Help understand

— What are the problems

— What do we want to do?

— What is possible?

— What is costly?

Offer indghts

Canbesimplified for practical solutions

Analytical visibility

Plan

¢ Spaces

 Visud events

* Agpects

¢ The Aspect Graph

* TheVighility Skeleton
« 3Dvs. 2D
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Joaces

Analytical visibility

Andytica tools

— To understand what' s going on

Computetiona tools

— Some computations are easier in a certain space

Spaces — Aspect and visual event — Aspect Graph — Visibility Skeleton

Soaces

» Object-space
¢ Image-space
* Viewpoint
* Line-space
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Spaces — Aspect and visual event — Aspect Graph — Visibility Skeleton
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Object-space vs. |mage-space

[Sutherland et al. 1974]

* Aka image-precision and object-precision
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Object-space

« 3D spacewherethe sceneisdefined

» E.g, triangleisoccluded if itisinside the
pyramid

P
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| mage-space

» Computation performed in the plane of theimage
» E.g.istriangleinside rectangle?
» Usualy discretized inpixels

M
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Viewpoint space

 Spaceof al possible viewpoints
 Often sameasobject-space

« |sthe current viewpoint one of the viewpoints
wheretriangleisoccluded?

—_——————
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Viewpoint space

* Spaceof dl possibleviewpoints
« Often sameasobject-space
* But can be restrained
— Orthographic projection (viewing sphere)
— Limited degrees of freedom
* Fastest viewpoint-space method ever:
— Precompute everything for every viewpoint!
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Line space

* Vighility expressed interms of rays
» E.g. areall raysbetween theeye and thetriangle
blocked by the rectangle?
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Line space

* Vighility expressed in terms of rays

* Paradigm: ray-casting

» Linespaceis4D
— E.g. intersection with two planes
— Or one direction + intersection with one plane

* Set of linethrough apoint isa2D manifoldin 4D
— Definesaview

» Ray-spaceis5D
—Line+origin
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Line Space

* Plicker space
— [Teller 92, Pellegrini 91-94]
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Classification of lines

* Lineintersecting an object
* Lineintersecting two objects

o

Analytical visibility

Typical advantages and drawbacks

¢ Image-space
+ Robust, easier to code, occluder fusion, can use polygon soup
— Limited to one viewpoint, aliasing
* Object-space
+ Precision, can handle fromregion visibility
— often robustness problems
* Viewpoint space
+ Super efficient at runtime
— Costly storage and precomputation, no dynamic object
e Line space
+ Natural space, simple atomic operation (ray-casting), arbitrary
geometry

— 4D, often requires sampling (non conservative), or too complex
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Visual event

» Where doesvisihility change?
» How doesit change?

* Quadlitative approach
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Visual event

* Appearance-disappearance of objects
(qualitative change of aview)
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Visual event

* Appearance-disappearance of objects
(qualitative change of aview)

* «\Wedge» defined by avertex and an edge
* TypeEV
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N
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Visual event

 Appearance-disappearance of objects
« Limitsof umbra

Penumbra
(source partially visible)

Umbra
(source invisible)

Analytical visibility

Triple-edge event

Analytical visibility

Aspect
e “Quadlitative” view
 Topological

Qualitatively equivalent Qualitatively different

(same aspect) (different aspect)
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Aspect Graph

» Aspectgraph
— Characterization of the set of possible views of an object

[Koenderink and Van Doorn 79, Plantingaand Dyer 90, Gigus
et al.90-91, Petitjean et al. 92]
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Size of the Aspect Graph

For apolygonal scene withn edges
e O(n®) visud events

» O(nS) for orthographic views

» O(n°) for perspectiveviews

< A more reasonable estimate may be around
< O(n*) and O(n®), but till very costly!
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Aspect graph for walkthroughs

* [Plantinga 93]
 Pre-computeal visibility events

» Whilewalking through, you know when the set
of visible objects changes

 Unfortunately, very costly pre-processing and
storage
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Aspect graph for walkthroughs 1

(Forward reference)
* [Coorg and Teller 97]
« Local and linearized version of the aspect graph
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Visibility Skeleton

Goal
* Global visihility structure
— views
— limits of shadows
— appearance of objects
— mutual visibility
 Characterisethe changesinvisibility
— where?
— how?
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Critical line

* Line going througheandv

Analytical visibility

Critical lines

* 1D set of linesgoing through eand v
(1 degree of freedom)
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Extremal stabbing line

1D set of linesgoing through e and v
(1 degree of freedom)

* Extremity: extremal stabbing line (VV)
(O degree of freedom)
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Extremal stabbing line

» TypeVEE (0 degree of freedom)

€
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Summary

Visua events
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¢ Adjacencies
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Results

 Scenesup to 1500 polygons
— 1.2 million of nodes
— 32 minutes for computation
¢ Memory
— O(n% intheory, n? observed
e Time
— O(n) intheory, n?>* observed
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Results

Use of the skeleton

* Exact computation of form-factors
— point-polygon
« Discontinuity meshing
— scene subdivision along shadow boundaries
— also for indirect lighting
* Refinement criterion
— perceptual metric
— error estimation
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* 492 polygons : 10 minutes 23 seconds

Comparison

With skeleton "~ [Gibson 96]

10 minutes 23 seconds 1 hour 57 minutes
Analytical visibility

Discussion

» Genera structure of global visibility
« Simpleand locd
— on-demand construction
* Future work issues
— robustness (partial treatment)
— complexity: scalability
(quadratic growth is unacceptable)
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3D is much harder than 2D

* line space growsfrom 2D to 4D

* Alineisahyperplanein 2D, notin 3D

* Visua eventsaresimplein 2D : lines
They can be curved ruled surfacesin 3D

» Combinatoria explosionin 3D
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CHAPTER 1

Introduction

Il déduisit que la bibliothéque est totale, et que ses
étageéres consignent toutes les combinaisons possibles
des vingt et quelques symboles orthographiques (nom-
bre quoique trés vaste, non infini), c’est & dire tout ce
qu’il est possible d’exprimer dans toutes les langues.

Jorge Luis BORGES, La hibliothéque de Babel

VAST AMOUNT OF WORK has been published about visibility in many different domains. In-
spiration has sometimes traveled from one community to another, but work and publications
have mainly remained restricted to their specific field. The differences of terminology and
interest together with the obvious difficulty of reading and remaining informed of the cu-
mulative literature of different fields have obstructed the transmission of knowledge between
communities. This is unfortunate because the different points of view adopted by different
domains offer a wide range of solutions to visibility problems. Though some surveys exist about certain spe-
cific aspects of visibility, no global overview has gathered and compared the answers found in those domains.
The second part of this thesis is an attempt to fill this vacuum. We hope that it will be useful to students begin-
ning work on visibility, as well as to researchers in one field who are interested in solutions offered by other
domains. We also hope that this survey will be an opportunity to consider visibility questions under a new
perspective.

1 Spirit of the survey

This survey is more a “horizontal” survey than a “vertical” survey. Our purpose is not to precisely compare the
methods developed in a very specific field; our aim is to give an overview which is as wide as possible.

We also want to avoid a catalogue of visibility methods developed in each domain: Synthesis and compar-
ison are sought. However, we believe that it is important to understand the specificities of visibility problems
as encountered in each field. This is why we begin this survey with an overview of the visibility questions as
they arise field by field. We will then present the solutions proposed, using a classification which is not based
on the field in which they have been published.
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Our classification is only an analysis and organisation tool; as any classification, it does not offer infallible
nor strict categories. A method can gather techniques from different categories, requiring the presentation of a
single paper in several chapters. We however attempt to avoid this, but when necessary it will be indicated with
cross-references.

We have chosen to develop certain techniques with more details not to remain too abstract. A section in
general presents a paradigmatic method which illustrates a category. It is then followed by a shorter description
of related methods, focusing on their differences with the first one.

We have chosen to mix low-level visibility acceleration schemes as well as high-level methods which make
use of visibility. We have also chosen not to separate exact and approximate methods, because in many cases
approximate methods are “degraded” or simplified versions of exact algorithms.

In the footnotes, we propose some thoughts or references which are slightly beyond the scope of this survey.
They can be skipped without missing crucial information.

2 Flaws and bias

This survey is obviously far from complete. A strong bias towards computer graphics is clearly apparent, both
in the terminology and number of references.

Computational geometry is insufficiently treated. In particular, the relations between visibility queries and
range-searching would deserve a large exposition. 2D visibility graph construction is also treated very briefly.

Similarly, few complexity bounds are given in this survey. One reason is that theoretical bounds are not
always relevant to the analysis of the practical behaviour of algorithms with “typical” scenes. Practical timings
and memory storage would be an interesting information to complete theoretical bounds. This is however
tedious and involved since different machines and scenes or objects are used, making the comparison intricate,
and practical results are not always given. Nevertheless, this survey could undoubtedly be augmented with
some theoretical bounds and statistics.

Terrain (or height field) visibility is nearly absent of our overview, even though it is an important topic,
especially for Geographical Information Systems (GIS) where visibility is used for display, but also to optimize
the placement of fire towers. We refer the interested reader to the survey by de Floriani et al. [FPM98].

The work in computer vision dedicated to the acquisition or recognition of shapes from shadows is also
absent from this survey. See e.g. [Wal75, KB98].

The problem of aliasing is crucial in many computer graphics situations. It is a large subject by itself, and
would deserve an entire survey. It is however not strictly a visibility problem, but we attempt to give some
references.

Neither practical answers nor advice are directly provided. The reader who reads this survey with the
question “what should | use to solve my problem” in mind will not find a direct answer. A practical guide
to visibility calculation would unquestionably be a very valuable contribution. We nonetheless hope that the
reader will find some hints and introductions to relevant techniques.

3 Structure

This survey is organised as follows. Chapter 2 introduces the problems in which visibility computations occur,
field by field. In chapter 3 we introduce some preliminary notions which will we use to analyze and classify the
methods in the following chapters. In chapter 4 we survey the classics of hidden-part removal. The following
chapters present visibility methods according to the space in which the computations are performed: chapter
5 deals with object space, chapter 6 with image-space, chapter 7 with viewpoint-space and finally chapter 8
treats line-space methods. Chapter 9 presents advanced issues: managing precision and dealing with moving
objects. Chapter 10 concludes with a discussion..

In appendix 12 we also give a short list of resources related to visibility which are available on the web. An
index of the important terms used in this survey can be found at the end of this thesis. Finally, the references
are annotated with the pages at which they are cited.



CHAPTER 2

Visibility problems

S’il n’y a pas de solution, c’est qu’il n’y a pas de
probléme

LES SHADOKS

ISIBILITY PROBLEMS arise in many different contexts in various fields. In this section we

review the situations in which visibility computations are involved. The algorithms and data-

structures which have been developed will be surveyed later to distinguish the classification

of the methods from the context in which they have been developed. We review visibility in

computer graphics, then computer vision, robotics and computational geometry. We conclude
this chapter with a summary of the visibility queries involved.

1 Computer Graphics

For a good introduction on standard computer graphics techniques, we refer the reader to the excellent book by
Foley et al. [FYvDFH90] or the one by Rogers [Rog97]. More advanced topics are covered in [WW92].

1.1 Hidden surface removal

View computation has been the major focus of early computer graphics research. Visibility was a synonym for
the determination of the parts/polygons/lines of the scene visible from a viewpoint. It is beyond the scope of
this survey to review the huge number of techniques which have been developed over the years. We however
review the great classics in section 4. The interested reader will find a comprehensive introduction to most of
the algorithms in [FYDFH90, Rog97]. The classical survey by Sutherland et al. [SSS74] still provides a good
classification of the techniques of the mid seventies, a more modern version being the thesis of Grant [Gra92].
More theoretical and computational geometry methods are surveyed in [Dor94, Ber93]. Some aspects are also
covered in section 4.1. For the specific topic of real time display for flight simulators, see the overview by
Mueller [Mue95].

The interest in hidden-part removal algorithms has been renewed by the recent domain of non-photorealistic
rendering, that is the generation of images which do not attempt to mimic reality, such as cartoons, technical

7
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illustrations or paintings [MKT 797, WS94]. Some information which are more topological are required such
as the visible silhouette of the objects or its connected visible areas.
View computation will be covered in chapter 4 and section 1.4 of chapter 5.

1.2 Shadow computation

The efficient and robust computation of shadows is still one of the challenges of computer graphics. Shadows
are essential for any realistic rendering of a 3D scene and provide important clues about the relative positions
of objects®. The drawings by da Vinci in his project of a treatise on painting or the construction by Lambert
in Freye Perspective give evidence of the old interest in shadow computation (Fig. 2.1). See also the book
by Baxandall [Bax95] which presents very interesting insights on shadows in painting, physics and computer
science.
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Figure 2.1: (a) Study of shadows by Leonardo da Vinci (Manuscript Codex Urbinas). (a) Shadow construction
by Johann Heinrich Lambert (Freye Perspective).

Hard shadows are caused by point or directional light sources. They are easier to compute because a point
of the scene is either in full light or is completely hidden from the source. The computation of hard shadows
is conceptually similar to the computation of a view from the light source, followed by a reprojection. It is
however both simpler and much more involved. Simpler because a point is in shadow if it is hidden from the
source by any object of the scene, no matter which is the closest. Much more involved because if reprojection
is actually used, it is not trivial by itself, and intricate sampling or field of view problems appear.

Soft shadows are caused by line or area light sources. A point can see all, part, or nothing of such a source,
defining the regions of total lighting, penumbra and umbra. The size of the zone of penumbra varies depending
on the relative distances between the source, the blocker and the receiver (see Fig. 2.2). A single view from the
light is not sufficient for their computation, explaining its difficulty.

An extensive article exists [WPF90] which surveys all the standard shadows computation techniques up to
1990.

Shadow computations will be treated in chapter 5 (section 4.1, 4.2, 4.4 and 5), chapter 6 (section 2.1, 6 and
7) and chapter 7 (section 2.3 and 2.4).

The inverse problem has received little attention: a user imposes a shadow location, and a light position
is deduced. It will be treated in section 5.6 of chapter 5. This problem can be thought as the dual of sensor
placement or good viewpoint computation that we will introduce in section 2.3.

1.3 Occlusion culling

The complexity of 3D scenes to display becomes larger and larger, and can not be rendered at interactive
rates, even on high-end workstations. This is particularly true for applications such as CAD/CAM where the

1 The influence of the quality of shadows on the perception of the spatial relationships is however still a controversial topic. see e.g.
[Wan92, KKMB96]
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source

blocker

@ (b)

Figure 2.2: (a) Example of a soft shadow. Notice that the size of the zone of penumbra depends on the mutual
distances (the penumbrais wider on the | eft). (b) Part of the source seen from a point in penumbra.

databases are often composed of millions of primitives, and also in driving/flight simulators, and in walk-
throughs where a users want to walk through virtual buildings or even cities.

Occlusion culling (also called visibility culling) attempts to quickly discard the hidden geometry, by com-
puting a superset of the visible geometry which will be sent to the graphics hardware. For example, in a city,
the objects behind the nearby facades can be “obviously” rejected.

An occlusion culling algorithm has to be conservative. It may declare potentially visible an object which
isin fact actually hidden, since a standard view computation method will be used to finally display the image
(typically a z-buffer [FYvDFH9Q]).

A distinction can be made between online and offline techniques. In an online occlusion culling method,
for each frame the objects which are obviously hidden are rejected on the fly. While offline Occlusion culling
precomputations consist in subdividing the scene into cells and computing for each cell the objects which may
bevisible frominsidethe cell. Thisset of visible object is often called the potentially visible sets of the cell. At
display time, only the objectsin the potentially visible set of the current cell are sent to the graphics hardware 2.

The landmark paper on the subject is by Clark in 1976 [Cla76] where he introduces most of the concepts
for efficient rendering. The more recent paper by Heckbert and Garland [HG94] gives a good introduction to
the different approaches for fast rendering. Occlusion culling techniques are treated in chapter 5 (section 4.4,
6.3 and 7), chapter 6 (section 3 and 4), chapter 7 (section 4) and chapter 8 (section 1.5).

1.4 Global lllumination

Globa illumination deals with the simulation of light based on the laws of physics, and particularly with the
interactions between objects. Light may be blocked by objects causing shadows. Mirrorsreflect light along the
symmetric direction with respect to the surface normal (Fig. 2.3(a)). Light arriving at a diffuse (or lambertian)
object isreflected equally in al directions (Fig. 2.3(b)). More generally, afunction called BRDF (Bidirectional
Reflection Distribution Function) models the way light arriving at a surface is reflected (Fig. 2.3(c)). Fig 2.4
illustrates some bounces of light through a scene.

Kagjiya has formalised global illumination with the rendering equation [Kgj86]. Light traveling through a
point in a given direction depends on all the incident light, that is, it depends on the light coming from al the
points which are visible. Its solution thus involves massive visibility computations which can be seen as the
equivalent of computing aview from each point of the scene with respect to every other.

Theinterested reader will find a complete presentation in the books on the subject [CW93b, SP94, Glag5].

Global illumination method can aso be applied to the simulation of sound propagation. See the book by
Kutruff [Kut91] or [Dal96, FCE " 98]. See section 4.3 of chapter 5. Sound however differs from light because

20cclusion-culling techniques are also used to decrease the amount of communication in multi-user virtual environments: messages
and updates are sent between users only if they can see each other [Fun95, Fun96a, CT97a, MGBY99]. If the scene is too big to fit in
memory, or if it is downloaded from the network, occlusion culling can be used to load into memory (or from the network) only the part of
the geometry which may be visible [Fun96c, COZ98].
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Figure 2.3: Light reflection for a given incidence angle. (a) Perfect mirror reflection. (b) Diffuse reflection. (c)
General bidirectional reflectance distribution function (BRDF).

Figure 2.4: Global illumination. We show some paths of light: light emanating from light sources bounces on
the surfaces of the scene (We show only one outgoing ray at each bounce, but light is generally reflected in al
direction as modeled by a BRDF).

the involved wavelength are longer. Diffraction effects have to be taken into account and binary straight-line
visihbility isatoo simplistic model. Thistopic will be covered in section 2.4 of chapter 6.

In the two sections below we introduce the global illumination methods based on ray-tracing and finite
elements.

1.5 Ray-tracing and Monte-Carlo techniques

Whitted [Whi80] has extended the ray-casting developed by Appel [App68] and introduced recursive ray-
tracing to compute the effect of reflecting and refracting objects as well as shadows. A ray is simulated from
the viewpoint to each of the pixels of the image. It is intersected with the objects of the scene to compute
the closest point. From this point, shadow rays can be sent to the sources to detect shadows, and reflecting
or refracting rays can be sent in the appropriate direction in a recursive manner (see Fig. 2.5). A complete
presentation of ray-tracing can be found on the book by Glassner [Gla89] and an electronic publication is
dedicated to the subject [Hai]. A comprehensiveindex of related paper has been written by Speer [ Spe92a]

More complete global illumination simulations have been devel oped based on the Monte-Carlo integration
framework and the aforementioned rendering equation. They are based on a probabilistic sampling of the
illumination, requiring to send even morerays. At each intersection point some rays are stochastically sent to
sampletheillumination, not only in the mirror and refraction directions. The processthen continuesrecursively.
It can model any BRDF and any lighting effect, but may be noisy because of the sampling.

Those techniques are called view dependent because the computations are done for a unique viewpoint.
Veach’s thesis [Vea97] presents a very good introduction to Monte-Carlo techniques.

The atomic and most costly operation in ray-tracing and Monte-Carlo techniques consistsin computing the
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viewpoint

Figure 2.5: Principle of recursive ray-tracing. Primary rays are sent from the viewpoint to detect the visible
object. Shadow rays are sent to the source to detect occlusion (shadow). Reflection rays can be sent in the
mirror direction.

first object hit by aray, or in the case of rays cast for shadows, to determineif the ray intersects an object. Many
accel eration schemes have thus been devel oped over the two last decades. A very good introduction to most of
these techniques has been written by Arvo and Kirk [AK89].

Ray-shooting will be treated in chapter 5 (section 1 and 4.3), chapter 6 (section 2.2), chapter 8 (section 1.4
and 3) and chapter 9 (section 2.2).

1.6 Radiosity

Radiosity methods have first been developed in the heat transfer community (see e.g. [Bre92]) and then adapted
and extended for light simulation purposes. They assume that the objects of the scene are completely diffuse
(incoming light is reflected equally in al directions of the hemisphere), which may be reasonable for archi-
tectural scene. The geometry of the sceneis subdivided into patches, over which radiosity is usually assumed
constant (Fig. 2.6). The light exchanges between all pairs of patches are simulated. The form factor between
patches A and B is the proportion of light leaving A which reaches B, taking occlusions into account. The
radiosity problem then resumes to a huge system of linear equations, which can be solved iteratively. Formally,
radiosity is a finite element method. Since lighting is assumed directionally invariant, radiosity methods pro-
vide view independent solutions, and a user can interactively walk through a scene with global illumination
effects. A couple of books are dedicated to radiosity methods [ SP94, CW93b, Ash94].

Figure 2.6: Radiosity methods simulate diffuse interreflexions. Note how the subdivision of the geometry is
apparent. Smoothing is usually used to alleviate most of these artifacts.

Form factor computation is the costliest part of radiosity methods, because of the intensive visibility com-
putations they require [HSD94]. An intricate formula has been derived by Schroeder and Hanrahan [SH93]
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for the form factor between two polygonsin full visibility, but no analytical solutionis known for the partially
occluded case.

Form factor computation will be treated in chapter 4 (section 2.2), chapter 5 (section 6.1 and 7), in chapter
6 (section 2.3), chapter 7 (section 2.3), chapter 8 (section 2.1) and chapter 9 (section 2.1).

Radiosity needs a subdivision of the scene, whichisusually grid-like: aquadtreeis adaptively refinedin the
regions where lighting varies, typically the limits of shadows. To obtain a better representation, discontinuity
meshing has been introduced. It tries to subdivides the geometry of the scene aong the discontinuities of the
lighting function, that is, the limits of shadows.

Discontinuity meshing methods are presented in chapter 5 (section 5.3), chapter 7 (section 2.3 and 2.4),
chapter 8 (section 2.1) and chapter 9 (section 1.3, 1.5 and 2.4) S.

1.7 Image-based modeling and rendering

3D models are hard and slow to produce, and if realism is sought the number of required primitivesis so huge
that the model s become very costly to render. The recent domain of image-based rendering and modeling copes
with this through the use of image complexity which replaces geometric complexity. It uses some techniques
from computer vision and computer graphics. Texture-mapping can be seen as a precursor of image-based
techniques, since it improves the appearance of 3D scenes by projecting some images on the objects.

View warping [CW934] permitsthe reprojection of an image with depth values from a given viewpoint to a
new one. Each pixel of theimageis reprojected using its depth and the two camerageometries as shown in Fig.
2.7. It permits re-rendering of images at a cost which is independent of the 3D scene complexity. However,
sampling questions arise, and above all, gaps appear where objects which were hidden in the original view
become visible. The use of multiple base images can help solve this problem, but imposes a decision on how
to combine the images, and especially to detect where visibility problems occur.

initial image

pixels with depth

reprojected image

\qnew viewpoint

Figure 2.7: View warping. The pixels from the initial image are reprojected using the depth information.
However, some gaps due to indeterminate visibility may appear (represented as “?” in the reprojected image)

I mage-based modeling techniques take as input a set of photographs, and allow the scene to be seen from
new viewpoints. Some authors use the photographsto help the construction of a textured 3D model [DTM96].

SRecent approaches have improved radiosity methods through the use of non constant bases and hierarchical representations, but the
cost of form factor computation and the meshing artifact remain. Some non-diffuse radiosity computations have also been proposed at a
usually very high cost. For ashort discussion of the usability of radiosity, see thetalk by Sillion [Sil99].
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Other try to recover the depth or disparity using stereo vision [LF94, MB95]. Image warping then allows the
computation of images from new viewpoints. The quality of the new images depends on the relevance of the
base images. A good set of cameras should be chosen to sampl e the scene accurately, and especially to avoid
that some parts of the scene are not acquired because of occlusion.

Some image-based rendering methods have al so been proposed to speedup rendering. They do not require
the whole 3D sceneto be redrawn for each frame. Instead, the 2D images of some parts of the scene are cached
and reused for a number of frames with simple transformation (2D rotation and trangation [LS97], or texture
mapping on flat [SLSD96, SS96&] or simplified [SDB97] geometry). These image-caches can be organised
as layers, and for proper occlusion and parallax effects, these layers have to be wisely organised, which has
reintroduced the problem of depth ordering.

These topics will be covered in chapter 4 (section 4.3), chapter 5 (section 4.5), chapter 6 (section 5) and
chapter 8 (section 1.5).

1.8 Good viewpoint selection

In production animation, the camera is placed by skilled artists. For others applications such as games, tele-
conference or 3D manipulation, its position is also very important to permit a good view of the scene and the
understanding of the spatial positions of the objects.

This requires the development of methods which automatically optimize the viewpoint. Visibility is one
of the criteria, but one can also devise other requirements to convey a particular ambiance [PBG92, DZ95,
HCS96].

The visual representation of a graph (graph drawing) in 3D raises similar issues, the number of visual
alignments should be minimized. See section 1.5 of chapter 7.

Wewill seein section 2.3 that the placement of computer vision offerssimilar problems. The corresponding
techniques are surveyed in chapter 5 (section 4.5 and 5.5) and chapter 7 (section 3).

2 Computer Vision

An introduction and case study of many computer vision topics can be found in the book by Faugeras [Fau93]
or the survey by Guerra [Gue98]. The classic by Ballard and Brown [BB82] is more oriented towards image
processing techniques for vision.

2.1 Model-based object recognition

The task of object recognition assumes a database of objects is known, and given an image, it reports if the
objects are present and in which position. We are interested in model-based recognition of 3D objects, where
the knowledge of the object is composed of an explicit model of its shape. It first involves|low-level computer
vision techniques for the extraction of features such as edges. Then these features have to be compared with
corresponding features of the objects. The most convenient representations of the objects for thistask represent
the possible views of the object (viewer centered representation) rather than its 3D shape (object-centered
representation). These views can be compared with the image more easily (2D to 2D matching as opposed to
3D to 2D matching). Fig. 2.8 illustrates a model -based recognition process.

One thus needs a data-structure which is able to efficiently represent al the possible views of an object.
Occlusion has to be taken into account, and views have to be grouped according to their similarities. A class
of similar viewsis usually called an aspect . A good viewer-centered representation should be able to a priori
identify all the possible different views of an object, detecting “where” the similarity between nearby viewsis
broken.

Psychological studies have shown evidencesthat the human visual system possesses such a viewer-centered
representation, since objects are more easily recognised when viewed under specific viewpoints[UI189, EB92].

A recent survey exists [Pop94] which reviews results on all the aspects of object recognition. See also the
book by Jain and Flynn [JF93] and the survey by Crevier and Lepage [CL97]
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Figure 2.8: Model-based object recognition. Features are extracted from the input image and matched against
the viewer-centered representation of an L-shaped object.

Object recognition has led to the development of one of the mgjor visibility data structures, the aspect
graph* which will be treated in sections 1 of chapter 7 and section 1.4 and 2.4 of chapter 9.

2.2 Object reconstruction by contour intersection

Object reconstruction takes as input a set of images to compute a 3D model. We do not treat here the recon-
struction of volumetric datafrom slices obtained with medical equipment since it does not involve visibility.

We are interested in the reconstruction process based on contour intersection. Consider aview, from which
the contour of the object has been extracted. The object is constrained to lie inside the cone defined by the
viewpoint and this contour. If many images are considered, the cones can be intersected and a model of the
object is estimated [SLH89]. The process isillustrated in Fig. 2.9. This method is very robust and easy to
implement especidly if the intersections are computed using a volumetric model by removing voxels in an
octree [Pot87].

@ (b)

Figure 2.9: Object reconstruction by contour intersection. The contour in each view defines a general conein
which the object is constrained. A model of the object is built using the intersection of the cones. (a) Cone
resulting from one image. (b) Intersection of cones from two images.

However, how close is this model to the actual object? Which class of objects can be reconstructed using
this technique? If an object can be reconstructed, how many views are needed? This of course depends on
self-occlusion. For example, the cavity in abowl can never be reconstructed using this techniqueif the camera
is constrained outside the object. The analysis of these questionsimposes involved visibility considerations, as
will be shownin section 3 of chapter 5.

4However viewer centered representation now seem superseded by the use of geometric properties which are invariant by some geo-
metric transformation (affine or perspective). These geometric invariants can be used to guide the recognition of objects [MZ92, Wei93].
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2.3 Sensor placement for known geometry

Computer vision tasks imply the acquisition of data using any sort of sensor. The position of the sensor can
have dramatic effects on the quality and efficiency of the vision task which is then processed. Active vision
deals with the computation of efficient placement of the sensors. It is aso referred to as viewpoint planning.

In some cases, the geometry of the environment is known and the sensor position(s) can be preprocessed.
It is particularly the case for robotics applications where the same task has to be performed on many avatars of
the same object for which a CAD geometrical model is known.

The sensor(s) can be mobile, for example placed on arobot arm, it is the so called “camerain hand”. One
can also want to design a fixed system which will be used to inspect alot of similar objects.

An example of sensor planning is the monitoring of arobot task like assembly. Precise absolute positioning
israrely possible, because registration can not always be performed, the controllers used drift over time and the
object on which the task is performed may not be accurately modeled or may be slightly misplaced [HKL98,
MI198]. Uncertainties and tolerances impose the use of sensors to monitor the robot Fig. 2.10 and 2.11 show
examples of sensor controlled task. It has to be placed such that the task to be performed is visible. This
principally requires the computation of the regions of space from which a particular region is not hidden. The
tutorial by Hutchinson et al. [HH96] gives a comprehensive introduction to the visual control of robots.

Figure 2.10: The screwdriver must be placed very precisely in front of the screw. The task is thus controlled by a camera.

n
=

Figure 2.11: Theinsertion of this peg into the hole has to be performed very precisely, under the control of a
sensor which hasto be carefully placed.

Another example is the inspection of a manufactured part for quality verification. Measurements can for
example be performed by triangulation using multiple sensors. If the geometry of the sensors is known, the
position of a feature projecting on a point in the image from a given sensor is constrained on the line going
through the sensor center and the point in the image. With multiple images, the 3D position of the feature
is computed by intersecting the corresponding lines. Better precision is obtained for 3 views with orthogonal
directions. The sensors have to be placed such that each feature to be measuredisvisiblein at least two images.
Visihility isacrucia criterion, but surface orientation and image resolution are also very important.

Theillumination of the object can aso be optimized. One can require that the part to be inspected be well
illuminated. One can maximize the contrast to make important features easily recognisable. The optimization
of viewpoint and illumination together of course leads to the best results but has a higher complexity.
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See the survey by Roberts and Marshall [RM97] and by Tarabanis et al. [TAT95]. Section 5.5 of chapter 5
and section 3 of chapter 7 deal with the computation of good viewpoints for known environment.

2.4 Good viewpoints for object exploration

Computer vision methods have been developed to acquire a 3D model of an unknown object. The choice of
the sequence of sensing operations greatly affects the quality of the results, and active vision techniques are
required.

We have already reviewed the contour intersection method. We have evoked only the theoretical limits of
the method, but an infinite number of views can not be used! The choice of the views to be used thus has to be
carefully performed as function of the aready acquired data.

Another model acquisition technique uses alaser plane and acamera. Thelaser illuminatesthe object along
aplane (the laser beam is quickly rotated over time to generate a plane). A cameraplaced at a certain distance
of the laser records the image of the object, where the illumination by the laser is visible as a slice (see Fig.
2.12). If the geometry of the plane and camerais known, triangulation can be used to infer the coordinates of
the illuminated dlice of the object. Trandating the laser plane permits the acquisition of the whole model. The
data acquired with such a system are called range images, that is, an image from the camera location which
providesthe depth of the points.

Two kinds of occlusion occur with these system: some part of an illuminated slice may not be visibleto the
camera, and some part of the object can be hidden to the laser, as shownin Fig. 2.12.

e laser camera
&
laser plane
i
shadow L
of thel illuminated
r~>gice

i

Figure 2.12: Object acquisition using a laser plane. The laser emits a plane, and the intersection between this
plane and the object is acquired by a camera. The geometry of the dlice can then be easily deduced. The laser
and cameratrandate to acquire the whole object. Occlusion with respect to the laser plane (in black) and to the
camera (in grey) have to be taken into account.

These problemsarereferred to as best-next-view or purposive viewpoint adjustment. The next viewpoint has
to be computed and optimized using the data already acquired. Previously occluded parts have to be explored.

The general problems of active vision are discussed in the report written after the 1991 Active Vision Work-
shop [AAA192]. An overview of the corresponding visibility techniquesis givenin [RM97, TAT95] and they
will be discussed in section 4.5 of chapter 5.

3 Robotics

A comprehensive overview of the problems and specificities of robotics research can be found in [HKL98]. A
more geometrical point of view is exposed in [HKL97]. The book by Latombe [Lat91] gives a complete and
comprehensive presentation of maotion planning techniques.
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A lot of the robotics techniques that we will discuss treat only 2D scenes. This restriction is quite under-
standabl e because alot of mobile robots are only alowed to move on a 2D floorplan.

Aswe have seen, robotics and computer vision share alot of topicsand our classification to one or the other
speciaty is sometimes arbitrary.

3.1 Motion planning

A robot has a certain number of degrees of freedom. A variable can be assigned to each degree of freedom,
defining a (usually multidimensional) configuration space. For example a two joint robot has 4 degrees of
freedom, 2 for each joint orientation. A circular robot allowed to move on a plane has two degrees of freedom
if its orientation does not have to be taken into account. Motion planning [Lat91] consists in finding a path
from a start position of the robot to a goal position, while avoiding collision with obstacles and respecting
some optional additional constraints. The optimality of this path can also be required.

The case of articulated robotsis particularly involved because they movein high dimensional configuration
spaces. We are interested herein robots allowed to tranglate in 2D euclidean space, for which orientation is not
considered. In this case the motion planning problem resumesto the motion planning for a point, by “growing”
the obstacles using the Minkovski sum between the robot shape and the obstacles, asillustrated in Fig. 2.13.

2D shape
of therobot'._ >

l/’\\ 50N
grown
acle obstacle

Figure 2.13: Motion planning on a floorplan. The obstacles are grown using the Minkovski sum with the shape
of the robot. The motion planning of the robot in the non-grown scene resumes to that of its centerpoint in the
grown scene.

The relation between euclidean motion planning and visibility comes from this simple fact: A point robot
can movein straight line only to the points of the scene which are visible fromiit.

We will seein Section 2 of chapter 5 that one of thefirst global visibility data structure, the visibility graph
was devel oped for motion planning purposes. °

3.2 Visibility based pursuit-evasion

Recently motion planning has been extended to the case where a robot searches for an intruder with arbitrary
motion in a known 2D environment. A mobile robot with 360° field of view explores the scene, “cleaning”
zones. A zone is cleaned when the robot sees it and can verify that no intruder isin it. It remains clean if no
intruder can go there from an uncleaned region without being seen. If all the sceneis cleaned, no intruder can
have been missed. Fig. 2.14 shows an example of arobot strategy to clean asimple 2D polygon.

If the environment contains a “column” (that is topologically ahole), it can not be cleaned by a single robot
since the intruder can always hide behind the column.

Extensions to this problem include the optimization of the path of the robot, the coordination of multiple
robots, and the treatment of sensor limitations such as limited range or field of view.

5 Assembly planning is another thematic of robotics where the ways to assemble or de-assemble an object are searched [HKL98]. The
relationship between these problems and visibility would deserve exploration, especially the relation between the possibility to trandate a
part and the visibility of the hole in which it hasto be placed.
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Figure 2.14: The robot has to search for an unknown intruder. The part of the scene visible from the robot isin
dark grey, while the “cleaned” zoneisin light grey. At no moment can an intruder go from the unknown region
to the cleaned region without being seen by the robot.

Pursuit evasion is somehow related to the art-gallery problem which we will present in section 4.3. A
technique to solve this pursuit-evasion problem will be treated in section 2.2 of chapter 7.

A related problem is the tracking of a mobile target while maintaining visibility. A target is movingin a
known 2D environment, and its motion can have different degrees of predictability (completely known mation,
bound on the velocity). A strategy is required for a mobile tracking robot such that visibility with the target is
never lost. A perfect strategy can not always be designed, and one can require that the probability to lose the
target be minimal. See section 3.3 of chapter 7.

3.3 Self-localisation

A mobile robot often has to be localised in its environment. The robot can therefore be equipped with sensor
to help it determineits position if the environment is known. Once data have been acquired, for examplein the
form of a range image, the robot has to infer its position from the view of the environment as shown in Fig.
2.15. Seethe work by Drumheller [Dru87] for a classic method.

@

Figure 2.15: 2D Robot localisation. (a) View from the robot. (b) Deduced location of the robot.

This problemisin fact very similar to the recognition problem studied in computer vision. The robot hasto
“recognise” its view of the environment. We will see in section 2.1 of chapter 7 that the approaches devel oped
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arevery similar.

4 Computational Geometry

The book by de Berg et al. [dBvKOS97] is a very comprehensive introduction to computational geometry.
The one by O’Rourke [O’R94] is more oriented towards implementation. More advanced topics are treated in
various books on the subject [Ede87, BY 98]. Computational geometry often borrows themes from robotics.

Traditional computational geometry deals with the theoretical complexity of problems. Implementationis
not necessarily sought. Indeed some of the algorithms proposed in the literature are not implementable because
they are based on too intricate data-structures. Moreover, very good theoretical complexity sometimes hides
a very high constant, which means that the algorithm is not efficient unless the size of the input is very large.
However, recent reports [Chad6, TAA 796, LM98] and the CGAL project [FGK T96] (a robust computational
geometry library) show that the community is moving towards more applied subjects and robust and efficient
implementations.

4.1 Hidden surface removal

The problem of hidden surface removal has also been widely treated in computational geometry, for the case
of object-precision methods and polygonal scenes. It has been shown that a view can have O(n?) complexity,
where n is the number of edges (for example if the scene is composed of rectangles which project like a grid
asshown in Fig. 2.16). Optimal O(n?) algorithms have been described [McK 87], and research now focuses on
output-sensitive a gorithms, where the cost of the method also depends on the complexity of the view: ahidden
surface a gorithms should not spend O(n?) time if one object hides all the others.
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Figure 2.16: Scene composed of n rectangles which exhibits a view with complexity O(n?): the planar map
describing the view has O(n?) segments because of the O(n?) visual intersections.

The question has been studied in various context: computation of a single view, preprocessing for multiple
view computation, and update of aview along a predetermined path.

Constraints are often imposed on the entry. Many papers deal with axis aligned rectangles, terrains or
c-oriented polygons (the number of directions of the planes of the polygonsis limited).

See the thesis by de Berg [Ber93] and the survey by Dorward [Dor94] for an overview. We will survey
some computational geometry hidden-part remova methodsin chapter 4 (section 2.3 and 8), chapter 5 (section
1.5) and chapter 8 (section 2.2).

4.2 Ray-shooting and lines in space

The properties and algorithms related to lines in 3D space have received a lot of attention in computational
geometry.

Many algorithms have been proposed to reduced the complexity of ray-shooting (that is, the determination
of the first object hit by a ray). Ray-shooting is often an atomic query used in computational geometry for
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hidden surface removal. Some algorithms need to compute what is the object seen behind a vertex, or behind
the visual intersection of two edges.

Work somehow related to motion planning concerns the classification of lines in space: Given a scene
composed of a set of lines, do two query lines, have the same class, i.e. can we continuously move the first
one to the other without crossing a line of the scene? This problem is related to the partition of rays or lines
according to the object they see, as will be shown in section 2.2.
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Figure2.17: Line stabbing a set of convex polygonsin 3D space

Given a set of convex objects, the stabbing problems searches for a line which intersects all the objects.
Such alineis called a stabbing line or stabber or transversal (see Fig. 2.17). Stabbing is for example useful to
decideif aline of sight is possible through a sequence of doors ©.

We will not survey all the results related to lines in space; we will consider only those where the data-
structures and algorithms are of a particular interest for the comprehension of visibility problems. See chapter
8. The paper by Pellegrini [Pel97b] reviews the major results about lines in space and gives the corresponding
references.

4.3 Art galleries

In 1973, Klee raised this simple question: how many cameras are needed to guard an art gallery? Assume the
galery ismodeled by a2D polygonal floorplan, and the camera have infinite range and 360 ° field of view. This
problemis known as the art gallery problem. Since then, this question has received considerabl e attention, and

many variants have been studied, as shown by the book by O’Rourke [O’R87] and the surveys on the domain

[She92, Urr98]. The problem has been shown to be NP-hard.

Variation on the problem include mobile guards, limited field of view, rectilinear polygonsand illumination
of convex sets. The results are too humerous and most often more combinatorial than geometrical (the actual
geometry of the sceneis not taken into account, only its adjacencies are) so we refer the interested reader to the
aforementioned references. We will just give a quick overview of the major resultsin section 3.1 of chapter 7.

The art gallery problem is related to many questions raised in vision and robotics as presented in section 2
and 3, and recently in computer graphics where the acquisition of models from photographs requires the choice
of good viewpoints as seen in section 1.7.

4.4 2D visibility graphs

Another important visibility topic in computational geometry is the computation of visibility graphs which we
will introduce in section 2. The characterisation of such graphs (given an abstract graph, is it the visibility
graph of any scene?) is also explored, but the subject is mainly combinatorial and will not be addressed in this
survey. See e.g. [Gho97, Eved0, 0OS97].

6Stabbing can also have an interpretation in statistics to find alinear approximation to data with imprecisions. Each data point together
with its precision interval defines abox in amultidimensional space. A stabber for these boxesisavalid linear approximation.
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5 Astronomy

5.1 Eclipses

Solar and lunar eclipse prediction can be considered as the first occlusion related techniques. However, the
main issue was focused on planet motion prediction rather than occlusion.

Figure 2.18: Eclipses. (a) Lunar and Solar eclipse by Purbach. (b) Prediction of the 1715 eclipse by Halley.
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Figure 2.19: 1994 solar eclipse and 1993 lunar eclipse. Photograph Copyright 1998 by Fred Espenak
(NASA/Goddard Space Flight Center).

Seeeg.
http://sunearth.gsfc.nasa.gov/eclipse/eclipse.html
http://www.bdl .fr/Eclipse99

5.2 Sundials

Sundials are another example of shadow related techniques.

seeeg.
http://www.astro.indiana.edu/personnel/rberring/sundial .html
http://www.sundials.co.uk/2sundial.htm
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Figure 2.20: (a) Project of asundia on the Place dela Concordein Paris. (b) Complete sundia with analemmas
in front of the CICG in Grenoble.

6 Summary

Following Grant [Gra92], visibility problems can be classified according to their increasing dimensionality:
The most atomic query is ray-shooting. View and hard shadow computation are two dimensional problems.
Occlusion culling with respect to a point belong to the same category which we can refer to asclassical visibility
problems. Then comes what we call global visibility issues’. Theseinclude visibility with respect to extended
regions such as extended light sources or volumes, or the computation of the region of space from which a
featureis visible. The mutual visibility of objects (required for example for global illumination simulation) is
afour dimensiona problem defined on the pairs of points on surfaces of the scene. Finally the enumeration
of all possible views of an object or the optimization of a viewpoint impose the treatment of two dimensional
view computation problemsfor all possible viewpoints.

7Some author also define occlusion by other objects as global visibility effects as opposed to backface culling and silhouette computa-
tion.
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|D } EFORE presenting visibility techniques, we introduce a few notions which will be useful for
the understanding and comparison of the methods we survey. We first introduce the different
D spaces which are related to visibility and which induce the classification that we will use.
J) We then introduce the notion of visual event, which describes “where” visibility changesin
a scene and which is central to many methods. Finally we discuss some of the differences
which explain why 3D visibility is much more involved than its 2D counterpart.

1 Spaces and algorithm classification

In their early survey Sutherland, Sproull and Schumacker [SSS74] classified hidden-part removal algorithms
into object space and image-space methods. Our terminology is however dlightly different from theirs, since
they designated the precision at which the computations are performed (at the resol ution of theimage or exact),
while we have chosen to classify the methods we survey according to the space in which the computations are
performed.

Furthermore we introduce two new spaces: the space of al viewpoints and the space of lines. We will give
afew simple examplesto illustrate what we mean by all these spaces.

1.1 Image-space

In what follow, we have classified as image-space al the methods which perform their operationsin 2D pro-
jection planes (or other manifolds). As opposed to Sutherland et al.’s classification [SSS74], this plane is not
restricted to the plane of the actual image. It can be an intermediate plane. Consider the example of hard
shadow computation: an intermediate image from the point light source can be computed.

23
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Of course if the scene is two dimensional, image space has only one dimension: the angle around the
viewpoint.

Image-space methods often deal with a discrete or rasterized version of this plane, sometimes with a depth
information for each point. Image-space methodswill be treated in chapter 6.

1.2 Object-space

In contrast, object space is the 3 or 2 dimensional space in which the sceneis defined. For example, some hard
shadow computation methods use shadow volumes [FYDFH90, WPF90]. These volumes are truncated frusta
defined by the point light source and the occluding objects. A portion of space is in shadow if it liesinside a
shadow volume. Object-space methods will be treated in chapter 5.

1.3 Viewpoint-space

We define the viewpoint space as the set of al possible viewpoints. This space depends on the projection used.
If perspective projection is used, the viewpoint space is equivalent to the object space. However, if orthographic
(also called parallel) projection is considered, then a view is defined by a direction, and the viewpoint space
is the set 52 of directions, often called viewing sphere as illustrated in Fig. 3.1. Its projection on a cube is
sometimes used for simpler computations.

direction of
projection

@ (b) (©

Figure 3.1: (a) Orthographic view. (b) Corresponding point on the viewing sphere and (c) on the viewing cube.

An example of viewpoint space method would be to discretize the viewpoint space and precompute a view
for each sample viewpoint. One could then render views very quickly with a simple look-up scheme. The
viewer-centered representation which we have introduced in section 2.1 of the previous chapter is typically a
viewpoint space approach since each possible view should be represented.

Viewpoint-space can be limited. For example, the viewer can be constrained to lie at eye level, defining a
2D viewpoint space (the plane z = heye) in 3D for perspective projection. Similarly, the distance to a point can
be fixed, inducing a spherical viewpoint-space for perspective projection.

It is important to note that even if perspective projection is used, there is a strong difference between
viewpoint space methods and object-space methods. In a viewpoint space, the properties of points are defined
by their view. An orthographic viewpoint-space could be substituted in the method.

Shadow computation methods are hard to classify: the problem can be seen as the intersection of scene
objects with shadow volume, but it can also be seen as the classification of viewpoint lying on the objects
according to their view of the source. Some of our choices can be perceived arbitrary.

In 2D, viewpoint-space has 2 dimensions for perspective projection and has 1 dimension if orthographic
projection is considered.

Viewpoint space methods will be treated in chapter 7.

1.4 Line-space

Visihility can intuitively be defined in terms of lines. two point A and B are mutually visible if no object
intersects line (AB) between them. It is thus natural to describe visibility problemsin line space.
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For example, one can precompute the list of objects which intersect each line of a discretization of line-
space to speed-up ray-casting queries.

In 2D, lineshave 2 dimensions: for exampleits direction 6 and distanceto theorigin p. In 3D however, lines
have 4 dimensions. They can for example be parameterized by their direction (6, ¢) and by the intersection
(u,v) onan orthogonal plane (Fig. 3.2(a)). They can a so be parameterized by their intersection with two planes
(Fig. 3.2(b)). These two parameterizations have some singularities (at the pole for the first one, and for lines
parallel to the two planesin the second). Linesin 3D space can not be parameterized without a singularity. In
section 3 of chapter 8 we will study away to cope with this, embedding linesin a5 dimensional space.

ol

(s,}}_, - (Q,v)

(b)

Figure 3.2: Line parameterisation. (a) Using two angles and the intersection on an orthogonal plane. (b) Using
the intersection with two planes.

The set of lines going through a point describe the view from this point, asin the ray-tracing technique (see
Fig. 2.5). In 2D the set of lines going through a point has one dimension: for example their angle. 1n 3D, 2
parameters are necessary to describe aline going through a point, for exampletwo angles.

Many visibility queries are expressed in terms of rays and not lines. The ray-shooting query computes
the first object seen from a point in a given direction. Mathematically, aray is a half line. Ray-space has 5
dimensions (3 for the origin and two for the direction).

The mutual visibility query can be better expressed in terms of segments. A and B are mutually visible only
if segment [AB] intersects no object. Segment space has 6 dimensions: 3 for each endpoint.

The information expressed in terms of rays or segments is very redundant: many colinear rays “see” the
same object, many colinear segments areintersected by the same object. We will see that the notion of maximal
free segments handles this. Maximal free segments are segments of maximal length which do not touch the
objects of the sceneintheir interior. Intuitively these are segmentswhich touch objectsonly at their extremities.

We have decided to group the methods which deal with these spacesin chapter 8. Theinterested reader will
find some important notions about line space reviewed in appendix 11.

1.5 Discussion

Some of the methods we survey do not perform al their computations in a single space. An intermediate
data-structure can be used, and then projected in the space in which the final result is required.

Even though each method is easier to describein agiven space, it can often be described in adifferent space.
Expressing a problem or a method in different spaces is particularly interesting because it alows different
insights and can yield aternative methods. We particularly invite the reader to transpose visibility questionsto
line space or ray space. We will show throughout this survey that visibility has a very natural interpretation in
line space.

However thisisnot an incitation to actually perform complex calculationsin 4D line space. We just suggest
adifferent way to understand problems and devel op methods, even if calculations are eventually performed in
image or object space.
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2 Visual events, singularities

We now introduce a notion which is central to most of the algorithms, and which expresses “how” and “where”
visihility changes. We then present the mathematical framework which formalizes this notion, the theory of
singularities. The reader may be surprised by the space devoted in this survey to singularity theory compared
to its use in the literature. We however believe that singularity theory permits a better insight on visibility
problems, and allows one to generalize some results on polygonal scenesto smooth objects.

2.1 Visual events

Consider the example represented in Fig. 3.3. A polygona scene is represented, and the views from three
eyepoints are shown on the right. As the eyepoint moves downwards, pyramid P becomes completely hidden
by polygon Q. The limit eyepoint is eyepoint 2, for which vertex V projects exactly on edge E. Thereisa
topological changein visibility: itiscalled avisual event or avisibility event.

A

Figure 3.3: EV visua event. The views from the three eyepoints are represented on the right. As the eyepoint
moves downwards, vertex V becomes hidden. Viewpoint 2 is the limit eyepoint, it lies on avisual event.

Visual events are fundamental to understand many visibility problems and techniques. For example when
an observer moves through a scene, objects appear and disappear at such events (Fig. 3.3). If pyramid P emits
light, then eyepoint 1 isin penumbrawhile eyepoint 3 isin umbra: the visual event is a shadow boundary. If a
viewpoint is sought from which pyramid P is visible, then the visual event is alimit of the possible solutions.
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Figure 3.4: Locusan EV visual event. (a) In object space or perspective viewpoint space it isawedge. (b) In
orthographic viewpoint spaceitisan arc of agreat circle. (c) Inline spaceit isthe 1D set of lines going through
VandE

Fig. 3.4 shows the locus of this visual event in the spaces we have presented in the previous section. In
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object space or in perspective viewpoint space, it is the wedge defined by vertex V and edge E. We say that
V and E are the generators of the event. In orthographic viewpoint space it is an arc of a great circle of the
viewing sphere. Findly, in line-spaceit is the set of lines going throughV and E. These critical lines have one
degree of freedom since they can be parameterized by their intercept on E, we say that itisa 1D set of lines.

The EV events generated by avertex V are caused by the edges which are visible fromV. The set of events
generated by V thus describe the view from V. Reciprocally, aline drawing of aview from an arbitrary point P
can be seen as the set of EV events which would be generated if an imaginary vertex was place at P.

Figure 3.5: A EEE visua event. The views from the three eyepoints are represented on the right. As the
eyepoint moves downwards, polygon R becomes hidden by the conjunction of polygon P and Q. From the
limit viewpoint 2, the three edges have a visual intersection.

Thereisalso adlightly more complex kind of visual event in polygonal scenes. It involvesthe interaction of
3 edges which project on the same point (Fig. 3.5). When the eyepoint moves downwards, polygon P becomes
hidden by the conjunction of Q and R. From the limit eyepoint 2, edges Ep, Eq and Er are aligned.
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Figure3.6: Locusof aEEE visual event. (a) In object-space or perspectiveviewpoint spaceit isaruled quadrics.
(b) In orthographic viewpoint space it is a quadric on the viewing sphere. (c) In line space it is the set of lines
stabbing the three edges.

The locus of such eventsin line space is the set of lines going through the three edges (we also say that
they stab the three edges) as shown on Fig. 3.6(c). In object space or perspective viewpoint space, this defines
aruled quadric often called swath (Fig. 3.6(a)). (Itisin fact doubly ruled: the three edges define one family of
lines, the stabber defining the second.) In orthographic viewpoint space it is a quadric on the viewing sphere
(see Fig. 3.6(b)).

Finally, asimpler class of visual events are caused by a viewpoint lying in the plane of faces of the scene.
The face becomes visible or hidden at such an event.

Visual events are smpler in 2D: they are simply the bitangents and inflexion pointsof the scene.

A deeper understanding of visual events and their generalisation to smooth objects requires a strong for-
malism: it is provided by the singularity theory.
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2.2 Singularity theory

The singularity theory studies the emergence of discrete structures from smooth continuous ones. The branch
we are interested in has been developed mainly by Whitney [Whi55], Thom [Tho56, Tho72] and Arnold
[Arn69]. It permits the study of sudden events (called catastrophes) in systems governed by smooth con-
tinuous laws. An introduction to singularity theory for visibility can be found in the masters thesis by PetitJean
[Pet92] and an educational comics has been written by lan Stewart [Ste82]. See also the book by Koenderink
[Koe9Q] or his paperswith van Doorn [Kv76, KvD82, Kg84, Koe87].

We are interested in the singularities of smooth mappings. For example a view projection is a smooth
mapping which associate each point of 3D spaceto apoint on aprojection plane. First of all, singularity theory
permits the description the structure of the visible parts of a smooth object.

fold fold
@ (b) )

Figure 3.7: View of atorus. (a) Shaded view. (b) Line drawing with singularities indicated (b) Opague and
transparent contour.

Consider the example of a smooth 3D object such as the torus represented in Fig. 3.7(8). Its projection
on a viewing plane is continuous nearly everywhere. However, some abrupt changes appear at the so called
silhouette. Consider the number of point of the surface of the object projecting on agiven point on the projection
plane (counting the backfacing points). On the exterior of the silhouette no point is projected. In the interior
two points (or more) project on the same point. These two regions are separated by the silhouette of the object
at which the number of projected point changes abruptly.

This abrupt change in the smooth mapping is called a singularity or catastrophe or bifurcation. The singu-
larity corresponding to the silhouette was named fold (or also occluding contour or limb). The fold is usualy
used to make aline drawing of the object asin Fig. 3.7(b). It correspondsto the set of pointswhich are tangent
to the viewing direction?.

The fold is the only stable curve singularity for generic surfaces: if we move the viewpoint, there will
always beasimilar fold.

The projectionin Fig. 3.7 aso exhibitstwo point singularities: at-vertex and acusp. T-verticesresultsfrom
the intersection of two folds. Fig. 3.7(c) shows that a fourth fold branch is hidden behind the surface. Cusps
represent the visual end of folds. In fact, a cusp corresponds to a point where the fold has an inflexion in 3D
space. A second tangent fold is hidden behind the surface asillustrated in Fig. 3.7(c).

These are the only three stable singularities: al other singularities disappear after a small perturbation of
the viewpoint (if the object is generic, which is not the case of polyhedral objects). These stable singularities
describe the limits of the visible parts of the object. Malik [Mal87] has established a catal ogue of the features
of line drawings of curved objects.

Singularity theory also permits the description of how the line drawing changes as the viewpoint is moved.
Consider the example represented in Fig. 3.8. As the viewpoint moves downwards, the back sphere becomes
hidden by the front one. From viewpoint (b) where this visual event occurs, the folds of the two spheres are
superimposed and tangent. This unstable singularity is called a tangent crossing. It is very similar to the EV
visual event shown in Fig. 3.3. It is unstable in the sense that any small change in the viewpoint will make it
disappear. The viewpoint is not generic, it is accidental.

1What is the relationship between the view of a torus and the occurrence of a sudden catastrophe? Imagine the projection plane is the
command space of a physical system with two parameters x and y. The torus is the response surface: for a pair of parameters (x,y) the
depth z represents the state of the system. Note that for apair of parameters, there may be many possible states, depending on the history of
the system. When the command parameters vary smoothly, the corresponding state varies smoothly on the surface of the torus. However,
when afold is met, there is an abrupt change in the state of the system, this is a catastrophe. See e.g. [Ste82].
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Figure 3.8: Tangent crossing singularity. As the viewpoint moves downwards, the back sphere becomes hidden
by the frontmost one. At viewpoint (b) a singularity occurs (highlighted with a point): the two spheres are
visually tangent.
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Figure 3.9: Disappearance of acusp at a swallowtail singularity at viewpoint (b). (in fact two swallowtails occur
because of the symmetry of the torus)

Another unstable singularity is shown in Fig. 3.9. As the viewpoints moves upward, the t-vertex and the
cusp disappear. In Fig. 3.9(a) the points of the plane below the cusp result from the projection of 4 points of
the torus, whilein Fig. 3.9(c) all points result from the projection of 2 or 0 points. This unstable singularity is
called swallowtail.

Unstable singularities are the events at which the organisation of the view of a smooth object (or scene) is
changed. These singularities are related to the differential properties of the surface. For example swallowtails
occur only in hyperbolic regions of the surface, that is, regions where the surface is locally nor concave nor
CONVex.

Singularity theory originally does not consider opaqueness. Objects are assumed transparent. As we have
seen, at cusps and t-vertices, some fold branches are hidden. Moreover a singularity like a tangent crossing is
considered even if some objects lie between the two sphere causing occlusion. The visible singularity are only
a subset but all the changes observed in views of opague objects can be described by singularity theory. Some
catal ogues now exist which describe singularities of opague objects 2. See Fig. 3.10.

The catalogue of singularities for views of smooth objects has been proposed by Kergosien [Ker81] and
Rieger [Rie87, Rie90] who has also proposed a classification for piecewise smooth objects [Rie87] 3.

3 2D versus 3D Visibility

We enumerate here some points which make that the difference between 2D and 3D visibility can not be
summarized by asimple increment of one to the dimension of the problem.

This can be more easily envisioned in line space. Recall that the atomic queriesin visibility are expressed
in line-space (first point seen along aray, are two points mutualy visible?).

2Williams [WH96, Wil96] tries to fill in the gap between opaque and transparent singularities. Given the view of an object, he proposes
to deduce the invisible singularities from the visible ones. For example at at-vertex, two folds intersect but only three branches are visible;
the fourth one which is occluded can be deduced. See Fig. 3.10.

3Those interested in the problems of robustness and degeneracies for geometric computations may also notice that a degenerate config-
uration can be seen as a singularity of the space of scenes. The exploration of the relations between singularities and degeneracies could
help formalize and systemize the treatment of the latter. See also section 2 of chapter 9.
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Figure 3.10: Opaque (bold lines) and semi-transparent (grey) singularities. After [Wil96].

First of al, the increase in dimension of line-space istwo, not one (in 2D line-spaceis 2D, whilein 3D it is
4D). This makes things much more intricate and hard to apprehend.

A lineisahyperplanein 2D, which is no more the case in 3D. Thus the separability property islost: a 3D
line does not separate two half-space asin 2D.

A 4D parameterization of 3D linesis not possible without singularities (the one presented in Fig. 3.2(a) has
two singularities at the pole, whilethe onein Fig. 3.2(b) can not represent lines parallel to the two planes). See
section 3 of chapter 8 for a partial solution to this problem.

Visual eventsare simplein 2D: bitangent lines or tangent to inflection points. In 3D their locus are surfaces
which arerarely planar (EEE or visual eventsfor curved objects).

All these arguments make the sentence “the generalization to 3D is straightforward” a doubtful statement
in any visibility paper.



CHAPTER 4

The classics of hidden part removal

Il convient encore de noter que c’est parce que quelque
chose des objets extérieurs pénétre en nous que nous
voyons les formes et que nous pensons

EPICURE, Doctrines et Maximes

E FIRST BRIEFLY review the classical agorithms to solve the hidden surface removal
problem. It isimportant to have these techniques in mind for awider insight of visibility
techniques. We will however remain brief, since it is beyond the scope of this survey to
discuss all the technical details and variations of these algorithms. For a longer survey
see [SSS74, Gra92], and for alonger and more educational introduction see [FvDFH90,

Rog97].

Theview computation problem is often reduced to the case wherethe viewpoint lieson the zaxis at infinity,
and x and y are the coordinates of the image plane; y is the vertical axis of the image. This can be done using
a perspective transform matrix (see [FvDFH90, Rog97]). The objects closer to the viewpoint can thus be said
to lie “above” (because of the z axis) as well as “in front” of the others. Most of the methods treat polygonal
scenes.

Two categories of approaches have been distinguished by Sutherland et al. Image-precision algorithms
solve the problem for a discrete (rasterized) image, visibility being sampled only at pixels; while object-
precision algorithm solve the exact problem. The output of the latter category is often a visibility map, which
is the planar map describing the view. The order in which we present the methodsis not chronological and has
been chosen for easier comparison.

Solutions to hidden surface removal have other applications that the strict determination of the objects
visible from the viewpoint. As evoked earlier, hard shadows can be computed using a view from a point light
source. Inversely, the amount of light arriving at a point in penumbra corresponds to the visible part of the
source from this point as shown in Fig. 2.2(b). Interest for the application of exact view computation has thus
recently been revived.

31
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1 Hidden-Line Removal

The first visibility techniques have were developed for hidden line removal in the sixties. These agorithms
provideinformation only on thevisibility of edges. Nothing isknown on theinterior of visiblefaces, preventing
shading of the objects.

1.1 Robert

Robert [Rob63] developed the first solution to the hidden line problem. He tests all the edges of the scene
polygonsfor occlusion. He then computes the intersection of the wedge defined by the viewpoint and the edge
and all objectsin the scene using a parametric approach.

1.2 Appel

Appel [App67] has developed the notion of quantitative invisibility which is the number of objects which
occlude a given point. Thisis the notion which we used to present singularity theory: the number of points of
the object which project on a given point in the image. Visible points are those with 0 quantitative invisibility.
The quantitative invisibility of an edge of a view changes only when it crosses the projection of another edge
(it correspondsto at-vertex). Appel thus computes the quantitative invisibility number of a vertex, and updates
the quantitative invisibility at each visual edge-edge intersection.
Markosian et al. [MKT ™97] have used thisalgorithm to render the silhouette of objectsin anon-photorealistic

manner. When the viewpoint is moved, they use a probabilistic approach to detect new silhouettes which could
appear because an unstable singularity is crossed.

1.3 Curved objects

Curved objects are harder to handle because their silhouette (or fold) first has to be computed (see section 2.2 of
chapter 3). Elber and Cohen [EC90] compute the silhouette using adaptive subdivision of parametric surfaces.
The surface is recursively subdivided as long as it may contain parts of the silhouette. An algorithm similar
to Appel’s method is then used. Snyder [Sny92] proposes the use of interval arithmetic for robust silhouette
computation.

2 Exact area-subdivision

2.1 Weiler-Atherton

Weiler and Atherton [WA77] devel oped the first object-precision method to compute a visibility map. Objects
are preferably sorted according to their depth (but cycles do not have to be handled). The frontmost polygons
are then used to clip the polygons behind them.

This method can also be very simply used for hard shadow generation, as shown by Atherton et al.
[AWGT8]. A view is computed from the point light source, and the clipped polygons are added to the scene
database as lit polygon parts.

The problem with Weiler and Atherton’s method, as for most of the object-precision methods, is that it
reguires robust geometric calculations. It is thus prone to numerical precision and degeneracy problems.

2.2 Application to form factors

Nishita and Nakamae [NN85] and Baum et al. [BRW89] compute an accurate form factor between a polygon
and a point (the portion of light leaving the polygon which arrives at the point) using Weiler and Atherton’s
clipping. Once the source polygon is clipped, an analytical formula can be used. Using Stoke’s theorem, the
integral over the polygon is computed by an integration over the contour of the visible part. The jacobian of
the lighting function can be computed in a similar manner [Arv94].

Vedel [Ved93] has proposed an approximation for the case of curved objects.
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2.3 Mulmuley

Mulmuley [Mul89] has proposed an improvement of exact area-subdivision methods. He inserts polygons
in a randomized order (as in quick-sort) and maintains the visibility map. Since visibility maps can have
complex boundaries (concave, with holes), he uses a trapezoidal decomposition [dBvKOS97]. Each trapezoid
correspondsto a part of one (possibly temporary) visible face.

Each trapezoid of the map maintains a list of conflict polygons, that is, polygons which have not yet been
projected and which are above the face of the trapezoid. Asafaceis chosen for projection, all trapezoids with
which it isin conflict are updated. If aface is below the temporary visible scene, no computation has to be
performed.

The complexity of this agorithm is very good, since the probability of a feature (vertex, part of edge) to
induce computation is inversely proportional to its quantitative invisibility (the number of objects aboveit). It
should be easy to implement and robust due to its randomized nature. However, no implementation has been
reported to our knowledge.

2.4 Curved objects

Krishnan and Manocha [KM94] propose an adaptation of Weiler and Atherton’s method for curved objects
modeled with NURBS surfaces. They perform their computation in the parameter space of the surface. The
silhouette correspondsto the pointswhere the normal is orthogonal to the view-line, which definesa polynomial
system. They use an algebraic marching method to solveit. These silhouettes are approximated by piecewise-
linear curves and then projected on the parts of the surface below, which gives a partition of the surface where
the quantitative invisibility is constant.

3 Adaptive subdivision

The method devel oped by Warnock [War69] can be seen as an approximation of Weiler and Atherton’s exact
method, even though it was developed earlier. It recursively subdivides the image until each region (called a
window) is declared homogeneous. A window is declared homogeneous if one face completely coversit and
isin front of all other faces. Faces are classified against a window as intersecting or digoint or surrounding
(covering). This classification is passed to the subwindows during the recursion. The recursion is aso stopped
when pixel-sizeis reached.

The classical method considers quadtree subdivision. Variations however exist which use the vertices of
the scene to guide the subdivision and which stop the recursion when only one edge covers the window.

Markset al. [MWCF90] presents an analysis of the cost of adaptive subdivision and proposes a heuristic to
switch between adaptive methods and brute-force z-buffer.

4 Depth order and the painter’s algorithm

The painter’s algorithm is a class of methods which consist in simply drawing the objects of the scene from
back to front. Thisway, visible objects overwrite the hidden ones. Thisis similar to a painter who first draws
a background then paints the foreground onto it. However, ordering objects according to their occlusion is not
straightforward. Cycles may appear, asillustrated in Fig. 4.1(a).

The inverse order (Front to Back) can also be used, but a flag has to be indicate whether a pixel has been
written or not. This order allows shading computations only for the visible pixels.

4.1 Newell Newell and Sancha

In the method by Newell, Newell and Sancha[NNS72] polygons are first sorted according to their minimum z
value. However this order may not be the occlusion order. A bubble sort like schemeis thus applied. Polygons
with overlapping z intervals are first compared in the image for xy overlap. If it isthe case, their plane equation
is used to test which occlude which. Cyclesin occlusion are tested, in which case one of the polygonsis split
asshownin Fig. 4.1(b).



34 CHAPTER 4. THE CLASSICS OF HIDDEN PART REMOVAL

\ \V
0

LA \&1 LA \&1

@ (b)

Figure 4.1: (a) Classic example of a cycle in depth order. (b) Newell, Newell and Sancha split one of the
polygonsto break the cycle.

For new theoretical results on the problem of depth order, see the thesis by de Berg [Ber93].

4.2 Priority list preprocessing

Schumacker [SBGS69] developed the concept of a priori depth order. An object is preprocessed and an order
may be found which isvalid from any viewpoint (if the backfacing faces are removed). See the example of Fig.
4.2,
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Figure4.2: A priori depth order. (a) Lower number indicate higher priorities. (b) Graph of possible occlusions
from any viewpoint. An arrow means that a face can occlude another one from a viewpoint. (c) Example of
aview. Backfacing polygons are eliminated and other faces are drawn in the a priori order (faces with higher
numbers are drawn first).

These objects are then organised in clusters which are themselves depth-ordered. This technique is funda-
mental for flight simulators where real-time display is crucial and where cluttered scenes are rare. Moreover,
antialiasing is easier with list-priority methods because the coverage of a pixel can be maintained more consis-
tently. The survey by Yan [Yan85] states that in 1985, al simulators were using depth order. It is only very
recent that z-buffer has started to be used for flight simulators (see section below).

However, few objects can be a priori ordered, and the design of a suitable database had to be performed
mainly by hand. Nevertheless, this work has led to the development of the BSP tree which we will present in
section 1.4 of chapter 5

4.3 Layer ordering for image-based rendering

Recently, the organisation of scenes into layers for image-based rendering has revived the interest in depth-
ordering ala Newell et al. Snyder and Lengyel [ SL 98] proposed the merging of layerswhich form an occlusion
cycle, while Decoret al. [DSSD99] try to group layers which cannot have occlusion relations to obtain better
parallax effects.
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5 The z-buffer

5.1 Z-buffer

The z-buffer was developed by Catmull [Cat74, Cat75]. It is now the most widespread view computation
method.

A depth (or z-value) is stored for each pixel of theimage. As each object is scan-converted (or rasterized),
the depth of each pixel it covers in the image is computed and compared against the corresponding current
z-value. The pixel isdrawn only if it is closer to the viewpoint.

Z-buffer was devel oped to handl e curved surfaces, which are recursively subdivided until a sub-patch covers
only one pixel. See also [CLR80] for improvements.

The z-buffer is simple, general and robust. The availability of cheap and fast memory has permitted very
efficient hardware implementations at low costs, allowing today’s low-end computer to render thousands of
shaded polygons in real-time. However, due to the rasterized nature of the produced image, aliasing artifacts
occur.

5.2 A-buffer

The A-buffer (antialiased averaged areaaccumul ation buffer) isahigh quality antialiased version of the z-buffer.
A similar rasterization scheme is used. However, if a pixel is not completely covered by an object (typically
at edges) a different treatment is performed. The list of object fragments which project on these non-simple
pixelsis stored instead of a color value (see Fig. 4.3). A pixel can befirst classified non simple because an edge
projects on it, then simple because a closer object completely coversit. Once all objects have been projected,
sub-pixel visibility is evaluated for non-simple pixels. 4*8 subpixels are usually used. Another advantage of
the A-buffer isitstreatment of transparency; Subpixel fragments can be sorted in front-to-back order for correct
transparency computations.
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Figure4.3: A buffer. (a) The objects are scan-converted. The projection of the objectsis dashed and non-simple
pixels are represented in bold. (b) Close-up of a non-simple pixel with the depth sorted fragments (i.e., the
polygons clipped to the pixel boundary). (c) The pixel is subsampled. (d) The resulting color is the average of
the subsamples. (€) Resulting antialiased image.

The A-buffer can be credited to Carpenter [Car84], and Fiume et al. [FFR83]. It is a simplification of
the “ultimate” algorithm by Catmull [Cat78] which used exact sub-pixel visibility (with a Weiler-Atherton
clipping) instead of sub-sampling. A comprehensive introduction to the A-buffer and a discussion of imple-
mentation is given in the book by Watt and Watt [WW92].
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The A-buffer is, with ray-tracing, the most popular high-quality rendering techniques. It is for example
implemented in the commercial products Alias Wavefront Maya and Pixar Renderman [CCC87]. Similar
techniques are apparently present in the hardware of some recent flight simulator systems [Mue95].

Most of the image space methods we present in chapter 6 are based on the z-buffer. A-buffer-like schemes
could be explored when diasing is too undesirable.

6 Scan-line

6.1 Scan-line rendering

Scan-line approaches produce rasterized images and consider one line of theimage at atime. Their memory re-
quirements are low, which explainswhy they have long been very popular. Wylie and his coauthors [WREEG7]
proposed the first scan-line algorithms, and Bouknight [Bou70] and Watkins [Wat70] then proposed very simi-
lar methods.

The objects are sorted according to y. For each scan-line, the objects are then sorted according to x. Then
for each span (x interval on which the same objects project) the depths of the polygons are compared. See
[WC91] for a discussion of efficient implementation. Another approach is to use a z-buffer for the current
scan-line. The A-buffer [Car84] was in fact originally developed in a scan-line system.

Crocker [Cro84] has improved this method to take better advantage of coherence.

Scan-line algorithms have been extended to handl e curved objects. Some methods[Clar9, LC79, LCWB80]
use a subdivision scheme similar to Catmull’s algorithm presented in the previous section while others [BIi 78,
Whi78, Sz89] actually compute the intersection of the surface with the current scan-line. See aso [Rog97]
page 417.

Sechrest and Greenberg [SG82] have extended the scanline method to compute object precision (exact)
views. They place scan-lines at each vertex or edge-edge intersection in the image.

Tanaka and Takahashi [TT90] have proposed an antialiased version of the scan-line method where the
imageis scanned bothin x and y. An adaptive scan is used in-between two y scan-lines. They have applied this
scheme to soft shadow computation [TT97] (see also section 1.4 of chapter 8).

6.2 Shadows

The first shadowing methods were incorporated in a scan-line process as suggested by Appel [App68]. For
each span (segment where the same polygon is visible) of the scan-line, its shadowing has to be computed.
The wedge defined by the span and a point light-source is intersected with the other polygons of the scene to
determine the shadowed part of the span.

In section 1.1 of chapter 6 we will see an improvement to this method. Other shadowing techniques for
scan-line rendering will be covered in section 4.1 of chapter 5.

7 Ray-casting

The computation of visible objects using ray-casting was pioneered by Appel [App68], the Mathematical Ap-
plication Group Inc. [MAG68] and Goldstein and Nagel [GN71] in the late sixties. The object visible at one
pixel is determined by casting a ray through the scene. The ray is intersected with all objects. The closest
intersection gives the visible object. Shadow rays are used to shade the objects. Asfor the z-buffer, Sutherland
et al. [SSS74] considered this approach brute force and thought it was not scalable. They are now the two most
popular methods.

As evoked in section 1.5 of chapter 2 Whitted [Whi80] and Kay [KG79] have extended ray-casting to
ray-tracing which treats transparency and reflection by recursively sending secondary rays from the visible
points.

Ray tracing can handle any type of geometry (as soon as an intersection can be computed). Various methods
have been devel oped to compute ray-surface intersections, e.g., [Kg 82, Han89].

Ray-tracing is the most versatile rendering technique since it can also render any shading effect. Antialias-
ing can be performed with subsampling: many rays are sent through a pixel (see e.g. [DW85, Mit87]).
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Ray-casting and ray-tracing send rays from the eye to the scene, which is the opposite of actual physical
light propagation. However, this correspondsto the theory of scientists such as Aristote who think that “visual
rays” go from the eye to the visible objects.

As observed by Hofmann [Hof92] and illustrated in Fig. 4.4 ideas similar to ray-casting were exposed by
Durer [Dur38] while he was presenting perspective.

Figure 4.4: Drawing by Direr in 1538 to illustrate his setting to compute perspective. It can be thought of as
an ancestor of ray-casting. The artist’s assistant is holding a stick linked to a string fixed at an eyebolt in the
wall which represents the viewpoint. He pointsto part of the object. The position of the string in the framesis
marked by the artist using the intersection of two strings fixed to the frame. He then rotates the painting and
draws the point.

8 Sweep of the visibility map

Most of the algorithms developed in computational geometry to solve the hidden part removal problem are
based on a sweep of the visibility map for polygonal scenes. Theideaisillustrated in Fig. 4.5. The view is
swept by a vertical (not necessarily straight) line, and computations are performed only at discrete steps often
called events. A list of active edges (those crossing the sweep line) is maintained and updated at each events.
Possible events are the appearance the vertex of a new polygon, or at-vertex, that is, the visual intersection of
an active edge and another edge (possibly not active).

The problem then reducesto the efficient detection of these events and the maintenance of the active edges.
As evoked in the introduction this often involves some ray shooting queries (to detect which face becomes
visible at at-vertex for example). More complex queries are required to detect some t-vertices.

Theliterature on this subject is vast and well surveyedin the paper by Dorward [Dor94]. See also the thesis
by de Berg [Ber93]. Other recent results on the subject include [Mul91, Pel96] (see section 1.5 of chapter 5).
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Figure 4.5: Sweep of avisibility map. Active edges are in bold. Already processed events are black points,
while white pointsindicate the event queue.



CHAPTER D

Object-Space
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Jacques PREVERT, Fatras

BJECT-SPACE methods exhibit the widest range of approaches. We first introduce methods

) which optimize visibility computation by using a well-behaved subdivision of space. We

then present two important data-structures based on the object-space locus of visual events,

the 2D visibility graph (section 2) and visua hull (section 3). We then survey the large class

of methods which characterize visibility using pyramid-like shapes. We review methods

using beams for visibility with respect to a point in section 4. We then present the extensions of these methods

to compute limits of umbra and penumbrain section 5, while section 6 discusses methods using shafts with

respect to volumes. Finally section 7 surveys methods developed for visibility in architectural environments
where visibility information is propagated through sequences of openings.

1 Space partitioning
If all objects are convex, simple, well structured and aligned, visibility computations are much easier. This
is why some methods attempt to fit the scene into simple enclosing volumes or regular spatial-subdivisions.

Computations are simpler, occlusion cycles can no longer occur and depth ordering is easy.

39
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1.1 Ray-tracing acceleration using a hierarchy of bounding volumes

Intersecting a ray with al objectsis very costly. Whitted [Whi80] enclosed objects in bounding volumes for
which the intersection can be efficiently computed (spheres in his paper). If the ray does not intersect the
bounding volume, it cannot intersect the object.

Rubin and Whitted [RW80] then extended this ideawith hierarchies of bounding volumes, enclosing bound-
ing volumesin a hierarchy of successive bounding volumes. The trade-off between how the bounding volumes
fits the object and the cost of the intersection has been studied by Weghorst et al. [WHG84] using a probabilis-
tic approach based on surface ratios (see also section 4 of chapter 8). Kay and Kgjiya[KK86] built tight-fitting
bounding volumes which approximate the convex hull of the object by the intersection of parallel slabs.

The drawback of standard bounding volume methods, is that all objects intersecting the rays have to be
tested. Kay and Kgjiya[KK86] thus propose an efficient method for atraversal of the hierarchy which first tests
the closest bounding volumes and terminates when an intersection is found which is closer than the remaining
bounding volumes.

Many other methods were proposed to improve bounding volume methods for ray-tracing, see e.g. [Bou85,
AK89, FvDFH90, Rog97, WW92]. See also [Smi99] for efficiency issues.

1.2 Ray-tracing acceleration using a spatial subdivision

The aternative to bounding volumes for ray-tracing is the use of a structured spatial subdivision. Objects
of the scene are classified against voxels (boxes), and shooting a ray consists in traversing the voxels of the
subdivision and performing intersections only for the objects inside the encountered voxels. An object can lie
inside many voxels, so this has to be taken into account.

The trade-off here is between the simplicity of the subdivision traversal, the size of the structure and the
number of objects per voxel.

Regular grids have been proposed by Fujimoto et al. [FT186] and Amanatides and Woo [AW87]. The
drawback of regular gridsis that regions of high object density are “sampled” at the same rate as regions with
many objects, resulting in a high cost for the latter because one voxel may contain many objects. However the
traversal of the gridis very fast, similar to the rasterization of aline on a bitmap image. To avoid the time spent
in traversing empty regions of the grid, the distance to the closest object can be stored at each voxel (see e.g.
[CS94, SKaT)).

Glassner [Gla84] introduced the use of octrees which result in smaller voxels in regions of high object
density. Unfortunately the traversal of the structure becomes more costly because of the cost induced by the
hierarchy of the octree. See [ES94] for a comparison between octrees and regular grids.

Recursive grids [JW89, KS97] are similar to octrees, except that the branching factor may be higher, which
reduces the depth of the hierarchy (see Fig. 5.1(a)). The size of the voxel in a grid or sub-grid should be
proportional to the cubic root of the number of objectsto obtain a uniform density.

Snyder and Bar [SB87] use tight fitting regular grids for complex tessellated objects which they insert in a
bounding box hierarchy.

Finally Cazals et al. [CDP95, CP97] propose the Hierarchy of Uniform Grids, where grids are not nested.
Objects are sorted according to their size. Objects which are close and have the same size are clustered, and a
grid is used for each cluster and inserted in a higher level grid (see Fig. 5.1(b)). An in-depth analysis of the
performance of spatial subdivision methods is presented. Recursive grids and the hierarchy of uniform grid
seem to be the best trade-off at the moment (see a'so [KWCH97, Wo097] for a discussion on this subject).

1.3 Volumetric visibility

The methods in the previous sections till require an intersection calculations for each object inside a voxel.
In the context of radiosity lighting simulation, Sillion [SiI|95] approximates visibility inside a voxel by an
attenuation factor (transparency or transmittance) asis done for volume rendering. A multiresolution extension
was presented [SD95] and will be discussed in section 1.2 of chapter 9.

The transmittance is evaluated using the area of the objects inside a voxel. These voxels (or clusters) are
organised in ahierarchy. Choosing thelevel of the hierarchy used to compute the attenuation along aray allows
atrade-off between accuracy and time. The problem of refinement criteria will be discussed in section 1.1 of
chapter 9.
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Figure5.1: A 2D analogy of ray-tracing acceleration. An intersection test is performed for objectswhich arein
bold type. (a) Recursive grid. (b) Hierarchy of uniform grids. Note that fewer intersections are computed with
the latter because the grids fit more tightly to the geometry.

Christensen et al. [CLSS97] propose another application of volumetric visibility for radiosity.

Chamberlainet al [CDL 96] perform real-time rendering by replacing distant geometry by semi-transparent
regular voxels averaging the color and occlusion of their content. Neyret [Ney96, Ney98] presents similar ideas
to model and render complex scenes with hierarchical volumetric representations called texels.

1.4 BSP trees

We have seen in section 4.2 of chapter 4 that an a priori depth order can be found for some objects. Unfortu-
nately, thisis quite rare. Fuchs and his co authors[FKN80, FAG83] have devel oped the BSP tree (Binary Space
Partitioning tree) to overcome this limitation.

The principleis simple: if the scene can be separated by a plane, the objects lying on the same side of the
plane as the viewer are closer than the othersin a depth order. BSP trees recursively subdivide the scene along
planes, resulting in a binary tree where each node correspondsto a splitting plane. The computation of a depth
order is then a straightforward tree traversal: at each node the order in which the subtrees have to be drawn is
determined by the side of the plane of the viewer. Unfortunately, since a sceneis rarely separable by a plane,
objects have to be split. Standard BSP approaches perform subdivision along the polygons of the scene. See
Fig. 5.2 for an examplel.

It has been shown [PY 90] that the split in BSP trees can cause the number of sub-polygonsto be as high as
O(n?) for a scene composed of n entry polygons. However, the choice of the order of the polygons with which
subdivision is performed is very important. Paterson and Yao [PY 90] give a method which builds a BSP tree
with size O(n?). Unfortunately, it requires O(n®) time. However these bounds do not say much on the practical
behaviour of BSPs.

See e.g. [NR95] for the treatment of curved objects.

Agarwal et al. [AGMV97, AEG98] do not perform subdivision along polygons. They build cylindrical
BSP trees, by performing the subdivision along vertical planes going through edges of the scene (in a way
similar to the method presented in the next section). They give algorithms which build a quadratic size BSP in
roughly quadratic time.

Chen and Wang [CW96] have proposed the feudal priority algorithm which limits the number of splits
compared to BSP. They first treat polygons which are back or front-facing from any other polygon, and then
chose the polygons which cause the smallest number of splits.

1 BSP trees have also been applied as a modeling representation tool and powerful Constructive Solid Geometry operations have been
adapted by Naylor et al. [NAT90].
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Figure5.2: 2D BSP tree. (a) The sceneis recursively subdivided along the polygons. Note that polygon D has
to be split. (b) Corresponding binary tree. The traversal order for the viewpoint in (a) is depicted using arrows.
The order is thus, from back to front: FCGAD 1BHED>

Naylor [Nay92] also uses a BSP tree to encode the image to perform occlusion-culling; nodes of the object-
space BSP tree projecting on a covered node of the image BSP are discarded in a manner similar to the hierar-
chical z-buffer which we will present in section 3 of the next chapter.

BSP trees are for examplein the game Quake for the hidden-surface removal of the static part if the model
[Abr96] (moving objects are treated using a z-buffer).

1.5 Cylindrical decomposition

Mulmuley [Mul91] has devised an efficient preprocessing algorithm to perform object-precision view compu-
tations using a sweep of the view map as presented in section 8 of chapter 4. However this work is theoretical
and is unlikely to be implemented. He builds a cylindrical partition of 3D space which is similar to the BSPs
that Agarwall et al. [AGMV97, AEG98] have later described. Nonetheless, he does not use whole planes.
Each cell of his partition is bounded by parts of the input polygons and by vertical walls going through edges
or vertices of the scene. His paper also contains an interesting discussion of sweep algorithms.

2 Path planning using the visibility graph

2.1 Path planning

Nilsson [Nil69] developed the first path planning algorithms. Consider a 2D polygonal scene. The visibility
graph is defined as follows: The nodes are the vertices of the scene, and an arc joins two vertices A and B if
they are mutually visible, i.e. if the segment [AB] intersects no obstacle. As noted in the introduction, it is
possibleto go in straight line from Ato B only if Bisvisible from A. The start and goal points are added to the
set of initia vertices, and so are the corresponding arcs (see Fig. 5.3). Only arcs which are tangent to a pair of
polygons are necessary.

It can be easily shown that the shortest path between the start point and the goal goes through arcs of the
visibility graph. The rest of the method is thus a classical graph problem. See aso [LPW79].

This method can be extended to non-polygonal scenes by considering bitangents and portions of curved
objects.

The method unfortunately does not generalize smply to 3D where the problem has been shown to be
NP-complete by Canny [Can88].
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Figure5.3: Path planning using the visibility graph.

2.2 Visibility graph construction

The 2D visibility graph has size which is between linear and quadratic in the number of polygon edges. The
construction of visibility graphs is arich subject of research in computational geometry. Optimal O(n?) ago-
rithms have been proposed [EG86] as well as output-sensitive approaches (their running time depends on the
size of the output, i.e. the size of the visibility graph) [OW88, GM91].

The 2D visibility complex which we will review in section 1.2 of chapter 8 is also a powerful tool to build
visibility graphs.

In 3D, the term “visibility graph” often refersto the abstract graph where each object is a node, and where
arcsjoin mutually visible objects. Thisis however not the direct equivalent of the 2D visibility graph.

2.3 Extensions to non-holonomic visibility

In this section we present some motion planning works which are hard to classify since they deal with exten-
sions of visibility to curved lines of sight. They have been developed by Vendittelli et al. [VLN96] to plan
the motion of a car-like robot. Car tragjectories have a minimum radius of curvature, which constraints their
motion. They are submitted to non-holonomic constraints: the tangent of the trgjectory must be colinear to
the velocity. Dubins [Dub57] and Reeds and Shepp [RS90] have shown that minimal-length trajectories of
bounded curvature are composed of arcs of circles of minimum radius and line segments.

For exampleif acar lies at the origin of the plane and is oriented horizontally, the shortest path to the points
of the upper quadrant are represented in Fig. 5.4(a). The rightmost paths are composed of a small arc of circle
forward followed by aline segment. To go to the points on the left, a backward circle arc is first necessary, then
aforward arc, then aline segment.

Now consider an obstacle such as the line segment represented in Fig. 5.4(a). It forbids certain paths. The
points which cannot be reached are said to be in shadow, by analogy to the case where optimal paths are simple
line segments?.

The shape of such a shadow can be much more complex thanintheline-visibility case, asillustrated in Fig.
5.4(b).

Thisanalogy between visibility and reachability is further exploited in the paper by Nissoux et al. [NSL99]
where they plan the motion of robotswith arbitrary numbers of degrees of freedom.

3 The Visual Hull

The reconstruction of objects from silhouettes (see section 2.2 of chapter 2) is very popular becauseit is robust
and simple. Remember that only exterior silhouettes are considered, folds caused by self occlusion of the object
are not considered because they are harder to extract from images. Not all objects can be reconstructed with

2What we describe here are in fact shadows in a Riemannian geometry. Our curved lines of sight are in fact geodesics, i.e.c the shortest
path from one point to another.
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Figure5.4: Shadow for non-holonomic path-planning (adapted from [VLN96]). (a) Simple (yet curved) shadow.
(b) Complex shadows. Some parts of the convex blocker do not lie on the shadow boundary. The small
disconnected shadow is caused by the impossibility to perform an initial backward circle arc.

this method; The cavity of abowl can not be reconstructed because it is not present on an external silhouette.
The best reconstruction of abowl one can expect is a“full” version of the initial object.

However the reconstructed object is not necessarily the convex hull of the object: the hole of atorus can be
reconstructed because it is present on the exterior silhouette of some images.

Laurentini [Lau94, Lau9s, Lau97, Lau99] has introduced the visual hull concept to study this problem. A
point P of spaceisinside the visual hull of an object A, if from any viewpoint P projects inside the projection
of A. To give aline-space formulation, each line going through a point P of the visual hull intersects object A.
Thevisua hull isthe smallest object which can be reconstructed from silhouettes. See Fig. 5.5 for an example.
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Figure5.5: Visual hull (adapted from [Lau94]). (a) Initial object. A EEE event is shown. (b) Visua hull of the
object (the viewer is not allowed inside the convex hull of the object). It isdelimited by polygonsand a portion
of the ruled quadric of the E1E2E3 event. (c) A different object with the same visua hull. The two objects can
not be distinguished from their exterior silhouette and have the same occlusion properties.

The exact definition of the visual hull in fact depends on the viewing region authorized. The visual hull is
different if the viewer is alowed to go inside the convex hull of the object. (Half lines have to be considered
instead of linesin our line-space definition)

The visual hull is delimited by visual events. The visua hull of a polyhedron is thus not necessarily a
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polyhedron, as shown in Fig. 5.5 where a EEE event isinvolved.

Laurentini has proposed a construction algorithms in 2D [Lau94] and for objects of revolution in 3D
[Lau99]. Petitjean [Pet98] has developed an efficient construction algorithm for 2D visual hulls using the
visihbility graph.

The visual hull also represents the maximal solid with the same occlusion properties as the initial object.
This concept thus completely applies to the simplification of occluders for occlusion culling. The simplified
occluder does not need to lie inside the initial occluder, but inside its visual hull. See the work by Law and Tan
[LT99] on occluder simplification.

4 Shadows volumes and beams

In this section we present the rich category of methods which perform visibility computation using pyramids
or cones. The apex can be defined by the viewpoint or by a point light source. It can be seen as the volume
occupied by the set of rays emanating from the apex and going through a particular object. The intersection of
such a volume with the scene accounts for the occlusion effects.

4.1 Shadow volumes

Shadow volumes have been developed by Crow [Cro77] to compute hard shadows. They are pyramids defined
by a point light source and a blocker polygon. They are then used in a scan-line renderer asillustrated in Fig.
5.6.

E}%//z point light source
ZAN

blocker 7 \ghadow volume

Figure 5.6: Shadow volume. As object A is scan converted on the current scan-line, the shadowing of each
pixel is computed by counting the number of back-facing and front-facing shadow volume polygonsontheline
joining it to the viewpoint. For point P, thereis one front-facing intersection, it is thusin shadow.

The wedges delimiting shadow volumes are in fact visual events generated by the point light source and
the edges of the blockers. In the case of a polyhedron light source, only silhouette edges (with respect to the
source) need to be considered to build the shadow volume polygons.

Bergeron [Ber86] has proposed a more general version of Crow’s shadow volumes. His method has long
been very popular for production rendering.

Shadow volumes have al so been used with ray-tracing [EK89]. Brotman and Badler [BB84] have presented
a z-buffer based use of shadow volumes. They first render the scene in a z-buffer, then they build the shadow
volumes and scan convert them. Instead of displaying them, for each pixel they keep the number of frontfacing
and backfacing shadow volume polygons. This method is hybrid object-space and image space, the advantage
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over the shadow map is that only one sampling is performed. They also sample an area light source with points
and add the contributions computed using their method to obtain soft shadow effects. An implementation
using current graphics hardwareis described in [MBGN98] section 9.4.2. A hardwareimplementation has also
been developed on pixel-plane architecture [FGH T85], except that shadow volumes are simply described as
plane-intersections.

Shadow volumes can also be used inversely as light-volumes to simulate the scattering of light in dusty air
(e.g., [INMN87, Hai91]).

Albrecht Durer [DUr38] describes similar constructions, as shown in Fig. 5.7

Figure 5.7: Construction of the shadow of a cube by Direr.

4.2 Shadow volume BSP

Chin and Feiner [CF89] compute hard shadows using BSP trees. Their method can be compared to Atherton
et al.’s technique presented in section 2.1 of chapter 4 where the same algorithm is used to compute the view
and to compute the illuminated parts of the scene. Two BSP are however used: onefor depth ordering, and one
called shadow BSP tree to classify the lit and unlit regions of space.

The polygons are traversed from front to back from the light source (using the first BSP) to build a shadow
BSP tree. The shadow BSP treeis split along the planes of the shadow volumes. As apolygon is considered, it
isfirst classified against the current shadow BSP tree (Fig. 5.8(a)). It is split into lit and unlit parts. Then the
edges of the lit part are used to generate new splitting planes for the shadow BSP tree (Fig. 5.8 (b)).

The scene augmented with shadowing information can then be rendered using the standard BSP.

Chrysanthou and Slater [ CS95] proposeamethod which avoidsthe use of the scene BSP to build the shadow
BSP, resulting in fewer splits.

Campbell and Fussel [CF90] were the first to subdivide a radiosity mesh along shadow boundaries using
BSPs. A good discussion and some improvements can be found in Campbell’s thesis [Cam91].

4.3 Beam-tracing and bundles of rays

Heckbert and Hanrahan [HH84] developed beam tracing. It can be seen as a hybrid method between Weiler
and Atherton’s algorithm [WA77], Whitted’s ray-tracing [Whi80] and shadow volumes.

Beams are traced from the viewpoint into the scene. One initial beam is cast and clipped against the
scene polygons using Weiler and Atherton’s exact method, thus defining smaller beams intersecting only one
polygon (see Fig. 5.9(a)). If the a polygonisamirror, areflection beam is recursively generated. Its apex isthe
symmetric to the viewpoint with respect to the light source (Fig. 5.9(b)). It is clipped against the scene, and the
computation proceeds.

Shadow beams are sent from the light source in a preprocess step similar to Atherton et al’s shadowing
[AWGT8]. Refraction can be approximated by sending refraction beams. Unfortunately, since refraction is not
linear, this computation is not exact.

Dadoon et al. [DKW85] propose an efficient version optimized using BSP trees.
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Figure5.8: 2D equivalent of shadow BSP. The splitting planes of the shadow BSP are represented with dashed
lines. (a) Polygon C is tested against the current shadow BSP. (b) It is split into a part in shadow C4 and alit
part Co. The boundary of thelit part generates a new splitting plane.
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Figure 5.9: Beam tracing. (a) A beam is traced from the eye to the scene polygons. It is clipped against the
other polygons. (b) Since polygon A isamirror, areflected beam is recursively traced and clipped.

Amanatides[Ama84] and Kirk [Kir87] use conesinstead of beams. Cone-tracingallowsantialiasing aswell
as depth-of-field and soft shadow effects. The practical use of this method is however questionable because
secondary cones are hard to handle and because object-coneintersections are difficult to perform. Shinyaet al.
[STN87] have formalized these concepts under the name of pencil tracing.

Beam tracing has been used for efficient specular sound propagation by Funkhouser and his co-author.
[FCE'98]. A bidirectional version has also been proposed where beams are propagated both from the sound
source and from the receiver [FMC99].They moreover amortize the cost of beam propagation as listeners and
sources move smoothly.

Speer [SDB85] hastried to take advantage of the coherence of bundles of rays by building cylindersin free-
space around aray. If subsequent rays are within the cylinder, they will intersect the same object. Unfortunately
his method did not procure the expected speed-up because the construction of the cylinders was more costly
than a brute-force computation.

Beams defined by rectangular windows of theimage can allow high-quality antialiasing with general scenes.
Ghazanfarpour and Hasenfratz [GH98, Has98] classify non-simple pixelsin a manner similar to the A-buffer
or to the ZZ-buffer, but they take shadows, reflection and refraction into account.

Teller and Alex [TA98] propose the use of beam-casting (without reflection) in a real-time context. Beams
are adaptively subdivided according to a time budget, permitting a trade-off between time and image quality.
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Finally Watt [Wat90] traces beams from the light source to simulate caustic effects which can for example
be caused by the refraction of light in water.

4.4 Occlusion culling from a point

Sometimes, nearby large objects occlude most of the scene. This is the case in a city where nearby facades
hide most of the buildings. Coorg and Teller [CT96, CT97b] quickly reject the objects hidden by some con-
vex polygonal occluders. The scene is organised into an octree. A Shadow volume is generated for each
occluder, and the cells of the octree are recursively classified against it as occluded, visible or partially visible,
asillustrated in Fig. 5.10.

big convex
occluder
scene octree

Figure 5.10: Occlusion culling with large occluders. The cells of the scene octree are classified against the
shadow volumes. In dark grey we show the hidden cells, while those partially occluded arein light grey.

The occlusion by a conjunction of occluders in not taken into account, as opposed to the hierarchical z-
buffer method exposed in section 3 of chapter 6. However we will seein section 4.2 of chapter 7 that they treat
frame-to-frame coherence very efficiently.

Similar approaches have been devel oped by Hudson et al. [HMC *97]. Bittner et al. [BHS98] use shadow
volume BSP tree to take into account the occlusion caused by multiple occluders.

Woo and Amanatides [WA90] propose a similar scheme to speed-up hard shadow computation in ray-
tracing. They partitionthe scenein aregular grid and classify each voxel against shadow volumes as completely
lit, completely in umbraor complicated. Shadow rays are then sent only from complicated voxels.

Indoor architectural scenes present the dual characteristic featureto occlusion by large blockers: onecan see
outside a room only through doors or windows. These opening are named portals. Luebke and George [LG95]
following ideas by Jones[Jon71] and Clark [Cla76] use the portalsto reject invisible objects in adjacent rooms.
The geometry of the current room is completely rendered, then the geometry of adjacent roomsis tested against
the screen bounding box of the portals as shown in Fig. 5.11. They aso apply their technique to the geometry
reflected by mirrors.

This technique was also used for awalk through avirtual colon for the inspection of acquired medical data
[HMK*97] and has been implemented in a 3D game engine [BEW *98].

45 Best-next-view

Best-next-view methods are used in model reconstruction to infer the position of the next view from the data
already acquired. The god is to maximize the visibility of parts of the scene which were occluded in the
previousview. They are delimited by the volume of occlusion as represented in Fig. 5.12. These volumes are
in fact the shadow volumes where the camerais considered as alight source.

Reed and Allen [RA96] construct a BSP model of the object as well as the boundaries of the occlusion
volume. They then attempt to maximizethe visibility of the latter. Thisusually results roughly in a90 ° rotation
of the camera since the new viewpoint is likely to be perpendicular to the view volume.

Similar approaches have been developed by Maver and Bajcsy [MB93] and Banta et al. [BZW *95].
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Figure5.11: Occlusion culling using image-space portals. The geometry of the adjacent roomsis tested against
the screen bounding boxes of the portals

=

@)i‘i

volume o
occlusion

Figure 5.12: Acquisition of the model of a 3D object using a range image. The volume of occlusion is the
unknown part of space.

Thisproblemisvery similar to the problem of gapsin image-based view warping (see section 1.7 of chapter
2and Fig. 2.7 page 12). When aview is reprojected, the regions of indeterminate visibility lie on the boundary
of the volumes of occlusion.

5 Arealight sources

5.1 Limits of umbra and penumbra

Nishita and Nakamae [NN85, NON85, NN83] have computed the regions of umbra and penumbra caused by
convex blockers. They show that the umbrafrom a polygonal light source of a convex object istheintersection
of the umbra volumes from the vertices of the source (see Fig. 5.13). The penumbrais the convex hull of the
union of the umbra volumes. They use Crow’s shadow volumes to compute these regions.

The umbrais bounded by portions of EV events generated by one vertex of the source and one edge of the
blocker, while the penumbrais bounded EV events generated by edges and vertices of both the source and the
blocker.

Their method fails to compute the exact umbra caused by multiple blockers, since it is no longer the inter-
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Figure 5.13: Umbra (dark grey) and penumbra (light grey) of a convex blocker (adapted from [NN85]).

section of their umbras. The penumbraboundary is however valid, but some parts of the umbra are incorrectly
classified as penumbra. Thisis not a problem in their method because a shadow computation is performed in
the penumbraregion (using an exact hidden line removal method). The umbra of a concave object is bounded
by EV visual events and also by EEE events (for example in Fig. 3.5 page 27 if polygon R is a source, the
EEE event exhibited is an umbraboundary). Penumbraregions are bounded only by EV events.

Drawings by da Vinci exhibit the first description of the limits of umbraand penumbra (Fig. 5.14).

5.2 BSP shadow volumes for area light sources

Chin and Feiner [CF92] have extended their BSP method to handle area light sources. They build two shadow
BSP, one for the umbra and one for the penumbra.

As in Nishita and Nakamae’s case, their algorithm does not compute the exact umbra volume due to the
occlusion by multiple blockers.

5.3 Discontinuity meshing

Heckbert [Hec92b, Hec924] has introduced the notion of discontinuity meshing for radiosity computations.
At avisual event, aC? discontinuity occurs in the illumination function (see [Arv94] for the computation of
illumination gradients). Heckbert uses EV discontinuity surfaces with one generator on the source.

Other authors [LTG93, LTG92, Stu94, Cam91, CF91a, GH94] have used similar techniques. See Fig. 5.15
for an example. Hardt and Teller [HT96] also consider discontinuities which are caused by indirect lighting.
Other discontinuity meshing techniques will be treated in section 2.3 of chapter 7 and 2.1 of chapter 8.

However, discontinuity meshing approaches have not yet been widely adopted because they are prone to
robustness problems and also because the irregular meshes induced are hard to handle.

5.4 Linear time construction of umbra volumes

Yoo et al. [YKSC98] perform the same umbra/penumbraclassification as Nishita and Nakamae, but they avoid
the construction and intersection/union of all the shadow volumes from the vertices of the source.

They notethat only EV events on separating and supporting planes have to be considered. Their algorithm
walks along the chain of edges and vertices simultaneously on the source and on the blocker as illustrated in
Fig. 5.16.



5. AREA LIGHT SOURCES 51

e & : o 3
G A - DO (s {vua (ormal-ciin A braani oo,
o 2&;1,{-9 -l?):'hka.zv-d‘; r.ﬂln-. F_:l:r. Ll} g,m,q’.c'iuf. LACLup. (r'{_‘n-z,:,c.{_l_l.\;-_p" 0 :-!ln\.'fj
O‘QRJ’-QVAU‘. - .l-$-.63vdt: . L:‘Lw . v.nég.hlu -.Iﬁ"}_')')(’f of -{-':-V = JNI'T; vkn {1‘ e ‘ﬁ#"’mﬂ

Figure 5.14: Penumbra by Leonardo da Vinci (Manuscript). Light is coming from the lower window, and the
sphere causes soft shadows.

This can be interpreted in line space as a walk aong the chain of 1 dimensional sets of lines defined by
visual events.
Related methods can be found in [Cam91, TTK96].

5.5 Viewpoint constraints

As we have seen, viewpoint optimisation is often performed for the monitoring of robotics tasks. In this
setting, the visibility of a particular feature of object hasto be enforced. Thisisvery similar to the computation
of shadows considering that the feature is an extended light source.

Cowan and Kovesi [CK88] use an approach similar to Nishita and Nakamae. They compute the penumbra
region caused by a convex blocker as the intersection of the half spaces defined by the separating planes of
the feature and blockers (i.e. planes tangent to both objects such that each object lies on a different side of the
plane). The union of the penumbra of al the blockers is taken and constraints related to the sensor are then
included: resolution of theimage, focus, depth of field and view angle. Theadmissibleregionistheintersection
of these constraints.

Briggs and Donald [BD98] propose a 2D method which uses the intersection of half-planes defined by
bitangents. They also reject viewpoints from which the observation can be ambiguous because of similarities
in the workspace or in the object to be manipulated.

Tarabanisand Tsal [ TTK96] compute occlusion free viewpointsfor ageneral polyhedral scene and ageneral
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(b)

Figure5.15: Global illumination simulation. (a) Without discontinuity meshing. Note the jagged shadows. (b)
Using discontinuity meshing, shadows are finer (images courtesy of Dani Lischinski, Program of Computer
Graphics, Cornell University).

(© (d)

Figure 5.16: Linear time construction of a penumbra volume.

polygonal feature. They enumerate possible EV wedges and compute their intersection.

Kim et al. [KYCS98] aso present an efficient algorithm which computes the compl ete visibility region of
a convex object.
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5.6 Light from shadows

Poulin et al. [PF92, PRJ97] have developed inverse techniques which allow a user to sketch the positions of
shadows. The position of the light source is then automatically deduced.

The principle of shadow volumes is reversed: A point P lies in shadow if the point light source isin a
shadow volume emanating from point P. The sketches of the user thus define constraints under the form of an
intersection of shadow volumes (see Fig. 5.17).

Figure 5.17: Sketching shadows. The user specifies the shadows of the ellipsoid on the floor with the thick
strokes. This generates constraint cones (dashed). The position of the light source is then deduced (adapted
from [PRJ97]).

Their method can also handle soft shadows, and additional constraints such as the position of highlights.

6 Shafts

Shaft method are based on the fact that occlusion between two objects can be caused only by objects inside
their convex hull. Shafts can be considered as finite beams for which the apex is not a point. They can aso be
seen as the volume of space defined by the set of rays between two objects.

6.1 Shaft culling

Haines and Wallace [HW91] have developed shaft culling in a global illumination context to speed up form
factor computation using ray-casting. They define a shaft between two objects (or patches of the scene) as the
convex hull of their bounding box (see Fig. 5.18).

Figure 5.18: Shaft culling. The shaft between A and B is defined as the convex hull of the union of their
bounding boxes. Object C intersects the shaft, it may thus cause occlusion between A and B.
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They have developed an efficient construction of approximate shafts which takes advantage of the axis
aligned bounding boxes. The test of an object against a shaft is also optimized for bounding boxes.

Similar methods have been independently devised by Zhang [Zha91] and Campbell [Cam91].

Marks et al [MWCF9Q0], Campbell [Cam91] and Drettakis and Sillion [DS97] have derived hierarchical
versions of shaft culling. The hierarchy of shafts is implicitly defined by a hierarchy on the objects. This
hierarchy of shaft can also be seen as a hierarchy in line-space [DS97]. Briére and Poulin [BP96] also use a
hierarchy of shafts or tubesto accelerate incremental updatesin ray tracing.

6.2 Use of adual space

Zao and Dobkin [ZD93] use shaft culling between pairs of triangles. They speed up the computation by the
use of a multidimensional dual space. They decompose the shaft between a pair of triangles into tetrahedra
and derive the conditionsfor another triangle to intersect a tetrahedron. These conditions are linear inegualities
depending on the coordinates of the triangle.

They use multidimensional spaces depending on the coordinates of the triangles to speed up these tests.
The queriesin these spaces are optimized using binary trees (kd-treesin practice).

6.3 Occlusion culling from a volume

Cohen-Or and his co-authors [COFHZ98, COZ98] compute potentially visible sets from viewing cells. That
is, the part of the scene where the viewer is allowed (the viewing space in short) is subdivided into cells from
which the set of objects which may be visible is computed. This method can thus be seen as a viewpoint space
method, but the core of the computation is based on the shaft philosophy.

Their method detectsif a convex occluder occludes an object from agiven cell. If convex polygonal objects
are considered, it is sufficient to test if all rays between pairs of vertices are blocked by the occluder. The test
is early terminated as soon as a hon-blocked ray is found. It isin fact sufficient to test only silhouette rays (a
ray between two point is a silhouetteray if each point is on the silhouette as seen from the other).

The drawback of this method is that it can not treat the occlusion caused by many blockers. The amount
of storage required by the potentially visible set information is also a critical issue, as well as the cost of
ray-casting.

7 Visibility propagation through portals

As dready introduced, architectural scenes are organized into rooms, and inter-room visibility occurs only
along openingsnamed portals. Thismakesthem particularly suitablefor visibility preprocessing. Airey [Air90]
and Teller [Tel92b, TS91] decompose a building into cells (roughly representing rooms) and precompute Po-
tentially Visible Sets for each set. These are superset of objects visible from the cell which will then typically
be sent to a z-buffer in awalkthrough application (see bel ow).

7.1 Visibility computation

We describe here the methods proposed by Teller [Tel92b]. An adjacency graph is built connecting cells
sharing a portal. Visibility is then propagated from a cell to neighbouring cells through portal sequencesin a
depth-first manner. Consider the situation illustrated in Fig. 5.19(8). Cell B is visible from cell A through the
sequence of portals p1p2. Cell C is neighbour of B in the adjacency graph, its visibility from A is thus tested.
A sightline stabbing the portals p1, p2 and p3 is searched (see Fig. 5.19(b)). A stab-treeis built which encodes
the sequences of portals.

If the sceneis projected on a floorplan, this stabbing problem reduces to find a stabber for a set of segments
and can be solved using linear programming (see [ Tel92b, TS91]).

If rectangular axis-aligned portals are considered in 3D, Teller [Tel92b] shows that the problem can be
solved by projecting it in 2D aong the three axis directions.

If arbitrary oriented portals are computed, he proposes to compute a conservative approximation to the
visible region [Tel92b, TH93]. As each portal is added to the sequence, the EV events bounding the visibility
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Figure 5.19: Visibility computations in architectural environments. (a) In grey: part of the scene visible from
the black cell. (b) A stabbing line (or sightline) through a sequence of portals.

region are updated. These EV events correspond to separating planes between the portals. For each edge of
the sequence of portals, only the extremal event is considered. The process is illustrated Fig. 5.20. Itisa
conservative approximation because EEE boundaries are not considered.

@ (b)

Figure 5.20: Conservative visibility propagation through arbitrary portals. (a) The separating plane considered
for e is generated by v3 because it lies below the one generated by vo. (b) As a new porta is added to the
sequence, the separating plane is updated with the same criterion.

If the visibility region is found to be empty, the new cell is not visible from the current cell. Otherwise,
objectsinside the cell are tested for visibility against the boundary of the visibility region asin a shaft method.

Airey [Air90] also proposes an approximate scheme where visibility between portals is approximated by
casting a certain number of rays (see section 4 of chapter 8 for the approaches involving sampling with rays).
See also the work by Yagel and Ray [Y R96] who describe similar ideasin 2D.

The portal sequence can be seen as a sort of infinite shaft. We will also study it as the set of lines going
through the portalsin section 3.3 of chapter 8.

7.2 Applications

The primary focus of these potentialy visible sets methods was the use in walkthrough systems. Examples
can be found in both Airey [ARB90] and Teller’s thesis [TS91, Tel92b]. Teller aso uses an online visibility
computation which restricts the visible region to the current viewpoint. The stab-tree is used to speed up a
beam-like computation.

Funkhouser et al. [FS93] have extended Teller’s system to use other rendering accel eration techniques such
as mesh simplification in a real time context to obtain a constant framerate. He and his co-authors [FST92,
Fun96¢] have also used the information provided by the potentially visible sets to efficiently load from the disk
or from the network only the parts of the geometry which may become visible in the subsequent frames. It can
also be used in adistributed virtual environment context to limit the network bandwidth to messages between
clients who can see each other [Fun95].

These computations have also been applied to speed-up radiosity computations by limiting the cal culation
of light interactions between mutually visible objects [TH93, ARB90]. It aso permits lighting simulations for
scenes which cannot fit into memory [ TFFH94, Fun96b].
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CHAPTER O

Image-Space

L’art de peindre n’est que I’art d’exprimer I’invisible
par levisible

Eugéne FROMENTIN

OST OF the image-space methods we present are based on a discretisation of an image.

They often take advantage of the specialised hardware present in most of today’s comput-

ers, which makes them simple to implement and very robust. Sampling rate and aliasing

are however often the critical issues. We first present some methods which detect oc-

clusions using projections on a sphere or on planes. Section 1 deals with the use of the
z-buffer hardware to speed-up visibility computation. We then survey extensions of the z-buffer to perform
occlusion-culling. Section 4 presents the use of a z-buffer orthogonal to the view for occlusion-culling for
terrain-like scenes. Section 5 presents epipolar geometry and its use to perform view-warping without depth
comparison. Section 6 discusses the computation of soft shadow using convolution, while section 7 deals with
shadow-coherence in image-space.

1 Projection methods

1.1 Shadow projection on a sphere

Bouknight and Kelly [BK70] propose an optimization to compute shadows during a scan-line process as pre-
sented in section 6 of chapter 4. Their method avoids the need to intersect the wedge defined by the current
span and the light source with all polygons of the scene.

As apreprocess, the polygons of the scene are projected onto a sphere centered at the point light source. A
polygon can cast shadows on another polygon only if their projections overlap. They use bounding-box tests
to speed-up the process.

Slater [S1a92] proposes asimilar schemeto optimize the classification of polygonsin shadow volume BSPs.
He uses a discretized version of a cube centered on the source. Each tile (pixel) of the cube stores the polygon
which project onit. This speeds up the determination of overlapping polygons on the cube. This shadow tiling
isvery similar to the light-buffer and to the hemicube which we will present in section 2.

57
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1.2 Arealight sources

Chrysanthou and Slater [CS97] have extended this technique to handle area light sources. In the methods
presented above, the size of the sphere or cube does not matter. Thisis not the case of the extended method: a
cube is taken which encloses the scene.

For each polygon, the projection used for point light sources becomes the intersection of its penumbra
volume with the cube. The polygonswith which it interacts are those which project on the same tiles.

1.3 Extended projections

The extended projection method proposed in chapter 5 of [Dur99] can be seen as an extension of the latter
technique to perform offline occlusion culling from a volumetric cell (it can aso be seen as an extension
of Greene’s hierarchical z-buffer surveyed in section 3). The occluders and occludees are projected onto a
projection plane using extended projection operators. The extended projection of an occluder istheintersection
of its views from all the viewpoints inside the cell. The extended projection of an occludee is the union of its
views (similar to the penumbra used by Chrysanthou et al.).

If the extended projection of an occludeeis in the cumulative extended projection of some occluders (and
if it lies behind them), then it is ensured that it is hidden from any point inside the cell. This method handles
occluder fusion.

2 Advanced z-buffer techniques

The versatility and robustness of the z-buffer together with efficient hardware implementations have inspired
many visibility computation and accel eration schemes?. The use of the frame-buffer as a computational model
has been formalized by Fournier and Fussel [FF88].

2.1 Shadow maps

As evoked in section 1.2 of chapter 2, hard shadow computation can be seen as the computation of the points
which are visible from a point-light source. It is no surprise then that the z-buffer was used in this context.

image

shadow map

camera light

source

Figure 6.1: Shadow map principle. A shadow map is computed from the point of view of the light source
(z-values are represented as grey levels). Then each point in the final image is tested for shadow occlusion by
projecting it back in the shadow map (gallion model courtesy of Viewpoint Datalab).

A two pass method is used. Animage s first computed from the source using a z-buffer. The z values of
the closest points are stored in a depth map called shadow map. Then, as the final image is rendered, deciding

1Unexpected applications of the z-buffer have also been proposed such as 3D motion planning [LRDG90], Voronoi diagram computa-
tion [Hae90, ICK*99] or collision detection [MOK95].
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if apoint isin shadow or not consists in projecting it back to the shadow map and comparing its distance to
the stored z value (similarly to shadow rays, using the depth map as a query data-structure). The shadow map
process is illustrated in Fig 6.1. Shadow maps were developed by Williams [Wil 78] and have the advantage
of being able to treat any geometry which can be handled by a z-buffer. Discussions of improvements can be
found in [Gra92, Woo092].

The main drawback of shadow masksis aliasing. Standard filtering can not be applied, because averaging
depth values makes no sense in this context. This problem was addressed by Reeveset al. [RSC87]. Averaging
the depth values of the neighbouring pixelsin the shadow map before performing the depth comparison would
make no sense. They thus first compare the depth value with that of the neighbouring pixels, then they compute
the average of the binary results. Had-oc soft shadows are obtained with this filtering, but the size of the
penumbrais arbitrary and constant. See also section 6 for soft computation using an image-space shadow-map.

Soft shadow effects can be also achieved by sampling an extended light source with point light sources and
averaging the contributions[HA90, HH97, Kel97]. See also [Zat93] for a use of shadow maps for high quality
shadows in radiosity lighting simulation.

Shadow maps now seem to predominatein production. Ray tracing and shadow raysare used only when the
artifacts caused by shadow maps are too noticeable. A hardware implementation of shadow mapsis now avail-
able on some machines which allow the comparison of a texture value with a texture coordinate [SKvW +92]2.

Zhang [Zha984] has proposed an inverse scheme in which the pixels of the shadow map are projected in
the image. His approach consists in warping the view from the light source into the final view using the view
warping technique presented in section 1.7 of chapter 2. This is similar in spirit to Atherton and Weiler’s
method presented in section 2.1 of chapter 4: the view from the source is added to the scene database.

2.2 Ray-tracing optimization using item buffers

A z-buffer can be used to speed up ray-tracing computations. Weghorst et al. [WHG84] use a z-buffer from
the viewpoint to speed up the computation of primary rays. An identifier of the objectsis stored for each pixel
(for example each object is assigned a unique color) in aso called item buffer. Then for each pixel, the primary
ray isintersected only with the corresponding object. See also [Sun92].

Haines and Greenberg [HG86] proposeasimilar schemefor shadow rays. They place alight buffer centered
on each point light source. It consists of 6 item buffers forming a cube (Fig. 6.2(a)). The objects of the scene
are projected onto this buffer, but no depth test is performed, all objects projecting on a pixel are stored. Object
lists are sorted according to their distance to the point light source. Shadow rays are then intersected only with
the corresponding objects, starting with the closest to the source.

Poulin and Amanatides [PA91] have extended the light-buffer to linear light sources. This latter method
is afirst step towards line-space acceleration techniques that we present in section 1.4 of chapter 8, since it
precomputes all objectsintersected by the rays emanating from the light source.

Salesin and Stolfi [SS89, SS90] have extended the item buffer concept for ray-tracing acceleration. Their
ZZ-huffer performs anti-aliasing through the use of an A-buffer like scheme. They detect completely covered
pixels, avoiding the need for a subsampling of that pixel. They aso sort the objects projecting on a non -
simple pixel by their depth intervals. The ray-object intersection can thus be terminated earlier as soon as an
intersection is found.

ZZ buffers can be used for primary rays and shadow rays. Depth of field and penumbra effects can also be
obtained with a slightly modified ZZ-buffer.

In acommercial products such as Maya from Alias Wavefront [May99], an A-buffer and a ray-tracer are
combined. The A-buffer is used to determine the visible objects, and ray-tracing is used only for pixels where
high quality refraction or reflection is required, or if the shadow maps cause too many artifacts.

2A shadow map is computed from the point light source and copied into texture memory. The texture coordinate matrix is set to the
perspective matrix from the light source. Theinitial u,v,w texture coordinate of avertex are set to its 3D coordinates. After transformation,
w represents the distance to the light source. It is compared against the texture value at u, v, which encodes the depth of the closest object.
The key feature isthe possibility to draw a pixel only if the value of wis smaller than the texture value at u,v.See [MBGN98] section 9.4.3.
for implementation details.
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Figure6.2: (a) Light buffer. (b) Form factor computation using the hemicube. Five z-buffers are placed around
the center of patch A. All form factors between A and the other patches are evaluated simultaneously, and
occlusion of C by B is taken into account.

2.3 The hemicube

Recall that form factors are used in radiosity lighting simulations to model the proportion of light leaving a
patch which arrives at another. The first method developed to estimate visibility for form factor computations
was the hemicube which uses five item-buffer images from the center of a patch as shown in Fig. 6.2(b). The
form factor between one patch and all the othersis evaluated simultaneously by counting the number of pixels
covered by each patch.

The hemicube was introduced by Cohen et al. [CG85] and has long been the standard method for radiosity
computations. However, asfor all item buffer methods, sampling and aliasing problemsare its main drawbacks.
In section 2.2 of chapter 4 and section 4 of chapter 8 we present some solutions to these problems.

Sillion and Puech [SP89] have proposed an alternative to the hemicube which uses only one plane parallel
the patch (the plane is however not uniformly sampled: A Warnock subdivision scheme is used.

Pietrek [Pie93] describe an anti-aliased version of the hemicube using a heuristic based on the variation
between a pixel and its neighbours. See also [Mey90, BRW89]. Alonso and Holzschuch [AH97] present
similar ideas as well as a deep discussion of the efficient access to the graphics hardware resources.

2.4 Sound occlusion and non-binary visibility

The wavelengths involved in sound propagation make it unrealistic to neglect diffraction phenomena. Simple
binary visibility computed using ray-object intersection is far from accurate.

Tsingosand Gascuel [TG97d] use Fresnel ellipsoids and the graphi cs hardware to compute semi-quantitative
visibility values between a sound source and a microphone. Sound does not propagate through lines; Fresnel
ellipsoids describe the region of space in which most of the sound propagation occurs. Their size depends on
the sound frequency considered. Sound attenuation can be modeled as the amount of occluders present in the
Fresnel ellipsoid. They use the graphics hardware to compute a view from the microphone in the direction of
the source, and count the number of occluded pixels.

They also use such aview to compute diffraction patterns on an extended receiver such as aplane[TG97h].
One view is computed from the source, and then for each point on the receiver, and integral is computed using
the z values of the view. The contribution of each pixel to diffraction is then evaluated (see Fig. 6.3 for an
example).
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Figure 6.3: Non binary visibility for sound propagation. The diffraction by the spheres of the sound emitted by
the source causes the diffraction pattern on the plane. (a) Geometry of the scene. (b) z-buffer from the source.
(c) Close up of the diffraction pattern of the plane. (Courtesy of Nicolas Tsingos, IMAGIS-GRAVIR).

3 Hierarchical z-buffer

The z-buffer is simple and robust, however it has linear cost in the number of objects. With the ever increasing
size of scenesto display, occlusion culling techniques have been devel oped to avoid the cost incurred by objects
which are not visible.

Greene et al. [GKM93, Gre96] propose a hierarchical version of the z-buffer to quickly reject parts of the
scene which are hidden. The scene is partitioned to an octree, and cells of the octree are rendered from front to
back (the reverse of the original painter algorithm, see e.g. [FYvDFH90, Rog97] or section 4 of chapter 4) to be
able to detect the occlusion of back objects by frontmost ones. Before it is rendered, each cell of the octreeis
tested for occlusion against the current z values. If the cell is occluded, it is rejected, otherwise its children are
treated recursively.

The z-buffer is organised in a pyramid to avoid to test all the pixels of the cell projection. Fig. 6.4 shows
the principle of the hierarchical z-buffer.

A
< |
4% /// /

hierarchical z-buffer scene octree

Figure 6.4: Hierarchical z-buffer.

The hierarchical z-buffer however requires many z-value queries to test the projection of cells and the
maintenance of the z-pyramid; this can not be performed efficiently on today’s graphics hardware. Zhang et
al. [ZMHH97, Zha98h] have presented a two pass version of the hierarchical z-buffer which they have suc-
cessfully implemented using available graphics hardware. They first render a subset of close and big objects
called occluders, then read the frame buffer and build a so-called hierarchical occlusion map against which they
test the bounding boxes of the objects of the scene. This method has been integrated in a massive model ren-
dering system system [ACW " 99] in combination with geometric simplification and image-based acceleration
techniques.

The strength of these methods is that they consider general occluders and handle occluder fusion, i.e. the
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occlusion by acombination of different objects.

The library Open GL Optimizer from Silicon Graphics proposes a form of screen space occlusion culling
which seems similar to that described by Zhang et al. Some authors [BMT98] also propose a modification to
the current graphics hardware to have access to z-test information for efficient occlusion culling.

4 Occluder shadow footprints

Many 3D scenes have in fact only two and a half dimensions. Such a sceneis called aterrain, i.e., afunction
z= f(x,y). Wonkaand Schmalstieg [WS99] exploit this characteristic to compute occlusions with respect to a
point using a z-buffer with atop view of a scene.
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Figure6.5: Occluder shadow footprints. A projection from aboveis used to detect occlusion. Objectsare hidden
if they are bel ow the occluder shadows. Thefootprints (with height) of the occluded regions are rasterized using
az-buffer. Depth isrepresented as grey levels. Note the gradient in the footprint due to the slope of the wedge.

Consider the situation depicted in Fig. 6.5 (side view). They call the part of the scene hidden by the
occluder from the viewpoint the occluder shadow (as if the viewpoint were a light source). This occluder
shadow is delimited by wedges. The projection of such a wedge on the floor is called the footprint, and an
occludee is hidden by the occluder if it lies on the shadow footprint and if it is below the edge.

The z-buffer is used to scan-convert and store the height of the shadow footprints, using an orthographic
top view (see Fig. 6.5). An object is hidden if its projection from above is on a shadow footprint and if it is
below the shadow wedgesi.g, if it is occluded by the footprintsin the top view.

5 Epipolar rendering

Epipolar geometry has been developed in computer vision for stereo matching (see e.g. [Fau93]). Assume that
the geometry of two camerasis known. Consider a point A in the first image (see Fig. 6.6). The possible point
of the 3D scene must lie on the line L going through A and viewpoint 1. The projection of the corresponding
point of the scene on the second image is constrained by the epipolar geometry: it must be onlineL, whichis
the projection of L onimage 2. The search for a correspondence can thus be restricted from a 2D search over
the entireimage to a 1D search on the epipolar line.

Mc Millan and Bishop [MB95] have taken advantage of the epipolar geometry for view warping. Consider
thewarping fromimage 2 toimage 1 (image 2 istheinitial image, and we want to obtainimage 1 by reprojecting
the points of image 2). We want to decide which point(s) is reprojected on A. These are necessarily points on
the epipolar line L. However, many points may project on A; only the closest hasto be displayed. This can be
achieved without actual depth comparison, by warping the points of the epipolar line L, in the order shown by
the thick arrow, that is, from the farthest to the closest. If more than one point projects on A, the closest will
overwrite the others. See also section 1.5 of chapter 8 for aline-space use of epipolar geometry.
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Figure 6.6: Epipolar geometry. L is the set of all points of the scene possibly projecting on A. L/, is the
projection on image 2. For a warping from image 2 to image 1, points of image 2 have to be reprojected to
image 1 in the order depicted by the arrows for correct occlusion.

6 Soft shadows using convolution
Soler and Sillion [SS98a, Sol98] have developed efficient soft shadow computations based on the use of con-

volutions. Some of theideas are also present in a paper by Max [Max91]. A simplification could be to see their
method as a “wise” blurring of shadow maps depending on the shape of the light source.

source

blocker
-
@ (b) (c)

Figure 6.7: Soft shadows computation using convolution. (a) Geometry of the scene. (b) Projection on a
parallel approximate geometry. (c) The shadow is the convolution of the projection of the blockers with the
inverse image of the source.

Consider an extended light source, a receiver and some blockers as shown in Fig. 6.7(a). This geometry is
first projected onto three paralel planes (Fig. 6.7(b)). The shadow computation for this approximate geometry
is equivalent to a convolution: the projection of the blocker(s) is convolved with the inverse projection of the
light source (see Fig. 6.7(c)). The shadow map obtained is then projected onto the receiver (thisis not necessary
in our figures since the receiver is parallel to the approximate geometry).

In the general case, the shadows obtained are not exact: the relative sizes of umbra and penumbra are not
correct. They are however not constant if the receiver is not parallel to the approximate geometry. The results
are very convincing (see Fig. 6.8).

For higher quality, the blockers can be grouped according to their distance to the source. A convolution
is performed for each group of blockers. The results then have to be combined; Unfortunately the correlation
between the occlusions of blockers belonging to different groupsis lost (see also [Gra92] for a discussion of
correlation problemsfor visibility and antialiasing).

This method has also been used in aglobal simulation system based on radiosity [SS98b].

7 Shadow coherence in image-space

Haines and Greenberg [HG86] propose a simple schemeto accel erate shadow computationin ray-tracing. Their
shadow cache simply stores a pointer to the object which caused a shadow on the previous pixel. Because of



64 CHAPTER 6. IMAGE-SPACE

Figure 6.8: Soft shadows computed using convolutions (image courtesy of Cyril Soler, IMAGIS-GRAVIR)

coherence, it is very likely that this object will continue to cast a shadow on the following pixels.

Pearce and Jevans [PJ91] extend this idea to secondary shadow rays. Because of reflection and refrac-
tion, many shadow rays can be cast for each pixel. They thus store a tree of pointers to shadowing objects
corresponding to the secondary ray-tree.

Worley [Wor97] pushes the idea a hit further for efficient soft shadow computation. He first computes
simple hard shadows using one shadow-ray per pixel. He notes that pixels where shadow status changes are
certainly in penumbra, and so are their neighbours. He thus “spreads” soft shadows, using more shadow rays
for these pixels. The spreading operation stops when pixelsin umbraor completely lit are encountered.

Hart et al [HDG99] perform a similar image-space floodfill to compute a blocker map: for each pixel,
the objects casting shadows on the visible point are stored. They are determined using alow number of rays
per pixel, but due to the image-space flood-fill the probability to miss blockersis very low. They then use an
analytic clipping of the source by the blockersto compute the illumination of each pixel.
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Viewpoint-Space

Onnevoit bien qu’avec le cceur. L’essentiel estinvisible
pour les yeux.

Antoine de Saint-EXUPERY, Le Petit Prince

IEWPOINT-SPACE methods characterize viewpoints with respect to some visibility property.

We first present the aspect graph which partitions viewpoint space according to the qualitative

aspect of views. It isafundamental visibility data-structuresinceit encodesall possibleviews

of a scene. Section 2 presents some methods which are very similar to the aspect graph.

Section 3 deals with the optimization of a viewpoint or set of viewpoints to satisfy some
visihility criterion. Finally section 4 presents two methods which use visual eventsto determine the viewpoints
at which visibility changes occur.

1 Aspect graph

As we have seen in section 2 of chapter 2 and Fig. 2.8 page 14, model-based object recognition requires a
viewer-centered representation which encodes al the possible views of an object. This has led Koenderink
and Van Doorn [Kv76, Kv79] to develop the visual potential of an object which is now more widely known
as the aspect graph (other terminology are also used in the literature such as view graph, characteristic views,
principal views, viewing data, view classes or stable views).

Aspect graph approaches consist in partitioning viewpoint space into cells where the view of an object are
qualitatively invariant. The aspect graph is defined as follows:

e Each node represents a general view or aspect as seen form a connected cell of viewpoint space.
e Each arc represents avisual event, that is, atransition between two neighbouring general views.

The aspect graph is the dua graph of the partition of viewpoint space into cells of constant aspect. This
partition is often named viewing data or viewpoint space partition. Theterminology aspect graph and viewpoint
space partition are often used interchangeably although they refer to dual concepts.

65
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Even though all authors agree on the general definition, the actual meaning of general view and visual event
varies. First approximate approaches have considered the set of visible features as defining aview. However for
exact approaches the image structure graph has rapidly imposed itself. It is the graph formed by the occluding
contour or visible edges of the object. This graph may be |abeled with the features of the object.

It isimportant to understand that the definition of the aspect graph is very general and that any definition of
the viewing space and aspect can be exchanged. This makes the aspect graph concept a very versatile tool as
wewill seein section 2.

Aspect graphs have inspired a vast amount of work and it is beyond the scope of this survey to review all
the literature in this field. We refer the reader to the survey by Eggert et al. [EBD92] or to the articles we
cite and the references therein. Approaches have usually been classified according to the viewpoint space used
(perspective or orthographic) and by the class of objects considered. We will follow the latter, reviewing the
methods devoted to polyhedrabefore those related to smooth objects. But first of al, we survey the approximate
method which use a discretization of viewpoint space.

1.1 Approximate aspect graph

Early aspect graph approaches have used a quasi uniform tessellation of the viewing sphere for orthographic
projection. It can be obtained through the subdivision of an initial icosahedron as shown by Fig. 7.1. Sample
views are computed from the vertices of this tessellation (the typical number of sample views is 2000). They
are then compared, and similar views are merged. Very often, the definition of the aspect is the set of visible
features (face, edge, vertex) and not their adjacencies as it is usually the case for exact aspect graphs This
approach is very popular because of its simplicity and robustness, which explainsthat it has been followed by
many researchers e.g. [Goa83, FD84, HK85]. We will see that most of the recognition systems using aspect
graphs which have been implemented use approximate aspect graphs.

Figure 7.1: Quasi uniform subdivision of the viewing sphere starting with an icosahedron.

We will see in section 3.2 that this quasi uniform sampling scheme has also been applied for viewpoint
optimization problems.

A similar approach has been developed for perspective viewpoint space using voxels [WF0].

The drawback of approximate approaches is that the sampling density is hard to set, and approximate
approach may miss some important views, which has led some researchers to devel op exact methods.

1.2 Convex polyhedra

In the case of convex polyhedra, the only visual events are caused by viewpoints tangent to faces. See Fig.
7.2 where the viewpoint partition and aspect graph of a cube are represented. For orthographic projection, the
directions of faces generate 8 regions on the viewing sphere, while for perspective viewpoint space, the 6 faces
of the cube induce 26 regions.

The computation of the visual events only is not sufficient. Their arrangement must be computed, that is,
the decomposition of viewpoint space into cells, which implies the computation of the intersections between
the events to obtain the segments of events which form the boundaries of the cells. Recall that the arrangement
of n lines (or well-behaved curves) in 2D has O(n?) cells. In 3D the arrangement of n planes has complexity
O(n®) in size [dBvKOS97, O’R94, Ede87, BY 98].

The first agorithmsto build the aspect graph of 3D objects have dealt with convex polyhedra under ortho-
graphic [PD86] and perspective [SB90, Wat88] projection.
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(@

Figure 7.2. Aspect graph of a convex cube. (@) Initia cube with numbered faces. (b) and (c) Partition of
the viewpoint space for perspective and orthographic projection with some representative aspects. (d) and
(e) Corresponding aspect graphs. Some aspects are present in perspective projection but not in orthographic
projection, for example when only two faces are visible. Note also that the cells of the perspective viewpoint
space partition have infinite extent.

1.3 General polyhedra

General polyhedra are more involved because they generate edge-vertex and triple-edge events that we have
presented in chapter 3. Since the number of triple-edge events can be as high as O(n %), the size of the aspect
graph of ageneral polygonis O(n®) for orthographic projection (since the viewing sphereis two dimensional),
and O(n®) for perspective projection for which viewpoint space is three-dimensional. However these bounds
may be very pessimistic. Unfortunately the lack of available data impede a redlistic analysis of the actual
complexity. Note also that we do not count here the size of the representative views of aspects, which can be
O(n?) each, inducing asize O(n®) for the orthographic case and O(n*?!) for the perspective case.

The cells of the aspect graph of ageneral polyhedron are not necessary convex. Partly because of the EEE
events, but also because of the EV events. Thisis different from the 2D case where al cells are convex because
in 2D visual events are line segments.

We detail here the algorithms proposed by Gigus and his co-authors [GM90, GCS91] to build the aspect
graph of general polyhedraunder orthographic projection.

In the first method [GM90], potential visual events are considered for each face, edge-vertex pair and triple
of edges. At this step, occlusion is not taken into account: objects lying between the generators of the events
are considered transparent. These potential events are projected on the viewing sphere, and the arrangement is
built using a plane sweep.

However, some boundaries of the resulting partition may correspond to false visual event because of occlu-
sion. For example, an object may lie between the edge and vertex of an EV event as shown in Fig. 7.3. Each
segment of cell boundary (that is, each portion of visual event) has to be tested for occlusion. False segment
are discarded, and the cells are merged.

Gigus Canny and Seidel [GCS91] propose to cope with the problem of false events before the arrangement
is constructed. They compute the intersection of all the event with the object in object space as shown in Fig.
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actual event

(@ (b)

Figure 7.3: False event (“transparent” event). Object R occludes vertex V from edge E, thus only a portion
of the potential visual event corresponds to an actua visual event. (@) In object space. (b) In orthographic
viewpoint space.

7.3(a), and only the unoccluded portion is used for the construction of the arrangement.

They aso propose to store and compute the representative view efficiently. They store only one aspect for
an arbitrary seed cell. Then all other views can be retrieved by walking along the aspect graph and updating
thisinitial view at each visual event.

(b)

Figure 7.4: Aspect graph of a L-shaped polyhedron under orthographic projection (adapted from [GM9Q]). (a)
Partition of the viewing sphere and representative views. (b) Aspect graph.

These a gorithms have however not been implemented to our knowledge. Fig. 7.4 shows the partition of
the viewing sphere and the aspect graph of a L-shaped polyhedron under orthographic transform.

Similar construction algorithms have been proposed by Stewman and Bowyer [ SB88] and Stewman [Ste91]
who also deals with perspective projection.

We will seein section 1.1 of chapter 8 that Plantingaand Dyer [PD90] have proposed a method to build the
aspect graph of general polyhedra which uses an intermediate line space data-structure to compute the visual
events.
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1.4 Curved objects

Methods to deal with curved objects were not developed till later. Seales and Dyer [SD92] have proposed the
use of a polygona approximation of curved objects with polyhedra, and have restricted the visual events to
those involving the silhouette edges. For example, an edge-vertex event EV will be considered only if E isa
silhouette edge from V (as thisis the case in Fig. 3.3 page 26). Thisis one example of the versatility of the
aspect graph definition: here the definition of the aspect depends only on the silhouette.

Kriegman and Ponce [KP90] and Eggert and Bowyer [EB90] have devel oped methods to compute aspect
graphs of solids of revolution under orthographic projection, while Eggert [Egg91] also dealswith perspective
viewpoint space. Objects of revolution are easier to handle because of their rotational symmetry. The problem
reducesto agreat circle on the viewing sphere or to one plane going through the axis of rotation in perspective
viewpoint space. The rest of the viewing data can then be deduced by rotational symmetry. Eggert et al.
[EB90, Egg91] report an implementation of their method.

The case of general curved object requires the use of the catalogue of singularities as proposed by Callahan
and Weiss [CW85]; they however developed no algorithm.

Petitjean and his co-authors [PPK 92, Pet92] have presented an agorithm to compute the aspect graph of
smooth objects bounded by arbitrary smooth algebraic surface under orthographic projection. They use the
catalogue of singularities of Kergosien [Ker81]. There approachis similar to that of Gigusand Malik [GM9Q].
They first trace the visual events of the “transparent” object (occlusion is not taken into account) to build a
partition of the viewing sphere. They then have to discard the false (also called occluded) events and merge
the corresponding cells. Occlusion is tested using ray-casting at the center of the boundary. To trace the visua
event, they derive their equation using a computer algebra system and powerful numerical techniques. The
degree of the involved algebraic systemsis very large, reaching millions for an object described by an equation
of degree 10. This agorithm has neverthel ess been implemented and an example of result isshownin Fig. 7.5.

Figure 7.5 Partition of orthographic viewpoint space for a dimple object with representative aspects. (adapted
from [PPK92]).

Similar methods have been developed by Sripradisvarakul and Jain [SJ89], Ponce and Kriegman [PK90]
while Rieger [Ri€92, Rie93] proposesthe use of symbolic computation and cylindrical algebraic decomposition
[Col75] (for agood introduction to algebraic decomposition see the book by Latombe [Lat91] p. 226).

Chen and Freeman [CF91b] have proposed a method to handle quadric surfaces under perspective projec-
tion. They use a sequence of growing concentric spheres centered on the object. They trace the visual events
on each sphere and compute for which radius the aspects change.

Finally PetitJean has studied the enumerative properties of aspect graphs of smooth and piecewise smooth
objects[Pet95, Pet96]. In particular, he gives bounds on the number of topologically distinct views of an object
using involved mathematical tools.
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1.5 Use of the aspect graph

The motivation of aspect graph research was model -based object recognition. The aspect graph providesinfor-
mations on all the possible views of an object. The use of this information to recognise an object and its pose
are however far from straightforward, one reason being the huge number of views. Once the view of an object
has been acquired from a camera and its features extracted, those features can not be compared to all possible
views of al objectsin a database: indexing schemes are required. A popular criterion is the number of visible
features (face, edge, vertex) [ESB95].

The aspect graph is then often used to build offline a strategy tree [HH89] or an inter pretation tree [Mun95].
At each node of an interpretation tree corresponds a choice of correspondence, which then recursively leads to
arestricted set of possible interpretation. For exampleif at a node of the tree we suppose that a feature of the
image corresponds to a given feature A of a model, this may exclude the possibility of another feature B to be
present because feature A and B are never visible together.

The information of the viewing space partition can then be used during pose estimation to restrict the
possible set of viewpoint [1ke87, ESB95]. If the observation is ambiguous, Hutchinson and Kak [HK89] and
Gremban and Ikeuchi [GI87] aso use the information encoded in the aspect graph to derive a new relevant
viewpoint from which the object and pose can be discriminated.

Dickinson et al. [DPR92] have used the aspect for object composed of elementary objects which they call
geons. They use an aspect graph for each geon and then use structural information on the assembly of geonsto
recognise the object.

However the aspect graph has not yet really imposed itself for object recognition. The reasons seem to
be the difficulty of robust implementation of exact methods, huge size of the data-structure and the lack of
obvious and efficient indexing scheme. One major drawback of the exact aspect graphsis that they capture all
the possible views, whatever their likelihood or significance. The need of anotion “importance” or scale of the
featuresis critical, which we will discussin section 1 of chapter 9.

For agood discussion of the pros and cons of the aspect graph, see the report by Faugeraset al. [FMA +92].

Applications of the aspect graph for rapid view computation have also been proposed since al possible
views have been precomputed [PDS90, Pla93]. However, the only implementation reported restricted the
viewpoint movement to a rotation around one axis.

Morerecently Gu and his coauthors[ GGH *99] have devel oped a data-structure which they call asilhouette
tree which isin fact an aspect graph for which the aspect is defined only by the exterior silhouette. It is built
using a sampling and merging approach on the viewing sphere. It is used to obtain images with a very fine
silhouette even if avery simplified version of the object is rendered.

Pellegrini [Pel99] has also used a decomposition of the space of direction similar to the aspect graph to
compute the form factor between two unoccluded triangles. The sphere S is decomposed into regions where
the projection of the two triangles has the same topology. This allows an efficient integration because no
discontinuity of the integration kernel occur in these regions.

A somehow related issue is the choice of agood viewpoint for the view of a3D graph. Visua intersections
should be avoided. Thesein fact correspond to EV or EEE events. Some authors [BGRT 95, HW98, EHW97]
thus propose some methods which avoid points of the viewing sphere where such events project.

2 Other viewpoint-space partitioning methods

The following methods exhibit a typical aspect graph philosophy even though they use a different terminol ogy.
They subdivide the space of viewpointsinto cellswhere aview is qualitatively invariant.

2.1 Robot Localisation

Deducing the position of a mobile robot from aview is exactly the same problem as determining the pose of an
object. Thedifferencesbeing that arange sensor is usually used and that the problem is mostly two dimensional
since mobile robots are usually naturally constrained on a plane.

Methods have thus been proposed which subdivide the plane into cells where the set of visible walls is
constant [GMR95, SON96, TA96]. See Fig. 7.6. Visual events occur when the viewpoint is aligned with a
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wall segments or along aline going through two vertices. Indexing is usually done using the number of visible
walls.

Figure 7.6: Robot self-localization. Partition of asceneinto cells of structurally invariant views by visual events
(dashed).

Guibas and his co-authors [GMR95] also propose to index the aspects in a multidimensional space. To
summarize, they associate to a view with m visible vertices a vector of 2m dimensions depending on the
coordinates of the vertices. They then use standard multidimensional search methods [dBvKOS97].

2.2 Visibility based pursuit-evasion

The problem of pursuit-evasion presented in section 3 and Fig. 2.14 page 18 can aso be solved using an
aspect-graph-like structure. Remember that the robot has to “clean” a scene by checking if an intruder is
present. “Contaminated” regions are those where the intruder can hide. We present here the solution devel oped
by Lavaleet al. [LLG"97, GLL™97, GLLL9g].

Yo

@ (b) ©

Figure 7.7: Pursuit-Evasion strategy. (@) The contaminated region can be cleaned only if the visual event is
crossed. The status of the neighbouring regionsis coded on the gap edges. (b) The robot has moved to a second
cell, cleaning aregion. (c) Part of the graph of possible states (upper node correspond to cell in () while lower
nodes correspond to the cell in (b)). In thick we represent the goal states and the move from (@) to (b).

Consider the situation in Fig. 7.7(a). The view from the robot isin dark grey. The contaminated region can
be cleaned only when the indicated visual event is crossed asin Fig. 7.7(b).

The scene is partitioned by the visibility event with the same partition as for robot localization (see Fig.
7.6). For each cell of the partition, the structure of the view polygonisinvariant, and in particular the gap edges
(edges of the view which are not on the boundary of the scene). The status of the neighbouring regionsis coded
on these gap edges: 0 indicates a contaminated region while 1 indicates a cleaned one.

The state of the robot is thus coded by its current cell and the status of the corresponding gap edges. In
Fig 7.7(a) the robot status is (1,0), while in (b) it is (1). Solving the pursuit problem consists in finding the
succession of states of the robot which end at a state where all gap edgesare at 1. A graphis created with one
node for each state (that means 2™ states for a cell with m edges). Edges of the graph correspond to possible
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transition. A transition is possible only to neighbouring cells, but not to al corresponding states. Fig. 7.7
represents a portion of this graph.

The solution is then computed using a standard Dijkstra search. See Fig. 2.14 page 18 for an example.
Similar methods have a so been proposed for curved environments[LH99].

2.3 Discontinuity meshing with backprojections

We now turn to the problem of soft shadow computation in polygonal environments. Recall that the penumbra
region corresponds to zones where only a part of an extended light source is visible. Complete discontinuity
meshing subdivides the scene polygons into regions where the topology of the visible part of the source is
constant. In this regionstheillumination varies smoothly, and at the region boundary thereis aC 2 discontinuity.

Moreover a data-structure called backprojection encodes the topology of the visible part of the source as
represented in Fig. 7.8(b) and 7.9(b). Discontinuity meshing is an aspect graph method where the aspect is
defined by the visible part of the source, and where viewpoint space is the polygons of the scene.

source E

A discontinuity
surface

@ (b)

Figure 7.8: Complete discontinuity meshing with backprojections. (a) Example of an EV event intersecting the
source. (b) Inthick backprojection fromV (structure of the visible part of the source)

sou% £o

@ (b)

Figure 7.9: Discontinuity meshing. () Example of an EEE event intersecting the source. (b) In thick backpro-
jection from apoint on Ep (structure of the visible part of the source)

Indeed the method developed and implemented by Drettakis and Fiume [DF94] is the equivalent of Gigus
Canny and Seidel’s algorithm [GCS91] presented in the previous section. Visual events are the EV and EEE
event with one generator on the source or which intersect the source (Fig. 7.8(a) and 7.9(a)). An efficient
space subdivision acceleration is used to speed up the enumeration of potential visual events. For each vertex
generator VV an extended pyramid is build with the light source, and only the generatorslying inside this volume
are considered. Space subdivision is used to accelerate this test. A similar scheme is used for edges. Space
subdivisionisalso used to speed-up the discontinuity surface-object intersections. See Fig. 7.10 for an example
of shadows and discontinuity mesh.
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Figure 7.10. Complete discontinuity mesh of a 1000 polygons scene computed with Drettakis and Fiume’s
algorithm [DF94].

This method has been used for global illumination simulation using radiosity [DS96]. Both the mesh and
form-factor problem are aleviated by this approach, since the backprojection allows for efficient point-to-area
form factor computation (portion of the light leaving the light source arriving at a point). The experiments
exhibited show that both the quality of the induced mesh and the precision of the form-factor computation are
crucia for high quality shadow rendering.

2.4 Output-sensitive discontinuity meshing

Stewart and Ghali [SG94] have proposed an output-sensitive method to build a complete discontinuity mesh.
They use asimilar discontinuity surface-object intersection, but their enumeration of the discontinuity surfaces
isdifferent.

It is based on the fact that a vertex V can generate a visual event with an edge E only if E lies on the
boundary of the visible part of the source as seen fromV (see Fig. 7.8). A similar condition arises for EEE
events: the two edges closest to the source must belong to the backprojection of some part of the third edge,
and must be adjacent in this backprojection as shown in Fig. 7.9.

They use an update of the backprojections at visual events. They note that a visual event has effect only
on the parts of scene which are farther from the source than its generators. They thus use a sweep with planes
parallel to the source. Backprojections are propagated along the edges and vertices of the scene, with an update
at each edge-visua event intersection.

Backprojection have however to be computed for scratch at each peak vertex, that is, for each polyhedron,
the vertex which is closest to the source. Standard hidden surface removal is used.

The algorithm can be summarized as follows:

e Sort the vertices of the scene according to the distance to the source.
o At peak vertices compute a backprojection and propagate it to the beginning of the edges below.
e At each edge-visual event intersection update the backprojection.

e For each new backprojection cast (intersect) the generated visual event through the scene.

This agorithm has been implemented [SG94] and extended to handle degenerate configuration [ GS96]
which cause some C* discontinuitiesin the illumination function.
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3 Viewpoint optimization

In this section we present methods which attempt to chose a viewpoint or a set of viewpoints to optimize the
visibility of al or some of the features of a scene. The search is here exhaustive, all viewpoints (or a sampling)
aretested. The following section will present some methods which alleviate the need to search the whole space
of viewpoints. Some related results have aready been presented in section 4.5 and 5.5 of chapter 5.

3.1 Artgalleries

We present the most classical results on art gallery problems. The classic art gallery theorem is due to Chvatal
[Chv75] but he exhibited a complex proof. We here present the proof by Fisk [Fis78] which is much simpler.
We are given an art-gallery modeled by a simple (with no holes) 2D polygons.

Theorem: | 3] stationary guards are always sufficient and occasionally necessary to guard a polygonal
art gallery with n vertices.

A I

@ (b)

Figure7.11: Art galery. (8) Thetriangulation of asimple polygonis 3-colored with colors 1, 2 and 3. Color 3is
the less frequent color. Placing aguard at each vertex with color 3 permitsto guard the polygon with less than
L%J guards. (b) Worst-case scene. To guard the second spike, a camerais needed in the grey region. Similar
constraints for all the spikes thusimpose the need of at least | §] guards

The proof relies on the triangulation of the polygon with diagonals (see Fig. 7.11(a)). The vertices of such
a triangulation can always be colored with 3 colors such that no two adjacent vertices share the same color
(Fig. 7.11(a)). Thisimpliesthat any triangle has one vertex of each color. Moreover, each vertex can guard its
adjacent triangles.

Consider the color which colors the minimum number of vertices. The number of corresponding verticesis
lower than L%J , and each triangle has such a vertex. Thus al triangles are guarded by this set of vertices. The
lower bound can be shown with a scene like the one presented in Fig. 7.11(b).

Such a set of guards can be found in O(n) time using a linear time triangulation algorithm by Chazelle
[dBvKOS97]. The problem of finding the minimum number of guards has however been shown NP-hard by
Aggarwal [Aga84] and Lee and Lin [LL86].

For other results see the surveys on the domain [O’R87, She92, Urr98].

3.2 Viewpoint optimization

The methods which have been developed to optimize the placement of sensors or lights are all based on a
sampling approach similar to the approximate aspect graph.

We present here the methods devel oped by Tarbox and Gottschlich [TG95]. Their aim is to optimize the
placement of alaser and a camera (as presented in Fig. 2.12 page 16) to be able to inspect an object whose
pose and geometry are known. The distance of the camera and laser to the object is fixed, viewpoint space is
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thus a viewing sphere even if perspective projection is used. The viewing sphereis tessellated starting with an
icosahedron (Fig. 7.1 page 66). Sample points are distributed over the object. For each viewpoint, the visibility
of each sample point is tested using ray-casting. It is recorded in atwo dimensional array called the viewability
matrix indexed by the viewpoint and sample point. (Infact two matrices are used since the visibility constraints
are not the same for the camera and for the laser.)

The viewability matrix can be seen as a structure in segment space: each entry encodes if the segment
joining a given viewpoint and a given sample point intersects the object.

The set of viewpoints which can see a given feature is called the viewpoint set. For more robustness,
especiadly in case of uncertainties in the pose of the object, the viewpoints of the boundary of a viewpoint set
are discarded, that is, the corresponding entry in the viewability matrix is set to 0. For each sample point, a
difficulty-to-view is computed which depends on the number of viewpoints from which it isvisible.

A set of pairs of positions for the laser and the camera are then searched which resumes to a set-cover
problem. The first strategy they propose is greedy. The objective to maximize is the number of visible sample
points weighted by their difficulty-to-view. Then each new viewpoint tries to optimize the same function
without considering the already seen points until all points are visible from at least one viewpoint.

The second method uses simulated annealing (which is similar to a gradient descend which can “jump”
over local minima). An arbitrary number of viewpoints are randomly placed on the viewing sphere, and their
positions are then perturbated to maximize the number of visible sample points. If no solution is found for n, a
new viewpoint is added and the optimization proceeds. This method provides results with fewer viewpoints.

Similar methods have been proposed for sensor placement [MG95, TUWR97], data acquisition for mobile
robot on a 2D floorplan [GL99] and image-based representation [HLW96]. See Fig. 7.12 for an example of

sensor planning.
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Figure 7.12: Planning of a stereo-sensor to inspect an object (adapted from [TUWR97])

Stuerzlinger [ Stu99] al so proposesasimilar method for the image-based representation of scenes. Hisview-
point space is a horizontal plane at human height. Both objects and viewpoint space are adaptively subdivided
for more efficient results. He then uses simulated annealing to optimize the set of viewpoints.

3.3 Local optimization and target tracking

Yi, Haralick and Shapiro [ Y HS95] optimize the position of both a camera and a light source. The position of
the light should be such that features have maximal contrast in the image observed by the camera. Occlusion
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isnot really handled in their approach since they performed their experiments only on a convex box. However
their problemisin spirit very similar to that of viewpoint optimization for visibility constraints, so we include
it in this survey because occlusion could be very easily included in their optimization metric.

They use noinitia global computation such as the viewability matrix studied in the previous paragraph, but
instead perform alocal search. They perform a gradient descent successively on the light and camera positions.
This method does not necessarily convergeto a global maximum for both positions, but they claim that in their
experiments the function to optimize is well behaved and convex and that satisfactory results are obtained.

Local optimization has also been proposed [LGBL 97, FL98] for the computation of the motion of amobile
robot which has to keep a moving target in view. Assume the motion of the target is only partially predictable
(by bound on the velocity for example). A local optimization is performed in the neighbourhood of the pursuer
position in a game theoretic fashion: the pursuer has to take into account all the possible movements of the
target to decide its position at the next timestep. For a possible pursuer position in free space, al the possible
movements of the target are enumerated and the probability of its being visible is computed. The pursuer
position with the maximum probability of future visibility is chosen. See Fig. 7.13 for an example of pursuit.
The range of the sensor is taken into account.

Figure 7.13: Tracking of a mobile target by an observer. Theregionin which thetargetisvisibleisin light grey
(adapted from [LGBL97]).

They also propose another strategy for a better prediction [LGBL97]. The aim is here to maximize the
escape time of thetarget. For each possible position of the pursuer, its visibility regionis computed (theinverse
of ashadow volume). The distance of the target to the boundary of this visibility region defines the minimum
distance it has to cover to escape the pursuer (see Fig. 7.14).

The extension of these methods to the prediction of many timesteps is unfortunately exponential.

4 Frame-to-frame coherence

In section 1.5 we have presented applications of the aspect graph to updating a view as the observer continu-
ously moves. The cost induced by the aspect graph has prevented the use of these methods. We now present
methods which use the information encoded by visual eventsto update views, but which consider only a subset
of them.

4.1 Coherence constraints

Hubschman and Zucker [HZ81, HZ82] have studied the so-called frame-to-frame coherence for static scenes.
This approach is based on the fact that if the viewpoint moves continuously, two successive images are usually
very similar. They study the occlusions between pairs of convex polyhedra.
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Figure 7.14: Tracking of a mobile target by an observer. The region in light grey is the region in which the
target is visible from the observer. The thick arrow is the shortest path for the target to escape.

They note that a polyhedron will start (or stop) occluding another one only if the viewpoint crosses one of
their separating planes. This correspondsto EV visua events. Moreover this can happen only for silhouette
edges.

Each edge stores all the separating planes with all other polyhedra. These planes become active only when
the edgeis on the silhouette in the current view. Asthe viewpoint crosses one of the active planes, the occlusion
between the two corresponding polyhedrais updated.

This approach however failsto detect occlusions caused by multiple polyhedra (EEE events are not consid-
ered). Furthermore, a plane is active even if both polyhedra are hidden by a closer one, in which case the new
occlusion has no actual effect on the visibility of the scene; Transparent as well as opaque events are consid-
ered. Theselimitations however simplify the approach and makeit tractable. Unfortunately, no implementation
is reported.

4.2 Occlusion culling with visual events

Coorg and Teller [CT96] have extended their shadow-volume based occlusion culling presented in section 4.4
of chapter 5 to take advantage of frame-to-frame coherence.

The visibility of acell of the scene subdivision can change only when a visual event is crossed. For each
large occluder visibility changes can occur only for the neighbourhood of partially visible parts of the scene
(see Fig. 7.15). They thus dynamically maintain the visual events of each occluders and test the viewpoint
against them.

visibility event

Figure 7.15: Occlusion culling and visual events

They explain that this can be seen as alocal linearized version of the aspect graph. Indeed they maintain a
superset of the EV boundaries of the current cell of the perspective aspect graph of the scene.
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CHAPTER 8

Line-Space

Car il ne serafait que de pure lumiere
Puisée au foyer saint des rayons primitifs

Charles BAUDELAIRE, Les Fleurs du Mal

INE-SPACE methods characterize visibility with respect to line-object intersections. The
methodswe present in section 1 partition lines according to the objectsthey intersect. Section
2 introduces graphsin line-space, while section 3 discusses Plicker coordinates, a powerful
parameterization which allows the characterization of visibility using hyperplanesin 5D. Fi-
nally section 4 presents stochastic and probabilistic approachesin line-space.

1 Line-space partition

1.1 The Asp

Plantinga and Dyer [PD87, PD90, Pla88] devised the asp as an auxiliary data-structure to compute the aspect
graph of polygonal objects. The definition of the asp depends on the viewing space considered. We present the
asp for orthographic projection.

A duality is used which maps oriented lines into a 4 dimensional space. Lines are parameterized as pre-
sented in section 1.4 of chapter 3 and Fig. 3.2(a) (page 25) by their direction, denoted by two angles (6, ¢) and
the coordinates (u, v) on an orthogonal plane. The asp for 8 and ¢ constant is thus an orthographic view of the
scene from direction (6,¢). The asp of an object corresponds to the set of lines intersecting this object. See
Fig. 8.1(a) and (b).

Occlusionin aview correspondsto subtraction in the asp: if object A is occluded by object B, then the asp
of B has to be subtracted from the asp of A as shown in Fig. 8.1(c). In fact the intersection of the asp of two
objectsisthe set of lines going through them. Thusif object B isin front of object A, and these lines no longer
“see” A, they have to be removed from the asp of A.

The 1 dimensional boundaries of the asp correspond to the visual events necessary to build the aspect graph.
See Fig. 8.1(c) wherean EV event is represented. Sinceit isonly adlice of the asp, only one line of the event
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@ (b) ©

Figure 8.1: Slice of the asp for ¢ = 0 (adapted from [PD90]). (a) and (b) Asp for onetriangle. The © dlicesin
white correspond to orthographic views of the triangle. When 6 = 90° the view of the triangle is a segment.
(c) Occlusion corresponds to subtraction in asp space. We show the asp of triangle A which is occluded by B.
Note the occlusion in the 6 dlices in white. We also show the outline of the asp of B. Thevisua event EV isa

point in asp asp space.

is present under the form of a point. Since occlusion has been taken into account with subtraction, the asp
contains only the opague events, transparent events do not have to be detected and discarded as in Gigus and
Malik’s method [GM90Q] presented in section 1.3. Unfortunately no full implementation is reported. The size
of the asp can be as high as O(n#), but as already noted, this does not give useful information about its practical
behaviour with standard scenes.

In the case of perspective projection, the asp is defined in the 5 dimensional space of rays. Occlusion is
a so handled with subtractions. Visual events are thus the 2 dimensional boundaries of the asp.

1.2 The 2D Visibility Complex

Pocchiolaand Vegter [PV 96b, PV 96a] have devel oped the 2D visibility complex whichisatopological structure
encoding the visibility of a 2D scene. The ideaisin away similar to the asp to group rays which “see” the
same objects. See [DP95] for a simple video presentation.

The central concept is that of maximal free segments. These are segments of maximal length that do not
intersect the interior of the objects of the scene. More intuitively, a maximal free segment has its extremities
on the boundary of objects, it may be tangent to objects but does not cross them. A line is divided in many
maximal free segment by the objects it intersects. A maximal free segment represents a group of colinear rays
which see the same objects. The manifold of 2D maximal free segmentsistwo-dimensional nearly everywhere,
except at certain branchings corresponding to tangents of the scene. A tangent segment has neighbours on both
sides of the object and below the object (see Fig. 8.2).

Thevisibility complex isthe partition of maximal free segmentsaccordingto the objectsat their extremities.
A face of the visibility complex is bounded by chains of segments tangent to one object (see Fig. 8.3).

Pocchiola and Vegter [PV96b, PV96a] propose optimal output sensitive construction algorithms for the
visibility complex of scenes of smooth objects. Riviere [Riv95, Riv97] has developed an optimal construction
algorithm for polygonal scenes.

The visibility complex implicitly encodes the visibility graph (see section 2 of chapter 5) of the scene: its
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Figure 8.2: Topology of maximal free segments. (@) In the scene. (b) In a dual space where lines are mapped
into points (the polar parameterization of lineis used).

@ (b)

Figure 8.3: A face of the visibility complex. (a) In the scene. (b) In adual space.

vertices are the bitangents forming the visibility graph.

The 2D visibility complex has been applied to the 2D equivalent of lighting simulation by Orti et al.
[ORDP96, DORP96]. The form factor between two objects corresponds to the face of the complex grouping
the segments between these two objects. The limits of umbraand penumbraare the vertices (bitangents) of the
visibility complex.

1.3 The 3D Visibility Complex

Durand et al. [DDP96, DDP97b] have proposed a generalization of the visibility complex for 3D scenes of
smooth objects and polygons. The space of maximal free segments is then a 4D manifold embedded in 5D
because of the branchings. Faces of the complex are bounded by tangent segments (which have 3 dimensions),
bitangent segments (2 dimension), tritangent segments (1D) and finally vertices are segments tangent to four
objects. If polygons are considered, the 1-faces are the EV and EEE critical lines.

The visibility complex is similar to the asp, but the same structure encodes the information for both per-
spective and orthographic projection. It moreover provides adjacencies between sets of segments.

Langer and Zucker [LZ97] have developed similar topological concepts (particularly the branchings) to
describe the manifold of rays of a 3D scene in a shape-from-shading context.

See a so section 4 where the difference between lines and maximal free segmentsis exploited.

1.4 Ray-classification

Ray classification is dueto Arvo and Kirk [AK87]. The 5 dimensional space of raysis subdivided to accelerate
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ray-tracing computation. A ray is parameterized by its 3D origin and its direction which is encoded on a cube

for ssimpler calculations. Beams in ray-space are defined by an XYZ interval (an axis aligned box) and an
interval on the cube of directions (see Fig. 8.4).

@

4 4

(b) (©
Figure8.4: Ray classification. (a) interval in origin space. (b) interval in direction space. (c) Corresponding beam of rays.
The objects lying in the beam are computed using a cone approximation of the beam. They are also sorted

by depth to the origin box. Each ray belonging to the beam then needs only be intersected with the objects
inside the beam. Theray-intervalsarelazily and recursively constructed. See Fig. 8.5 for an example of result.

Figure 8.5: Image computed using ray classification (courtesy of Jim Arvo and David Kirk, Apollo Computer Inc.)

Speer [Spe92b] describes similar ideas and Kwon et al [KKCS98] improve the memory requirements of
ray-classification, basically by using 4D line space instead of 5D ray-space. This method is however still
memory intensive, and it is not clear that it is much more efficient that 3D regular grids.

The concept of the light buffer presented in section 2.2 of chapter 6 has been adapted for linear and area
light source by Poulin and Amanatides [PA91] and by Tanaka and Takahashi [TT95, TT97]. The rays going
through the source are also classified into beams. The latter paper uses an analytical computation of the visible
part of the light source using the cross-scanline method reviewed in section 6 of chapter 4.

Lamparter et al. [LMW?9O0] discretize the space of rays (using adaptive quadtrees) and rasterize the objects
of the scene using a z-buffer like method. Hinkenjann and Mller [HM96] propose asimilar schemeto classify
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segments using a 6 dimensional space (3 for each extremity of a segment).

1.5 Multidimensional image-based approaches

Recently there has been great interest in both computer vision and computer graphics for the study of the de-
scription of ascene through the use of amultidimensional functionin ray-space. A 3D scene can be completely
described by the light traveling through each point of 3D space in each direction. This defines a 5D function
named the plenoptic function by Adelson and Bergen [AB91].

The plenoptic function describes light transport in a scene, similar data-structures have thus been applied
for global illumination simulation [LF96, LW95, GSHG9§].

Gortler et al. [GGSC96] and Levoy and Hanrahan [LH96] have simplified the plenoptic function by as-
suming that the viewer is outside the convex hull of the scene and that light is not modified while traveling in
free-space. This defines a function in the 4 dimensional space of lines called lumigraph or light-field. This
space is discretized, and a color is kept for each ray. A view can then be extracted very efficiently from any
viewpoint by querying rays in the data structure. This data structure is more compact than the storage of one
view for each 3D point (which defines a 5D function) for the same reason exposed before: aray is relevant for
all the viewpointslying onit. Thereis thus redundancy if light does not vary in free-space.

A two plane parameterization is used both in the light-field [LH96] and lumigraph [GGSC96] approaches
(see Fig 3.2(b) page 25). Xu et al. [GGC97] have studied the form of some image features in this dual
space, obtaining results similar to those obtained in the aspect graph literature [PD90, GCS91]. Camahort et
al. [CLF98] have studied the (non) uniformity of this parameterization and proposed alternatives based on
tessellations of the direction sphere. Their first parameterization is similar to the one depicted in Fig. 3.2(a)
using a direction and an orthogonal plane, while the second uses parameterization line using two points on
a sphere bounding the scene. See section 4 and the book by Santalo [San76] for the problems of measure
and probability on sets of lines. See aso the paper by Halle [Hal 98] where images from multiple viewpoints
(organised on a grid) are rendered simultaneously using epipolar geometry.

Chrysanthou et al. [CCOL98] have adapted the lumigraph methods to handle ray occlusion query. They
re-introduce a fifth dimension to handle colinear rays, and their scheme can be seen as a discretization of the
3D visibility complex.

Wang et al. [WBP98] perform an occlusion culling preprocessing which uses concepts from shaft culling,
ray classification and lumigraph. Using atwo-plane parameterization of raysleaving agiven cell of space, they
recursively subdivide the set of rays until each beam can be classified as blocked by a single object or too small
to be subdivided.

2 Graphs in line-space

In this section we present some methods which build a graph in line space which encodes the visua events of
ascene. As opposed to the previous section, only one and zero dimensional sets of lines are considered.

2.1 The Visibility Skeleton

Durand et al [DDP97c, DDP97a] have defined the visibility skeleton which can be seen either asasimplification
of the 3D visibility complex or as agraph in line space defined by the visual events.

Consider the situation represented in Fig. 8.6(a). A visual event V1V, and the corresponding critical line set
are represented. Recall that it is a one dimensional set of lines. It is bounded by two extremal stabbing lines
V1V and V1V3. Fig. 8.6(b) shows another visual event VoE, which is adjacent to the same extremal stabbing
line. Thisdefines agraph structurein line space represented in Fig. 8.6(c). Thearcsarethe 1D critical line sets
and the nodes are the extremal stabbing lines. Other extremal stabbing lines include lines going through one
vertex and two edges and lines going through four edges (see Fig. 8.7).

Efficient access to the arcs of this graph is achieved through a two dimensiona array indexed by the poly-
gons at the extremity of each visual event. The visibility skeleton is built by detecting the extremal stabbing
lines. The adjacent arcs are topologically deduced thanks to a catalogue of adjacencies. This avoids explicit
geometric calculations on the visual events.
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Figure8.6: (@) An EV critical line set. It is bounded by two extremal stabbing lines V1V, and V;V3. (b) Other
EV critical line sets are adjacent to V1Vs. (c) Corresponding graph structure in line space.

Figure 8.7: Four linesin general position are stabbed by two lines (adapted from [Tel92b])

The visibility skeleton has been implemented and used to perform global illumination simulation [DDP99].
Point-to-area form factors can be evaluated analytically, and the limits of umbra and penumbra can be quickly
computed considering any polygon as alight source (as opposed to standard discontinuity meshing where only
asmall number of primary light sources are considered).

2.2 Skewed projection

McKenna et O’Rourke [MO88] consider a scene which is composed of lines in 3D space. Their am is to
study the class of another line in a sense similar to the previous section if the original lines are the edges of
polyhedron, or to compute the mutually visible faces of polyhedra.

They use a skewed projection to reduce the problem to 2D computations. Consider a pair of linesL 1 and
L, asdepictedin Fig. 8.8. Consider the segment joining the two closest points of the lines (shown dashed) and
the plane P orthogonal to this segment and going through its mid-point. Each point on P defines a unique line
going through L1 and L,. Consider athird line Ls. It generates EEE critical lines. The intersections of these
critical lines with plane P lie on an hyperbolaH.

The intersections of the hyperbolae defined by all other lines of the scene allow the computation of the
extremal stabbing lines stabbing L1 and L,. The computation of course hasto be performed in the O(n?) planes
defined by all pairs of lines. A graph similar to the visibility skeleton is proposed (but for sets of lines). No
implementation is reported.

The skewed projection duality has also been used by Jaromczyk and Kowaluk [JK88] in a stabbing context



3. PLUCKER COORDINATES 85

L3

~

L2

Figure 8.8: Skewed projection.

and by Bern et al. [BDEG90] to update aview along alinear path (the projectionis used to compute the visual
events at which the view has to be updated).

3 Plucker coordinates

3.1 Introduction to Plicker coordinates

Lines in 3D space can not be parameterized continuously. The parameterizations which we have introduced
in section 1.4 of chapter 3 both have singularities. In fact there cannot be a smooth parameterization of lines
in 4D without singularity. One intuitive way to see this is to note that it is not possible to parameterize the S 2
sphere of directions with two parameters without a singularity. Nevertheless, if S 2 is embedded in 3D, thereis
atrivial parameterization, i.e. x,y,z. However not al triples of coordinates correspond to apoint on S 2.

Similarly, oriented linesin space can be parameterized in a 5D space with the so-called Pl ticker coordinates
[PIU65]. The equations are given in appendix 11, here we just outline the principles. One nice property of
Plicker coordinates is that the set of lines which intersect a given line a is a hyperplanein Plicker space (its
dual IT,; The same notation isusually used for the dual of aline and the corresponding hyperplane). It separates
Pliicker space into oriented lines which turn around ¢ clockwise or counterclockwise (see Fig. 8.9).

Q9 Y Q
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Figure 8.9: In Plicker space the hyperplane corresponding to a line a separates lines which turn clockwise and
counterclockwise around a. (The hyperplaneis represented as a plane because a five-dimensional spaceis hard
toillustrate, but note that the hyperplaneis actually 4D).

As for the embedding of S?2 which we have presented, not all 5-uples of coordinates in Pliicker space cor-



86 CHAPTER 8. LINE-SPACE

respond to areal line. The set of linesin this parameterization lie on a quadric called the Pl ticker hypersurface
or Grassman manifold or Klein quadric.

Now consider a triangle in 3D space. All the lines intersecting it have the same orientation with respect
to the three lines going through its edges (see Fig. 8.10). This makes stabbing computations very elegant
in Plicker space. Linear calculations are performed using the hyperplanes corresponding to the edges of the
scene, and the intersection of the result with the Pliicker hypersurfaceis then computed to obtain real lines.

3D space Plicker space

Plicker
hypersurface
(4D)

Figure 8.10: Lines stabbing a triangle. In 3D space, if the edges are well oriented, all stabbers rotate around
the edges counterclockwise. In Pliicker space this correspondsto the intersection of half spaces. To obtain real
lines, the intersection with the Pliicker hypersurface must be considered. (In fact the hyperplanes are tangent
to the Pliicker hypersurface)

Let us give a last example of the power of Plicker duality. Consider three linesin 3D space. The lines
stabbing each line lie on its (4D) hyperplanesin Pliicker space. The intersection of the three hyperplaneis a
2D plane in Plicker space which can be computed easily. Once intersected with the Pliicker hypersurface, we
obtain the EEE critical line set asillustrated Fig. 8.11.

3D space Plucker space

hyperplanes (4D)

b
a
c
EEE EEE (1D)
NS
/ Plucker
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Figure 8.11: Three lines define a EEE critical line set in 3D space. This corresponds to the intersection of
hyperplanes (not halfspaces) in Plicker space. Note that hyperplanes are 4D while their intersection is 2D.
Unfortunately they are represented similarly because of the lack of dimensions of this sheet of paper.(adapted
from [Tel92h)).

More detailed introductions to Pliicker coordinates can be found in the books by Sommerville [Som51] or
Stolfi [Sto91] and in the thesis by Teller [Tel92b] 1. See also Appendix 11.

LPiiicker coordinates can also be extended to use the 6 coordinates to describe forces and motion. See e.g. [MS85, PPR99)
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3.2 Use in computational geometry

Pliicker coordinates have been used in computational geometry mainly to find stabbers of sets of polygons, for
ray-shooting and to classify lines with respect to sets of lines (given a set of lines composing the scene and two
query lines, can we continuously move the first to the second without intersecting the lines of the scene).

We give an overview of a paper by Pellegrini [Pel93] which deals with ray-shooting in a scene composed
of triangles. He builds the arrangement of hyperplanesin Pliicker space corresponding to the scene edges. He
shows that each cell of the arrangement corresponds to lines which intersect the same set of triangles. The
whole 5D arrangement has to be constructed, but then only cells intersecting the Plicker hypersurface are
considered. He uses results by Clarkson [Cla87] on point location using random sampling to build a point-
location data-structure on this arrangement. Shooting a ray then consists in locating the corresponding line in
Pliicker space. Other results on ray shooting can be found in [Pel90, PS92, Pel94].

This method is different in spirit from ray-classification where the object-beam classification is calculated
in object space. Here the edges of the scene are transformed into hyperplanesin Pliicker space.

The first use of Pliicker space in computational geometry can be found. in a paper by Chazelle et al.
[CEG'96]. The orientation of lines in space also has implications on the study of cycles in depth order as
studied by Chazelle et al. [CEG'92] who estimate the possible number of cyclesin a scene . Other references
on lines in space and the use of Pliicker coordinates can be found in the survey by Pellegrini [Pel97b].

3.3 Implementations in computer graphics

Teller [Tel924] has implemented the computation of the antipenumbra cast by a polygonal source through a
sequence of polygonal openings portals (i.e. the part of space which may be visible from the source). He
computes the polytope defined by the edges of all the openings, then intersects this polytope with the Pliicker
hypersurface, obtaining the critical line sets and extremal stabbing lines bounding the antipenumbra (see Fig.
8.12 for an example).

Figure 8.12: Antipenumbra cast by a triangular light source through a sequence of three polygonal openings.
EEE boundariesarein red (image courtesy of Seth J. Teller, University of Berkeley).

He however later noted [TH93] that this algorithmis not robust enough for practical use.

Nevertheless, in this same paper he and Hanrahan [TH93] actually used Pliicker coordinates to classify the
visibility of objects with respect to parts of the scene in a global illumination context for architectural scenes
(see section 7 of chapter 5). They avoid robustness issues because no geometric construction is performed in
5D space (like computing the intersection between two hyperplanes), only predicates are evaluated (“is this
point above this hyperplane?”).

4 Stochastic approaches

This section surveys methods which perform visibility cal culation using a probabilistic sampling in line-space.



88 CHAPTER 8. LINE-SPACE

4.1 Integral geometry

Themost relevant tool to study probability over sets of linesisintegral geometry introduced by Santalo [San76].
Defining probabilitiesand measurein line-spaceis not straightforward. The most natural constraint istoimpose
that this measure be invariant under rigid motion. This defines a unique measure in line-space, up to a scaling
factor.

Probabilities can then be computed on lines, which is a valuable tool to understand ray-casting. For exam-
ple, the probability that aline intersects a convex object is proportional to its surface.

An unexpected result of integral geometry is that a uniform sampling of the lines intersecting a sphere can
be obtained by joining pairs of points uniformly distributed on the surface of the sphere (note that this is not
truein 2D).

Theclassic parameterization of linesx = az+ p, y = bz+ g (similar to the two plane parameterization of Fig.
3.2(b) page 25) has density % . If a,b, p, g are uniformly and randomly sampled, this formulaexpresses
the probability that alineis picked. It also expressesthe variation of sampling density for light-field approaches
described in section 1.5. Regions of line space with large values of a, b will be more finely sampled. Intuitively,
sampling is higher for lines that have a gazing angle with the two planes used for the parameterization.

Geometric probability is also covered in the book by Solomon [Sol 78].

4.2 Computation of form factors using ray-casting

Most radiosity implementations now use ray-casting to estimate the visibility between two patches, as intro-
duced by Wallace et al. [WEH89]. A number of rays (typically 4 to 16) are cast between a pair of patches. The
number of rays can vary, depending on the importance of the given light transfer. Such issueswill be treated in
section 1.1 of chapter 9.

The integra geometry interpretation of form factors has been studied by Sbert [Sbe93] and Pellegrini
[Pel97a]. They show that the form factor between two patches is proportional the probability that a line in-
tersecting the first one intersects the second. This is the measure of lines intersecting the two patches divided
by the measure of lines intersecting the first one. Shert [ Sbe93] proposes some estimators and derives expres-
sions for the variance depending on the number of rays used.

4.3 Global Monte-Carlo radiosity

Buckalew and Fussel [BF89] optimize the intersection calculation performed on each ray. Indeed, in global
illumination computation, all intersections of a line with the scene are relevant for light transfer. As shown
in Fig. 8.13, the intersections can be sorted and the contribution computed for the interaction between each
consecutive pair of objects. They however used a fixed number of directions and a deterministic approach.

Shert [Sbe93] introduced global Monte-Carlo radiosity. Asin the previous approach all intersections of a
line are taken into account, but a uniform random sampling of linesis used, using pairs of points on a sphere.

Related results can be found in [Neu95, SPP95, NNB97]. Efficient hierarchical approaches have also been
proposed [TWFP97, BNN*98].

4.4 Transillumination plane

Lines sharing the same direction can be treated simultaneously in the previous methods. This resultsin a sort
of orthographic view where light transfers are computed between consecutive pairs of objects overlappingin
the view, as shown in Fig. 8.14.

The plane orthogonal to the projection direction is called the transillumination plane. An adapted hidden-
surface removal method has to be used. The z-buffer can be extended to record the z values of al objects
projecting on a pixel [SKFNC97], or an analytical method can be used [Pel99, Pel974].
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Figure 8.13: Global Monte-Carlo radiosity. The intersection of the line in bold with the scene alows the
simulation of light exchanges between the floor and the table, between the table and the cupboard and between
the cupboard and the ceiling.

Figure 8.14: Transillumination plane. The exchangesfor one direction (here vertical) are all evaluated simulta-
neously using an extended hidden surface removal agorithm.
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CHAPTER 9

Advanced issues

Au reste, il n’est pas inutile de remarquer que tout
ce qu’on démontre, soit dans I’optique, soit dans la
perspective sur les ombres des corps, est exact a la
vérité du coté mathéematique, mais que si on traite cette
matiere physiquement, elle devient alorsfort différente.
L’explication des effets de lanature dépend presque tou-
jours d’une géomeétrie si compliquée qu’il est rare que
ces effets s’accordent avec ce que nous en aurions at-
tendu par nos calculs.

FORMEY, article sur I’ombre de I’Encyclopédie.

E NOW TREAT two issues which we believe crucial for visibility computations and which
unfortunately have not received much attention. Section 1 deals with the control of the
precision of computations either to ensure that a required precision is satisfied, or to
simplify visibility information to make it manageable. Section 2 treats methods which
attempt to take advantage of temporal coherence in scenes with moving objects.

1 Scale and precision

Visibility computationsare often involved and costly. We have surveyed some approximate methodswhich may
induce artifacts, and some exact methods which are usually resource-intensive. It is thus desirable to control
the error in the former, and trade-off time versus accuracy in the latter. Moreover, all visibility information is
not always relevant, and it can be necessary to extract what is useful.

1.1 Hierarchical radiosity: a paradigm for refinement

Hierarchical radiosity [HSA9]] is an excellent paradigm of refinement approaches. Computational resources
are spent for “important” light exchanges. We briefly review the method and focus on the visibility problems
involved.

91
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In hierarchical radiosity the scene polygons are adaptively subdivided into patches organised in a pyramid.
The radiosity is stored using Haar wavelets [SDS96]: each quadtree node stores the average of its children.
The light exchanges are simulated at different levels of precision: exchangeswill be simulated between smaller
elements of the quadtree to increase precision as shown in Fig. 9.1. Clustering improves hierarchical radiosity
by using afull hierarchy which groups clusters of objects[SAG94, Sil95].

A
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24
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Figure 9.1: Hierarchical radiosity. The hierarchy and the exchanges arriving at C are represented. Exchanges
with A are simulated at a coarser level, while those with B are refined.

The crucial component of a hierarchical radiosity system is the refinement criterion (or oracle) which
decidesat whichlevel alight transfer will besimulated. Originally, Hanrahan et al. [HSA91] used aradiometric
criterion (amount of energy exchanged) and a visibility criterion (transfers with partial visibility are refined
more). This results in devoting more computational resources for light transfers which are important and in
shadow boundary regions. See also [GH96].

For a deeper analysis and treatment of the error in hierarchical radiosity, see e.g., [ATS94, LSG9%, GH96,
So198, HS99].

1.2 Other shadow refinement approaches

The volumetric visibility method presented in section 1.3 of chapter 5 is also well suited for a progressive
refinement scheme. An oracle hasto decide at which level of the volumetric hierarchy the transmittance hasto
be considered. Sillion and Drettakis [SD95] use the size of the features of the shadows.

The key observation is that larger object which are closer to the receiver cast more significant shadows, as
illustrated by Fig. 9.2. They moreover take the correlation of multiple blockers into account using an image-
based approach. The objects inside a cluster are projected in a given direction onto a plane. Bitmap erosion
operators are then used to estimate the size of the connected portions of the blocker projection. This can be
seen as afirst approximation of the convolution method covered in section 6 of chapter 6 [SS98al.

Soler and Sillion [SS96b, Sol98] propose a more complete treatment of this refinement with accurate error
bounds. Unfortunately, the bounds are harder to derivein 3D and provide looser estimates.

The refinement of shadow computation depending on the relative distances of blockers and source has also
been studied by Asensio [Ase92] in aray-tracing context.

Telea and van Overveld [Tv97] efficiently improve shadows in radiosity methods by performing costly
visibility computations only for blockers which are close to the receiver.

1.3 Perception

Thegoal of most image synthesis methodsisto produceimageswhichwill be seen by human observers. Gibson
and Hubbold [GH97] thus perform additional computation in a radiosity method only if they may induce a
change which will be noticeable. Related approaches can be found in [Mys98, BM 98, DDP99, RPG99].
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Figure 9.2: Objects which are larger and closer to the receiver cast more significant shadows. Note that the | eft
hand sphere casts no umbra, only penumbra.

Perceptual metrics have also been applied to the selection of discontinuities in the illumination function
[HWP97, DDP99].

1.4 Explicitly modeling scale

One of the major drawbacks of aspect graphs [FMA 792] is that they have been defined for perfect views: all
features are taken into account, no matter the size of their projection.

The Scale-space aspect graph has been developed by Eggert et al. [EBD 93] to cope with this. They
discuss different possible definitions of the concept of “scale”. They consider that two features are not distin-
guishable when their subtended angle is less than a given threshold. This defines a new sort of visual event,
which correspondsto the visual merging of two features. These are circlesin 2D (the set of pointswhich form
agiven anglewith asegment isacircle). See Fig. 9.3.

Figure 9.3: Scale-space aspect graph in 2D using perspective projection for the small object in grey. Features
which subtend an angle of less than 4° are considered indistinguishable. The circles which subdivide the plane
are the visual events where features of the object visualy merge.

Scale (the angle threshol d) definesanew dimension of the viewpoint space. Fig. 9.3infact representsadlice
scale = 4° of the scale-space aspect graph. Cells of this aspect graph have a scale extent, and their boundaries
change with the scale parameter. This approach allows an explicit model of the resolution of features, at the
cost of an increases complexity.
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Shimshoni and Ponce [SP97] developed the finite resolution aspect graph in 3D. They consider ortho-
graphic projection and a single threshold. When resolution is taken into account, some accidental views are
likely to be observed: An edge and a vertex seem superimposed in the neighbourhood of the exact visual event.
Visual events are thus doubled asillustrated in Fig. 9.4.

A
- -1 y
=2
3
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€Y (b)

Figure 9.4: Finite resolution aspect graph. (a) The EV event is doubled. Between the two events (viewpoint 2
and 3), E andV arevisually superimposed. (b) The doubled event on the viewing sphere.

For the objects they test, the resulting finite resolution aspect graph is larger. The number events discarded
because the generators are merged does not compensate the doubling of the other events. However, tests on
larger objects could exhibit different results.

See also the work by Weinshall and Werman on the likelihood and stability of views [WW97].

1.5 Image-space simplification for discontinuity meshing

Stewart and Karkanis [ SK98] propose a finite resolution construction of discontinuity meshes using an image-
space approach. They compute views from the vertices of the polygonal source using a z-buffer. Theimageis
segmented to obtain avisibility map. The features present in the images are used as visual event generators.

This naturally eliminates small objects or features since they aggregate in the image. Robustness problems
are also avoided because of the image-space computations. Unfortunately, only partial approximate disconti-
nuity meshes are obtained, no backprojection computation is proposed yet.

2 Dynamic scenes

We have already evoked temporal coherence in the case of a moving viewpoint in a static scene (section 4.2
of chapter 7). In this section we treat the more general case of a scene where objects move. If the motions
are continuous, and especialy if few objects move, there is evidence that computation time can be saved by
exploiting the similarity between consecutive timesteps.

In most cases, the majority of the objects are assumed static while asubset of objects actually move. We can
distinguish cases where the motion of the objectsis known in advance, and those where no a priori information
is known, and thus updates must be computed on a per frame basis.

Different approaches can be chosen to take advantage of coherence:

e The computation is completely re-performed for a sub-region of space;

e The dynamic objects are deleted (and the visibility information related to them is discarded) then re-
inserted at their new position;

e A validity time-interval is computed for each piece of information;
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e Thevisbility informationis “smoothly updated”.

2.1 Swept and motion volumes

A swept volume is the volume swept by an object during a time interval. Swept volumes can also be used to
bound the possible motion of an object, especialy in robotics where the degrees of freedom are well defined
[AA95]. These swept volumes are used as static blockers.

A motion volume is a simplified version of swept volumes similar to the shafts defined in section 6.1 of
chapter 5. They are simple volume which enclose the motion of an object. Motion volumes were first used in
radiosity by Baum et al. [BWCG86] to handle the motion of one object. A hemicube is used for form-factor
computation. Pixels where the motion volume project are those which need recomputation.

Shaw [Sha97] and Drettakis and Sillion [DS97] determine form factors which require recomputation using
a motion volume-shaft intersection technique.

Sudarsky and Gotsman [SG96] use motion volumes (which they call temporal bounding volumes) to per-
form occlusion culling with moving objects. They alleviate the need to update the spatia data-structure (BSP
or octree) for each frame, because these volumes are used in place of the objects, making computations valid
for more than one frame.

2.2 4D methods

Some methods have been proposed to speed-up ray-tracing animations using a four dimensional space-time
framework developed by Glassner [Gla88]. The temporal extent of ray-object intersections is determined,
which avoids recomputation when a ray does not intersect a moving object. See also [MDC93, CCD91] for
similar approaches.

Ray-classification has also been extended to 6D (3 for the origin of aray, 2for its direction, and 1 for time)
[Quagd6, GPI1].

Globa Monte-Carlo radiosity presented in section 4.3 of chapter 8 naturally extendsto 4D as demonstrated
by Besuievsky et al [BS96]. Each ray-static object intersection is used for the whole length of the animation.
Only intersections with moving objects require recomputation.

23 BSP

BSP trees have been developed for rapid view computation in static scenes. Unfortunately, their construction
is a preprocessing which cannot be performed for each frame.

Fuchs et al. [FAG83] consider pre-determined paths and place bounding planes around the paths. Torres
[Tor90] builds amulti-level BSP tree, trying to separate objects with different motion without splitting them.

Chrysanthou and Slater [CS92, CS95, CS97] remove the moving objects from the database, update the BSP
tree, and then re-introduce the object at its new location. The most difficult part of this method is the update of
the BSP tree when removing the object, especially when the polygons of the object are used at a high level of
the tree as splitting planes. In this case, al polygonswhich are below it in the BSP-tree have to be updated in
thetree. This approach was also used to update limits of umbraand penumbra[CS97].

Agarwal et al. [AEG98] propose an algorithm to maintain the cylindrical BSP tree which we have presented
in section 1.4 of chapter 5. They computethe eventsat which their BSP actually needs astructural change. This
happens when a triangle becomes vertical, when an edge becomes parallél to the yz plane, or when atriangle
enters or leaves a cell defined by the BSP tree.

2.4 Aspect graph for objects with moving parts

Bowyer et al. [EB93] discuss the extension of aspect graphsfor articul ated assemblies. The degrees of freedom
of the assembly increase the dimensionality of viewpoint space (which they call aspect space). For example, if
the assembly has only one translational degree of freedom and if 3D perspective is used, the aspect graph has
to be computed in 4D, 3 dimensions for the viewpoint and one for tranglation. Thisis similar to the scale-space
aspect graph presented in section 1.4 where scal e increases dimensionality.
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Accidental configurations correspond to values of the parameters of the assembly where the aspect graph
changes. They occur at a generalization of visual eventsin the higher dimensional aspect space. For example
when two faces become parallel.

Two extensions of the aspect graph are proposed, depending on the way accidental configurations are
handled. They can be used to partition aspect space like in the standard aspect graph definition. They can aso
be used to partition first the configuration space (in our example, it would result in intervals of the trandlational
parameter), then a different aspect graph is computed for each cell of the configuration space partition. This
latter approachis more memory demanding since cells of different aspect graphsare shared in thefirst approach.
Construction algorithms are just sketched, and no implementation is reported.

2.5 Discontinuity mesh update

Loscos and Drettakis [LD97] and Worall et al. [WWP95, WHP98] maintain a discontinuity mesh while one
of the blockers moves. Limits of umbra and penumbra move smoothly except when an object starts or stops
casting shadows on another one. Detecting when a shadow limit goes off an object is easy.

To detect when a new discontinuity appears on one object, the discontinuities cast on other objects can be
used asillustrated in Fig. 9.5.
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Figure9.5: Dynamic update of limits of shadow. The situation where shadows appear on the moving object can
be determined by checking the shadows on the floor. This can be generalized to discontinuity meshes (after
[LD97]).

2.6 Temporal visual events and the visibility skeleton

In chapter 2 and 3 of [Dur99], we have presented the notion of atemporal visual event. Temporal visual events
permit the generalization of the results presented in the previous section. They correspond to the accidental
configurations studied for the aspect graph of an assembly.

Temporal visual events permit the update of the visibility skeleton while objects movein the scene. Thisis
very similar to the static visibility skeleton, since temporal visual events describe adjacencies which determine
which nodes and arcs of the skeleton should be modified.

Similarly, a catalogue of singularities has been developed for moving objects, defining atemporal visibility
complex.
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Conclusions of the survey

Ils ont tous gagné !

Jacques MARTIN

URVEYING work related to visibility reveals a great wealth of solutions and techniques. The

organisation of the second part of this thesis has attempted to structure this vast field. We

hope that this survey will be an opportunity to derive new methods or improvements from

techniques developed in other fields. Considering a problem under different anglesis a pow-

erful way to open one’s mind and find creative solutions. We again invite the reader not to
consider our classification as restrictive; on the contrary, we suggest that methods which have been presented
in one space be interpreted in another space. In what follows, we give a summary of the methods which we
have surveyed, before presenting a short discussion.

1 Summary

In chapter 2 we have presented visibility problems in various domains. computer graphics, computer vision,
robotics and computational geometry.

In chapter 3 we have propose a classification of these methods according to the space in which the com-
putations are performed: object space, image space, viewpoint space and line-space. We have described the
visual events and the singularities of smooth mappings which explain “how” visibility changesin a scene: the
appearance or disappearance of objects when an observer moves, the limits of shadows, etc.

We have briefly surveyed the classic hidden-part removal methods in chapter 4.

In chapter 5 we have dealt with object-space methods. The two main categories of methods are those which
use a “regular” spatia decomposition (grid, hierarchy of bounding volumes, BSP trees), and those which use
frusta or shafts to characterize visibility. Among the latter class of methods, the main distinction is between
those which are interested in determining if a point (or an object) lies inside the frustum or shaft, and those
which compute the boundaries of the frustum (e.g., shadow boundaries). Fundamental data-structureshhave also
been presented: The 2D visibility graph used in motion planning links al pairs of mutually visible vertices of a
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planar polygonal scene, and the visual hull of an object A represents the largest object with the same occlusion
propertiesas A.

I mages-space methods, surveyed in chapter 6 perform computation directly in the plane of the final image,
or use an intermediate plane. Most of them are based on the z-buffer algorithm.

Chapter 7 has presented methods which consider viewpoints and the the visibility properties of the corre-
sponding views. The aspect graph encodes all the possible views of an object. The viewpoints are partitioned
into cells where a view is qualitatively invariant, that is, the set of visible features remains constant. The
boundaries of such cells are the visual events. This structure has important implications and applications in
computer vision, robotics, and computer graphics. We have also presented methods which optimize the view-
point according to the visibility of a feature, as well as methods based on visual events which take advantage
of temporal coherence by predicting when aview changes.

In chapter 8 we have surveyed work in line or ray space. We have presented methods which partition the
rays according to the object they see. We have seen that visual events can be encoded by linesin line-space. A
powerful dualisation has been studied which maps lines into five dimensional points, allowing for efficient and
elegant visibility characterization. We have presented some elements of probability over sets of lines, and their
applicationsto lighting simulation.

Finally, in the previous chapter we have discussed two important issues. precision and moving objects. We
have studied techniqueswhich refine their computationswhere appropriate, aswell as techniqueswhich attempt
to cope with intensive and intricate visibility information by culling too fine and unnecessary information.
Techniques devel oped to deal with dynamic scenes include swept or motion volumes, 4D method (where time
is the fourth dimension), and smooth updates of BSP trees or shadow boundaries.

Table 10.1 summarizes the techniques which we have presented, by domain and space.

2 Discussion

A large gap exists between exact and approximate methods. Exact methods are often costly and prone to
robustness problems, while approximate methods suffer from aliasing artifacts. Smooth trade-off and efficient
adaptive approximate solutions should be developed. This requires both to be able to refine a computation and
to efficiently determine the required accuracy.

Visibility with moving objects and temporal coherence have received little attention. Dynamic scenes are
mostly treated as successions of static timesteps for which everything is recomputed from scratch. Solutions
should be found to efficiently identify the cal cul ations which actually need to be performed after the movement
of objects.

As evoked in the introduction of this survey, no practical guide to visibility techniquesreally exists. Some
libraries or programs are available (see for example appendix 12) but the implementation of reusable visibility
code in the spirit of C-GAL [FGK 796] would be a major contribution, especially in the case of 3D visibility.



99

2. DISCUSSION
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Table 10.1: Recapitulation of the techniques presented by field and by space.
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Some Notions in Line Space

Plicker coordinates

Consider adirected line ¢ in 3D defined by two points P(Xp, yp, zp) and Q(Xq, Yq,Zg). The Pliicker coordinates
[PIU65] of ¢ are:

o XPYQ — YPXQ
1 XpZQ — ZpXQ
T2 _ Xp —XQ
T3 YPZQ — ZPYQ
T4 Zp—1g
Tys Yo—Yr

(The signs and order may vary with the authors). These coordinates are homogenous, any choice of P and Q
will give the same Pliicker coordinates up to a scaling factor (Plicker spaceisthusa 5D projective space).
The dot product between two lines a and b with Pliicker duals I, and Iy, is defined by

ITa ©® Tl = TaoThs + Ta1Tlhs + Ta2Ttha + TaaTlho + TasTh1 + Ta3zTh2

The sign of the dot products indicates the rel ative orientation of the two lines. If the dot product is null, the
two linesintersect. The equation 15 ® I, = 0 defines the hyperplane associated with a.
The Plucker hypersurface or Grassman manifold or Klein quadric is defined by

In,oI11, =0
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CHAPTER 12

Online Ressources

1 General ressources

An index of computer graphics web pages can be found at
http://www-imagis.imag.fr/"Fredo.Durand/book.html

A lot of computer vision ressources are listed at
http://www.cs.cmu.edu/ cil/vision.html
A commented and sorted vision bibliography:
http://iris.usc.edu/Vision-Notes/bibliography/contents.html
An excellent Compendium of Computer Vision:
http://www.dai.ed.ac.uk/CVonline/

For roboticsrelated pages, see
http://www-robotics.cs.umass.edu/roboti cs.html
http://www.robohoo.com/

Many sites are dedicated to computational geometry, e.g.:
http://www.ics.uci.edu/~eppstein/geom.html
http://compgeom.cs.uiuc.edu/"jeffe/compgeom/

Those interested in human and animal vision will find several links at:
http://www.visi onscience.com/.

An introduction to perception is provided under the form of an excellent web book at:
http://www.yorku.caleye/

2 Available code.

CGAL isarobust and flexible computational geometry librairy
http://www.cs.ruu.nl/CGAL
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Nina Amenta maintains some links to geometrical softwares:
http://www.geom.umn.edu/software/cglist/welcome.html

The implementation of L uebke and George’s online portal occlusion-culling techniqueis available at:
http://www.cs.virginia.edu/"Tuebke/visibility.html

Electronic articles on shadows, portals, etc.:
http://www.flipcode.com/features.htm

Information on Open GL, including shadow computation:
http://reality.sgi.com/opengl/

Visibility graph programs can be found at:
http://www.cs.ul eth.cal/"wismath/vis.html
http://cs.smith.edu/"hal ef /research.html
http://willkuere.informatik.uni-wuerzburg.de/ lupinho/java.html

Many ray-tracer are available e.g.:
http://www.povray.org/
http://www-graphics.stanford.edu/- cek/rayshade/rayshade.html
http://www.rz.tu-ilmenau.de/“juhu/GX/intro.html (with different acceleration schemes, including ray-
classification)

A radiosity implementation:
http://www.ledalite.com/software/software.htm

RenderPark provides many global illumination methods, such as radiosity or Monte-Carlo path-tracing:
http://www.cs.kuleuven.ac.be/cwis/research-/graphics RENDERPARK/

Aspect graphs:
http://www.dai .ed.ac.uk/staff/-personal pages/eggertd/software.html

BSP trees:
http://www.cs.utexas.edu/users/atc/

A list of info and links about BSP:
http://www.ce.unipr.it/ marchini/jaluit.ntml

Mel Slater’s shadow volume BSP:
ftp://ftp.dcs.gmw.ac.uk/people/mel /BSP/
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Visibility Problems

Given a collection of triangles:

Visbility Deter mination
Find the visible fragments:

W | W

Visbility Ordering
Find a*“visbility” labeling
of the fragments:

:




High-Depth Complexity Scenes

Z-buffer Algorithm

By discretizing the domain, Z-buffer has essentially
linear complexityin the number of primitives

o

4

The exact complexity of the output can be quadratic:




Depth-Complexity

stum

Approximate Visibility Determination

Develop algorithmsthat areoutput sensitive, that is, if out of
the N triangles, only K of them arevisible, the algorithm
has complexity that depends more closely on K

Drop the exact visibility requirement, and instead attempt to

develop algorithmsthat estimate the triangles which have
visible fragments

Algorithmsthat overestimate the visible fragments, the so
called conservative visibility algorithms




Graphics Hardwar e Performance

» Current graphicshardware*” peaks’ at
approximate 15 million triangles per second, but
actually only renders 1-3 million triangles per
second

* Real-time usually means 30Hz (at least 15 frames
per second)

* 1M-3M at 30Hz = 33K-100K triangles per frame
e 33-100 thousand trianglesis not much!

» Hardwarewill improve, but so will datasets, mostly
dueto better 3D scanning and modeling
technology
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— Klosowski and Silva Vis99 and TVCGO00
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Cells & Portals




Cells & Portals

Cells & Portals




Cedls & Portals




Teller and Sequin’s Approach

(1) Decompose space into convex cells

(2) For each cdll, identify its boundary edges into
two sets: opaqueor portal

(3) Precompute visibility among cells

(4) During viewing (eg, walkthrough phase), use
the precomputed potentially visible polygon set
(PVYS) of each cell to speed-up rendering

Space Subdivision
I nput Scene:

Ll 11
13
\ wpaning | incigen

Eanl e

— o laces

L kil calle

COnVGX SUdeVISIOﬂ —nput faces

B zdjzcancy graph vertices

Generated by computing a k-d tree of the input faces




Deter mining Adjacent I nfor mation

Computing the PVSof acell

Linear programming problem: _




Eye-to-Cell Visibility

The eye-to-cell visibility of any observer is
asubset of the cell-to-cdl visibility for the cell
containing the observer

141 The amma obes igh

The sys-ta-esll visibility is shewn in blus:
the exact vimblc area in shawn in Blee-grosa.
Tha graen calls have Bean dynamiasily 2ullsd

par A souses eell (dark blue), b1z cellaao-cell
wisibulity (Eight Bluc), saed stabbing lmes (greea).
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L uebke and Georges, 13D 95

* Instead of pre-processing
all thePVScalculation, it is
possible to use image-space
portals to make the
computation easier

* No preprocessing

» Can beused in a dynamic
Setting

pfPortals

code available at http://www.cs.virginiaedu/~luebke

» Depth-first adjacency graph traversal
— Render cell containing viewer
— Treat portalsas special polygons
* If portal isvisible, render adjacent cell
* But clip to boundaries of portal!
» Recursively check portalsin that cell against new
clip boundaries (and render)

— Each visible portal sequence amountsto a
seriesof nested portal boundaries

11
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When does A occludes B ?

21D Visibility

12



|dea: Track Visibility Changes

Possible because visibility changes
little from frameto frame

Eventsto care about...

13



Coorg and Teller, SoCG 96

To reduce the number of eventsto (2) and a hierarchy of objects
betracked:

(1) useasphere

Hierarchical Tests

14



Hierarchical Tests
/

Hierarchical Tests
/

15



Coorg and Téller, 13D 97

Added the capability to

join the effect of connected
occluders, that is, a form
of occluder fusion e L P
Al g
—————— \g\'\O\'
B

Occluder Fusion

de lecte d

16



Fast Tangent Plane Computation

Because this computation isfast,
it isno longer necessary to keep
fine-grain visibility events

Use Temporal Coherenceto Cache
Relevant Events

Commmon
relevant nodes

'-'il:".-'lj'l'llll[.\-

17



Detail Occluders

Metric for Comparing Occluder Quality

Occluder quality: (-A (N* V))/||D|P
A : the occluder’s area
N : normal
V : viewing direction
D : the distance between the viewpoint and the occluder
center
L arge polygon have large area-angle.

18



Hudson et al, SoCG 97

7

Occluder
Viewpoint /
//

¥4
C

4

Occluder Quality

» Solid Angle (similar to Coorg and Teller)

e Depth Complexity

19
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PLP: A Framework for Time-
Critical Rendering

Rendering within a budget

L ow-complexity preprocessing

No pre-selection of occluders

Obj ect-space occluder fusion

Simple to implement

20



Combining Occluders

Occluders

Occludee

PLP Overview
» Occupancy-based spatial tessellation

* Prioritized cell traversal algorithm

21



Spatial Tessellation Algorithm

* |Insert original verticesinto octree
» Leavesof octreedefinethe spatial tessellation
* Insert geometry into mesh cells

Obs: Other types of spatial tessellations (such as Delaunay triangulations) also work fine!

Priority-Based Traversal Algorithm

while (PQ isnot empty)
project cell with minimum
opacity;
if (budget reached) stop; —
for each adjacent cell ¢ view direction
if (c not projected)
update opacity value o;
enqueuec;

22



2D Prototype

2D Prototype
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2D Prototype

2D Prototype

DEMO!

24



hgles Rendered

of Visible Tria

ber

2886

Finding Visible Triangles

23688 -

zeea -

15648 |-

leaa -
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e

1 I
18a iz@ 148 168

Front-to-back
projection at 10%

PLP at 10%
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Wrong Pixels Over Several Frames

I8

a8 -

1
a 58 258

== o J

i |
T f\thlﬂ ,ﬂj ﬂfwa

5 A I
"f} ‘fﬁt_ﬂ\d . ’I\\%foi
I I I
1@@ 138 cea
Frame MHumber

Some Quantitative Results

* With 1% budget PLP finds over 50% of visible
set on average

» For the 500K-triangle city moddl, it takes
2 minutesof preprocessing
For thismodel, a 5% budget, PL P finds about
80% of thevisible set
At most 4% of the pixelsin agivenimageare
wrong!

26



Mistakes

Filling Up The*“ Gaps’
A Conservative PLP (cPLP)

27



Basic Idea: FINd Visible “ Front”

Basic Idea: FINd Visible* Front”
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Basic Idea: FINd Visible “ Front”

i

N
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ﬁ< . |

==l
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| || \\\\:

How to identify thevisible Front ?

 HP Occlusion-Culling Test

» A novel Stencil-Buffer Technique

29



The HP Occlusion-Cullig Test

* Very smpleto use

* HP fx6 hardware can
perform about 1000 to 6000

tests per second 05(05
09|05| |

’me!i\l Primitive

OpenGL buffers

(R, G, B) Color buffer

8-bit per coordinate

(2) Z buffer

24-bit per coordinate

(S Stencil buffer

4to8bitsper coordinate

Thereareother buffers!

30



OpenGL Pixel Pipeline

Pass

_ — — Write pixel to
Stencil test Z test color buffer

) ra -

glStencilFunc()
glStencilOp()

Computing Visbility with OpenGL

p—
< —Pass ) Write pixel with
—— front-cell idto

color buffer

Stencil test Z test

y ]

Fal v Fail

Basic (nonoptimized) algorithm:
(1) save color buffer
(2) disable changesto the Z-buffer
(3) clear Stencil-buffer
(4) render
(5) each cell on a non-zero stencil buffer isvisible
(6) restore color buffer and enable changes to Z-buffer

31



The PC and GraphicsHardware

AGP

|1GB/s

N
entium Chipset |——Memory

PCI

132 MB/s

Ethernet

Test Dataset -- 3rd Floor of SODA Hall

32



Movies

Depth-Complexit

stum
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The Prioritized-Layered Projection Algorithm
for Visible Set Estimation

James T. Klosowski and Claudio T. Silva, Member, IEEE

Abstract—Prioritized-Layered Projection (PLP) is a technique for fast rendering of high depth complexity scenes. It works by
estimating the visible polygons of a scene from a given viewpoint incrementally, one primitive at a time. It is not a conservative
technique, instead PLP is suitable for the computation of partially correct images for use as part of time-critical rendering systems.
From a very high level, PLP amounts to a modification of a simple view-frustum culling algorithm, however, it requires the computation
of a special occupancy-based tessellation and the assignment to each cell of the tessellation a solidity value, which is used to compute
a special ordering on how primitives get projected. In this paper, we detail the PLP algorithm, its main components, and
implementation. We also provide experimental evidence of its performance, including results on two types of spatial tessellation (using
octree- and Delaunay-based tessellations), and several datasets. We also discuss several extensions of our technique.

Index Terms—Visibility, time-critical rendering, occlusion culling, visible set, spatial tessellation.

1 INTRODUCTION

RECENT advances in graphics hardware have not been
able to keep up with the increase in scene complexity.
In order to support a new set of demanding applications, a
multitude of rendering algorithms have been developed to
both augment and optimize the use of the hardware. An
effective way to speed up rendering is to avoid rendering
geometry that cannot be seen from the given viewpoint,
such as geometry that is outside the view frustum, faces
away from the viewer, or is obscured by geometry closer to
the viewer. Quite possibly, the hardest part of the visibility-
culling problem is to avoid rendering geometry that cannot
be seen due to its being obscured by closer geometry. In this
paper, we propose a new algorithm for solving the visibility
culling problem. Our technique is an effective way to cull
geometry with a very simple and general algorithm.

Our technique optimizes for rendering by estimating the
visible set for a given frame and only rendering those
polygons. It is based on computing, on demand, a priority
order for the polygons that maximizes the likelihood of
projecting visible polygons before occluded ones for any
given scene. It does so in two steps: 1) As a preprocessing
step, it computes an occupancy-based tessellation of space,
which tends to have smaller spatial cells where there are
more geometric primitives, e.g., polygons; 2) in real-time,
rendering is performed by traversing the cells in an order
determined by their intrinsic solidity (likelihood of being
occluded) and some other view-dependent information. As
cells are projected, their geometry is scheduled for render-
ing (see Fig. 1). Actual rendering is constrained by a user-
defined budget, e.g., time or number of triangles.

e |.T. Klosowski is with the IBM T.]. Watson Research Center, PO Box 704,
Yorktown Heights, NY 10598. E-mail: jklosow@us.ibm.com.

o C.T. Silva is with AT&T Labs-Research, 180 Park Ave., PO Box 971,
Florham Park, NJ 07932. E-mail: csilva@research.att.com

Manuscript received 15 Mar. 2000; accepted 3 Apr. 2000.
For information on obtaining reprints of this article, please send e-mail to:
tveg@computer.org, and reference IEEECS Log Number 111484.

Some highlights of our technique:

e Budget-based rendering. Our algorithm generates a
projection ordering for the geometric primitives that
mimics a depth-layered projection ordering, where
primitives directly visible from the viewpoint are
projected earlier in the rendering process. The
ordering and rendering algorithms strictly adhere
to a user-defined budget, making the PLP approach
time-critical.

e Low-complexity preprocessing. Our algorithm re-
quires inexpensive preprocessing that basically
amounts to computing an Octree and a Delaunay
triangulation on a subset of the vertices of the
original geometry.

e No need to choose occluders beforehand. Contrary
to other techniques, we do not require that occluders
be found before geometry is rendered.

e Object-space occluder fusion. All of the occluders
are found automatically during a space traversal that
is part of the normal rendering loop without
resorting to image-space representation.

e Simple and fast to implement. Our technique
amounts to a small modification of a well-known
rendering loop used in volume rendering of un-
structured grids. It only requires negligible overhead
on top of view-frustum culling techniques.

Our paper is organized as follows: In Section 2, we give
some preliminary definitions and briefly discuss relevant
related work. In Section 3, we propose our novel visibility-
culling algorithm. In Section 4, we give some details on our
prototype implementation. In Section 5, we provide experi-
mental evidence of the effectiveness of our algorithm. In
Section 6, we describe a few extensions and other avenues
for future work. In Section 7, we conclude the paper with
some final remarks.

1077-2626/00/$10.00 © 2000 IEEE



KLOSOWSKI AND SILVA: THE PRIORITIZED-LAYERED PROJECTION ALGORITHM FOR VISIBLE SET ESTIMATION 109

(a)

(b)

Fig. 1. The Prioritized-Layered Projection Algorithm. PLP attempts to prioritize the rendering of geometry along layers of occlusion. Cells that have
been projected by the PLP algorithm are highlighted in red wireframe and their associated geometry is rendered, while cells that have not been
projected are shown in green. Notice that the cells occluded by the desk are outlined in green, indicating that they have not been projected.

2 PRELIMINARIES AND RELATED WORK

The visibility problem is defined in [9] as follows: Let the
scene, S, be composed of modeling primitives (e.g.,
triangles or spheres) S = {Pj,P1,...,P,} and a viewing
frustum defining an eye position, a view direction, and a
field of view. The visibility problem encompasses finding
the points or fragments within the scene that are visible,
that is, connected to the eye point by a line segment that
meets the closure of no other primitive. For a scene with
n = O(|S]) primitives, the complexity of the set of visible
fragments might be as high as O(n?), but, by exploiting the
discrete nature of the screen, the Z-buffer algorithm [2]
solves the visibility problem in time O(n) since it only
touches each primitive once. The Z-buffer algorithm solves
the visibility problem by keeping a depth value for each
pixel and only updating the pixels when geometry closer to
the eye point is rendered. In the case of high depth-
complexity scenes, the Z-buffer might overdraw each pixel
a considerable number of times. Despite this potential
inefficiency, the Z-buffer is a popular algorithm, widely
implemented in hardware.

In light of the Z-buffer being widely available, and exact
visibility computations being potentially too costly, one
idea is to use the Z-buffer as a filter and design algorithms
that lower the amount of overdraw by computing an
approximation of the wvisible set. In more precise terms,
define the visible set V C S to be the set of modeling
primitives which contribute to at least one pixel of the
screen.

In computer graphics, visibility-culling research mainly
focused on algorithms for computing conservative (hope-
fully tight) estimations of V, then using the Z-buffer to
obtain correct images. The simplest example of visibility-
culling algorithms are backface and view-frustum culling
[11]. Backface-culling algorithms avoid rendering geometry
that faces away from the viewer, while viewing-frustum
culling algorithms avoid rendering geometry that is outside
of the viewing frustum. Even though both of these
techniques are very effective at culling geometry, more

complex techniques can lead to substantial improvements
in rendering time. These techniques for tighter estimation of
V do not come easily. In fact, most techniques proposed are
quite involved and ingenious and usually require the
computation of complex object hierarchies in both 3- and
2-space.

Here again, the discrete nature of the screen, and screen-
space coverage tests, play a central role in literally all
occlusion-culling algorithms since it paves the way for the
use of screen occupancy to cull 3D geometry that projects
into already occupied areas. In general, algorithms exploit
this fact by 1) projecting P; in front-to-back order and 2)
keeping screen coverage information. Several efficiency
issues are important for occlusion-culling algorithms:

1. They must operate under great time and space
constraints since large amounts of geometry must be
rendered in fractions of a second for real-time
display.

2. It is imperative that primitives that will not be
rendered be discarded as early as possible and
(hopefully) not be touched at all. Global operations,
such as computing a full front-to-back ordering of
P;, should be avoided.

3. The more geometry that gets projected, the less
likely the Z-buffer gets changed. In order to
effectively use this fact, it must be possible to merge
the effect of multiple occluders. That is, it must be
possible to account for the case that neither Py nor
Py obscures P, by itself, but together they do cover
P,. Algorithms that do not exploit occluder-fusion are
likely to rely on the presence of large occluders in
the scene.

A great amount of work has been done in visibility
culling in both computer graphics and computational
geometry. For those interested in the computational
geometry literature, see [8], [9], [10]. For a survey of
computer graphics work, see [28].
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We very briefly survey some of the recent work more
directly related to our technique. Hierarchical occlusion
maps [29] solve the visibility problem by using two
hierarchies, an object-space bounding volume hierarchy
and another hierarchy of image-space occlusion maps. For
each frame, objects from a precomputed database are
chosen to be occluders and used to cull geometry that
cannot be seen. A closely related technique is the
hierarchical Z-buffer [13].

A simple and effective hardware technique for improv-
ing the performance of the visibility computations with a
Z-buffer has been proposed in [23]. The idea is to add a
feedback loop in the hardware which is able to check if
changes would have been made to the Z-buffer when scan-
converting a given primitive.! This hardware makes it
possible to check if a complex model is visible by first
querying whether an enveloping primitive (often the
bounding box of the object, but, in general, one can use
any enclosing object, e.g., k-dop [16]), is visible and only
rendering the complex object if the enclosing object is
actually visible. Using this hardware, simple hierarchical
techniques can be used to optimize rendering (see [17]). In
[1], another extension of graphics hardware for occlusion-
culling queries is proposed.

It is also possible to perform object-space visibility
culling. One such technique, described in [26], divides
space into cells, which are then preprocessed for potential
visibility. This technique works particularly well for
architectural models. Additional object-space techniques
are described in [6], [7]. These techniques mostly exploit the
presence of large occluders and keep track of spatial extents
over time. In [4], a technique that precomputes visibility in
densely occluded scenes is proposed. They show it is
possible to achieve very high occlusion rates in dense
environments by precomputing simple ray-shooting checks.

In [12], a constant-frame rendering system is described.
This work uses the visibility-culling from [26]. It is related
to our approach in the sense that it also uses a (polygon)
budget for limiting the overall rendering time. Other
notable references include [3], for its level-of-detail manage-
ment ideas, and [21], where a scalable rendering architec-
ture is proposed.

3 THE PLP ALGORITHM

In this paper, we propose the Prioritized-Layered Projection
algorithm, a simple and effective technique for optimizing
the rendering of geometric primitives. The guts of our
algorithm consists of a space-traversal algorithm, which
prioritizes the projection of the geometric primitives in such
a way as to avoid (actually delay) projecting cells that have
a small likelihood of being visible. Instead of conservatively
overestimating V, our algorithm works on a budget. At each
frame, the user can provide a maximum number of
primitives to be rendered, i.e., a polygon budget, and our
algorithm, in its single-pass traversal over the data, will
deliver what it considers to be the set of primitives which
maximizes the image quality, using a solidity-based metric.

1. In OpenGL, the technique is implemented by adding a proprietary
extension that can be enabled when queries are being performed.

Our projection strategy is completely object-space based,
and resembles® cell-projection algorithms used in volume
rendering unstructured grids.

In a nutshell, our algorithm is composed of two parts:

Preprocessing. Here, we tessellate the space that con-
tains the original input geometry with convex cells in the
way specified in Section 3.1. During this one-time pre-
processing, a collection of cells is generated in such a way as
to roughly keep a uniform density of primitives per cell.
Our sampling leads to large cells in unpopulated areas and
small cells in areas that contain a lot of geometry.

In another similarity to volume rendering, using the
number of modeling primitives assigned to a given cell
(e.g., tetrahedron) we define its solidity value p, which is
similar to the opacity used in volume rendering. In fact, we
use a different name to avoid confusion since the
accumulated solidity value used throughout our priority-
driven traversal algorithm can be larger than one. Our
traversal algorithm prioritizes cells based on their solidity
value.

Generating such a space tessellation is not a very
expensive step, e.g., taking only a minute or two minutes
for a scene composed of one million triangles and, for
several large datasets, can even be performed as part of the
data input process. Of course, for truly large datasets, we
highly recommend generating this view-independent data
structure beforehand and saving it with the original data.

Rendering Loop. Our rendering algorithm traverses the
cells in roughly front-to-back order. Starting from the seed
cell, which, in general contains the eye position, it keeps
carving cells out of the tessellation. The basic idea of our
algorithm is to carve the tessellation along layers of polygons.
We define the layering number (€ X of a modeling
primitive P in the following intuitive way: If we order each
modeling primitive along each pixel by their positive®)
distance to the eye point, we define {(P) to be the smallest
rank of P over all of the pixels to which it contributes.
Clearly, ¢(P) = 1 if, and only if, P is visible.

Finding the rank 1 primitives is equivalent to solving the
visibility problem. Instead of solving this hard problem, the
PLP algorithm uses simple heuristics. Our traversal algo-
rithm attempts to project the modeling primitives by layers,
that is, all primitives of rank 1, then 2, and so on. We do this
by always projecting the cell in the front F (we call the front,
the collection of cells that are immediate candidates for
projection) which is least likely to be occluded according to
its solidity values. Initially, the front is empty and, as cells
are inserted, we estimate its accumulated solidity value to
reflect its position during the traversal. (Cell solidity is
defined below in Section 3.2.) Every time a cell in the front
is projected, all of the geometry assigned to it is rendered.
In Fig. 2, we see a snapshot of our algorithm for each of
the spatial tessellations that we have implemented. The
cells which have not been projected in the Delaunay

2. Our cell-projection algorithm is different than the ones used in volume
rendering in the following ways: 1) In volume rendering, cells are usually
projected in back-to-front order, while, in our case, we project cells in
roughly front-to-back order; 2) more importantly, we do not keep a strict
depth-ordering of the cells during projection. This would be too restrictive,
and expensive, for our purposes.

3. Without loss of generality, assume P is in the view frustum.



KLOSOWSKI AND SILVA: THE PRIORITIZED-LAYERED PROJECTION ALGORITHM FOR VISIBLE SET ESTIMATION 111

(a)

(b)

Fig. 2. The input geometry is a model of a seminar room. Snapshots of the PLP algorithm highlight the spatial tessellations that are used. The cells
which have not been projected in the (a) Delaunay triangulation and (b) the octree are highlighted in blue and green, respectively. At this point in the
algorithm, the geometry associated with the projected cells has been rendered.

triangulation Fig. 2a and the octree Fig. 2b are highlighted
in blue and green, respectively.

There are several types of budgeting that can be applied
to our technique, for example, a triangle-count budget can
be used to make it time-critical. For a given budget of k
modeling primitives, let 7 be the set of primitives our
traversal algorithm projects. This set, together with S, the
set of all primitives, and V, the set of visible primitives, can
be used to define several statistics that measure the overall
effectiveness of our technique. One relevant statistic is the
visible coverage ratio for a budget of k primitives, ¢;. This is
the number of primitives in the visible set that we actually
render, that is, ¢, = % If ¢, < 1, we missed rendering
some visible primitives.

PLP does not attempt to compute the visible set exactly.
Instead, it combines a budget with its solidity-based
polygon ordering. For a polygon budget of k, the best case
scenario would be to have ¢, = 1. Of course, this would
mean that PLP finds all of the visible polygons.

In addition to the visible coverage ratio &, another
important statistic is the number of incorrect pixels in the
image produced by the PLP technique. This provides a
measure as to how closely the PLP image represents the
exact image produced by rendering all of the primitives.

3.1 Occupancy-Based Spatial Tessellations

The underlying data structure used in our technique is a
decomposition of the 3-space covered by the scene into
disjoint cells. The characteristics we required in our spatial
decomposition were:

1. Simple traversal characteristics—must be easy and
computationally inexpensive to walk from cell to
cell.

2. Good projection properties—depth-orderable from
any viewpoint (with efficient, hopefully linear-time
projection algorithms available); easy to estimate
screen-space coverage.

3. Efficient space filler—given an arbitrary set of
geometry, it should be possible to sample the

geometry adaptively, that is, with large cells in
sparse areas, and smaller cells in dense areas.

4. Easy to build and efficient to store.

It is possible to use any of a number of different spatial
data structures, such as kd-trees, octrees, or Delaunay
triangulations. The particular use of one kind of spatial
tessellation may be related to the specific dataset character-
istics, although our experiments have shown that the
technique works with at least two types of tessellations
(octrees and Delaunay triangulations).

Overall, it seems that using low-stabbing triangulations,
such as those used by Held et al. [14] (see also Mitchell et al.
[18], [19] for theoretical properties of such triangulations),
which are also depth-sortable (see [27], [25], [5]) are a good
choice for occupancy-based tessellations. The main reason
for this is that, given any path in space, these triangulations
tend to minimize the traversal cost, allowing PLP to
efficiently find the visible surfaces.

In order to actually compute a spatial decomposition M
which adaptively samples the scene, we use a very simple
procedure, explained in Section 4. After M is built, we use a
naive assignment of the primitives in S to M by basically
scan-converting the geometry into the mesh. Each cell
¢; € M, has a list of the primitives from S assigned to it.
Each of these primitives is either completely contained in
¢; or it intersects one of its boundary faces. We use |¢;,
the number of primitives in cell ¢;, in the algorithm that
determines the solidity values of ¢;’s neighboring cells. In
a final pass over the data during preprocessing, we
compute the maximum number of primitives in any cell,
Pmaz = MaX;c)1. M |ci], to be used later as a scaling factor.

3.2 Priority-Based Traversal Algorithm
Cell-projection algorithms [27], [25], [5] are implemented
using queues or stacks, depending on the type of traversal
(e.g., depth-first versus breadth-first), and use some form of
restrictive dependency among cells to ensure properties of
the order of projection (e.g., strict back-to-front).
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(a)

(c)

Fig. 3. Occupancy-based spatial tessellation algorithm. The input geometry, a car with an engine composed of over 160K triangles, is shown in (a).
Using the vertices of the input geometry, we build an error-bounded octree, shown in (b). The centers of the leaf-nodes of the octree, shown in yellow

in (c), are used as the vertices of our Delaunay triangulation.

Unfortunately, such limited and strict projection strate-
gies do not seem general enough to capture the notion of
polygon layering, which we are using for visibility culling.
In order for this to be feasible, we must be able to selectively
stop (or at least delay) cell-projection around some areas,
while continuing in others. In effect, we would like to
project cells from M using a layering defined by the
primitives in S. The intuitive notion we are trying to
capture is as follows: If a cell ¢; has been projected, and
|¢i| = Pmae, then the cells behind should wait until (at least)

Algorithm Renderingloop()
1. while (empty(F) !=true)
c = min F)
projeci(c)
if ((reached budger() == true)
break;
for each n; n = cell_adjacent to(c)
if ((projected(n) == true)

continue;

X ox N2 A » N

p = update_solidity(n, c)

10. enqueue(n, P)

Fig. 4. Skeleton of the RenderinglLoop algorithm. Function min(F)
returns the minimum element in the priority queue F. Function project(c)
renders all the elements assigned to cell ¢; it also counts the number of
primitives actually rendered. Function reached_budget() returns true if
we have already rendered k primitives. Function cell_adjacent_to(c) lists
the cells adjacent to c. Function projected(n) returns true if cell n has
already been projected. Function update_solidity(n, ¢) computes the
updated solidity of cell n, based on the fact that ¢ is one of its neighbors,
and has just been projected. Function enqueue(n, p) places n in the
queue with a solidity p. If n was already in the queue, this function will
first remove it and reinsert it with the updated solidity value. See text for
more details on update_solidity().

a corresponding layer of polygons in all other cells have
been projected. Furthermore, in order to avoid any
expensive image-based tests, we would prefer to achieve
such a goal using only object-space tests.

In order to achieve this goal of capturing global solidity,
we extend the cell-projection framework by replacing the
fixed insertion/deletion strategy queue with a metric-based
queue (i.e.,, a priority queue) so that we can control how
elements get pushed and popped based on a metric we can
define. We call this priority queue, F, the front. The
complete traversal algorithm is shown in Fig. 4. In order to
completely describe it, we need to provide details on
solidity metrics and its update strategies.

Solidity. The notion of a cell’s solidity is at the heart of
our rendering algorithm shown in Fig. 4. At any given
moment, cells are removed from the front (i.e., priority
queue F) in solidity order, that is, the cells with the smallest
solidity are projected before the ones with larger solidity.
The solidity of a cell B used in the rendering algorithm is
not an intrinsic property of the cell by itself. Instead, we use
a set of conditions to roughly estimate the visibility
likelihood of the cell and make sure that cells more likely
to be visible get projected before cells that are less likely to
be visible.

The notion of solidity is related to how difficult it is for
the viewer to see a particular cell. The actual solidity value
of a cell B is defined in terms of the solidity of the cells that
intersect the closure of a segment from the cell B to the eye
point. The heuristic we have chosen to define the solidity
value of our cells is shown in Fig. 5.

We use several parameters in computing the solidity
value.

e The normalized number of primitives inside cell A4,
the neighboring cell (of cell B) that was just
projected. This number, which is necessarily be-
tween 0 and 1, is p‘i‘ The rationale is that the more
primitives cell A contains, the more likely it is to
obscure the cells behind it.

e Its position with respect to the viewpoint. We

transfer a cell’s solidity to a neighboring cell based
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float function update solidity(B, A)

/* refer to Fig. 6 */
A

L. p3=m+(ﬁ~ﬁ3)*p14

2. if ((star_shaped(V, B) == false)

3. pp = apply_penalty_factor(pp)
4. returnpp

Fig. 5. Function update_solidity(). This function works as if transferring
accumulated solidity from cell A into cell B. pp is the solidity value to be
computed for cell B. |A| is the number of primitives in cell A. py,.. is the
maximum number of primitives in any cell. ni; is the normal of the face
shared by cells A and B. p4 is the accumulated solidity value for cell A.
The maximum transfer happens if the new cell is well-aligned with the
view direction ¢ and in star-shaped position. If this is not the case,
penalties will be incurred to the transfer.

on how orthogonal the face that is shared between
cells is to the view direction ¥ (see Fig. 6).

We also give preference to neighboring cells that are star-
shaped [8] with respect to the viewpoint and the shared
face. That is, we attempt to force the cells in the front to
have their interior, e.g., their center point, visible from the
viewpoint along a ray that passes through the face shared
by the two cells. The reason for this is to avoid projecting
cells (with low solidity values) that are occluded by cells in
the front (with high solidity values) which have not been
projected yet. This is likely to happen as the front expands
away from an area in the scene where two densely occupied
regions are nearby; we refer to such an area as a bottleneck.
Examples of such areas can easily be seen in Fig. 7, which
highlights our 2D prototype implementation. Actually,
forcing the front to be star-shaped at every step of the way
is too limiting a rule. This would basically produce a
visibility ordering for the cells (such as the one computed in
[25], [5]). Instead, we simply penalize the cells in the front
that do not maintain this star-shaped quality.

4 |IMPLEMENTATION DETAILS

We have implemented a system to experiment with the
ideas presented in this paper. The code is written in C++,
with a mixture of Tcl/Tk and OpenGL for visualization. In
order to access OpenGL functionality in a Tcl/Tk applica-
tion, we use Togl [20]. In all, we have about to 10,000 lines of
code. The code is very portable, and the exact same source
code compiles and runs under IBM AIX, SGI IRIX, Linux,
and Microsoft Windows NT. See Fig. 8 for a screen shot of
our graphical user interface.

One of the reasons for the large amount of code actually
comes from our flexible benchmarking capabilities. Among
other functionality, our system is able to record and replay
scene paths; automatically compute several different statis-
tics about each frame as they are rendered (e.g., number of
visible triangles, incorrect pixels); compute PLP traversals
step-by-step; and “freeze” in the middle of a traversal to
allow for the study of the traversal properties from different
viewpoints.

v

Fig. 6. Solidity Transfer. After projecting cell A, the traversal algorithm
will add cells B and C to the front. Based upon the current viewing
direction #, cell B will accumulate more solidity from A than will cell C,
however, C will likely incur the non-star-shaped penalty. nz and n¢: are
the (respective) normals of the faces shared by the cell A’s neighboring
cells. Refer to Fig. 5 for the transfer calculation.

Here is a brief discussion of some of the important
aspects of our implementation:

4.1 Rendering Data Structures

At this time, the main rendering primitive in our system is
the triangle. In general, we accept and use “triangle soups”
as our input. For each triangle, we save pointers to its
vertices (which include color information) and a few flags,
one of which is used to mark whether it has been rendered
in the current traversal. At this point, we do not make any
use of the fact that triangles are part of larger objects.
Triangles are assigned to cells and their renderings are
triggered by the actual rendering of a cell. Although
triangles can (in general) be assigned to more than one
cell, they will only be rendered once per frame. A cell might
get partially rendered in case the triangle budget is reached
while attempting to render that particular cell.

4.2 Traversal Data Structures and Rendering Loop

During rendering, cells need to be kept in a priority queue.
In our current implementation, we use an STL set to
actually implement this data structure. We use an object-
oriented design, which makes it easy for the traversal
rendering code to support different underlying spatial
tessellations. For instance, at this time, we support both
octree and Delaunay-based tessellations. Since we are using
C++, it is quite simple to do this. The following methods
need to be supported by any cell data structure (this list
only includes methods needed for the rendering traversal;
other methods are needed for initialization and triangle
assignment, and also for benchmarking):

e calculateInitialSolidityValues (int
Pmaz) —Uses the techniques presented in Section 3.2
for computing the initial solidity.

e getSolidity(), setSolidity (), getOrigi-
nalsolidity () —Uses the techniques presented
in Section 3.2 for updating the solidity values during
traversal. Solidity updates need to be adjusted for
different kinds of spatial tessellations.

We use these functions to define a comparator
class (1ess< >) that can be used by the STL set to
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(a)

(b)

(c)

()

Fig. 7. Priority-based traversal algorithm. In (a), the first cell, shown in green, gets projected. The algorithm continues to project cells based upon the
solidity values. Note that the traversal, in going from (b) to (c), has delayed projecting those cells with a higher solidity value (i.e., those cells less
likely to be visible) in the lower-left region of the view frustum. In (d), as the traversal continues, a higher priority is given to cells likely to have visible
geometry, instead of projecting the ones inside of high-depth complexity regions. Note that the star-shaped criterion was not included in our 2D

implementation.

sort the different cells. Each cell also has an internal
timestamp, which is used to guarantee a first-in first-
out behavior when there are ties with respect to the

solidity values.

e findCell (float vp[3])—Find the cell that con-
tains the viewpoint or returns that the viewpoint is
outside the convex hull of the tessellation. (In order
to jump start the traversal algorithm when the
viewpoint is outside the tessellation, we use the cell
that is closest to the viewpoint.)

e getGeometry VEC ()—Returns a reference to the
list of primitives inside this cell.

e getNeighbors_VEC () —Returns a reference to the
list of neighbors of this cell. (We also save the
direction which identifies the face the two cells
share. This is used to perform the solidity update on
the neighboring cells.)

Although simple and general, STL can add considerable
overhead to an implementation. In our case, the number of
cells in the front has been kept relatively small and we have
not noticed substantial slowdown due to STL.

The rendering loop is basically a straightforward
translation of the code in Fig. 4 into C++. Triangles are
rendered very naively, one by one. We mark triangles as
they are rendered in order to avoid overdrawing triangles
that get mapped to multiple cells. We also perform simple
backface culling, as well as view-frustum culling. We take
no advantage of triangle-strips, vertex arrays, or other
sophisticated OpenGL features.

4.3 Space Tessellation Code

This is quite possibly the most complicated part of our
implementation and it consists of two parts, one for each of
the two spatial tessellations we support. There is a certain
amount of shared code since it is always necessary to first
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Fig. 8. Snapshot of our Tcl/Tk graphical user interface.

compute an adaptive sampling from the scene, for which
we use a simple octree.

In more detail, in order to compute a spatial decomposi-
tion M, which adaptively samples the scene S, we use a
very simple procedure that, in effect, just samples S with
points, then (optionally) constructs M as the Delaunay
triangulation of the sample points, and, finally, assigns
individual primitives in S to M. Fig. 3 shows our overall
triangulation algorithm. Instead of accurately sampling the
actual primitives (Fig. 3a), such as is done in [15], we simply
construct an octree using only the original vertices (Fig. 3b);
we limit the size of the octree leaves, which gives us a
bound on the maximum complexity of our mesh.* Note
that, at this point, we do not have a space partitioning
where we can run PLP; instead, the octree provides a
hierarchical representation of space (i.e., the nodes of the
octree overlap and are nested).

Once the octree has been computed with the vertex
samples, we can generate two different types of subdivisions:

e Delaunay triangulation—We can use the (randomly
perturbed) center of the octree leaves as the vertices
of our Delaunay triangulation (Fig. 3c).

For this, we used ghull, software written at the
Geometry Center, University of Minnesota. Our
highly constrained input is bound to have several
degeneracies as all the points come from nodes of an
octree, therefore we randomly perturbed these
points and ghull had no problems handling them.

After M is built, we use a naive assignment of the
primitives in S to M by basically scan-converting
the geometry into the mesh. Each cell ¢; € M has a
list of the primitives from S assigned to it. Each of

4. 1) The resolution of the octree we use is very modest. By default, once
an octree node has a side shorter than 5 percent of the length of the
bounding box of S, it is considered a leaf node. This has been shown to be
quite satisfactory for all the experiments we have performed thus far. 2)
Even though primitives might be assigned to multiple cells of M (we use
pointers to the actual primitives), the memory overhead has been negligible.
See Section 5.1.

Fig. 9. Finding neighbors within the octree.

these primitives is either completely contained in ¢;,
or it intersects one of its boundary faces.

Each tetrahedron is represented by pointers to its
vertices. Adjacency information is also required, as
are a few flags for rendering purposes.

e Octree—Since we have already built an octree, it is
obvious that we can use the same octree to compute
a subdivision of space for PLP. Conceptually, this is
quite simple since the leaves of the octree are
guaranteed to form a subdivision of space. All that
is really needed is to compute neighborhood
information in the octree, for instance, looking at
Fig. 9, we need to find that node A is a “face”
neighbor of node I and J and vice-versa.

Samet [22] describes several techniques for neigh-
bor finding. The basic idea in finding the “face”
neighbor of a node is to ascend the octree until the
nearest common ancestor is found and to descend the
octree in search of the neighbor node. In descending
the octree, one needs to reflect the path taken while
going up (for details, see Table 3.11 in [22]).

One shortcoming with the technique as described
in [22] is that it is only possible to find a neighbor at
the same level or above (that is, it is possible to find
that A is the “right” neighbor of I, but it is not
possible to go the other way). A simple fix is to
traverse the tree from the bottom to the top and
allow the deeper nodes (e.g., I) to complete the
neighborhood lists of nodes up in the tree (e.g., A).

Regardless of the technique used for subdivision, for the
solidity calculations, we use |¢;|, the number of primitives in
cell ¢;, in the algorithm that determines the solidity values
of ¢;’s neighboring cells. In a final pass over the data during
preprocessing, we compute the maximum number of
primitives in any cell, pjq; = max;eq. jm ||, to be used
later as a scaling factor.

4.4 Computing the Exact Visible Set

A number of benchmarking features are currently included
in our implementation. One of the most useful is the
computation of the actual exact visible set. We estimate V by
using the well-known item buffer technique. In a nutshell,
we color all the triangles with different colors, render them,
and read the frame buffer back, recording which triangles
contributed to the image rendered. After rendering, all the
rank-1 triangles have their colors imprinted into the frame
buffer.
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Fig. 10. CITY results. (a) The top curve, labeled Exact, is the number of visible triangles for each given frame. The next four curves are the number of
visible triangles PLP finds with a given budget. From top to bottom, budgets of 10 percent, 5 percent, 2 percent, and 1 percent are reported. The
bottom curve is the number of visible triangles that the centroid sorting algorithm finds. (b) Rendering times in seconds for each curve shown in (a),
with the exception of the centroid sorting algorithm, which required 4-5 seconds per frame. (c) Image of all the visible triangles. (d) Image of the 10

percent PLP visible set.

4.5 Centroid-Ordered Rendering

In order to have a basis for comparison, we implemented a
simple ordering scheme based on sorting the polygons with
respect to their centroid and rendering them in that order
up to the specified budget. Our implementation of this
feature tends to be slow for large datasets, as it needs to sort
all of the triangles in S at each frame.

5 EXPERIMENTAL RESULTS

We performed a series of experiments in order to determine
the effectiveness of PLP’s visibility estimation. Our experi-
ments typically consist of recording a flight path consisting
of several frames for a given dataset, then playing back the
path while varying the rendering algorithm used. We have
four different strategies for rendering: 1) rendering every
triangle in the scene at each frame, 2) centroid-based
budgeting, 3) PLP with octree-based tessellation, and
4) PLP with Delaunay triangulation. During path playback,

we also change the parameters when appropriate (e.g.,
varying the polygon budget for PLP). Our primary bench-
mark machine is an IBM RS/6000 595 with a GXT800
graphics adapter. In all our experiments, rendering was
performed using OpenGL with Z-buffer and lighting
calculations turned on. In addition, all three algorithms
perform view-frustum and backface culling to avoid
rendering those triangles that clearly will not contribute to
the final image. Thus, any benefits provided by PLP will be
on top of the benefits provided by traditional culling
techniques.
We report experimental results on three datasets:

Room 306 of the Berkeley SODA Hall (ROOM). This
model has approximately 45K triangles (see Figs. 13 and
14) and consists of a number of chairs in what appears to
be a reasonably large seminar room. This is a difficult
model to perform visibility culling on since the number
of visible triangles along a path varies quite a bit with
respect to the total size of the dataset, in fact, in the path
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Fig. 11. 5CBEM results. (a) The top curve, labeled Exact, is the number of visible triangles for each given frame. The next four curves are the number
of the visible triangles PLP finds with a given budget. From top to bottom, budgets of 10 percent, 5 percent, 2 percent, and 1 percent are reported.
The bottom curve is the number of visible triangles that the centroid sorting algorithm finds. (b) Rendering times in seconds for each curve shown in
(a), with the exception of the centroid sorting algorithm, which required 6-7 seconds per frame. (c) Image of all the visible triangles. (d) Image of the

10 percent PLP visible set.

we use, this number ranged from 1 percent to 20 percent
of the total number of triangles.

City Model (CITY). The city model is composed of over
500K triangles (Fig. 10c). Each house has furniture inside
and, while the number of triangles is large, the actual
number of visible triangles per frame is quite small.

5 Car Body/Engine Model (5CBEM). This model has over
810K triangles (Fig. 11c). It is composed of five copies of
an automobile body and engine.

5.1 Preprocessing
Preprocessing involves computing an octree of the model,
then (optionally) computing a Delaunay triangulation of
points defined by the octree (which is performed by calling
ghull), and, finally, assigning the model geometric
primitives to the spatial tessellation generated by ghull.
For the CITY model, preprocessing took 70 seconds and
generated 25K tetrahedra. Representing each tetrahedron
requires less than 100 bytes (assuming the cost of
representing the vertices is amortized among several
tetrahedra), leading to a memory overhead for the spatial
tessellation on the order of 2.5MB. Another source of
overhead comes from the fact that some triangles might be
multiply assigned to tetrahedra. The average number of
times a triangle is referenced is 1.80, costing 3.6 MB of
memory (used for triangle pointers). The total memory

overhead (on top of the original triangle lists) is 6.1 MB,
while storing all the triangles alone (the minimal amount of
memory necessary to render them) already costs 50 MB. So,
PLP costs an extra 12 percent in memory overhead.

For the 5CBEM model, preprocessing took 135 seconds
(also including the ghull time) and generated 60K
tetrahedra. The average number of tetrahedra that points
to a triangle is 2.13, costing 14.7 MB of memory. The total
memory overhead is 20 MB and storing the triangles takes
approximately 82 MB. So, PLP costs an extra 24 percent in
memory overhead.

Since PLP’s preprocessing only takes a few minutes, the
preprocessing is performed online when the user requests a
given dataset. We also support offline preprocessing by
simply writing the spatial tessellation and the triangle
assignment to a file.

5.2 Rendering

We performed several rendering experiments. During these
experiments, the flight path used for the 5CBEM is
composed of 200 frames. The flight path for the CITY has
160 frames. The flight path for the ROOM has 235 frames.
For each frame of the flight path, we computed the
following statistics:

1. The exact number of visible triangles in the frame,
estimated using the item-buffer technique.
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TABLE 1
Visible Coverage Ratio
Dataset/Budget | 1% | 2% | 5% | 10%
City Model || 51% | 66% | 80% | 90%
5 Car Body/Engine Model || 44% | 55% | 67% | 76%

The table summarizes ¢, for several budgets on two large models. The
city model has 500K polygons and the five car body/engine model has
810K polygons. For a budget of 1 percent, PLP is able to find over 40
percent of the visible polygons in either model.

7. Time the centroid-based budgeting took to render a

given frame.

Several of the results (in particular, 1, 2, 3, 5, and 6) are
shown in Table 1 and Figs. 10 and 11, which show PLP’s
overall performance and how it compares to the centroid-
sorting based approach. The centroid rendering time (7) is
mostly frame-independent since the time is dominated by
the sorting, which takes 6-7 seconds for the 5CBEM model,
and 4-5 seconds for the CITY model. We collected the
number of wrong pixels (4) on a frame-by-frame basis. We
report worst-case numbers. For the CITY model, PLP gets as
many as 4 percent of the pixels wrong; for the 5SCBEM

model, this number goes up and PLP misses as many as
12 percent of the pixels in any given frame.

The other figures focus on highlighting specific features
of our technique, and compare the octree and Delaunay-
based tessellations.

2. The number of visible triangles PLP was able to find
for a given triangle budget. We varied the budget as
follows: 1 percent, 2 percent, 5 percent, and
10 percent of the number of triangles in the dataset.

3. The number of visible triangles the centroid-based
budgeting was able to find under a 10 percent
budget.

4. The number of wrong pixels generated by PLP.

5. Time (all times are reported in seconds) to render the
whole scene.

6. Time PLP took to render a given frame.

5.2.1 Speed and Accuracy Comparisons on the CITY
Model

Fig. 12c shows the rendering times of the different
algorithms and compares them with the rendering of the
entire model geometry. For a budget of 10 percent, the
Delaunay triangulation was over two times faster, while the
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Fig. 12. This figure illustrates the quantitative differences among the different rendering techniques for each frame of the CITY path. In each plot, we
report results for each rendering technique (centroid, octree-based PLP, and Delaunay-based PLP, respectively). In (a), we show the percentage of
the visible polygons that each technique was able to find. In (b), we show the number of incorrect pixels in the images computed with each technique.
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(a)

(b)

(c)

Fig. 13. This figure illustrates the qualitative differences among the different rendering techniques on each frame of the ROOM path. The three
images show the actual rendered picture achieved with each rendering technique (centroid, octree-based PLP, and Delaunay-based PLP

respectively).

octree approach was about four times faster. We have not
included the timings for the centroid-sorting method as our
implementation was straightforward and naively sorted all
of the triangles for each of the frames. Fig. 12a highlights the
effectiveness of our various methods for a budget of
10 percent of the total number of triangles, showing the
number of visible triangles that were found. The magenta
curve shows the exact number of visible triangles for each
frame of this path. In comparison, the Delaunay triangula-
tion was very successful, finding an average of over
90 percent of the visible triangles. The octree was not as
good in this case and averaged only 64 percent. However,
this was still considerably better than the centroid-sorting
approach, which averaged only 30 percent. Fig. 12b high-
lights the effectiveness of the PLP approaches. In the worst
case, the Delaunay triangulation version produced an
image with 4 percent of the pixels incorrect with respect
to the actual image. The octree version of PLP was a little
less effective, generating images with at most 9 percent of
the pixels incorrect. However, in comparison with the
centroid-sorting method, which rendered images with

between 7-40 percent of the pixels incorrect, PLP has done
very well.

5.2.2 Visual and Quantitative Quality on the ROOM
Model

Figs. 13 and 14 show one of the viewpoints for the path in
the Seminar Room dataset. Most of the geometry is made
up of the large number of chairs, with relatively few
triangles being contributed by the walls and floor. From a
viewpoint on the outside of this room, the walls would be
very good occluders and would help make visibility culling
much easier. However, once the viewpoint is in the interior
sections of this room, all of these occluders are invalidated
(except with respect to geometry outside of the room), and
the problem becomes much more complicated. For a budget
of 10 percent of the triangles, we provide figures to
illustrate the effectiveness of our PLP approaches, as well
as the centroid-sorting algorithm. Fig. 13 shows the
images rendered by the centroid method, the octree
method, and the Delaunay triangulation method, respec-
tively. The image produced by the octree in this case is
the best overall, while the centroid-sorting image clearly
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(c)

Fig. 14. This figure illustrates the qualitative differences among the different rendering techniques on a single frame of the ROOM. The three images
show the missed polygons, rendered in red, to highlight which portion of the image a given technique rendered incorrectly.

demonstrates the drawback of using such an approach. To
better illustrate where the algorithms are failing, Fig. 14
shows exactly the pixels which were drawn correctly, in
white, and those drawn incorrectly, in red. Further
quantitative information can be seen in Fig. 15. In fact, it
is quite interesting that, in terms of the overall number of
visible primitives, the centroid technique actually does
quite well. On the other hand, it keeps rendering a large
number of incorrect pixels.

5.2.3 Summary of Results

PLP seems to do quite a good job at finding visible triangles.
In fact, looking at Figs. 10a and 11a, we see a remarkable
resemblance between the shape of the curve plotting the
exact visible set and PLP’s estimations. In fact, as the budget
increases, the PLP curves seem to smoothly converge to the
exact visible set curve. It is important to see that this is not a
random phenomena. Notice how the centroid-based bud-
geting curve does not resemble the visible set curves.
Clearly, there seems to be some relation between our
heuristic visibility measure (captured by the solidity-based

traversal) and actual visibility, which cannot be captured by
a technique that relies on distance alone.

Still, we would like PLP to do a better job at approximat-
ing the visible set. For this, it is interesting to see where it
fails. In Figs. 10d and 11d, we have 10 percent-budget
images. Notice how PLP loses triangles in the back of the
cars (in Fig. 11d) since it estimates them to be occluded.

With respect to speed, PLP has very low overhead. For
5CBEM, at 1 percent, we can render useful images at over
10 times the rate of the completely correct image and, for
CITY, at 5 percent, we can get 80 percent of the visible set
and still have four times faster rendering times.

Overall our experiments have shown that: 1) PLP can be
applied to large data, without requiring large amounts of
preprocessing; 2) PLP is able to find a large amount of
visible geometry with a very low budget; 3) PLP is useful in
practice, making it easier to inspect large objects and in
culling geometry that cannot be seen.

6 ALGORITHM EXTENSIONS AND FUTURE WORK

In this section, we mention some of the possible extensions
of this work:
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Fig. 15. This figure illustrates the quantitative differences among the
different rendering techniques on a single frame of the ROOM. In each
plot, we report results for each rendering technique (centroid, octree-
based PLP, and Delaunay-based PLP, respectively). In (a), we show the
percentage of the visible polygons that each technique was able to find.
In (b), we show the number of incorrect pixels in the images computed
with each technique.

1. Occlusion-culling techniques which rely on being
able to use the z-buffer values to cull geometry, e.g.,
HOM [29], HP’s occlusion-culling hardware [23], can
potentially be sped up considerably with PLP.

Take, for instance, the HP fx6 graphics accel-

erator. Severson [24] estimates that performing an
occlusion-query with a bounding box of an object on
the fx6 is equivalent to rendering about 190 25-pixel
triangles. This indicates that a naive approach,
where objects are constantly checked for being
occluded, might actually hurt performance and not
achieve the full potential of the graphics board. In
fact, it is possible to slow down the fx6 considerably
if one is unlucky enough to project the polygons in a
back to front order (because none of the primitives
would be occluded).

Since PLP is able to determine a large number of
the visible polygons at low cost in terms of projected
triangles (e.g., PLP can find over 40 percent of the
visible polygons while only projecting 1 percent of
the original geometry). An obvious approach would
be to use PLP’s traversal for rendering a first
“chunk” of geometry, then use the hardware to cull
away unprojected geometry. Assuming PLP does its
job, the z-buffer should be relatively complete, and a
much larger percentage of the tests should lead to
culling.

A similar argument is valid for using PLP with
HOM [29]. In this case, PLP can be used to replace
the occluder selection piece of the algorithm, which
is time consuming, and involves a nontrivial
“occlusion preserving simplification” procedure.

2. Another potential use of the PLP technique is in
level-of-detail (LOD) selection. The PLP traversal
algorithm can estimate the proportion of a model
that is currently visible, which would allow us to
couple visibility with the LOD selection process, as
opposed to relying only on screen-space coverage
tests.

3. Related to 1 and 2, it would be interesting to explore
techniques which automatically can adjust the PLP
budget to the optimum amount to increase the
quality of the images and, at the same time, decrease
the rendering cost. Possibly, ideas from [12] could be
adapted to our framework.

Besides the extensions cited above, we would like to
better understand the relation of the solidity measure to the
actual set of rendered polygons. Changing our solidity
value computation could possibly lead to even better
performance, for example, accounting for front facing
triangles in a given cell by considering their normals with
respect to the view direction. The same is true for the mesh
generation. Another class of open problems are related to
further extensions in the front-update strategies. At this
time, a single cell is placed in the front, after which the PLP
traversal generates an ordering for all cells. We cut this tree
by using a budget. It would be interesting to exploit the use
of multiple initial seeds. Clearly, the better the initial guess
of what’s visible, the easier it is to continue projecting
visible polygons.

7 CONCLUSIONS

In this paper, we proposed the Prioritized-Layered Projec-
tion algorithm. PLP renders geometry by carving out space
along layers while keeping track of the solidity of these
layers as it goes along. PLP is very simple, requiring only a
suitable tessellation of space where solidity can be
computed (and is meaningful). The PLP rendering loop is
a priority-based extension of the traversal used in depth-
ordering cell projection algorithms developed originally for
volume rendering.

As shown in this paper, PLP can be used with many
different spatial tessellations, for example, octrees or
Delaunay triangulations. In our experiments, we have
found that the octree method is typically faster than the
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Delaunay method due to its simple structure. However, it
does not appear to perform as well as the Delaunay
triangulation in terms of capturing our notion of polygon
layering.

We use PLP as our primary visibility-culling algorithm.
Two things are most important to us. First, there is no
offline preprocessing involved, that is, no need to simplify
objects, pregenerate occluders, and so on. Second, its
flexibility to adapt to multiple machines with varying
rendering capabilities. In essence, in our application, we
were mostly interested in obtaining good image accuracy
across a large number of machines with minimal time
and space overheads. For several datasets, we can use
PLP to render only 5 percent of a scene and still be able
to visualize over 80 percent of the visible polygons. If this
is not accurate enough, it is simple to adjust the budget
for the desired accuracy. A nice feature of PLP is that the
visible set is stable, that is, the algorithm does not have
major popping artifacts as it estimates the visible set from
nearby viewpoints.
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Efficient Conser vative Visibility Culling Using The Prioritiz ed-Layered
Projection Algorithm

JamesT. Klosowski*

Abstract

We proposea novel conserative visibility culling techniquebased
on the Prioritized-LayeredProjection(PLP) algorithm. PLPis a
time-critical renderingtechniquethat computesfor a given view-
point, a partially correctimageby renderingonly a subsetof the
geometricprimitives, thosethat PLP determinego be mostlikely
visible. Our new algorithm builds on PLP and provides an effi-
cientway of finding theremainingvisible primitives. We do this by
addinga secondphaseto PLP which usesimage-spacéechniques
for determininghevisibility statusof theremaininggeometry An-
othercontrikution of ourwork is to shawv haw to efficiently imple-
mentsuchimage-spaceisibility queriesusingcurrently available
OpenGL hardware and extensions. We reporton the implemen-
tation of our technique®n several graphicsarchitecturesanalyze
theircompleity, anddiscussapossiblehardvareextensiornthathas
the potentialto furtherincreaseperformance.

Index Terms Conserative visibility, occlusionculling, interac-
tive rendering

1 Introduction

Interactve renderingof very large datasetsis a fundamentaprob-
lem in computergraphics.Although graphicsprocessingpower is
increasingevery day; its performancehasnot beenable to keep
up with therapidincreasdn datasetcomplity. To addresghis
shortcomingtechniquesrebeingdevelopedto reducetheamount
of geometrythatis requiredto be renderedwhile still preserving
imageaccurag.

Occlusionculling is onesuchtechniquewhosegoalis to deter
mine which geometryis hiddenfrom the viewer by othergeome-
try. Suchoccludedgeometryneednotbeprocessetby thegraphics
hardwaresinceit will notcontrituteto thefinal imageproducedon
the screen.Occlusionculling, alsoknown asvisibility culling?, is
especiallyeffective for sceneswith high depthcompleity, dueto
thelargeamountof occlusionthatoccurs.In suchsituationsmuch
geometrycanoftenbe eliminatedfrom the renderingprocess.Oc-
clusionculling techniquesreusuallyconserative, producingim-
agesthat are identical to thosethat would result from rendering
all of the geometry However, they canalsobe approximateech-
niguesthatproduceimagesthataremostly correct,in exchangeor

even greaterlevels of interactvity. The approximateapproaches

aremoreeffective whenonly afew pixelsarerenderedncorrectly
limiting ary artifactsthatarepercevableto theviewer.

The Prioritized-LayeredProjection(PLP) algorithm,introduced
by Klosowski andSilva[16, 17], is onesuchexampleof anapprox-
imateocclusionculling technique Ratherthanperforming(expen-
sive) conserative visibility determinationsPLP is an aggressie

*IBM T. J. WatsonResearchCentey PO Box 704, Yorktown Heights,
NY 10598;jklosov@us.ibm.com

TAT&T Labs-Research,80 Park Ave., PO Box 971, FlorhamPark, NJ
07932;csilva@research.att.cam

Lvisibility culling is alsousedin a moregeneralcontet to referto all
algorithmsthatcull geometrybasedn visibility, suchasback-ficeculling,
view frustumculling, andocclusionculling.

ClaudioT. Silva'

culling algorithmthat estimateghe visible primitivesfor a given

viewpoint, and only rendersthoseprimitivesthatit determinedo

bemostlikely visible, up to auserspecifiedbudget.Consequently
PLPis suitablefor generatingpartially correctimagesfor usein a

time-criticalrenderingsystem.To illustratethis approachgconsider
the imagesof the office modelshavn in Fig. 1. The imagegen-
eratedby PLP for this viewpoint is shavn in Fig. 1(a), while the
correctlyrenderedmageis in Fig. 1(b). We canseethattheimage
renderedby PLPis fairly accuratealthoughportionsof the model
aremissing,includingtheplantstand,clock, doorjam, andpartsof

thedesklamp.

(@) (b)

Figure1: Office model: (a) This imagewascomputedusingPLP
andis missingseveraltriangles.(b) The correctimageshaving all
the visible trianglesrenderedwith cPLP (c) The currentz-huffer,
renderedasluminancefor theimagein (a). Black/whiterepresents
near/ar objects.(d) Final z-buffer for the correctimagein (b).

PLPworksby initially creatinga partitionof the spaceoccupied
by the geometricprimitives. Eachcell in the partition is thenas-
signed,during the renderingloop, a probabilisticvalue indicating
how likely it is thatthe cell is visible, giventhe currentviewpoint,
view direction,andgeometnyin theneighboringecells. Theintuitive
ideabehindthealgorithmis thata cell containingmuchgeometryis



likely to occludethecellsbehindit. At eachpointof thealgorithm,
PLP maintainsa priority queue alsocalledthe front, which deter

mineswhich cellis mostlik ely to bevisible andthereforeprojected
next by the algorithm. As cells are projected the geometryasso-
ciatedwith thosecellsis rendereduntil the algorithmrunsout of

time or reachests limit of renderedorimitives. At the sametime,

theneighboringcells of therenderectell areinsertedinto the front

with appropriateprobabilisticvalues. It is by schedulingthe pro-

jection of cellsasthey areinsertedin thefront thatPLPis ableto

performeffective visibility estimation.

In [16, 17], PLP was shavn to be effective at finding visible
primitives for reasonablysmall budgets. For example,for a city
model containing500K triangles,PLP was ableto find (on aver-
age)90% of the visible triangleswhile renderingonly 10% of the
total geometry This numberalonedoesnot guaranteghe quality
of theresultingimages sincethe missing10% of the visible trian-
glescould occuyy a very large percentag®f the screeror may be
centrallylocatedsothattheincorrectpixels arevery evidentto the
viewer. To addresshis concerntheauthorsreportedhe numberof
incorrectpixelsgeneratedby the PLP algorithm. In theworstcase,
for the samemodelandviewpointsdiscusse@bore, PLPonly gen-
erated4% of the pixelsincorrectly Thesetwo statisticssupportthe
claimthatPLPis effective in finding visible geometry

As mentionedpreviously, approximateocclusionculling tech-
niqueswill sacrificeimage accurag for greaterrenderinginter-
activity. While this tradeof may be acceptablén someapplica-
tions (especiallythosethat demandtime-critical rendering) there
are mary others(such as manugcturing, medical, and scientific
visualizationapplications)hat cannottoleratesuchartifacts. The
usersof theseapplicationsrequirethatall of theimagesgenerated
to becompletelyaccurateTo addressherequirementsf theseap-
plications,we describean efficient conserative occlusionculling
algorithm basedupon PLP. Essentially our new algorithm works
by filling in theholesin theimagewherePLP madethe mistale of
notrenderingthe completesetof visible geometry

An interestingfactis thatafterrenderingPLP’s estimationof the
visible set,asshawvn in Fig. 1(a), mostof the z-buffer getsinitial-
ized to somenon-deéult value, asillustrated by Fig. 1(c). This
figure corresponddo the z-buffer renderedas luminance,where
black representsiearobjects,andwhite representsar objects. If
we wereto renderthecellsin thefront (seeFig. 3), thevisible cells
would protrudethroughtherenderedyeometry Thetechniquesve
presentn this paperarebasedon incrementallycomputingwhich
cellsin PLP'sfront areoccluded(thatis, cannot be“seen”through
the currentz-buffer), andeliminatingthemfrom the front until the
front is empty Whenthis conditionholds, we know we have the
correctimage(1(b)) andz-buffer (1(d)).

Theuseof (two-dimensionalfepthinformationto avoid render
ing occludedyeometnyis notanew idea. TheHierarchicalz-Buffer
technigueof Greeneet al. [14] is probablythe bestknowvn exam-
ple of a techniquethat effectively usessuchinformation. How-
ever, even beforethis seminalpaper KubotaPacific alreadyhad
hardwaresupporton their graphicssubsystentor visibility queries
basedon the currentstatusof the depthbuffer. In Section5, we
will putournew techniquesnto contet with respecto therelevant
relatedwork.

Themaincontritutionsof ourwork are:

e We proposecPLR anefficientinteractive renderingalgorithm
thatworks asan extensionto the PLP algorithmby addinga
seconphasewhich usesmage-spaceisibility queries.

e We shav how to efficiently implementsuchimage-spaceis-
ibility queriesusingavailable OpenGLhardware and exten-
sions.Ourimplementatiortechniquesanpotentiallybeused
in conjunctionwith otheralgorithms.

e Wediscusgheperformancendlimitations of currentgraph-
ics hardware, and we proposea simple hardware extension
thatcould provide furtherperformanceémprovements.

The remainderof our paperhasbeenorganizedasfollows. In
Section2, after a brief overview of PLP and someaspectof its
implementationwe detail our new cPLP algorithm. We present
severaltechniquedor the implementatiorof ourimage-spaceis-
ibility queriesusingavailable OpenGLhardwareandextensionsn
Section3. We also proposea simple hardware extensionto fur-
ther improve renderingperformance. In Section4 we reporton
theoverall performancef thevarioustechnique®n severalgraph-
ics architecturesin Section5, we provide a brief overview of the
previous work on occlusionculling, followed by a morethorough
comparisorof our currentalgorithmwith the mostrelevant prior
techniguesFinally, we endthe presentationvith someconcluding
remarks.

2 The Conser vative PLP Algorithm

The conserative PLP algorithm (cPLP) is an extensionto PLP
which efficiently usesimage-spaceisibility queriesto develop a
conserative occlusionculling algorithm on top of PLP’s time-
critical frameawork. In this section,we briefly review the original
PLP algorithmandthenpresentour cPLP algorithm. Our image-
spacevisibility queries,a crucial part of the implementationof
cPLP arediscussedn Section3.

2.1 Overview of PLP

Prioritized-LayeredProjectionis a techniquefor fastrenderingof
high depthcompleity scenes.It works by estimatingthe visible
primitivesin a scengfrom a givenviewpointincrementally At the
heartof thePLPalgorithmis aspace-traersalalgorithm,which pri-
oritizesthe projectionof the geometricprimitivesin suchaway as
to delayrenderingprimitivesthathave a smalllikelihood of being
visible. Insteadof explicitly overestimatinghevisible setof primi-
tives,asis donein conserative techniquesthe algorithmworkson
a budget. For eachviewpoint, the viewer canprovide a maximum
numberof primitivesto berenderedandthe algorithmwill deliver
whatit considerdo be the setof primitiveswhich maximizesthe
imagequality, basedupona visibility estimationmetric. PLP con-
sistsof an efficient preprocessingtepfollowed by a time-critical
renderingalgorithmasthe datais beingvisualized.

PLP partitionsthe spacethat containsthe original input geome-
try into corvex cells. During this one-timepreprocessinghe col-
lection of cellsis generatedn sucha way asto roughly keepa
uniform densityof primitivespercell. This samplingleadsto large
cellsin unpopulate@greasandsmallcellsin denselyoccupiedareas.
Originally, the spatialpartitioningusedwasa DelaunayTriangula-
tion [16]; however, an octreehasrecentlybeenshavn in [17] to
be a more effective datastructure bothin termsof efficiengy and
easeof use.Sinceanoctreeis actuallya hierarchyof spatialnodes
asopposedo a disjoint partition,we only utilize the setof all leaf
nodesof theoctree sincethesedo provide sucha partition.

Using the numberof geometricprimitives containedn a given
cell, asolidity valuep is defined which representsheintrinsic oc-
clusionthatthis cell will generate.During the spacetraversalal-
gorithm, solidity valuesare accumulatedy cells baseduponthe
currentviewing parametergviewpointandview direction),aswell
asthe normalof thefacesharedby neighboringcells. Usingthese
accumulatedialues,the traversalalgorithm prioritizeswhich cells
aremostlikely to bevisible andthereforeshouldbe projected.For
acompletetreatmenbf thesecalculationspleasereferto [16, 17].

Startingfrom theinitial cell which containsthe viewpoint, PLP
attemptsto cane cells out of the tessellation. It doesthis by al-



ways projectingthe cell in the front F (the front is the collection
of cellsthat areimmediatecandidatedor projection)thatis least
likely to be occludedaccordingto its solidity value. For eachnew

viewpoint, the front is initially empty andwe insertthe cell con-
taining (or closestto) the viewpoint. This cell is thenimmediately
projected(sinceit is the only candidatecurrentlyin the front) and
asits neighboringcells are insertedinto the front, their accumu-
lated solidity valuesare estimatedto reflecttheir position during
thetraversal. At the next iteration,the cell in the front mostlikely

to bevisible is projected andits neighboringcells areinsertednto

thefront with appropriatesolidity values.If a cell hasalreadybeen
insertedinto the front, its solidity valuesare updatedaccordingly
Every time a cell in the front is projected,all of the geometryas-
signedto it is (scheduledo be)rendered.

2.2 The cPLP Algorithm

As previously mentionedthe cPLPalgorithmis built ontop of PLP.
The basicideais to first run PLP to renderaninitial, approximate
image. As a sideeffect of renderingthis image,two further struc-
tureswill be generatedhatwe canexploit in cPLP: (i) the depth
buffer correspondingo the approximatémage,and(ii) PLP’s pri-
ority queue(front), which correspondgo the cells of the spatial
partitionthatwould berenderechext by PLPif it hadmoretime. In
cPLP wewill iteratively usethedepthbuffer to effectively cull the
cellsin thefront until all of thevisible geometryhasbeenrendered.
Thegeneraideacanbe summarizedsfollows:

(1) RunPLPusingasmallbudgetof geometricprimitives.

This stepgenerates partially correctimagewith “holes” (re-
gionsof incorrectpixels),thecorrespondinglepthbuffer, and
the priority queue(front) containingthe cells that would be
projectednext.

(2) While thefrontis notempty performthefollowing steps:

(2a) Giventhe currentfront, determinewhich cells are oc-
cluded, using image-spacevisibility queries,and re-
move themfrom thefront.

(2b) Continuerunning PLR, sothateachcell in the current
front getsprojectedsincewe know thatthey areall vis-
ible.

Duringthis phasenew cellsthatneighborthe projected
cellsareinsertedinto the front asbefore,althoughthey
not candidategor projectionduring this iteration. We
terminatethis iteration after eachof the original cells
(i.e. thosein the front after step(2a)) have beenpro-
jected.

As cells arerenderedn step(2b), the holes(and the depth
buffer) getfilled in, until theimageis complete A nicefeature
of cPLPis thatwe know we aredoneexactly whenthe front
is empty

One adwantageof the formulation given above is that cPLP is
ableto performsereral visibility queriesduring eachiteration. At
thesametime, themaincomplicationin implementingcPLPcomes
from thevisibility queriesin step(2a). This s furtherdiscussedn
Section3.

2.3 Challeng es

Thereareprimarily threeobstacleshatcPLPmustovercometo be
aconserative, interactive renderingalgorithm. It muststartwith a
good estimationof the correctimage,determinewhich regions of

Figure2: lllustration of the accurag of PLP: For the sameview-
pointandmodelasshavn in Fig. 1, the visible geometrythat PLP
rendereds shavn in white, andthe visible geometrythat PLP did
notrenderis shavn in red.

the estimationareincorrect,andfind the remainingvisible geome-
try. Of courseto betruly interactive, eachof the solutionsto these
challengesmustbe performedvery efficiently. This canbe done
thanksto the way PLP was designed. We discusseachof these
issueselow.

Estimating the image As demonstratedn [16, 17], PLPis
very effective in finding the visible polygonsandcorrectlyrender
ing the vast majority of pixels, even when using relatively small
budgets.To illustratethis point, Figs.1(a)and1(b) shav imagesof
anoffice modelfor the PLP andcPLP algorithms. PLP wasfairly
successfuin finding mostof the visible geometryfor this view-
point. To bettervisualizetheaccurag of PLP, Fig. 2 highlightsthe
visible geometrythatPLPrenderedn white, andthevisible geom-
etry thatPLP did notrenderin red. By takingfull adwantageof the
accurayg of PLP, our conserative algorithm canquickly obtaina
goodestimationof the correctimage.

This featurecanalso be usedto potentially speed-upmtheroc-
clusionculling techniquegsuchasthosein [25, 33]), whichrely on
usingthe z-buffer valuesto cull geometry

Finding the holes As PLP projectscells (andrendersthe ge-
ometryinsidethesecells), it maintainsthe collection of cells that
areimmediatecandidategor projectionin a priority queue called
thefront. Clearly, asthe primitivesin the scenearerenderedparts
of the front get occludedby the renderedgeometry In Fig. 3, we
illustratethis exacteffect. If no“green” (the color thatwe usedfor
thefront) werepresenttheimagewould be correct.In generalthe
imagewill be completedandrenderingcanbe stoppedafterall of
thecellsin thefront areoccludedby therenderedprimitives. Thus,
to find the holesin the estimatedmage,we needonly considerthe
cellsin thefront.

Filling the holes The final piecethat we needto build cPLP
is how to completethe renderingoncewe know what partsof the
frontarestill visible. For this, it is easietto first considetthecurrent
occludedpartof the front. Basically we canthink of the occluded
front asa singleoccluder(seeFig. 4) thathasa few holes(corre-
spondingto the greenpatchesn Fig. 3). Thinking analogouslyto
thework of Luebke andGeoges[19], the holescanbe thoughtof
as“portals”, or reducedviewing frusta,throughwhich all of there-
mainingvisible geometrycanbeseen.An equivalentformulationis



Figure3: Thecurrentfront is highlightedin green.By determining
wherethefrontis still visible, it is possibleto localizetheremaining
work to bedoneby our renderingalgorithm.

Front

Occluded

Ey

Figure4: Thisfigureillustratesthetechniqueusedin findingthere-
mainingvisible cellsin cPLP Thesecellsarefoundby limiting the
remainingwork doneby thealgorithmto only thevisible regions.

to incrementallydeterminewhatcells belongto thesesmallerview
frustaby usinganefficient visibility query(discussedelaw).

3 Implementing Visibility Queries

As previously discussedto extend PLP into a conserative algo-
rithm, we needto efficiently determinewhich cellsin thefront are
visible. The visibility querieswill take placein image-spacand
will utilize the currentdepthbuffer. In this section,we first de-
scribethreetechniquedor implementingthesegueriesusingavail-

able OpenGL hardware and extensions. Theseinclude using a
hardwarefeatureavailableon somegraphicsarchitecturegsuchas
someHewlett-Packard(HP) and Silicon Graphics(SGI) graphics
adapters)anitem-kuffer techniquethatrequiresonly the capability
of readingbackthe color buffer, and an alternatve approachthat
usesan extensionof OpenGL1.2. Then,we discusssomefurther
optimizationtechniquesFinally, we endthis sectionby proposing
anew hardwareextensionthathasthe potentialto speedup visibil-

ity queriesavenfurther.

3.1 Counting Fragments After Depth Test

Onetechniquefor performingthe visibility queriesof cPLPis to
usethe HP occlusionculling extension,which is implementedn
their fx seriesof graphicsaccelerators.This proprietaryfeature,
which actuallyseemguite similarto the capabilitiesof the Kubota
Pacific Titan 3000reportedby Greeneet al. [14], makesit possi-
ble to determinethe visibility of objectsas comparedto the cur
rentvaluesin the z-buffer. Theideais to adda feedbackioop in
the hardware which is ableto checkif changeswould have been
madeto the z-buffer when scan-cowerting geometricprimitives.
Theactualhardwarefeatureasimplementednthefx serieggraph-
ics acceleratorss explainedin further detail in [25, 26]. Though
not well-known, several othervendorsprovide the samefunction-
ality. Basically by simply addinginstrumentatiorcapabilitiesto
the hardware which are able to count the fragmentswhich pass
the depthtest,ary architecturecanbe efficiently augmentedvith
suchocclusionculling capabilities. This is the casefor the SGI
Visual Workstationserieswhich have definedan extensioncalled
GL_Sd X.dept h_pass_i nst runent [27, pages72—75]. Sev-
eralnew graphicsboards suchasthe SGl InfiniteReality3 andthe
DiamondFireGL have suchfunctionality Evenlow-costPC cards
suchasthe 3Dfx Voodoographicsboardshave had similar func-
tionality in their Glide library (basicallyby supportingqueriesinto
thehardwareregisters).Sincethefunctionalityproposedy thedif-
ferentvendords similar, in therestof this paperwe concentrat®n
the HP implementatiorof suchocclusionculling tests.

Onepossibleuseof this hardware featureis to avoid rendering
a very complex objecthby first checkingif it is potentiallyvisible.
This canbedoneby checkingwhethera boundingvolumeby, usu-
ally theboundingboxof theobject,is visible andonly renderinghe
actualobjectif bvis visible. This canbe doneusingthe following
fragmentof C++ code:

gl Enabl e( G__OCCLUSI ON_TEST_HP) ;
gl Dept hMask( GL_FALSE) ;
gl Col or Mask( GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
Dr awBoundi ngBoxCf Cbj ect () ;
bool isVisible;
gl Get Bool eanv( GL_OCCLUSI ON_RESULT_HP, & sVisible);
gl Di sabl e( G._OCCLUSI ON_TEST_HP) ;
gl Dept hMask( GL_TRUE) ;
gl Col or Mask(GL_TRUE, GL_TRUE, GL_TRUE, G._TRUE);
if (isVisible)
Dr awGeonret r yof Obj ect () ;

This capabilityis exactly whatis requiredby our cPLPvisibility
queries.Giventhecurrentz-buffer, we needto determinewvhatcells
in thefront arevisible. It is asimpletaskto usethe HP hardwareto
querythevisibility statusof eachcell.

The HP occlusionculling featureis implementedn several of
their graphicsacceleratorsfor example,the fx6 boards.Although
performing our visibility queriesusing the HP hardware is very
easy the HP occlusionculling testis not cheap. In an HP white
paper[26], it is estimatedhat performingan occlusionquerywith
a boundingbox of an objecton the fx6 is equivalentto render
ing about190 25-pixel triangles. Our own experimentson an HP
Kayak with anfx6 estimateshe costof eachquerybeinghigher
Dependinguponthesizeof theboundingbox, it couldrequireary-
wherebetween0.1 milliseconds(ms) to 1 ms. This indicatesthat
anaive approacho visibility culling, whereobjectsare constantly
checledfor beingoccluded might actually hurt performanceand
notachieve thefull potentialof thegraphicshoard.In fact,it is pos-
sible to slow down the fx6 considerablyif oneis unlucky enough
to projectthe polygonsin a back-to-frontorder sincenoneof the
boundingboxeswould be occluded.In their mostrecentofferings,



HP hasimprovedtheir occlusionculling features Thefx5 andfx10
acceleratorgan perform several occlusionculling queriesin par
allel [9]. Also, HP reportsthat their OpenGLimplementatiorhas
beenchangedto usethe occlusionculling featuresautomatically
wheneer feasible. For example,prior to renderinga large display
list, their softwarewould actually performan occlusionquery be-
fore renderingall of thegeometry

Utilizing the HP occlusionculling featurehasprovento be the
simplestand most efficient of our threetechniquesfor perform-
ing the visibility queriesneededby cPLR Unfortunately at this
time, this hardwarefeatureis notwidely availablein othergraphics
boards(for instance neitherof market leadersNvidia or ATI sup-
portthis feature).Becausef this, we next describea simpleitem-
buffer technigue whoseonly requirements the capabilityto read
backthecolorbuffer. In Section3.6,we proposeasimpleextension
of the OpenGLfunctionality which extendsthe fragment-counting
idea,by addingcomponent®f thetechniquesiescribechext.

3.2 An Item Buff er Technique

It is possibleto implementvisibility queriessimilarto theonespro-
vided by the HP occlusionteston genericOpenGLhardware. The
basicideais to usethecolor buffer to determinghevisibility of ge-
ometricprimitives. For example,if onewould like to determineif
agivenprimitiveis visible,onecouldclearthe color buffer, disable
changedo the z-huffer (but not the actualz test),andthenrender
the (boundingbox of the) primitive with a well-known color. If
that color appearsduring a scanof the color buffer, we know that
someportion of the primitive passedhe z test, which meansthe
(boundingbox of the) primitive is actuallyvisible.

Therearetwo main costsassociatedvith the item-kuffer tech-
nique:transferringthe color buffer from thegraphicsadapteto the
hostcomputers mainmemoryandthetimeit takesthe CPUto scan
thecolor buffer. Thetransfercostcanbe substantialn comparison
to the scanningcost(seeTable2). Consequentlyit is muchmore
efficientto do mary visibility queriesatonce.By coloringeachof
thecellsin thefront with a differentcolor, it is possibleto perform
mary queriesatthesametime.

An unwantedsideeffect of checkingmultiple cellsis thata cell,
C, in the front may be occludedby othercellsin the front, asop-
posedto the currentz-buffer which containsdepthinformationfor
the previously rendeed geometry This is a problembecauseal-
thoughcell C is occludedby the othercellsin the front, thegeom-
etry containedwithin cell C may not be occludedby the geometry
within the othercells. A multi-passalgorithmis thereforerequired
to guaranteeghatacell is properlymarked asoccluded Initially, all
cellsin thefront aremarked as“potentially visible”. We alsodis-
ablewriting to the z-buffer, sothatit remainsaccuratewith respect
to the geometrypreviously renderedby PLP. To retain the color
buffer informationfor this geometrywe save theinitial imagegen-
eratecby PLP duringstep(1) (seeSection2.2and3.5). Eachpass
of thealgorithmthenclearsthe color buffer andrenderghe bound-
ary of eachof the cellsin thefront thatis potentiallyvisible using
adistinct color. We thentransferand scanthe color buffer to de-
terminewhich cellsareactuallyvisible andmarkthem. Iteratingin
this fashion we candeterminesxactly which cells arevisible with
respectto the previously renderecgeometry The remainingcells
aredeterminedo beoccludedy thepreviously renderedyeometry
andneednotbeconsideredurther Themulti-passalgorithmtermi-
natesoncethe color buffer scanindicateshatnoneof therendered
cells, for the currentpass weredeterminedo be visible. Thatis,
the color buffer is completelyemptyof all colors. Note thatpoten-
tially visible cellswill needto berenderednultiple times,however,
oncea cell is foundto be visible in onepassiit is marked appro-
priately and not renderedagain. Pseudo-codéor the item-tuffer
techniquds includedbelow.

gl Dept hMask( GL_FALSE) ;
for each cell ¢ in front {
mar kCel | Potenti al | yVi si bl e(c);

}

bool done = fal se;
while (!done) {
gl O ear (GL_COLOR_BUFFER BIT);
for each cell ¢ in front {
if (potentiallyVisible(c))
renderCel | (c);

}
gl ReadPi xel s(0, 0, width, height,
GL_RGBA, GL_UNSI GNED _BYTE, visible_colors);
int cnt = 0;
for each cell c that appears in visible_colors {
mar kCel | Vi si bl e(c);
cnt ++;

}
if (cnt == 0)
done = true;

3.3 The OpenGL Histogram Extension

The item-huffer techniquejust proposedperformsa lot of data
movementbetweerthegraphicsacceleratos memoryandthe host
computers mainmemory Onmostarchitecturesthisis still avery
expensve operation sincethe datamustflow throughsomeshared
buswith all of the othercomponentin thecomputer We proposea
differenttechniquewhich usesintrinsic OpenGLoperationgo per
form all the computationson the graphicsacceleratorsand only
move avery smallamountof databackto thehostCPU.

Our new techniquesharessomesimilarity to the previous item-
buffertechniqueFor instanceit alsoneedgo rendetthepotentially
visible cellsmultiple times,until novisible cell is found. However,
the new methodusesOpenGLs histogrammingfacility, available
in the ARB_imagingextensionof OpenGL1.2,to actuallycompute
the visible cells (see[1]). After renderingthe potentially visible
cells in this case,ratherthan transferringthe color buffer to the
hosts CPU andscanningt for the visible cells, we simply enable
the histogrammingfacility and transferthe color buffer into tex-
ture memory(still on the graphicsaccelerator).During this trans-
fer, OpenGLwill computethe numberof timesa particularcolor
appears.A shortarray with the accumulatedraluescanthenbe
fetchedby the hostCPUwith asinglecall. A fragmentof our C++
codeillustratesthis approach.

gl Enabl e( GL_TEXTURE_2D) ;
gl Enabl e( GL_HI STOGRAM EXT) ;
gl Hi st ogr anEXT( G._HI STOGRAM EXT, 256,
GL_LUM NANCE, GL_TRUE );
gl CopyTexSubl mage2D( GL_TEXTURE_2D, O,
0, 0, WDTH, HEIGHT, WDTH, HEI GHT);
GLui nt hi stogram val ues[ 256] ;
gl Get Hi st ogr anEXT( GL_HI STOGRAM _EXT, GL_FALSE,
GL_LUM NANCE, GL_UNSI GNED_I NT,
hi st ogram val ues);
gl Reset Hi st ogranEXT ( GL_H STOGRAM EXT );
gl Di sabl e(GL_TEXTURE_2D);
gl Di sabl e( G._HI STOGRAM EXT) ;

After this codeis executed the arrayhistogramvaluescontains
the numberof timeseachcolor (hereuniquelyidentifiedby anin-
teger betweer0 to 255) appearedWith this technique the graph-
ics boarddoesall the work, and only transfersthe resultsto the
host CPU. The sametermination criterion exists for this multi-
passalgorithmasfor the item-kuffer technigue,althoughwe can
moreeasilytestfor this conditionin this case.For instancejf his-
togramvalues[0]is equalto WIDTH x HEIGHT, meaninggall pix-
els arethe same(backgroundolor, thenno cells arevisible and
we terminatethe algorithm.



3.4 Improving Visibility Query Performance

It is possibleto improve the performanceof our visibility query
techniquesby implementingseveral optimizations. The previous
two techniquesieedto performoperationghattouchall the pixels
in the image, possiblymultiple times. To avoid computationsn
areasof the screenthat have alreadybeencompletelycovered,we
have implementeda simpletiling schemethat greatly reduceshe
amountof transfersaandscangequired.The basicideais to simply
divide the screeninto fixed tiles. For a 512x512pixel image,we
could breakthe screenup into 64 tiles, eachcontaininga block
of 64x64pixels. During the multi-passalgorithm,we needto keep
trackof theactietiles,thosethatin thepreviousiterationcontained
visible primitives. After eachiteration,tiles getcompletedandthe
numberof tileswhichneedo berenderedo andscannedlecreases.

Another simple optimizationfor the item-kuffer techniquewas
to minimize the numberof color channelsto transferto the host
computers mainmemory For example,if we have r bitsto repre-
sentthe red color componenbn our machine,andwe have fewer
than2" cellsto checkin thefront, we canuniquelycolorthesecells
usingonly thered color componentConsequentlywe would only
needto transferand scanthe GL_RED componentor eachpixel
in the image, as opposedto transferringand scanningthe entire
GL_RGBA component.

We have implementedand are currently using thesetwo op-
timizations. A non-conserative optimizationfor our techniques
would beto computevisibility in alower resolutionthantheactual
renderingwindow [33]. Although a quite effective optimization,
this might leadto undesirableartifacts. This is one of the reasons
we do notuseit in our system.

3.5 Integration with cPLP

Thetechniquepresentedgofar essentiallysolve step(2a) of cPLP
Both the item-kuffer techniqueaswell asthe histogrammingech-
nigue needto have accesdo the color buffer of the machinebe-
ing usedfor its computations.For eachpass they requirethatthe
colorbuffer beclearedwhich conflictswith theimagecomputation
whichis performedn steps(1) and(2b). Naively, it would be nec-
essanyto save the completecolor buffer (or atleastthe active tiles)
beforeeachcall to step(2a) andrestoreit beforethe call to step
(2b).

Instead,sincewe expectthat after step (1) mostof the visible
triangleshave beenrenderedwe simply save the image step(1)
generatedandignorethe changeso the color buffer from thenon
(were-renderedheextrageometryin theendto recover thecorrect
image).Theimportantthingis to correctlyaccountfor the z-buffer
changegshataretriggeredby the renderingof the geometryinside
thecells. To dothis, beforestep(2b), we changehemasksonthez-
buffer sothatit getsupdatecasgeometryis renderedn (2b). When
thefront becomeempty we know the z-buffer wascompleted At
that point, we performa singleimagerestore(with the imagewe
savedin step(1)), andwere-renderll thegeometrythatwasfound
to bevisible sincethatpoint.

Fig. 10providesanoverview of ourcPLPalgorithmasdescribed.
For asampleview of anoffice model,snapshotsveretakenat sev-
eral iterations(step2) of our algorithm. Figs. 10(a)-(c)illustrate
the currentcolor buffer andfront (in blue) at eachiteration. The
remainingvisible geometrywill comefrom within thevisible front
cells. (d)-(f) illustratethe tiles of the screenthat have beencom-
pletedandthereforedo not needto be scannediuring subsequent
iterations.(c) and(f) correspondo thefinal (correct)image,since
all of thetiles have beencompletelycovered. Note thatin (b), the
front cells,which arebarelyvisible, arein the upperleft cornerand
nearthe two desksin the middle of the screen. As expected,the
tiles thatrepresentheseareasarenot marked ascompleted.

3.6 Extending the OpenGL Histogram

Herewe proposea modificationto OpenGLthat hasthe potential
to greatly improve performance. In particular it would male it
possibleto avoid the costly multi-passvisibility computationghat
we arecurrentlyforcedto use ,andit canbeseerasageneralization
of theHP occlusionculling test.

OpenGL background Beforewegointo details,it helpsto un-
derstanda bit moreon hov OpenGLworks. The graphicspipeline
isthetermusedfor thepathaparticulamprimitive takesin thegraph-
ics hardware from the time the userdefinesit in 3D to thetime it
actuallycontritutesto the color of a particularpixel onthe screen.
At avery high level, a primitive mustundego several operations
beforeit is dravn on the screen.A flowchartof the operationds
shawvn in Fig. 5.

The user has several options for specifying verticesthat are
groupedinto primitives, e.g., trianglesor quads. Primitives go
throughseveral stagegnot shavn), andeventually getto theras-
terizationphaselt is atrasterizatiorthatthe colorsandotherprop-
ertiesof eachpixel arecomputed.During rasterizationprimitives
getbroken into whatwe usuallyreferto as“fragments”. Modern
graphicsarchitecturebave severalperfragmentoperationghatcan
beperformedn eachfragmentasthey aregeneratedAs fragments
arecomputedthey arefurther processedandthe hardwareincre-
mentallyfills the framehuffer with animage.

Per-Fragment Histogramming  The OpenGLhistogramming
facility, partof the pixel transferoperationsshavn in Fig. 5, oper
ateson images,which canpotentiallycomefrom the framehuffer.
The OpenGLhistogramworks by countingthe numberof timesa
colorappearsn agivenimage.

The reasonwe needto perform multiple passego determine
when cells are visible at this time is that we are using the color
buffer to find which of the primitives passedhe z-test. With the
standarcpipeline,we only getthe “top layer” of visible cells,since
oneof theperfragmentbperationghatoccursbeforeapixel is writ-
tento thecolorbuffer is thedepth-testif aperfragmenthistogram-
mingfacility is addedo thepipelineandit couldbeusedto perform
the sameexact operationon fragments(which passthe z-test), it
would be possibleto counthow mary fragmentsof a given prim-
itive passedhe z-test. If this numberis zero,the primitive would
be occluded ptherwise the histogramvaluewould not only tell us
thatit is visible, but actually provide an upperboundon the num-
ber of its pixels that arevisible. With the proposedchangein the
OpenGLpipeline,we wouldstill beableto performseveralqueries
atthe sametime, but we would not berequiredto performmultiple
passesvertheframehuffer.

Theperfragmenthistogrammindunctionalitywe areproposing
is a cleanway to extendthe (alreadyuseful)techniquesasedon
countingthe numberof fragmentswhich passthe z-test(suchas
the HP occlusionculling test),sothatit is ableto handlemultiple
andmoregeneralestswith betterperformance We would like to
point out that the hardware cost(in componentcostor chip area)
would likely be non-trvial, sincehigh-performancgraphicshard-
wareis highly parallel(for instanceNvidia's GeForcecancompute
four fragmentssimultaneously)andthe extra hardwarefor the per
fragmenthistogrammingvould have to bereplicatedfor eachfrag-
mentgeneratarOf coursethisis alreadythe casefor several other
extensionsjncludingthe existing fragmentcountinghardware. We
believe the actualcost (in time) of our augmentedestwould be
similar to the costof a single HP test, while we would be ableto
performseveraltestsconcurrently
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Figure5: OpenGLimagingpipeline

[ Machine | CPU(s) |  Graphics | RAM |
SGIOctane 1 X R12000,300MHz MXE 512MB
SGIOnyx 12X R10000,195MHz Infinite Reality 2GB
HP Kayak 2 X Pentiumll, 450MHz fx6 384MB

Table 1: The configurationsof the machinesusedin our experi-
ments. The numberof processor$ per machineis listed in the
CPU(s)column,in theform: P X cpu-type cpu-speed.

4 Experimental Results

We performedaserief experimentgo determingheeffectiveness
of our new cPLPalgorithm. We reportresultsfor eachof thethree
implementation®f our visibility queriespresentednh Section3, as
well asseveral alternatvesfor benchmarking:

cPLP-HP: cPLR usingtheHP occlusionculling extension,
cPLP-1B: cPLR usingtheitem-huffer technique,
cPLP-HG: cPLR usingthe OpenGLhistogramextension,

cPLP-EXT: cPLR usingourhardwareextensionproposedn Sec-
tion 3.6,

PLP: theoriginal PLR,
VF-BF: view frustumandback-faceculling only,

HP: usingthe HP hardwareto performthevisibility querieswith-
out the benefitof running PLP to preloadthe color anddepth
buffers.

Test model The primary model that we report resultson is
shavn in Fig. 9(a)andconsistof threecopies placedsideby side,
of thethird floor of theBerkeley SODA Hall. Arrangingthe copies
in sucha way helpsus betterunderstandow the differentocclu-
sion culling techniquedunctionin a high depthcompleity envi-
ronment,sincethey have their greatesbpportunitywherethereis
significantocclusion. Eachroomin the modelhasvariouspieces
of furniture andin total, thethreereplicascontainover onemillion
triangles.

We generatea 500-framepaththattravelsright-to-left, starting
from theupperright cornerof Fig. 9(a). In Fig. 9(b)—(e) we shav a
few representatie framesof the path. The numberof visible poly-
gonsin eachframe varies considerably especiallywhen moving
from roomto room.

Machine architectures  Ourexperimentsvereperformedona
threedifferentarchitecturesan SGI Octanean SGI Onyx, andan
HP Kayak. Theconfiguration®f themachinesrelistedin Tablel.
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Figure6: Averagerenderingtimes per framefor the implementa-
tionsof thecPLPalgorithm. ThePLPbudget,reportedn thousands
of triangles determineshenumberof trianglesinitially renderedo
fill-in the depthbuffer.

Preprocessing As discussedn Section2, the preprocessing
stepof cPLR which is identical to the preprocessingtep of the
original PLP algorithm, is very efficient. The preprocessingn-
cludesreadingthe input geometryfrom afile, building the octree,
determiningwhich geometryeachcell containsandcomputingthe
initial solidity values.Thetotal preprocessingmesfor theonemil-
lion trianglemodelmentionecabore was76 seconds]128seconds,
and 90 secondsfor the Octane,Onyx, and Kayak, respectiely.
While thesetimesareactuallyquite modestwe have anadditional
opportunityto reducethe preprocessingequirementFor portabil-
ity purposesye arecurrentlyusingan ASCII formatto storethe
model. For eachof the three machinesbeing used, at leasthalf
(42, 64, and 56 secondsyespectiely) of the preprocessingime
listed above was spentsimply readingin the model. If we were
to storethe modelin a compactbinary format, the input portion of
thepreprocessingouldlikely bereducectonsiderablyTheoctree
constructiongeometryassignmentandinitial solidity computation
only required34, 64, and 34 secondsrespectrely, on eachof the
threemachinesandcould likely be reducedby carefully optimiz-
ing our code. For the experimentsreportedhere, we subdvided
theoctreeuntil eachleaf containedewer than5000triangles.This
resultedn 1429octreeleaf cellsbeingcreated.

Rendering results We presentour main renderingresultsfor
thevariouscPLPimplementationsn Fig. 6. The vertical axisrep-
resentshe averagerenderingtime for eachof the 500 stepsin the
pathgeneratedor the testmodel. The horizontalaxis represents
theinitial budgetusedby PLP to renderwhatit determinedo be
the mostlik ely visible geometrytherebypreloadingthe color and
depthbuffers.

If we comparetheitem-kuffer andhistogramtechniquesywe see
thatthe item-tuffer is considerablyfasteron eachof the SGI ma-



chines. All of theserung tendedto reachtheir minimum values
for aninitial PLP budgetof 25K triangles,or roughly 2.5% of the

total numberin the model. For this budget,the renderingtimesfor

the item-tuffer techniqueon the Octaneand Onyx were0.081and
0.113secondon averageper frame. This is equivalentto render

ing 12.35and8.85framespersecondrespectrely. In comparison,
the histogramapproachiook 0.164and 0.178secondon average
per frame,or the equivalentof 6.10and5.62 renderedramesper
second.

We did not run cPLP-HGon the Kayak sincethe OpenGLhis-
togramextensionis not availableon thatmachine.Also, the cPLP-
IB techniqueon the Kayakwasvery slow, requiring0.864seconds
on averageper frame. We explain why this is the casewhenwe
discussthe costsof the primitive operationsfor eachof the tech-
niquesbelon. The HP hardware occlusionculling extensionwas
clearlynotavailableonthe SGls,andsowe canonly reporton this
technigueon the Kayak.

cPLP-HPwas the most efficient algorithm but we were a lit-
tle surprisedby the fact that it increasedn running time aswe
increasedthe PLP budget. We anticipatedthat we would seea
paraboliccurve similar to the runson the two SGI machines.Ini-
tially, we consideredhat running PLP followed by our cPLP-HP
visibility querieswas not benefittingus at all on the Kayak. To
testthis hypothesiswe implementedanothertechnique,HP, that
usedthe hardware occlusionculling extensionwithout the bene-
fit of running PLP first to preloadthe depthbuffer. Giventhe set
of leavesin our octree,we first discardedthosenodesthat were
outsidethe view frustum,andthensortedthe remainingnodesac-
cordingto their distancefrom the viewpoint. We thenperformed
visibility queriesfor the nodesin this order On average,the HP
techniquerequired0.157secondperframe,whichis considerably
slower thanour cPLP-HPalgorithm.

While sortingthe nodesaccordingto distanceappearedo be a
goodtechniqueit clearlycannotcaptureary occlusioninformation
asdid cPLR In addition,this HP techniquedoesnot have a mech-
anismfor determiningwhich nodesarestill visible andwhich sec-
tions of the screenareyet incomplete. Consequentlythis method
cannoteasilydeterminewhenit is finished,andthereforemustper
form mary more visibility queriesthan the cPLP-HPtechnique.
Onecouldthink of modifying this HP approachsothatthe queries
are performedin a hierarchicalfashionsincewe have the octree
constructecaryway. However, while in somecaseshis couldre-
ducethe overall renderingtime, in mary othersthe timeswill in-
creasedueto the increasein the numberof visibility queries.We
shalldiscussshortlythetimesrequiredfor the HP visibility queries.
Thus,althoughthe benefitgainedfrom PLP wasnot exactly aswe
anticipatedijt still playsa crucialrole in achieving interactve ren-
deringtimes.

To quantifyhow well our conserative culling algorithmis work-
ing, we implementeda simple renderingalgorithm, VF-BF, that
performedonly view frustumandback-ficeculling. Thesetradi-
tional culling approachesverealsousedwithin cPLP The VF-BF
algorithmis considerablyslower thanall of the cPLPimplementa-
tions. For example,on the Octane VF-BF took 0.975secondgo
rendereachframe on average. Thus, our cPLP-IB andcPLP-HG
methodsrenderframesl12 and6 timesfasterthanthe VF-BF tech-
nique. Our cPLP-HPmethodprovides even better comparisons.
Suchimprovementsn renderingspeedswhich weresimilar on all
of the architecturesarecrucialfor ary applicationrequiringinter-
actiity.

Of thetime spentby our cPLPapproaches goodportionof that
time wasactuallyspentrunningtheinitial PLP algorithm. For ex-
ample,on the Octane put of the 0.081secondst takesto rendera
frameon average 0.064secondsvereoccupiedby theinitial PLP

2Theonly exceptionbeingthe OctanecPLP-HGmethod whichreached
aminimumataPLPbudgetof 50K triangles.

Machine SGIOctane SGIOnyx HP Kayak
ImageSize || 642 [ 512 | 642 | 512 | 64 | 512
Transfer 217 | 4483 | 564 | 7733 [ 375 | 11250
Scan 30 | 2300 | 20 | 1000 | 47 | 3430
[ Total [[ 247 ] 6783 | 584 | 8733 [ 422 | 14680 |

Table2: Timesfor the primitive operationof theitem-tuffer tech-
nique.An imagesizeof 642 refersto animagethatis 64x64pixels
in size. Thetransfertime is the dominantcostof this method. All
timesarereportedn microseconds.

algorithm,and0.017secondsisedby theiterative visibility queries
to completetherenderedmage.For theitem-tbuffer andhistogram
techniguesthe averagenumberof iterative visibility queriesper
framerangedfrom 4.7 iterations,for aninitial PLP budgetof only
1000trianglesto 1.5iterations for aninitial budgetof 100000tri-

angles.

Primitive Operation Costs To betterunderstandherendering
timesreportedn Fig. 6, we analyzedhe costof performingtheun-
derlying primitive operationgfor eachof the methods.By looking
attheseresults we canoffer additionalinsightinto why eachof the
methodswvorksaswell, or aspoorly, asit does.

For the cPLP-HPtechnique,the visibility queriesinvolve en-
ablingthe HP culling extension renderinga cell, andreadingback
theflag to indicatewhetherthe z-huffer would have changedf we
hadactuallyrenderedhecell. Wetimedthevisibility querieonthe
HP Kayak andfound that the time rangedbetweenl00 microsec-
onds(ug and100Qus In additionto thesecosts,the HP visibility
querycanalsointerrupttherenderingpipeline therebyreducingthe
overallthroughput.Consequentlyit isimperatve whenusingthese
queriesto do sowith somecaution. It is especiallyadvantageous
whenyou arevery likely to find significantocclusion. Otherwise,
mary queriesmaybewastedandtheoverallrenderingoerformance
will bereduced.

Theprimitive operatiorfor theitem-kuffer techniqués thetrans-
ferring of the color buffer from the graphicsacceleratorsnemory
to themainmemoryof thehostcomputer Thisis donein OpenGL
using a single call to glReadPirls. The other main costassoci-
atedwith this techniqueis the time it takesthe CPU to scanthe
color buffer to determinewhich cells have actually contritutedto
theimage. We reportthesenumbersfor eachof our machinesn
Table2. It isimmediatelyapparentvhy the cPLP-IBtechniqueon
theKayakis soslow. Thetransferandscantimesareconsiderably
slower (for the 512x512image)thanon the SGls. Anotherinter-
estingobsenation, which alsohelpsjustify ourtiling optimization
in Section3.4, is the substantiaincreasen time thatis required
to transferand scana 512x512pixel image,asopposedo only a
64x64pixel (sub)image.

For thosemachineshat supportthe OpenGLhistogramexten-
sion, the underlyingoperationsnclude copying animage,or sub-
imagein thecaseof ourtiles, from theframehuffer to texturemem-
ory. We have timed this operationwith the histogramextension
enabledo seehow muchtime is requiredfor the copy with the his-
togramcalculations. The histogramcalculationalso includesthe
time to retrieve and scanthe histogramresults. On the Octaneit
takes 80Qus for a 64x64 pixel image,and 3400Qus for a 512x512
image. On the Oryx, it takes69Qus for a 64x64 pixel image,and
1350Qusfor a512x512image. (We shouldnotethatit is quite dif-
ficult to perform suchmeasurementdyut we have doneour best
to reportaccurateresults.) We were surprisedby the amountof
time requiredto copy the imageto texture memoryand perform
the histogramcomputations.Our initial belief wasthat by using
the actualhardwareto performour visibility queries,our render



Figure 7: Interior view of a skyscrapemodel. cPLPreducedthe
depthcompleity of this renderedmagefrom 26 to 8.

ing timeswould decreaseUnfortunately thisis not the caseat this
point in time. While the Onyx appeargo be more advancedthan
the (newer) Octanein its histogrammingeaturesneithermachine
performswell enoughto befasterthantheitem-tuffer techniques.

Depth Comple xity To further test our cPLP algorithms, we
considerecanothermodel with extremely high depthcompleity.
Fig. 7 shavs aninterior view of a skyscrapemodelwhich consists
of over onemillion triangles.The model,courtesyof Ned Greene,
consistof 54 copiesof amodule,eachwith almost20K triangles.
The purposeof this experimentwasto determinghedepthcom-
plexity of this model when renderingit using the various tech-
niques.By depthcompleity, we referhereto the averagenumber
of timesa z-testis performedfor eachpixel in the image. If our
cPLPtechniquesareeffective at determiningocclusion,our meth-
odsshouldreducethe depthcompleity considerablyin compari-
sonto a standardrenderingalgorithm. Using one suchtechnique,
VF-BF, we determinedhedepthcompleity of this model(for this
viewpoint) to be 26.700n average for all of the pixelsin the im-
age. Using cPLR we were ableto reducethis valueto only 7.97.
We emphasiz¢hatthesenumbergeferto thenumberof z-testgper
pixel, asopposedo the numberof z-teststhat pass(i.e., resulting
in the pixel's color being overwritten by a fragmentthatis closer
to the viewer), which hasbeenreportedin otherapproachesWe
optedfor this numbersincethe numberof z-testsmoreaccurately
reflectthework thatis doneduringtherenderingalgorithm.

cPLP-EXT Sincewe do not actually have hardware which im-
plementsour proposedxtension herewe extrapolateonits perfor
mancebasedn theresultswe have, assumingve wereto addsuch
anextensionto the HP Kayakfx6. UsingcPLP-IB, it is possibleto
determinethe numberof teststhatcanbe performedn parallelfor
eachtrianglebudgetin Fig. 6. Assumingour extensionis properly
implementedye believe it shouldtake no moretime thanthefrag-

mentcountingtechniquealreadyavailableon severalarchitectures.

While measuringon HP machineswe foundthatin theworstcase,
anocclusiontestcostsl ms. But sincewe have to bring moredata
from the graphicshardwarefor our extension,we will assumehat
eachqueryis twice asexpensve, or 2 ms,to accountfor the extra
datatransfer (Sinceonly extremelysmallarraysof 256 valuesare
beingtransferedwe don't actually believe it would have suchan
impact.)

0.14 ‘ ‘
Kayak cPLP-HP——
013} Kayak cPLP-EXT =< 1
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Figure8: Averagerenderingtimesperframefor cPLP-HPandour
proposecdhardwareextensionmethodcPLP-EXT ThePLPbudget,
reportedn thousand®f triangles,determineshe numberof trian-
glesinitially renderedo fill-in the depthbuffer.

Table 3 summarizeur findings. Basically we are computing
thetime for cPLP-EXTasa sumof theinitial PLP cost(initialize
its perframe datastructures suchas zeroingthe solidity of each
cell; andrenderingthe first batchof trianglesfor all frames),plus
the total numberof parallel EXT tests(which we assumetake 2
mseach) plusthetime to renderingthe extra triangles(at a rate of
approximatelyl million triangles/secyvhich arefoundasvisibility
testsareperformed.

With theseassumptionsye canseethatour frameratesgetcon-
siderablybetter(seeFig. 8), andwe could potentially achiere a
framerate of 23 Hz (versus18 Hz for cPLP-HP;animprovement
of 28%)if we hada hardwareimplementatiorof our extension.We
would like to point out that the advantagewould be even greater
if the costof initializing PLP’s perframedatastructuresvasmade
lower. Our currentPLP implementatiorusesan STL set,which is
not particularlyoptimizedfor lineartraversalswhich arenecessary
duringinitialization. If necessaryit would be possibleto optimize
this codefurther.

5 Related Work

Therehasbeena substantiabmountof recentwork on occlusion
culling (seefor instance[5, 6, 8,11, 18,23, 24, 30, 31]). Thepur
poseof this sectionis notto do anextensve review of all occlusion
culling algorithms. For that, we refer the interestedreaderto the
recentsuneys by Cohen-Oretal. [7] andDurand[10]. Insteadwe
focuson reviewing work thatis morecloselyrelatedto our own, so
thatwe canindicatethe similaritiesanddifferencesith ourcurrent
work.

Closely related to our work are techniguesthat use two-
dimensionabepthinformationto avoid renderingoccludedgeom-
etry. An earlyexampleof thisis a techniqueby Meagherf20] that
storesthe scenein an octree,and the frametuffer in a quadtree.
Meagherrendersthe octreein a strict front-to-backorder while
keepingtrack of which partsof the quadtreeggetfilled, in orderto
avoid touchingpartsof the octreethatcannotbe seen Naylor [22]
proposesnotheversionof thisidea,whereinsteadof usinganoc-
treeandaquadtreeheuseswo binary-spaceartitioningtreeq12],
onein 3D, theotherin 2D, to efficiently keepboththesceneandthe
imagerespectiely. The 3D BSPcanbe usedto traversethe scene
in a strict front-to-backorder andthe 2D BSPis usedto keepthe
areasof the screenwhich getfilled. Our currentapproachesliffer



PLPBudget(triangles) | PLPTime(s) | #EXT Tests | Avg. ExtraTriangles | AverageTime(s) | FrameRate(Hz) |

1,000 0.019 4.688 16844 0.044 22.7
10,000 0.028 3.376 10978 0.045 22.2
25,000 0.043 2.426 5641 0.053 18.9
50,000 0.066 1.908 2796 0.072 13.9
75,000 0.091 1.630 1770 0.096 10.4
100,000 0.112 1.372 1247 0.116 8.6

Table3: Performancef cPLP-EXTon a“hypothetical”’HP Kayakfx6. All timesarereportedn secondsTheaverageextratrianglesarethe
numberof trianglesthatgetrenderedn additionto the PLP budget.Seetext for furtherdetails.

from thesemethodsin thatthey do not renderin a strict front-to-
backorder(which wasshavn to be lesseffective), but ratherallow
PLPto determingheorderin whichto visit (andrender)thecells.

TheHierarchicalz-Buffer (HZB) techniqueof Greeneetal. [14]
is probablythe bestknown exampleof a techniquethat efficiently
usesdepthinformationfor occlusionculling. Theirtechniques re-
latedto Meagher[20] in thatit alsousesanoctreefor managinghe
scenewhichis renderedn front-to-backorder Anothersimilarity
is thatthey alsousea quadtreebut not for the actualframetuffer
(asin [20]). Instead,they usethe quadtreeto storethe z-buffer
values,which allow for fastrejectionof occludedgeometry The
HZB techniquealsoexplorestemporalcohereng by initializing the
depthbuffer with the contentsof the visible geometryin the previ-
ousframe.

TheHierarchicalz-Buffer hasseveralsimilaritiesto cPLP Their
useof the visible geometryfrom the previous frame for the pur
poseof estimatingthe visible geometryis similar to our approach,
althoughin our case we usethe visibility estimationpropertiesof
PLPto estimatethe currentframe. Oneadwantageof doingit this
way is that (aswe have shavn earlier)the front intrinsically tells
us whereto continuerenderingto fill-up the z-buffer. HZB has
no suchinformation;it renderghe remaininggeometryin front-to-
backorder Thefactthatwe emplg/ a spatialpartitioninginsteadof
a hierarchyin object-spacés only a minor difference.Depending
uponthe sceneproperties,this may or may not be an advantage.
Theflat datastructurewe useseemanoreefficient for a hardware
implementation sincewe do not needto stop the pipeline as of-
ten to determinethe visibility of objects. In [13], Greeneintro-
ducesan optimizedvariation of the HZB technique,including a
non-conserative mode.

A closelyrelatedtechniqueis the HierarchicalOcclusionMaps
of Zhanget al. [33]. For eachframe,objectsfrom a precomputed
databasere chosento be occluders,and are rendered(possibly)
in lower resolutionto get a coveragefootprint of the potentialoc-
cluders. Using this image, OpenGLs texture mappingfunction-
ality generates hierarchyof image-spacecclusionmaps,which
arethenusedto determinethe possibleocclusionof objectsin the
scene.Notethatin this techniquethe depthcomponents consid-
eredafterit is determinedhatanobjectcanpotentiallybeoccluded.
Oneof themaindifferencedetweerHOM andcPLPis thatHOM
relieson preprocessinghe inputto find its occluderswhile cPLP
usesPLPfor thatpurpose HOM alsoutilizes a strict front-to-back
traversalof the object-spacdierarchy

The work by Bartz et al. [3, 4] addresseseveral of the same
questionswve doin this paper They provide anefficient technique
for implementingocclusionculling usingcoreOpenGLfunctional-
ity, andthenproposea hardware extensionwhich hasthe potential
to improve performance. Similar to the previous methods,Bartz
et al. usea hierarchyfor the 3D scene.In orderto determinethe
visible nodesthey first performview-frustumculling, whichis op-
timized by usingthe OpenGLselectionmodecapabilities.For the
actualocclusiontests,which are performedtop-davn in the hier
archynodesthey proposeto usea virtual occlusionbuffer, which

is implementedusingthe stencilbuffer to save the resultsof when
a given fragmenthas passedhe z-test. In their technique they
needto scanthe stencilbuffer to performeachvisibility test.Since
this hasto beperformedsereraltimeswhendetermininghevisible
nodesof a hierarchy this is the mosttime consumingpart of their
techniqgueandthey proposeanoptimizationbasedn samplingthe
virtual occlusionbuffer (thusmakingtheresultsonly approximate).
In their paper they alsoproposean extensionof the HP occlusion
culling test[25] (see[3] for details). At this time, the HP occlu-
siontestsimply tells whethera primitive is visible or not. Bartz et
al. proposean extensionto includemoredetail, suchasnumberof
visible pixels,closestz-value,minimal-screerspaceéboundingbox,
etc. Thereareseveraldifferencesetweertheir work andour own.
First and foremost,our techniquesare designedo exploit multi-
ple occlusionqueriesat onetime, which tendto generatea smaller
numberof pipelinestallsin the hardware. Also, our hardware ex-
tensionis more conserative in its core functionality but hasthe
extrafeaturethatit would supportmultiple queries.Oneadditional
differenceis that, similar to Greeneet al. [14], cPLPincorporates
an effective techniquefor filling up the depthbuffer soasto min-
imize the numberof queries. We do not believe thatit would be
difficult to incorporatehis featurewithin theframework of Bartzet
al.

The techniqueby Lueble and Geoges[19] describea screen-
basedtechniquefor exploiting “visibility portals”, thatis, regions
betweercellswhich canpotentiallylimit visibility from oneregion
of spaceto another Their techniquecanbe seenasa dynamicway
to computeinformation similar to thatin [28]. One canthink of
cPLP's obscuredront asa singleoccluder which hasa few holes.
If we think of theholesas“portals”, thisis in certainrespectanal-
ogousto thework of Luebke andGeoges. In the context of their
colonoscop work, Hong et al. [15] proposea techniquewhich
memges Luebke and Geogess portalswith a depth-luffer based
techniquesimilar to ours. However, in their work, they exploit the
specialpropertiesof the colonbeingatube-like structure.

HyperZ[21] is aninterestinghardwarefeaturethathasbeenim-
plementedby ATI. HyperZ hasthreedifferent optimizationsthat
improve the performanceof 3D applications. The main thrust of
the optimizationsis to lower the memorybandwidthrequiredfor
updatingthe z-buffer, which they reportis the singlelargestuser
of bandwidthon their graphicscards. One optimizationis a tech-
nique for losslesscompressiorof z-values. Anotheris a fast z-
buffer clear which performsa lazy clearof the depthvalues. ATI
alsoreportson an implementationof the hierarchicalz-buffer in
hardware. Detailson the actualfeaturesareonly sketchyand ATI
hasnot yet exposedary of the functionality of their hardware to
applications Consequentlyt is not possibleat this pointto exploit
theirhardwarefunctionalityfor occlusionculling.

Anotherrecenttechniquerelatedto the hierarchicalZ-buffer is
describedy Xie and Shantz[32]. They proposethe Adaptive Hi-
erarchicalVisibility (AHV) algorithmasa simplification of HZB
for tile architectures.

AlonsoandHolzschuch2] proposea techniquewhich exploits



thegraphicshardwarefor speedingup visibility queriesin thecon-
text of globalillumination techniques.Their techniqueis similar
to our item-kuffer technique Westermanretal. [29] proposea dif-
ferenttechniquefor usingthe OpenGLhistogramfunctionality for
occlusionculling. Their work involves histogramminghe stencil
buffer, insteadof the color buffer asdonein our work.

6 Conclusions

In this papemwe presented novel conserative visibility algorithm
basedon the non-conserative PLP algorithm. Our approachex-
ploits severalfeaturesof PLPto quickly estimatethe correctimage
(anddepthbuffer) andto determinewhich portionsof this estima-
tion were incorrect. To completeour conserative approachwe
requiredan efficient meansof performingvisibility querieswith
respectto the currentestimationimage. We shaved how to im-
plementthesevisibility queriesusingeitherhardware or software.
If fragment-countindhardwareis available (suchason HP fx, Di-
amondFireGL, SGI IR3), this is clearly the bestchoice. Other
wise,theitem-tuffer techniquds thenext bestoption. As graphics
hardwarecontinuego improve, andif the OpenGLhistogramming
featuresarefurtheroptimized,this approactmay offer the highest
levelsof interactie rendering.

OurcPLPapproacthasseveralnicefeatureslt providesamuch
higherlevel of interactvity thantraditional renderingalgorithms,
suchasview frustumculling. As opposedo PLP, cPLP provides
a conserative visibility culling algorithm. The preprocessinge-
quired by our algorithmis very modest,and we are not required
to storesignificantocclusioninformation, suchasview-dependent
occludersor potentially visible sets. We are also able to run our
algorithmon all (polygonal)datasetssincewe do not requireary
underlyingstructureor format, suchasconnectity information.

Furtherinvestigationis necessaryo studythe feasibility (cost)
of addingour hardware extensionproposedn Section3.6 to cur
rentarchitecturesAs we shaw in this paper it canfurtherimprove
the performancesubstantiallyover techniqueshatprovide a single
counterof the fragmentsthat passthe depth-testsuchasthe HP
occlusion-cullingextension,sinceit is ableto performseveral test
in parallel.
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Figure9: (a) A top-davn view of our dataset(b)—(e) Sampleviews of therecordedpath.
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Figure 10: Snapshotsiuring threeiterationsof our cPLP algorithm. The currentfront (blue) andcompletectiles (red) are highlightedfor
iteration1in (a) and(d), iteration2 in (b) and(e), anditeration3 in (c) and(f). Thefinal renderedmageis (c).



Hierarchical Data Structures for
Visibility

Yiorgos Chrysanthou

University College London

Outline

» Motivation
» Hierarchical data structures
o Case study: BSP trees

— Scene representation

— Merging

— Culling

SIGGRAPH 2001, Los Angeles




Where Are They Used?

On the scene for the hierarchical
classification

For the viewspace to store pre-computed
occluders and other information

To store the occlusion representatione

occlusion information § = i

SIGGRAPH 2001, Los Angeles

Types of Data Structures Used
for Vishility

Hierarchical bounding volumes

— Object based

— Possibly overlapping

Hierarchical space partitioning

— Space based

— Convex cdls
— Digoint cells

SIGGRAPH 2001, Los Angeles




Bounding Volumes

Spheres @

Boxes

— Axis aligned
_ Non-aig&alig% ®

Other

Effectiveness

— Minimize void space — less fase positives
— Minimize cost of intersection

SIGGRAPH 2001, Los Angeles

Hierarchical Bounding Volumes

* Leaves
— bounding volumes of individual objects
* Internal nodes

— Grouping based on either the scene hierarchy
— Or aclustering method

SIGGRAPH 2001, Los Angeles




Example, Hierarchical View
Volume Culling

eye

SIGGRAPH 2001, Los Angeles

Hierarchical Spatial Partitioning

* Oc-trees
At each node split space half way aong each of x, y and z
using axis aligned planes
o Kd-trees
At each node split space along one of the 3 dimensions
using an axis aligned plane
* BSPtrees

At each node split space along one of the 3 dimensions
using aNON axis aligned plane

SIGGRAPH 2001, Los Angeles 8




Hierarchical Space Partitioning

» Ease of implementation

— Oc-trees, kd-trees, bsp trees
» Speed of intersection

— Oc-trees, kd-trees, bsp trees
» Flexibility / functionality

— bsp trees, kd-trees, Oc-trees

SIGGRAPH 2001, Los Angeles 9

Hierarchical Classification

hierarchical
representation

SIGGRAPH 2001, Los Angeles 10




Case Study: BSP trees

Visibility ordering

BSP trees as a hierarchy of volumes
Hierarchical visibility culling

Tree merging

Visibility culling using merging

SIGGRAPH 2001, Los Angeles 11

Vishility (Priority) Ordering

Given a set of polygons S and a viewpoint vp, find
an ordering on Sst for any 2 polygons intersected
by aray through vp P; has higher priority than P,

SIGGRAPH 2001, Los Angeles 12




Schumacker 69

A O Sy
o

A polygon/object on the same side asthe
viewpoint has higher priority than one on the
opposite site

SIGGRAPH 2001, Los Angeles 13

Schumacker 69
<‘ZCA>Z'> H,; H,
v VRN
H2 O Q / H2 \ Q
o O 3t

If we have more than one object on one side then
repeat the same reasoning and add more
partitioning planes between these objects

SIGGRAPH 2001, Los Angeles 14




Binary Space Partitioning Trees
(Fuchs, Kedem and Naylor "80)

More general, can deal with inseparable
objects

Automatic, uses as partitions planes defined
by the scene polygons

Method has two steps:

building of the tree independently of viewpoint

traversing the tree from a given viewpoint to
get visihility ordering

SIGGRAPH 2001, Los Angeles 15

Building a BSP Tree (Recursive)

e @ {1,2 3 4,5, 6)

A set of polygons Thetree

SIGGRAPH 2001, Los Angeles 16




Building a BSP Tree (Recursive)

Pt
b \“‘\
A i 1 10,2k, d
}Z / Fre beck se
b
-\_\_‘_:_\1\_
S

Select one polygon and partition the space and the polygons

SIGGRAPH 2001, Los Angeles 17

Building a BSP Tree (Recursive)

~ 7 A
: i G
\}\ :A )V 5 :L'-// \I

Recursively partition each sub-tree until al polygons are used up

SIGGRAPH 2001, Los Angeles 18




Building a BSP Tree (Incremental)

The tree can also be built incrementally:
start with a set of polygons and an empty tree
insert the polygons into the tree one at atime
insertion of a polygon is done by comparing it
against the plane at each node and propagating
it to the right side, splitting if necessary

when the polygon reaches an empty cell, make
a node with its supporting plane

SIGGRAPH 2001, Los Angeles 19

Back-to-Front Traversa

E/Oid traverse_btf(Tree *t, Point vp)

if (t = NULL) return;
endif

if (vp in-front of plane at root of t)
traverse btf(t->back, vp);
draw polygons on node of t;
traverse_btf;(t->front, vp);

else
traverse_btf(t->front, vp);
draw polygons on node of t;
dif traverse_btf(t->back, vp);
endi

SIGGRAPH 2001, Los Angeles 20
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The BSP as a Hierarchy of
Spaces

‘I\(,\ ; .-!‘,?" K/”L n\\

Each node corresponds to a region of space
the root is the whole of R"
the leaves are homogeneous regions

SIGGRAPH 2001, Los Angeles 21

BSP Representation of Polyhedra
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Occlusion BSP Tree (Similar to

SVBSP Tree)
° OZ/
View
point
Ol
%
Occlusion BSP Tree
Create shadow volume of occluder 1 Tree
/"N
out /2\
out /O]\

out

SIGGRAPH 2001, Los Angeles
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Occlusion BSP Tree

Insert occluder 2 and augment tree with
its shadow volume

View
point

SIGGRAPH 2001, Los Angeles 25

Occlusion BSP Tree

And so on until we add al occluders Tree

/O
/°\ o 1\.
/5\ out /4\
out 6 out @)
out/ \O / 2\
/ 3\ out -
™

out

SIGGRAPH 2001, Los Angeles 26
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Example of Using BSP Trees for
Visibility
» Extended Hudson method

— instead of constructing a shadow volume for
each occluder, construct an occluson BSP tree
and compare the objects against the aggregate
occlusion.

— If we have N occluders then we need O (IogN)
comparisons for each object

SIGGRAPH 2001, Los Angeles 27

Occlusion BSP Tree

Check occlusion of objects T, and T, by

inserting them in tree Tree

View
point

out /6\ out /Oz\
out /03\ out -
out
SIGGRAPH 2001, Los Angeles 28
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Hierarchical Occlusion Culling
Using the Occlusion Tree (Bittner 98)

» Sceneisrepresented by ak-dtree
« For agiven viewpoint:
— select a set of potential occluders

— build an occlusion tree from these occluders

— hierarchically compare the k-d nodes against
the occlusion tree

SIGGRAPH 2001, Los Angeles 29

Hierarchical Visibility Algorithm

INVISIBLE VI|SIBLE
\ |

* Viewpoint-to-region \\ immils

visibility A

.. /] 7|
—vigbhle \ o

. - /
—invisible uEw
— partiadly visible S

CULLED = ~

» Refinement of partially visible regions

SIGGRAPH 2001, Los Angeles 30
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Tree Merging, Motivation

Given two objects, or collections of objects,
represented as BSP trees, tree merging can
be used to solve a number of geometric
problems, for example:

set operations like union or intersection (eg for
CSG)

collision detection
view volume and visihbility culling

SIGGRAPH 2001, Los Angeles 31

Tree Merging, Main Idea

Merging T, and T, can be seen asinserting
T,into T,:
starting at root of T ,, partition T, using the
planeof T, into T,* and T, and insert the two
pieces recursively into the front and back sub-
treeof T,

when afragment of T, reachesacell then an
external routineis called depending on the
application

SIGGRAPH 2001, Los Angeles 32
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Tree Merging, Pseudocode

Tree *merge_bspts(Tree *t1, Tree *t2)
{
if (leaf(tl) or leaf(t2))
return merge_tree_cell(tl, t2);
else
{t2*, t27} = partition_tree(t2, shp(tl));
tl->front = merge_bspts(t1->front, t2%);
tl->back = merge_bspts(tl->back, t2°);
return ti;
endif

SIGGRAPH 2001, Los Angeles 33

Partitioning a Tree With a Plane

Partitioning T, with aplane of T, (H;,) isa
recursive procedure that involves inserting the
plane of T, into T,

if T,isasinglecdl then T,* and T, are copies of

T2

elsefind T,* and T, with the following 3 steps:

find relation of plane Hy4 and plane at root of T, (Hr,)
partition the sub-tree(s) of T, in which Hy4 lies
combine resulting sub-trees above to form T," and T,

SIGGRAPH 2001, Los Angeles 34
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Find Relation of Hy4 and Hy,

* Note that we are interested only in the relation of
the two planes within the space that T2 is defined
(we should be talking of sub-hyperplanes)

» There are seven possible classifications which can
be grouped into 3 sets: in one sub-tree, in both,
coplanar

* For each classification we do two comparisons

SIGGRAPH 2001, Los Angeles 35

The Seven Classifications

2t

TmfromeInfroni Inksack Tnbadk T hcsac Wi Bt

‘ hr*
Ui Paralied i/ Amiti=Parallel
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The Case Infront/I nback

T2

T2 T2 froms*

T2 froma ™ ==
T2 .
i by

T back = 5 2 "h':xH
T, ->front = (T,->front) T,* = (T,->front)*
T, ->root = T,->root
TZ_'>bmk = T2'>bmk

SIGGRAPH 2001, Los Angeles 37

The Case I nboth/Inboth
PartitionT7front_> - .f'l : . \ﬁ

Partition T,->back
SIGGRAPH 2001, Los Angeles 38
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The Case I nboth/I nboth (cont.)

T2

T,*->front = (T,->front)* T,->front = (T,->front)"

T,"->root = T,->root T,->root = T,->root
T,*->back = (T,->back)* T,->back = (T,->back)
SIGGRAPH 2001, Los Angeles 39

Example Uses of Tree Merging

Constructive Solid Geometry (CSG)
Collision detection

Shadows from area light sources
Discontinuity meshing

SIGGRAPH 2001, Los Angeles 40
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Vishility Acceleration With
Merging

View volume culling
view volume as a BSP tree and merge with
scene BSP tree (Naylor 92)

Visibility culling
Beam tracing (Naylor 92)
The two above can be donein one go

SIGGRAPH 2001, Los Angeles 41

Merging the Occlusion Tree With
the Scene k-d Tree (chrysanthou 01)

e Build scenek-d tree

o setthemerge cell _tree() torender the sub-
treeif the cell isvisible

 at each frame do
— build occlusion/view volume bsp tree

— merge trees by inserting occlusion tree into
scene k-d tree

SIGGRAPH 2001, Los Angeles 42
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Culling Using Tree Merging

» We get avery efficient occlusion/view
volume comparison of the scene

» Thetraversal isdonein order (we use thisto
help our image based rendering technique)

» The occluders are selected in the same
traversal

SIGGRAPH 2001, Los Angeles 43

Culling Populated Environments

SIGGRAPH 2001, Los Angeles 44
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Conclusion

Overview of hierarchical data structuresfor
visibility
Bounding volumes
Space partitioning
BSP trees
tree merging
view volume and occlusion culling

SIGGRAPH 2001, Los Angeles 45
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Image Space Culling

Ned Greene
NVIDIA

General Approach

* Maintain coverage and depth info.
as image is rendered

¢ Cull occluded geometry on-thefly

Advantages

« Efficiency: Occlusion by actual scene
geometry.

» Easy to fully exploit occluder fusion.
» Well suited to hierarchical methods.
» Well suited to hardware implementation.

Methods to be Discussed

* Hierarchical Z-Buffering

* Hierarchical Polygon Tiling

» Umbra Culling System (Aila & Miettinen)

» Sudarsky & Gotsman ‘99 (dynamic scenes)
e From-region vis. with 4D Hier. ZB.

Related Methods Covered Elsewhere

* HOMs (Zhang, Manoca, et al. ‘97)
* BSP-Tree Methods

» Klosowski & Silva ‘01 (PLP)

» Hardware-Assisted Box Culling

The “Hierarchical Visibility” Algorithm

* Hierarchical Z-Buffering
(Greene, Kass, Miller, Siggraph ‘93)
« Hierarchical Polygon Tiling
(Greene, Siggraph ‘96)




Hierarchical Visibility

* employs object-space and
image-space hierarchies

« enables hierarchical culling of
occluded geometry

e result: finds visible geometry
by logarithmic search

Object Space

e organize scene model in an octree

e traverse octree cubes front-to-
back, culling occluded cubes

Image Space

e image vis. info. in a pyramid

« perform image-space culling
hierarchically

* If an octree cube is occluded by a z -
buffer, all geometry inside the cube
is also occluded.

» Apply recursively through the
octree.

Recursive Subdivision Algorithm

Start with root cube.

« If octree cube is outside the viewing frustum,
done.

* Test faces of the octree cube to seeif it's
visible; if occluded, done.

* Render geometry associated with octree cube.

¢ Subdivide octree node in front-to-back order,
applying same algorithm to children.

Occluders

Properties of the Algorithm

* Only visits visible octree
nodes and their children.

* Only renders geometry in
visible octree nodes.




z-pyramid

* Finest level is a standard z-buffer.

« Each pyramid sample is the farthest
sample in the corresponding 2x2
window at the next level.

« Each sample represents the farthest z
for a square window of the screen.

A scene and
its z-pyramid

Does a Z-pyramid completely
occlude a primitive?

Step 1:

Find the finest-level pyramid value whose
corresponding image region encloses the

primitive.
L — %

soreen Z-pyramid

d

Does a Z-pyramid completely
occlude a primitive?

Step 2:
If nearest z of primitive
is farther away than Z-pyramid value for
this value, the primitive ~ square Wi|’ld0W of screen
is completely
occluded.

@

Nearest Z

Occluder of object

Depth Complexity of
the Visibility Computation

Naive Z-Buffering

| - '“f—_l

avg. depth 83.7

Depth Complexity of Visibility Computation

Hierarchical Visibility  (log
scale)

z-pyramid tests tiling polygons total
.45 251 2.96




Hierarchical Visibility - Conclusion

* Works on arbitrary models.
» Effectively exploits object-space,

image -space, and temporal coherence.

* Suitable for hardware acceleration.

Hierarchical Polygon Tiling
with Coverage Masks

(Siggraph ‘96)

Modifications to
Hierarchical Z-Buffering

» substitute hierarchical tiling
for z-buffering

 substitute coverage pyramid
for z-pyramid

» substitute octree of BSP trees

for octree

Hierarchical Polygon Tiling

« tiling by recursive subdivision
e subdivision driven by 3-state
triage coverage masks
« tiling and visibility done
with bitmask operations (fast!)

Hierarchical tiling by recursive
subdivision (Warnock ‘69) using
“triage” (3-state) coverage masks

Making a Polygon M ask

« look up edges masks
* AND them together

FARINES R




Triage Polygon Mask represented as
two bitmasks

AT

ingde

L]

WHOLE
SCREEN PIXEL
— —

Advantages of Hierarchical Tiling
over Hierarchical Z-Buffering

- faster

e uses much less memory
when oversampling (e.g. 4%)

*no overwrite of raster samples

Disadvantage: Requires strict front-
to-back traversal.

work tiling polygons

work tiling cubes

.09 cells visited 1.01 cells visited
per pixel per pixel

3.1seconds to

tile and filter on

4096 x 4096 grid
(75 mhz)

The Umbra Culling System
Aila & Miettinen ‘00

« Commercial scene-management software
for conservative culling.

« Use silhouettes of foreground objects as
occluders.

« Optimized variations of hierarchical
polygon tiling and HOMs.

« Realtime performance for a limited class
of complex scenes.




Dynamic Scenes
Sudarsky & Gotsman ‘99

» Adapt hierarchical z-buffering and
BSP-tree projections for dynamic
scenes.

» Use “temporal bounding volumes”
for dynamic objects.

From-region visibility with
4D Hierarchical Z-Buffering
(Greene ‘01)

Determine visibility within a shaft by
recursive subdivision.

L

P1 A

P2

P3

A practical way to compute nearly
exact from-region visibility for

relatively simple polygonal scenes. ‘ .-q-,-. e,
e L
‘.
L
R WA
4D z-pyramid

for shaft

occluded
polygons in red




Hierarchical Z-Buffer Visibility
Ned Greene* Michael Kass Gavin Miller

Apple Computer

(* and U. C. Santa Cruz)

Abstract

An ideal visibility algorithm should &) quickly reject most of the hidden geometry in a model and
b) exploit the spatial and perhaps temporal coherence of the images being generated. Ray casting
with spatial subdivision does well on criterion (a), but poorly on criterion (b). Traditional Z-
buffer scan conversion does well on criterion (b), but poorly on criterion (a). Here we present a
hierarchical Z-buffer scan-conversion algorithm that does well on both criteria. The method uses
two hierarchical data structures, an object-space octree and an image-space Z pyramid, to accelerate
scan conversion. The two hierarchical data structures make it possible to reject hidden geometry
very rapidly while rendering visible geometry with the speed of scan conversion. For animation,
the algorithm is also able to exploit temporal coherence. The method is well suited to models with
high depth complexity, achieving orders of magnitude acceleration in some cases compared to
ordinary Z-buffer scan conversion.

CR Categories and Subject Descriptors: [.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism - Hidden line/surface removal; J.6 [Computer-Aided Engineering]: Computer-
Aided 1.3.1 [Computer Graphics]: Hardware Architecture - Graphics Processors

Additional Key Words and Phrases: Octree, Pyramid, Temporal Coherence, Spatial Coherence,
Z Buffer.

1 Introduction

Extremely complex geometric databases offer interesting challenges for visibility algorithms.
Consider, for example, an interactive walk-through of a detailed geometric database describing an
entire city, complete with vegetation, buildings, furniture inside the buildings and the contents of
the furniture. Traditional visibility algorithms running on currently available hardware cannot
come close to rendering scenes of this complexity at interactive rates and it will be a long time
before faster hardware alone will suffice. In order to get the most out of available hardware, we
need faster algorithms that exploit properties of the visibility computation itself.

There are at least three types of coherence inherent in the visibility computation which can be
exploited to accelerate a visibility algorithm. The first is object-space coherence: in many cases a
single computation can resolve the visibility of a collection of objects which are near each other in
space. The second is image-space coherence: in many cases a single computation can resolve the
visibility of an object covering a collection of pixels. The third is temporal coherence: visibility
information from one frame can often be used to accelerate visibility computation for the next
frame. Here we present a visibility algorithm which exploits all three of these types of coherence
and sometimes achieves orders of magnitude acceleration compared with traditional techniques.

The dominant algorithms in use today for visibility computations are Z-buffer scan conversion
and ray-tracing. Since Z buffers do not handle partially transparent surfaces well, we will restrict



the discussion to models consisting entirely of opaque surfaces. For these models, only rays from
the eye to the first surface are relevant for visibility, so the choice is between Z buffering and ray-
casting (ray-tracing with no secondary rays).

Traditional Z buffering makes reasonably good use of image-space coherence in the course of
scan conversion. Implementations usually do a set-up computation for each polygon and then an
incremental update for each pixel in the polygon. Since the incremental update is typically much
less computation than the set-up, the savings from image-space coherence can be substantial. The
problem with the traditional Z-buffer approach is that it makes no use at all of object-space or
temporal coherence. Each polygon is rendered independently, and no information is saved from
prior frames. For extremely complex environments like a model of a city, this is very inefficient.
A traditional Z-buffer algorithm, for example, will have to take the time to render every polygon of
every object in every drawer of every desk in a building even if the whole building cannot be seen,
because the traditional algorithm can resolve visibility only at the pixel level.

Traditional ray-tracing or ray-casting methods, on the other hand, make use of object-space
coherence by organizing the objects in some type of spatial subdivision. Rays from the eye are
propagated through the spatial subdivision until they hit the first visible surface. Once aray hits
a visible surface, there is no need to consider any of the surfaces in the spatial subdivisions
further down aong the ray, so large portions of the geometry may never have to be considered
during rendering. This is an important improvement on Z buffering, but it makes no use of temporal
or image-space coherence. While ray-casting algorithms that exploit temporal coherence have been
explored, it seems extremely difficult to exploit image-space coherence in traditional ray casting
algorithms.

Here we present a visibility algorithm which combines the strengths of both ray-casting and Z
buffering. To exploit object-space coherence, we use an octree spatial subdivision of the type
commonly used to accelerate ray tracing. To exploit image-space coherence, we augment traditional
Z-buffer scan conversion with an image-space Z pyramid that allows us to reject hidden geometry
very quickly. Finally, to exploit temporal coherence, we use the geometry that was visible in the
previous frame to construct a starting point for the algorithm. The result is an algorithm which is
orders of magnitude faster than traditional ray-casting or Z buffering for some models we have
tried. The algorithm is not difficult to implement and works for arbitrary polygonal databases.

In section Il, we survey the most relevant prior work on accelerating ray casting and scan
conversion. In section IlIl, we develop the data structures used to exploit object-space, image-space
and temporal coherence. In section |V, we describe the implementation and show results for some
complex models containing hundreds of millions of polygons.

2 Prior Work

There have been many attempts to accelerate traditional ray-tracing and Z buffering techniques.
Each of these attempts exploits some aspect of the coherence inherent in the visibility computation
itself. None of them, however, simultaneously exploits object-space, image-space and temporal
coherence.

The ray-tracing literature abounds with references to object-space coherence. A variety of
spatial subdivisions have been used to exploit this coherence and they seem to work quite well (e.qg.
[1,2,3,4,5]). Temporal coherence is much less commonly exploited in practice, but various
techniques exist for special cases. If all the objects are convex and remain stationary while the
camera moves, then there are constraints on the way visibility can change [6] which a ray tracer
might exploit. On the other hand, if the camera is stationary, then rays which are unaffected by the
motion of objects can be detected and used from the previous frame [7]. When interactivity is not an
issue and sufficient memory is available, it can be feasible to render an entire animation sequence
at once using spacetime bounding boxes [8,9]. While these techniques make good use of object-space
coherence and sometimes exploit temporal coherence effectively, they unfortunately make little or
no use of image-space coherence since each pixel is traced independently from its neighbors. There



are heuristic methods which construct estimates of the results of ray-tracing a pixel from the
results at nearby pixels (e.g. [10]), but there seems to be no guaranteed algorithm which makes good
use of image-space coherence in ray tracing.

With Z-buffer methods (and scan conversion methods in general) the problems are very
different. Ordinary Z-buffer rendering is usually implemented with an initial set-up computation
for each primitive followed by a scan-conversion phase in which the affected pixels are
incrementally updated. This already makes very good use of image-space coherence, so the
remaining challenge with Z-buffer methods is to exploit object-space and temporal coherence
effectively.

A simple method of using object-space coherence in Z-buffer rendering is to use a spatial
subdivision to cull the model to the viewing frustum [11]. While this can provide substantial
acceleration, it exploits only a small portion of the object-space coherence in models with high
depth complexity. In architectural models, for example, a great deal of geometry hidden behind
walls may lie within the viewing frustum.

In order to make use of more of the object-space coherence in architectural models, Airey et. al.
[12,13] and subsequently Teller and Sequin [15] proposed dividing models up into a set of disjoint
cells and precomputing the potentially visible set (PVS) of polygons from each cell. In order to
render an image from any viewpoint within a cell, only the polygons in the PVS need be considered.
These PVS schemes are the closest in spirit to the visibility algorithm presented here since they
attempt to make good use of both object-space and image-space coherence. Nonetheless, they suffer
from some important limitations. Before they can be used at all, they require an expensive
precomputation step to determine the PVS and a great deal of memory to store it. Teller and Sequin,
for example, report over 6 hours of precomputation time on a 50 MIP machine to calculate 58Mb of
PVS data needed for a model of 250,000 polygons [15]. Perhaps more importantly, the way these
methods make use of cells may limit their appropriateness to architectural models. In order to
achieve maximum acceleration, the cells must be 3D regions of space which are amost entirely
enclosed by occluding surfaces, so that most cells are hidden from most other cells. For
architectural models, this often works well since the cells can be rooms, but for outdoor scenes and
more general settings, it is unclear whether or not PVS methods are effective. In addition, the
currently implemented algorithms make very special use of axially-aligned polygons such as flat
walls in rectilinear architectural models. While the methods can in principle be extended to use
general 3D polygons for occlusion, the necessary algorithms have much worse computational
complexity [15]. Finally, although the implementations prefetch PVS data for nearby cells to avoid
long latencies due to paging, they cannot be said to exploit temporal coherence in the visibility
computation very effectively.

The algorithm presented here shares a great deal with the work of Meagher [16] who used object-
space octrees with image-space quadtrees for rendering purposes. Meagher tried to display the
octree itself rather than using it to cull a polygonal database, so his method is directly applicable
to volume, rather than surface models. Nonetheless his algorithm is one of the few to make use of
both object-space and image-space coherence. The algorithm does not exploit temporal coherence.

3 Hierarchical Visibility

The hierarchical Z-buffer visibility algorithm uses an octree spatial subdivision to exploit
object-space coherence, a Z pyramid to exploit image-space coherence, and a list of previously
visible octree nodes to exploit temporal coherence. While the full value of the algorithm is
achieved by using all three of these together, the object-space octree and the image-space Z pyramid
can also be used separately. Whether used separately or together, these data structures make it
possible to compute the same result as ordinary Z buffering at less computational expense.



3.1 Object-space octree

Octrees have been used previously to accelerate ray tracing [5] and rendering of volume data
sets [16] with great effectiveness. With some important modification, many of the principles of
these previous efforts can be applied to Z-buffer scan conversion. The result is an algorithm which
can accelerate Z buffering by orders of magnitude for models with sufficient depth complexity.

In order to be precise about the octree algorithm, let us begin with some simple definitions. We
will say that a polygon is hidden with respect to a Z buffer if no pixel of the polygon is closer to the
observer than the Z value aready in the Z buffer. Similarly, we will say that a cube is hidden with
respect to a Z buffer if all of its faces are hidden polygons. Finally, we will call a node of the octree
hidden if its associated cube is hidden. Note that these definitions depend on the sampling of the Z
buffer. A polygon which is hidden at one Z-buffer resolution may not be hidden at another.

With these definitions, we can state the basic observation that makes it possible to combine Z
buffering with an octree spatial subdivision: If a cube is hidden with respect to a Z buffer, then all
polygons fully contained in the cube are also hidden. What this means is the following: if we scan
convert the faces of an octree cube and find that each pixel of the cube is behind the current
surface in the Z buffer, we can safely ignore all the geometry contained in that cube.

From this observation, the basic algorithm is easy to construct. We begin by placing the
geometry into an octree, associating each primitive with the smallest enclosing octree cube. Then
we start at the root node of the octree and render it using the following recursive steps:. First, we
check to see if the octree cube intersects the viewing frustum. If not, we are done. If the cube does
intersect the viewing frustum, we scan convert the faces of the cube to determine whether or not the
whole cube is hidden. If the cube is hidden, we are done. Otherwise, we scan convert any geometry
associated with the cube and then recursively render its children in front-to-back order.

We can construct the octree with a simple recursive procedure. Beginning with a root cube large
enough to enclose the entire model and the complete list of geometric primitives, we recursively
perform the following steps: If the number of primitives is sufficiently small, we associate all of
the primitives with the cube and exit. Otherwise, we associate with the cube any primitive which
intersects at least one of three axis-aligned planes that bisect the cube. We then subdivide the
octree cube and call the procedure recursively with each of the eight child cubes and the portion of
the geometry that fits entirely in that cube.

The basic rendering algorithm has some very interesting properties. First of all, it only
renders geometry contained in octree nodes which are not hidden. Some of the rendered polygons
may be hidden, but all of them are “nearly visible” in the following sense: there is some place we
could move the polygon where it would be visible which is no further away than the length of the
diagonal of its containing octree cube. This is a big improvement over merely culling to the viewing
frustum. In addition, the algorithm does not waste time on irrelevant portions of the octree since it
only visits octree nodes whose parents are not hidden. Finally, the algorithm never visits an octree
node more than once during rendering. This stands in marked contrast to ray-tracing through an
octree where the root node is visited by every pixel and other nodes may be visited tens of
thousands of times. As a result of these properties, the basic algorithm culls hidden geometry very
efficiently.

A weakness of the basic algorithm is that it associates some small geometric primitives with
very large cubes if the primitives happen to intersect the planes which separate the cube's
children. A small triangle which crosses the center of the root cube, for example, will have to be
rendered anytime the entire model is not hidden. To avoid this behavior, there are two basic
choices. One alternative is to clip the problematic small polygons so they fit in much smaller
octree cells. This has the disadvantage of increasing the number of primitives in the database. The
other alternative is to place some primitives in multiple octree cells. This is the one we have
chosen to implement. To do this, we modify the recursive construction of the octree as follows. If
we find that a primitive intersects a cube's dividing planes, but is small compared to the cube, then
we no longer associate the primitive with the whole cube. Instead we associate it with al of the
cube's children that the primitive intersects. Since some primitives are associated with more than



one octree node, we can encounter them more than once during rendering. The first time we render
them, we mark them as rendered, so we can avoid rendering them more than once in a given frame.

3.2 Image-space Z pyramid

The object-space octree allows us to cull large portions of the model at the cost of scan-
converting the faces of the octree cubes. Since the cubes may occupy a large number of pixels in the
image, this scan conversion can be very expensive. To reduce the cost of determining cube
visibility, we use an image-space Z pyramid. In many cases, the Z pyramid makes it possible to
conclude very quickly a large polygon is hidden, making it unnecessary to examine the polygon
pixel by pixel.

The basic idea of the Z pyramid is to use the original Z buffer as the finest level in the pyramid
and then combine four Z values at each level into one Z value at the next coarser level by choosing
the farthest Z from the observer. Every entry in the pyramid therefore represents the farthest Z for
a sguare area of the Z buffer. At the coarsest level of the pyramid there is a single Z value which is
the farthest Z from the observer in the whole image.

Maintaining the Z pyramid is an easy matter. Every time we modify the Z buffer, we propagate
the new Z value through to coarser levels of the pyramid. As soon as we reach a level where the
entry in the pyramid is already as far away as the new Z value, we can stop.

In order to use the Z pyramid to test the visibility of a polygon, we find the finest-level sample
of the pyramid whose corresponding image region covers the screen-space bounding box of the
polygon. If the nearest Z value of the polygon is farther away than this sample in the Z pyramid, we
know immediately that the polygon is hidden. We use this basic test to determine the visibility of
octree cubes by testing their polygonal faces, and also to test the visibility of model polygons.

While the basic Z-pyramid test can reject a substantial number of polygons, it suffers from a
similar difficulty to the basic octree method. Because of the structure of the pyramid regions, a
small polygon covering the center of the image will be compared to the Z value at the coarsest level
of the pyramid. While the test is still accurate in this case, it is not particularly powerful.

A definitive visibility test can be constructed by applying the basic test recursively through
the pyramid. When the basic test fails to show that a polygon is hidden, we go to the next finer
level in the pyramid where the previous pyramid region is divided into four quadrants. Here we
attempt to prove that the polygon is hidden in each of the quadrants it intersects. For each of these
guadrants, we compare the closest Z value of the polygon in the quadrant to the value in the Z
pyramid. If the Z-pyramid value is closer, we know the polygon is hidden in the quadrant. If we
fail to prove that the primitive is hidden in one of the quadrants, we go to the next finer level of the
pyramid for that quadrant and try again. Ultimately, we either prove that the entire polygon is
hidden, or we recurse down to the finest level of the pyramid and find a visible pixel. If we find all
visible pixels this way, we are performing scan conversion hierarchically.

A potential difficulty with the definitive visibility test is that it can be expensive to compute
the closest Z value of the polygon in a quadrant. An alternative is to compare the value in the
pyramid to the closest Z value of the entire polygon at each step of the recursion. With this
modification, the test is faster and easier to implement, but no longer completely definitive.
Ultimately, it will either prove that the entire polygon is hidden, or recurse down to the finest level
of the pyramid and find a pixel it cannot prove is hidden. Our current implementation uses this
technique. When the test fails to prove that a polygon is hidden, our implementation reverts to
ordinary scan conversion to establish the visibility definitively.

3.3 Temporal coherence list

Frequently, when we render an image of a complex model using the object-space octree, only a
small fraction of the octree cubes are visible. If we render the next frame in an animation, most of
the cubes visible in the previous frame will probably still be visible. Some of the cubes visible in
the last frame will become hidden and some cubes hidden in the last frame will become visible, but
frame-to-frame coherence in most animations ensures that there will be relatively few changes in



cube visibility for most frames (except scene changes and camera cuts). We exploit this fact in a
very simple way with the hierarchical visibility algorithm. We maintain alist of the visible cubes
from the previous frame, the temporal coherence list, and simply render all of the geometry on the
list, marking the listed cubes as rendered, before commencing the usual algorithm. We then take
the resulting Z buffer and use it to form the initial Z pyramid. If there is sufficient frame-to-frame
coherence, most of the visible geometry will already be rendered, so the Z-pyramid test will be
much more effective than when we start from scratch. The Z-pyramid test will be able to prove with
less recursion that octree cubes and model polygons are hidden. As we will see in section 1V, this
can accelerate the rendering process substantially. After rendering the new frame, we update the
temporal coherence list by checking each of the cubes on the list for visibility using the Z-pyramid
test. This prevents the temporal coherence list from growing too large over time.

One way of thinking about the temporal coherence strategy is that we begin by guessing the
final solution. If our guess is very close to the actual solution, the hierarchical visibility
algorithm can use the Z pyramid to verify the portions of the guess which are correct much faster
than it can construct them from scratch. Only the portions of the image that it cannot verify as
being correct require further processing.

4 Implementation and Results

Our initial implementation of the hierarchical visibility algorithm is based on general purpose,
portable C code and software scan conversion. This implementation uses the object-space octree,
the image-space Z pyramid and the temporal coherence list. Even for relatively simple models the
pure software algorithm is faster than traditional software Z buffering, and for complex models the
acceleration can be very large.

In order to test the algorithm, we constructed an office module consisting of 15K polygons and
then replicated the module in a three dimensional grid. Each module includes a stairway with a
large open stairwell making it possible to see parts of the neighboring floors. None of the office
walls extends to the ceiling, so from a high enough point in any of the cubicles, it is possible to see
parts of most of the other cubicles on the same floor.

For simple models with low depth complexity, the hierarchical visibility method can be
expected to take somewhat longer than traditional scan conversion due to the overhead of
performing visibility tests on octree cubes and the cost of maintaining a Z pyramid. To measure the
algorithm's overhead on simple models, we rendered a single office module consisting of 15K
polygons at a viewpoint from which a high proportion of the model was visible. Rendering time for a
512 by 512 image was 1.52 seconds with the hierarchical visibility method and 1.30 seconds with
traditional scan conversion, indicating a performance penalty of 17%. When we rendered three
instances of the model (45K polygons), the running time was 3.05 seconds for both methods
indicating that this level of complexity was the breakeven point for this particular model.
Hierarchical visibility rendered nine instances of the same model (105K polygons) in 5.17 seconds,
while traditional scan conversion took 7.16 seconds.

The chief value of the hierarchical visibility algorithm is, of course, for scenes of much higher
complexity. To illustrate the point, we constructed a 33 by 33 by 33 replication of the office
module which consists of 538 million polygons. The model is shown rendered in figure 1. 59.7
million polygons lie in the viewing frustum from this viewpoint, about one tenth of the entire
model. Using the hierarchical visibility method, the Z-pyramid test was invoked on 1746 octree
cubes and culled about 27% of the polygons in the viewing frustum.. The bounding boxes of 687
cubes were scan converted which culled nearly 73% of the model polygons in the viewing frustum,
leaving only 83.0K polygons of which 41.2K were front facing (.000076 of the total model) to be
scan converted in software. On an SGI Crimson Elan, the entire process took 6.45 seconds.
Rendering this model using traditional Z buffering on the Crimson Elan hardware took
approximately one hour and fifteen minutes. Rendering it in software on the Crimson would
probably take days.



The center left panel of figure 1 shows the depth complexity processed by the algorithm for the
image in the upper left. The depth complexity displayed in this image is the number of times each
pixel was accessed in a box visibility test or in Z-buffer polygon scan conversion. Note the bright
regions corresponding to portions of the image where it is possible to see far into the model; these
are regions where the algorithm has to do the most work. In this image, the average depth
complexity due to box scans is 7.23, and due to polygon scan-conversion is 2.48 for a total of 9.71.
The maximum depth complexity is 124. Dividing the number of times the Z pyramid is accessed by
the number of pixels on the screen lets us assign a value of .43 for the “depth complexity” of the Z-
pyramid tests. Thus, the total average depth complexity of Z-pyramid tests, box scans and polygon
scans is 10.14. Note that this is not the depth complexity of the model itself, but only the depth
complexity of the hierarchical visibility computation. Computing the true depth complexity of the
scene would require scan converting the entire model of 538 million polygons in software, which we
have not done. In the lower left of figure 1, we show the viewing frustum and the octree subdivision.
The two long strings of finely divided boxes correspond to the two brightest regions in the depth
complexity image. Note that the algorithm is able to prove that large octree nodes in the distance
are hidden. In the lower right, we show the Z pyramid for the scene. Even at fairly coarse
resolutions, the Z pyramid contains a recognizable representation of the major occluders in the
scene.

The office environment of figure 1 was chosen in part because it is a particularly difficult
model for PVS methods. From every office cubicle in this environment, there are points from which
almost every other cubicle on the same floor is visible. As aresult, if the cubicles were used as
cells in a PVS method, the potentially visible set for each cell would have to include nearly all the
cells on its floor and many on other floors. Since each floor contains about 4 million polygons, the
PVS methods would probably have to render many more polygons than the hierarchical method. In
addition, the precomputation time for published PVS methods would be prohibitive for a model of
this complexity. This model has 2000 times as many polygons as the model described by Teller and
Sequin [15] which required 6 hours of pre-processing.

Admittedly, the replication of a single cell in the model means that it may not be a
representative example, but it will be some time before people use models of this complexity
without a great deal of instancing. The hierarchical visibility program we used for this example
makes use of the replication in only two ways. First, the algorithm does not need to store half a
billion polygons in main memory. Second, the algorithm only needs to consider a single cell in
constructing the octree. These same simplifications would apply to any complex model using a
great deal of instancing.

Figure 2 shows the hierarchical visibility method applied to an outdoor scene consisting of a
terrain mesh with vegetation replicated on atwo-dimensional grid. The model used for the lower
left image consists of 53 million polygons, but only about 25K polygons are visible from this point
of view. Most of the model is hidden by the hill or is outside the viewing frustum. The
corresponding depth complexity image for hierarchical visibility computations is shown at the top
left. The algorithm works hardest near the horizon where cube visibility is most difficult to
establish. This frame took 7 seconds to render with software scan conversion on an SGI Crimson.
In the lower right, we show a model consisting of 5 million polygons. Even though the model is
simpler than the model in the lower left, the image is more complicated and took longer to render
because a much larger fraction of the model is visible from this point of view. This image took 40
seconds to render with software scan conversion on an SGI Crimson. The average depth complexity
for the scene is 7.27, but it reaches a peak of 85 in the bright areas of the depth complexity image
in the upper right. These outdoor scenes have very different characteristics from the building
interiors shown in figure 1 and are poorly suited to PVS methods because (a) very few of the
polygons are axis-aligned and (b) the cell-to-cell visibility is not nearly as limited as in an
architectural interior. Nonetheless, the hierarchical visibility algorithm continues to work
effectively.
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4.1 Parallelizability and Image-space coherence

We have made our hierarchical visibility implementation capable of dividing the image into a
grid of smaller windows, rendering them individually and compositing them into a final image. The
performance of the algorithm as the window size is varied tells us about the parallel performance of
the algorithm and the extent to which it makes use of image-space coherence. If, like most ray
tracers, the algorithm made no use of image-space coherence, we could render each pixel separately
at no extra cost. Then it would be fully parallelizable. At the other extreme, if the algorithm made
the best possible use of image-space coherence, it would render a sizeable region of pixels with
only a small amount more computation than required to render a single pixel. Then it would be
difficult to parallelize. Note that if we shrink the window size down to a single pixel, the
hierarchical visibility algorithm becomes a ray caster using an octree subdivision.

Figure 3 graphs the rendering time for a frame from a walk-through of the model shown in
figure 1 as a function of the window size. For window sizes from 32 by 32 on up, the curve is
relatively flat, indicating that the algorithm should parallelize fairly well. For window sizes below
32 by 32, however, the slope of the curve indicates that the time to render a window is almost
independent of the window size. The algorithm can, for example, render a 32 by 32 region for only
slightly more than four times the computational expense of ray-casting a single pixel with this
algorithm. Comparing the single pixel window time to the time for the whole image, we find that
image-space coherence is responsible for a factor of almost 300 in running time for this example.

4.2 Use of graphics hardware

In addition to the pure software implementation, we have attempted to modify the algorithm to
make the best possible use of available commercial hardware graphics accelerators. This raises
some difficult challenges because the hierarchical visibility algorithm makes slightly different
demands of scan-conversion hardware than traditional Z buffering. In particular, the use of octree
object-space coherence depends on being able to determine quickly whether any pixel of a polygon
would be visible if it were scan converted. Unfortunately, the commercial hardware graphics
pipelines we have examined are either unable to answer this query at all, or take milliseconds to
answer it. One would certainly expect some delay in getting information back from a graphics
pipeline, but hardware designed with this type of query in mind should be able to return aresult
in microseconds rather than milliseconds.

We have implemented the object-space octree on a Kubota Pacific Titan 3000 workstation with
Denali GB graphics hardware. The Denali supports an unusual graphics library call which
determines whether or not any pixels in a set of polygons are visible given the current Z buffer. We
use this “Z query” feature to determine the visibility of octree cubes. The cost of a Z query depends
on the screen size of the cube, and it can take up to several milliseconds to determine whether or
not a cube is visible. Our implementation makes no use of the Z pyramid because the cost of getting



the required data to and from the Z buffer would exceed any possible savings. On a walk-through of
a version of the office model with 1.9 million polygons, the Titan took an average of .54 seconds per
frame to render 512 by 512 images. Because of the cost of doing the Z query, we only tested
visibility of octree cubes containing at least eight hundred polygons. Even so, 36.5% of the running
time was taken up by Z queries. If Z query were faster, we could use it effectively on octree cubes
containing many fewer polygons and achieve substantial further acceleration. The Titan
implementation has not been fully optimized for the Denali hardware and makes no use of temporal
coherence, so these performance figures should be considered only suggestive of the machine's
capabilities.

The other implementation we have that makes use of graphics hardware runs on SGI
workstations. On these workstations, there is no way to inquire whether or not a polygon is visible
without rendering it, so we use a hybrid hardware/software strategy. We do the first frame of a
sequence entirely with software. On the second frame, we render everything on the temporal
coherence list with the hardware pipeline. Then we read the image and the Z buffer from the
hardware, form a Z pyramid and continue on in software. With this implementation, on the models
we have tried, temporal coherence typically reduces the running time by a factor of between 1.5 and
2.

In the course of a walk-through of our office model, we rendered the frame in the upper left of
figure 1 without temporal coherence, and then the next frame shown in the upper right of figure 1
using temporal coherence. The new polygons rendered in software are shown in magenta for
illustration. For the most part, these are polygons that came into view as a result of panning the
camera. The center right shows the depth complexity of the hierarchical computation for this frame.
The image is much darker in most regions because the algorithm has much less work to do given the
previous frame as a starting point. This temporal coherence frame took 3.96 seconds to render on a
Crimson Elan, as compared with 6.45 seconds to render the same frame without temporal coherence.

Current graphics accelerators are not designed to support the rapid feedback from the pipeline
needed to realize the full potential of octree culling in the hierarchical visibility algorithm.
Hardware designed to take full advantage of the algorithm, however, could make it possible to
interact very effectively with extremely complex environments as long as only a manageable number
of the polygons are visible from any point of view. The octree subdivision, the Z pyramid and the
temporal coherence strategy are all suitable for hardware implementation.

5 Conclusion

As more and more complex models become commonplace in computer graphics, it becomes
increasingly important to exploit the available coherence in the visibility computation. Here we
present an algorithm which combines the ability to profit from image-space coherence of Z-buffer
scan conversion with the ability of ray tracing to avoid considering hidden geometry. It appears to
be the first practical algorithm which materially profits from object-space, image-space and
temporal coherence simultaneously. The algorithm has been tested and shown to work effectively on
indoor and outdoor scenes with up to half a billion polygons.

The hierarchical visibility algorithm can make use of existing graphics accelerators without
modification. Small changes in the design of graphics accelerators, however, would make a large
difference in the performance of the algorithm. We hope that the appeal of this algorithm will
induce hardware designers to alter future graphics hardware to facilitate hierarchical visibility
computations.
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Figure 1: A 538 million polygon office environment rendered with hierarchical visibility.
Upper left: Rendered image. Center left: Depth complexity of the hierarchical visibility
computation. Lower Left: Viewing frustum and octree cubes examined while rendering
the image in the upper left. Lower right: Z pyramid used to cull hidden geometry. Upper
right: Image rendered with temporal coherence. Polygons not rendered in the previous
frame are shown in magenta. Center right: Depth complexity of the hierarchical visibility
computation for the frame rendered using temporal coherence.
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Figure 2: Lower left: Image of a53 million polygon model (mostly hidden) rendered using
hierarchical visibility. Upper left: Corresponding depth complexity for the hierarchical
visibility computation. Lower right: Image of a5 million polygon model. Upper right:
Corresponding depth complexity for the hierarchical visibility computation.
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Technical Note

A Quality Knob for Non-Conservative Culling with Hierarchical Z-Buffering

Ned Greene
NVIDIA

When rendering a deeply occluded scene with hierarchical z-buffering [GKM93] and the scene is too
complex to render at the desired frame rate, there is a simple way to accelerate rendering by trading off image
quality for rendering speed. This non-conservative culling method provides an error-bounded "quality knob" for
hierarchical z-buffering.

With hierarchical z-buffering, z-buffer samples are maintained in an image pyramid called a z-pyramid,
which is organized in NxN tiles (for example, 4x4 tiles). At all levels of a conventional z-pyramid, each z value
is the farthest z in the corresponding NxN window of the adjacent finer level. Therefore, each z value represents
the farthest z for a square region of the screen. This data structure enables efficient hierarchical culling of
primitives and bounding boxes during hierarchical tiling, as described in [GKM93].

To maintain a conventional z-pyramid, whenever a z value is overwritten in an NxN tile in the z-buffer (i.e.,
the finest level of the z-pyramid), the farthest z in that tile is determined, and if this z value is nearer than the
value stored for that tile in the next-to-the-finest pyramid level, that value is overwritten with the nearer value.
This propagation procedure continues through the coarser levels of the pyramid until the existing entry in the
pyramid is already as far away as the new z value.

Our method of non-conservative culling requires only a simple change to this propagation procedure. When
a z-buffer sample is overwritten in an NxN tile in the z-buffer, instead of propagating that tile s farthest z value
through the pyramid, we propagate the Eth-to-the-farthest z value, where E is an error limit which can be set to
any value from zero to N2-1. Propagation through coarser pyramid levels is done as with the original algorithm.
With this simple change to propagation, the standard tiling
procedure for hierarchical z-buffering (see GKM[93]) will farthest z
cull primitives within regions of the screen where they are + P
visible at E or fewer samples within any finest-level tile, and

the output image will have E or fewer errors within any NxN i

screen tile. By an error at an image sample we mean that its I

color differs from a standard z-buffer image. B | <« b
For example, the figure on the right shows a side view of sl

a finest-level 4x4 tile which has been covered by a polygon P. |

Assuming that the error limit is one, the next-to-the-farthest z \ *

value will be propagated when P is processed, which will later
result in culling bounding box B within the tile, even though
B is visible at one image sample, labeled s.

This non-conservative culling method provides a simple quality knob that enables sacrificing image
quality in exchange for faster rendering. If E is 0, a standard error-free z-buffer image is created, if E is 1 there
will be at most one error in any NxN tile of samples in the output image, and so forth.

The method is particularly effective when the depth image of a scene contains numerous pinholes,
because E or fewer pinholes within a finest-level tile will be plugged automatically. The method is also
advantageous when applied to culling bounding boxes that are only "slightly visible," since this saves the work
required to process all of the primitives they contain. Optionally, a separate z-pyramid (for levels coarser than
the z-buffer) can be maintained for non-conservative culling of bounding boxes, so that tiling of primitives is
unaffected.

In conclusion, the quality knob is a useful mechanism for a certain class of scenes, producing
approximately correct images considerably faster than standard hierarchical z-buffering.

next-to-farthest z

Reference: [GKM93] N. Greene, M. Kass, and G. Miller, “Hierarchical Z-Buffer Visibility," Proc. of SSGGRAPH '93,
July 1993, 231-238.



OCCLUSION CULLING WITH OPTIMIZED HIERARCHICAL Z-BUFFERING

Ned Greene*
NVIDIA

Abstract

We introduce a method for occlusion culling tailored
to zbuffer systems having rendering hardware that effec-
tively reduces memory traffic in z and color values. The
central innovation is to insert a culling stage into the
pipeline that culls occluded geometry using a low-band-
width variation of hierarchical zbuffering that performs
conservative culling using only a small fraction of the
bandwidth and storage of the origina algorithm. Culling
is performed with simple polygon-tiling operations that are
well suited to implementation in hardware. On some
scenes that we tested, culling reduced image memory traf-
fic to less than standard zbuffering would generate when
rendering just the polygons that are actually visible in the
output image.

For deeply occluded scenes organized in bounding
boxes, we enable efficient on-the-fly box culling on the
host by providing the "tip" of the culling stage's zpyra-
mid, which requires only occasional low-bandwidth com
munication. Even for very complex scenes, the combina-
tion of front-to-back traversal of bounding boxes, box
culling on the host, and an optimized culling stage can
reduce image memory traffic more effectively than know-
ing in advance which polygons are visible, and rendering
only them with standard z-buffering.

1 Introduction

The growing complexity of computer-animated scenes
raises the relative importance of occlusion culling, which
is the culling of occluded geometry prior to rasterization.
In principle, accelerating zbuffer hardware with occlusion
culling offers the prospect of rendering very deeply oc-
cluded scenesin real time, since only the visible parts of a
scene need to be sent through the pipeline and rendered.
In practice, however, existing culling agorithms have
limitations, and none is capable of enabling real-time ren-
dering of arbitrary scenes, a term that we will apply to
polygonal scenes that have no particular occlusion rela-
tionships, may be deeply occluded, and may have high
visible complexity. Some methods work effectively only
on alimited class of models. For example, some methods
fail to exploit occluder fusion, which is the collective
occlusion of objects that overlap or abut on the screen.
Other methods are completely general, but too slow to
perform culling in real time. Moreover, culling algorithms
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generally make scene management much more
complicated, for example, by requiring that the scene
model be maintained in complex data structures or by in-
curring communication delays that hamper processing.
Ideally, a culling method should work effectively on arbi-
trary polygonal scenes, efficiently cull occluded geometry
using all available occluder fusion, and enable efficient
on-the-fly scene management that is unimpeded by com
munication delays.

Although occlusion culling is usually thought of in the
context of deeply occluded scenes, there is also ample
opportunity for visibility operations to accelerate render-
ing of low-depth scenes. For example, standard zbuffer-
ing clears and reads the zbuffer at image samples before
they are written for the first time. We show how these z
reads can be avoided.

Our approach to devising a culling method that works
automatically and effectively on virtually any polygonal
model isto modify and optimize the hierarchical visibility
algorithm[GKM93,Gre95]. Thisalgorithm renders a scene
that is organized in nested bounding boxes by traversing
the boxes front to back, culling occluded boxes asthey are
encountered, and rendering the polygons in visible boxes
with hierarchical zbuffering. This algorithm is very
efficient because it needs to render only the polygons in
visible boxes and hierarchica zbuffering efficiently
processes individual polygons.

This article optimizations to the hierarchical visibility
algorithm that facilitate integration with graphics hardware
and reduce the algorithm's bandwidth and computation
requirements. The key innovation is anovel variation of
hierarchical zbuffering that requires only a small fraction
of the bandwidth of the original algorithm to perform
conservative culling. We add a separate culling stage to
the pipeline that employs this algorithm to cull occluded
geometry and passes visible and nearly visible image
samples to rendering hardware. Tile records within a z
pyramid maintained by the culling stage include "znear"
values, which usually enables image samples passed to
the rendering stage to be identified as visible, in which
case the z read that would normally be performed by stan-
dard z-buffering can be avoided.

For deeply occluded scenes organized in bounding
boxes, we enable efficient on-the-fly box culling on the
host by providing the "tip" of the culler's z-pyramid,
which requires only occasional low-bandwidth communi-
cation. When we combine front-to-back traversal of
bounding boxes, box culling on the host, and an optimized



culling stage, culling works automatically and effectively
onvirtually any polygonal scene.

Our culling methods effectively reduce overal image
traffic, which includes reads and writes of image and tex
ture values in addition to z values. This can enhance per-
formance substantially, since image bandwidth require-
ments are often the limiting bottleneck in today's zbuffer
rendering systems [MorQ0].

Perhaps the most fundamental goal of visibility re-
search is to make rendering work proportional to a scene’s
visible complexity and independent of its overall com
plexity [Cla76]. To use as a benchmark in pursuing this
goal, we introduce the term oracle zbuffering, the z-buff-
ering performed by a perfect oracle that knows in advance
which polygons are visible in the output image, and ren-
ders only them in front-to-back order. Asan indication of
the effectiveness of our optimized culling algorithm,
simulations reported in section 6 show that it often gen-
erates fewer z reads and writes than oracle zbuffering,
even for pathologically complex scenes such as the
Naked Empire skyscraper model [Gre96].

2 Related Work

Our survey of work relating to occlusion culling will
focus on methods that leverage z-buffer rendering
hardware and consider their potential for rea-time ren-
dering of arbitrary polygonal scenes. For ageneral survey
of occlusion-culling methods, see [CCS0Q].

One influential approach to occlusion culling, which
was originaly applied to architectural interiors
[Air90,Tel92,Fun93]. is to precompute lists of visible
geometry for volumetric cells. Recently developed pro-
jection methods that exploit occluder fusion make this
approach much more general [Dur00], as does a method
for fusing volumetric occluders [Sch00]. However, in
addition to requiring extensive precomputation, this gen-
eral approach requires maintaining large, complex data
structures, it does not exploit occlusion of or by dynamic
objects, and since much more is typically visible from a
viewing volume than from a single viewpoint, it usually
culls only afraction of occluded geometry in any particu-
lar frame,

Another object-space method is to select foreground
occluders and perform on-the-fly culling of geometry that
they occlude [CT96,Hud97]. However, these methods do
not effectively exploit occluder fusion, so good perform-
ance is limited to scenes having relatively simple visibility
relationships.

The hierarchical visibility algorithm [GKM93, Gre95]
maintains the scene model in an octree and the z-buffer in
an image pyramid (a z-pyramid). A zpyramid enables ef-
ficient hierarchical culling because it fully represents oc-
cluder fusion, but the polygon tiling required to maintain it
cannot be done in real time in software. If a scene is
traversed strictly front-to-back, software polygon tiling
can be accelerated with coverage masks [Gre96], but the

order requirement impairs practicality. Hierarchical vis-
bility has precursors in the work of Warnock [War69],

Clark [Cla76], and Meagher [Mea82], and has since been
extended by Sudarsky and Gotsman [SG99], who focus on
processing dynamic scenes, Xie and Shantz [ XS99], who
present optimizations for hardware implementation in tiled
architectures, and by Zhang and Manocha et al.
[2ha97,2ha98]. Naylor aso uses image-space and object-
space hierarchies to facilitate culling, projecting a scene
represented with a 3D BSP tree into a 2D BSP tree repre-
senting the output image [Nay92], but this algorithm does
not exploit occluder fusion, and as with [Gre96], it requires
maintaining spatial hierarchiesto enable traversal in depth
order.

While descriptions have not been formally published,
some flight-simulation hardware has employed two-level
occlusion-image hierarchies to facilitate culling [Mue95],
and ATI's Radeon graphics chip performs hierarchical z
buffering with a two-level zpyramid [Mor0Q]. Although
two-level hierarchies are an improvement over traditional
rasterization, afull hierarchy culls large objects much more
efficiently.

Aila and Miettinen have implemented a variation of hi-
erarchical polygon tiling [Gre96] optimized for culling with
silhouettes of foreground polyhedra that provides real-
time software culling in some cases [AmO0], but only for a
limited class of scenes.

Zhang and Manocha et al. exploit z-buffer hardware by
using it to render a “hierarchical occlusion map” of fore-
ground occluders, which is then used for culling during a
rendering pass [Zha97,Zhad98]. Although this method
improves performance in some cases, rendering in two
passes adds complexity, effectiveness depends on being
able to select efficient foreground occluders, and existing
implementations do not produce standard z-buffer images.

To support culling of geometry contained in bounding
boxes, some zbuffer accelerators report whether a portal
or bounding box isvisible [Tit93,Sc098]. A major problem
with this approach is the delay between the time the host
processor requests and receives box-visibility information,
complicating scene management and impairing
performance (for performance figures, see [KS01]).

Model simplification (e.g. [Hop96]) and geometric
compression (e.g. [Dee94]) are complementary strategies
that can be used in combination with occlusion culling to
reduce computation and bandwidth requirements.

Some of the innovations discussed in this article were
presented informally in [Gre99a] and [Gred9b].

3 The

Architecture

Memory traffic in depth and color values is typicaly
the bottleneck limiting the performance of today's z-buffer
accelerators [MonQ0].  Our culling architecture reduces
this image traffic by including a separate culling stage in
the pipeline that performs optimized hierarchical z-buffer-
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pyramid into host memory.

ing, anovel variation of hierarchical zbuffering [GKM93]
that requires only a small fraction of the bandwidth and
storage needed by the origina agorithm to perform
conservative culling. These savings are made possible by
a data structure called azm-pyramid, which represents
occlusion information about NxN-sample screen tiles as a
coverage mask and two pairs of znear and zfar values.
Maintaining the occlusion image in a pyramid enables ef-
ficient hierarchical culling of occluded geometry within the
culling stage, and also on the host, if the "tip" of the zm-
pyramid is copied into host memory.

Figure 1 shows the proposed architecture for opti-
mized culling, in which a host processor performs scene
management and sends polygons to a transformation and
set-up module, which in turn sends transformed polygons
to a culling stage, which culls occluded geometry and
passes visible and nearly visible image samples (or
polygons) to a z-buffer rendering stage.

Preferably, transformation, culling, and rendering are
all part of an integrated hardware pipeline, in which case
the culling stage sends records for image samples to the
rendering stage, each identified as accepted, meaning
known to be visible (so the rendering stage can avoid
reading z), or ambiguous, meaning the sample may or may
not bevisible.

Alternatively, if the culling stage is not integrated with
the rendering pipeline (as would be the case, for example,
if it were integrated with a memory controller that feeds a
graphics card) it outputs polygon records, each tagged as
accepted (meaning all samples on the polygon are visible)
or ambiguous.

4 Optimized Hierarchical Z-Buffering

The culling stage employs optimized hierarchical z
buffering (OHZ) to minimize the bandwidth requirements
of conservative culling. OHZ uses a zm-pyramid, which is

similar to a conventional zpyramid [GKM93] that is
missing its finest level. For example, the skyscraper image
of figure 8 has resolution 1024x1024, and the finest level in
the corresponding zm-pyramid has resolution 256x256, as
shownin figure 2.

For each entry in the finest level of a zm-pyramid, we
store a coverage mask, which defines two regions of atile
(unless the mask is null), and a znear and a zfar value for
each of the regions. A region's znear and zfar values are
the nearest and farthest depth of any potentially visible
sample on polygons processed thus far which overlap the
region. All other levels of the zm-pyramid are arrays of z
values, asin aconventional z-pyramid.

To reduce storage and bandwidth, all z values in the
zmpyramid are stored at low-precision, for example, in 8 or
12 bits. A zm-pyramid with 4x4 decimation and 12-bit z
values requires approximately 3.75 bits per image sample,
SO storage requirements are approximately 1/6 of a24-bit z-
buffer. The A-buffer [Car84] also uses coverage masks to
expedite processing within image tiles, but the data
structure that we use is much more compact and spe-
cifically adapted for conservative culling.

Tiling Procedure

The OHZ tiling procedure is entirely analogous to
conventional hierarchical z-buffering as described in
[GKMO93], except for the way that finest-leve tiles are
processed. Refer to this article for a discussion of the
original tiling algorithm.

Briefly, hierarchical tiling of a polygon begins at the
coarsest enclosing NxN tile in the zm-pyramid. Within
each tile, overlap and depth tests identify cells within
which the polygon may be visible, which are recursively
subdivided. If subdivision reaches a finest-level tilein
the zm-pyramid, the tile's mask and z values establish the z
range of previously rendered polygons at each image
sample, enabling incoming samples to be classified as
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culled, ambiguous, or accepted, as will be discussed in
more detail |ater.

At the beginning of aframewe set a"virgintile" flagin
each finest-leve tile of the zm-pyramid and clear the z
valuesin all other levels of the pyramid to the far clipping
plane. A tile record's virgin tile flag in combination with
the mask and zfar values always indicate which, if any,
image samples are at this cleared z value, so it is not
necessary to clear the z-buffer at the beginning of aframe,
saving considerable bandwidth.

Tiling Example

The OHZ procedure for tiling a polygon is analogous
to conventional hierarchical zbuffering [GKM93], except
for the processing of finest-level tiles, which isillustrated
in figure 3, where Zfar_of _tile indicates the farthest visible
z for the whole tile, a coverage mask indicates samples
that have been covered by one or more polygons since
Zfar_of_tile was established, and zfar_of _mask is the far-
thest z value of these samples. Znear_of _mask is the
nearest z value of the samples covered by the mask and
znear_of tile is the nearest z value of the samples not
covered by the mask.

Suppose that zfar_of _tile and znear_of _tile have been
established before processing polygons P1 and P2 (e.g.,
by polygon P0). When P1 is encountered, the mask of
visible samples that it covers (sl and s2) is created (la-
beled mask), zfar_of_mask is set to the zfar value of these
samples, and znear_of _mask is set to the nearest z of the
samples (since this is nearer than znear_of tile). Since
sample sl on Pl isin front of znear_of tile, it is known to
be visible with respect to the rendering stage's zbuffer,
and is tagged accepted, which informs the rendering stage
that there is no need to read the zbuffer. Sample s2,
however, is farther than znear_of tile, so it may or may
not be visible, and it is tagged as ambiguous, indicating

that it will be necessary to read the zbuffer and make a
depth comparison at this sample.

Later, when polygon P2 is processed, since it covers
the tile collectively with the stored mask, a new zfar value
is established for the tile, which is written to zfar_of tile
(thisisthe old value for Zfar_of _mask). Thetile smask is
set to P2's mask and Zfar_of mask is set to P2's Zfar
value. Znear values are also updated, with znear_of tile
being set to the old value of znear_of mask, and
znear_of_mask being set to the depth of the nearest sam-
pleon P2.

In all, there are five cases that need to be considered
when updating zfar values in tile records, which are dia-
grammed in figure 4, where dashed lines in the upper left
diagram indicate whether the zfar value of the visible
samples covered by the polygon is nearer or farther than
Zfar_of_mask and whether the polygon’s visible samples
cover the tile in combination with the stored mask. The
example of figure 3 corresponds to case C4. Although not
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Schematic illustration of the five different casesfor
updating the mask and zfar valuesin atile record.

illustrated in figure 4, znear values also need to be
updated using that rule that they must indicate the nearest
depth encountered so far for the region of the screen
corresponding to the mask, in the case of znear_of _mask,
and the non-mask region, in the case of znear_of tile.

Despite its compact size compared with a zbuffer, a
zm-pyramid culls efficiently, since the coverage mask and
two Zfar values stored in finest-level records encode con-
servative sample-by-sample depth values that usually
closely approximate the real zbuffer values. This enables
effective culling, even within screen tiles where z values
vary greatly, as may occur when a silhouette edge crosses
atile, or when atileis covered by afinely tessellated ob-
ject. Theright panel of figure 2 shows sample-by-sample z
val ues constructed from the zm-pyramid for figure 8.

Typicdly, zm-pyramids cull most occluded samples
(often, about 90%) and "accept" most visible samples (of-
ten, well over 90%). In combination with avoiding z-buffer
clears, this saves a great dea of memory traffic in z and
color values, while reading and writing the zm-pyramid
consumes anly a small fraction of the savings. Culling
early in the pipeline also eliminates texture fetches for
culled samples, providing additional bandwidth savings.

Preferably, the culling stage maintains the zm-pyramid
using depth information it generates while tiling primi-
tives, rather than by propagating z values from the z
buffer, as with conventional hierarchical z-buffering
[GKM93]. With this approach, the zm-pyramid is always
up to date,

Efficient Hardwar e | mplementation of OHZ
OHZ is well suited to hardware implementation be-

cause recursive subdivision can be implemented with a

stack of tile records and the linear equations describing a

YA

polygon can be evaluated without general-purpose multi-
plication using the following novel hierarchica method,
which is conceptually similar to Fuch’s method of evalu-
ating equations on a pixel grid [Fuc85].

As diagrammed in figure 5, within zm-pyramid tilesit is
necessary to evaluate the polygon’s edge equations

(form: Agx + Bgy + Go), and depth equation, z = Agx +

Bgy + - In set-up conmputations, coefficients of the
edge and depth equations are computed relative to the co-
ordinate frame (scaled as shown) of the smallest enclosing
z-pyramid tile, which is where tiling begins. When the tile
is subdivided, the edge and depth equations are trans-

Transformation Formulas
Depth Equation

parent tile: z=Agx +Bgy + Cg
childtile:  z=AdOx0 +&yO +d® O
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where  CeO = N(Axt + Beyt + Ce)

Figure5

Formulas for hierarchical computation(]
of depth and edge equations.



formed to the child tile's coordinate frame using the for-
mulas stated in figure 5. Since term Axt + Byt + C (where
(xt,yt) is the origin of the child tile) has already been
computed at the parent tile and N is a power of 2,

evaluating these formulas requires only shifting and addi-
tion. Note that it is necessary to evaluate each edge and
depth equation at only one corner of each cell. Depth
equations are evaluated at the corner where the polygon’s
plane is nearest, which corresponds to the quadrant of the
screen projection of a backfacing normal to the polygon.

Smilarly, the “normal” to an edge indicates which corner
of a cell should be substituted into the edge’s equation.

This hierarchical evaluation method can also be applied to
Gouraud interpolation and interpolation of texture coordi-
nates (and in fact, any polynomial equation in N dimen-
sions), and it is compatible with jitter if jittering is re-
stricted to samples on an “oversize” integer grid within a
pixel, say a32x32 grid.

A hardware culling stage can substantially reduce tex-
ture bandwidth requirements if, for texture-mapped poly-
gons that are not culled, it computes a bit map indicating
which rectangular tiles on a coarse grid registered with the
texture map are “visible,” thereby indicating which texture
values need to be made available to the renderer.
Visihility is established by simply tiling the corresponding
rectangle with OHZ. The same approach can be used to
ignore regions of apha-mapped polygons that are
transparent, allowing culling of polygons that are only
“visible” in transparent regions.

5 Culling Bounding Boxes with the Z-Tip

In deeply occluded scenes, traffic in occluded poly-
gons can be the bottleneck limiting overall performance.
This problem can be overcome by organizing the scenein
bounding boxes, and while traversing boxes front to back,
culling occluded boxes and sending the polygons in visi-
ble boxes to be rendered [GKM93]. This procedure has
ideal boxculling performance in the sense that only
polygons contained in boxes that are actually visible in
the output image are processed.

It is straightforward to achieve this with software
rendering, but when rendering with graphics hardware, the
host does not have fast accessto an occlusion image. Al-
though some z-buffer hardware supports box culling
[Tit93,Sco98], there is a delay between when the proces-
sor issues a visibility query and when it receives a reply,
and in the meantime, it is not known if the box’s contents
need to be processed, making efficient scene management
problematic. For example, Klosowski and Silva [KS01]
report that visibility queries take between .1 and 1
milliseconds on an HP Kayak fx6 [Sco98]. Significant
delays are fundamental because pipeline queues often
contain numerous polygons, and if boxes wait their turnin
queues, delays are long, and if queues are skipped over,
culling efficiency is impaired.  Consequently, many

hardware designers do not consider traditional hardware-
assisted box culling to be avery useful feature [Tar99].

Our approach to enabling the host to cull boxes on-
the-fly without incurring communication delays is for the
culling stage to periodically copy the "tip" of the zm-
pyramid (a ztip) into host memory with DMA. This en-
ables the host to cull bounding boxes as they are encoun-
tered. Simulations reported in the following section show
that copying 3level ztips (i.e. the 4x4, 16x16, and 64x64
levels) a dozen or two times a frame enables the host to
cull a high fraction of boxes that are actually occluded,
despite the fact that the ztips are slightly out of date.
Since ztips require only a few kilobytes of storage,
copying ztips consumes little bandwidth. In short, only
coarse-grained, low-bandwidth, asynchronous
communication is required to support this culling method.

Note that whenever the farthest z value in the coars-
est level changes in a ztip copied to the host, this ad-
vances the scene’s far clipping plane, and software that
culls loxes to the view frustum [Clar6,GBW90] should
exploit this.

Frame-Coherent Box Culling

One shortcoming of the box-culling method described
above is that the host must work in unison with the
graphics hardware on the current frame, which prevents it
from queuing up geometry in order to even out its work-
load and obtain smoother animation. In today's systems,
the host commonly works a frame or more ahead of the
hardware.

This problem can be addressed with a method we call
frame-coherent box culling, which uses z-tips in combina-
tion with the frame-coherence variation of the hierarchical
visibility agorithm [GKM93]. This two-pass method
permits the host to work ahead of graphics hardware most
of thetime.

Suppose we'd like the host to work two or three
frames ahead of the hardware. To render frameF, in afirst
pass the host traverses the scene's bounding boxes in
front-to-back order, and as each box is encountered, trans-
forms it to frame F3's coordinate frame and determines
whether it is visible with respect to frame F-3's ztip, which
was previously stored. If so, the polygons contained in
the box are added to the "pass-one geometry queue” for
frame F that will be rendered later. When all boxes have
been traversed, the host is done with pass one, and it
starts another task.

The graphics hardware starts rendering frame F's
pass-one geometry when it is done with the preceding
frame, and when it finishes this rendering it copies the zm-
pyramid's ztip into host memory and notifies the host that
it isready for passtwo. Typically, box visibility is highly
coherent from frame to frame [GKM93], so the frame is
nearly complete after rendering pass-one geometry, and
passtwo requires relatively little time.

During pass two, the host works in unison with the
graphics hardware to complete frame F. The host again




traverses frame F's bounding boxes in front-to-back order,
skipping boxes that have already been processed, testing
the remaining boxes for visibility against the current

frame's ztip, and sending the primitivesin visible boxes to
the hardware, thereby compl eting the frame.

The advantage of frame-coherent box culling is that
the only time that the host needs to work in unison with
the graphics hardware is during pass two, which is typi-
caly asmall fraction of thetime. Most of the time the host
can be working one or more frames ahead, queuing up
pass-one geometry.

In unusual situations when frame coherence is low
(for example, at a camera cut), a conmplementary approach
can be used to enable the host to work ahead of the hard-
ware. With this method we create a low-resolution
(e.0.32x32) depth image for the frame that the host wants
to start working on, using a highly simplified model of the
scene's major occluders. Then, the host uses this oc-
clusion image to determine boxes that are likely to be
visible and adds the polygons they contain to the appro-
priate geometry queue. As with frame-coherent box cull-
ing, the scene is later completed in a second pass in
which the host works in unison with the hardware, using
copied z-tipsto cull occluded bounding boxes.

6 Simulation Results

Our discussion of culling performance will focus on
image-bandwidth consumption, because traffic in depth
and color values is commonly the bottleneck limiting the
performance of today's z-buffer accelerators[Mon00]. We
will compare the image bandwidth requirements of our
optimized culling architecture, which we'll abbreviate op-
timized_culling, to those of standard z-buffering and also
oracle zbuffering. Comparison with oracle zbuffering
offers a good indication of how close we come to optimal
culling performance, although its bandwidth requirements
are not a strict lower limit on those of actual systems,
which may employ z compression, fast z clear, and other
methods to reduce bandwidth [Mor0Q].

In order to characterize the image bandwidth require-
ments of zbuffering (both standard and hierarchical), we
will use the term ztraffic to refer to the total number of z
reads and writes that are generated in producing a frame,
and the term z+ color-traffic to refer to the sum of ztraffic
and the total number of writes to the output image, in-
cluding the initial write at each sample to clear the image.
Theterm average ztraffic will refer to the average number
of z accesses per image sample in the output image, and
average z+ color-traffic is defined analogously.

We implemented a high-level software simulator pro-
grammed in C to measure the performance of opti-
mized_culling. The culling stage performed optimized hi-
erarchical zbuffering into a zm-pyramid with 4x4 decima-
tion (asin figure 2), hierarchically culling occluded geome-
try and sending ambiguous and accepted samples to the
rendering stage, where ordinary z-buffering was per-

formed, except that z reads were skipped for accepted
samples. The figures included here are for point-sampled
1024x1024 images where image samples are pixel centers.
The relative performance of optimized_culling is better
when oversampling (which requires using a zm-pyramid
having an additional level), since occlusion within finest-
level tilesis more coherent.

For the simulated scenes we measured average z
traffic and average z+color-traffic. As summarized in
Table 1, we compared these traffic figures for
optimized_culling to that of oracle z-buffering and
standard zbuffering. For oracle zbuffering, figures for z-
traffic and z+ col or-traffic are those generated by front-to-
back z-buffering of just the polygonsthat are visible in the
output image. For standard zbuffering these figures
apply to zbuffering all polygonsin scene order. For both
oracle z-buffering and standard zbuffering we counted
one z write and one color write per pixel for clearing.

For optimized_culling, ztraffic is the sum of zbuffer
reads and writes in the rendering stage plus zm-pyramid
accesses in the culling stage (and ztip reads by the host,
when box culling), which consists of reads and writes of
znear, Zfar, and mask values in tile records plus all reads
and writes of z values at coarser levels of the pyramid
when performing depth comparisons and propagating z
values. We counted one write per 4x4 tile for clearing the
virgin tile flag, as explained in section 4. Average
z+color_traffic for optimized_culling is average ztraffic
plus one write each time the image buffer is updated, in-
cluding one writefor theinitial clear.

Winbench Computer Game

To evaluate performance on typical computer-game
scenes, we simulated optimized_culling performance on
several 3D Winbench 2000 scenes, including aframe from
the Canyon sequence (figure 6). As listed in Table 1,
Canyon has 11,025 front-facing polygons (excluding text
billboards, which we omitted), their average depth is 2.55,
and the average depth of polygons that are actually
visible in the output image (panel b) is 1.46. Image
resolution was 1024x768 and we used 8-hit z valuesin the
zZmpyramid.

Figure 6¢ shows pixel-by-pixe zbuffer traffic (the sum
of reads and writes), which averaged 1.11 per pixel. Z
buffer traffic is 1 at 91% of pixels (blue region), indicating
that the first polygon processed at a pixel was accepted
(generating a z write but no read), and all other polygons
arriving at that pixel were culled, indicating that culling
performed by the zm-pyramid was ideal at these pixels. Of
pixels sent to the renderer, 97% were accepted and 3%
where ambiguous, indicating that z-buffer reads needed to
be performed only 3% of thetime. In other words, the zm-
pyramid definitively established visibility at 97% of sam-
ples, despite its compact size, approxi mately 1/8 of the z
buffer in this simulation. Within the culling stage, ac-
cesses to the zm-pyramid averaged .58 per pixel when
amortized over the corresponding screen area. Total aver-
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age z-traffic for optimized_culling was 1.69, which is 49%
of the figure for oracle zbuffering and 37% of the figure
for standard zbuffering. As this comparison shows, z-
traffic was reduced to half of that which would have been
generated if we knew in advance which polygons were
visible and rendered only them in front-to-back order with
standard  z-buffering. z+color-traffic  for opti-
mized_culling was 69% of the figure for oracle z-buffering
and 56% of the figure for standard z-buffering.

One reason that optimized_culling's z-trafficis so low
is that the polygons in this test happen to be stored in
roughly front-to-back order. To quantify the impact of
traversal order, we reversed the order of the polygons and
found that average z-traffic rose to 3.58, or 103% of oracle
z-buffering and 64% of standard zbuffering. Figure 6d
shows pixel-by-pixel zbuffer traffic for optimized_culling,
which averaged 2.53. Even when traversal order is
unfavorable, as it was in this simulation, opti-
mized_culling generally performs much better than stan-
dard zbuffering because most pixels are accepted (77% in
this example), thereby avoiding z reads required by stan-
dard z-buffering.

Overall, our tests on this and other computer-game
traces showed that optimized_culling reduced z-traffi c ef-
fectively, often well below that of oracle zbuffering. This
often occurred even with traces that had already benefited
from portals culling within a game application, because
numerous occluded polygons remained. Inthe games that
we tested, most translucent polygons wrote z values, so
they did not impair culling efficiency, and clipping plane
values permitted good culling efficiency with 8bit z val-
uesin the zm-pyramid.

An Architectural Interior

To measure optimized culling's performance on
highly tessellated models, we rendered the Lightscape In-
terior of figure 7 (1024x768), which has 173,000 polygons
and an average depth of 1.98. 89% of samples were ac-
cepted and zbuffer traffic was one at 73% of image sam-

ples, those shown in blue in figure 7d. Thus, the zm-
pyramid efficiently culled and accepted samples, despite
the extreme tessellation. If the culling stage were operat-
ing in "polygon culling” mode it would have culled 65% of
polygons, the ones outlined in black in panel c. (The
corresponding figures for the forward and reverse Canyon
simulations are 84% and 58%.) Overal ztraffic for op-
timized_culling was 103% of oracle zbuffering and 72%
of standard zbuffering. The corresponding figures for a
reverse-order Lightscape smulation were 98% of oracle z
buffering and 64% of standard z-buffering.

Skyscraper Model

To test optimized_culling's performance on deeply oc-
cluded scenes organized in bounding boxes, we animated
the skyscraper model of figure 8 (1024x1024) using themo-
tion parameters of the Naked Empire animation [Gre96].
In this simplified variation of the publicly available model,
each cubic bounding box contains two office modules
having a total of 316 rectangles, organized for backface
culling. These boxes were organized in an octree, but
within each box there was no further organization into
smaller boxes. Polygons were stored in no particular order
within each box, and to prevent polygon order from
distorting culling measurements, we reversed the order
that polygons were traversed every other time a box was
processed. The culling stage tiled polygons one-by-one
into the zm-pyramid without exploiting the fact that some
abutting polygons form larger polygons.

Average scene depth is 23.4, average depth of visible
polygons is 1.86, and 988,000 polygons (including back-
facing ones) in 3126 bounding boxes lie inside the view
frustum. Asis apparent in figure 9, it is possible to see
completely through the model in places.

We tested the novel variations of the hierarchical visi
bility algorithm [GKM93] described in section 5, which
traverse the octree front to back, use ztips to cull oc-
cluded boxes, and render the polygons in visible boxes.
First we simulated conditions when the host and graphics




hardware work in unison. While the host traversed the
scene's boxes front-to-back and sent polygonsin visible
boxes to be rendered, the culling stage periodically copied
a 3level ztip (the 4x4, 16x16, and 64x64 levels of the zm-
pyramid) into host memory, which was done 16 times in
the course of rendering figure 8. Total average z-traffic
was 3.58 (2.53 in the zbuffer, 1.05 in the zm-pyramid and z-
tip), which was 109% of the figure for oracle z-buffering.

Next we simulated frame-coherent box culling, begin-
ning figure 8 by rendering the polygons in bounding
boxes that were visible three frames back (frame "F3").
To do this, the host traversed the octree in front-to-back
order, culled occluded boxes with frame F3's ztip (which
had been previously stored in host memory), and sent the
polygonsin visible boxes to be rendered. Frame F-3's ztip
is shown magnified in the left-hand panel of figure 2 and
at actual scale at upper left in figure 8. Then, in a second
front-to-back traversal of the octree, the host used ztips
of the current frame (copied by the culler into host
memory) to identify the visible boxes that remained to be
rendered. In this particular frame, the first pass produced
a nearly complete image, with only 404 pixels overwritten
in the second pass. This indicates that most of work the
host has to do was on the first pass, and this work can be
queued up two frames ahead of the current frame, since
frame's F3's final ztip isavailablethen. Figure 11is pixel-
by-pixd zbuffer traffic for this simulation, wherein z-buffer
traffic is one at 25% of covered pixels and two at 28% of
covered pixels, indicating that no z reads were performed
at 53% of pixels. Total average ztraffic was 3.12 (1.74 in
the zbuffer,1.38 in the zm-pyramid and ztip), which was
81% of the figure for oracle z-buffering. Average z+color-
traffic for optimized_culling was nearly the same as the
figure for oracle zbuffering. Thus, even for this very
complex and deeply occluded scene, optimized culling
reduced image memory traffic as effectively as knowing in
advance which polygons would be visible and rendering
only them.

Since this scene has high frame coherence, there is no
need to use the complementary method of identifying
boxes that are likely to be visible by rendering a low-
resolution image of major occluders and performing box-
visibility tests using this image's ztip, as discussed in
section 5. But to illustrate the method, we rendered a
simple polyhedral model of the skyscraper at 64x64 (lower
half of figure 12) and used its depth image (upper half of
image 12) to test boxes for visibility, which identified the
frontmost parts of the skyscraper as visible. In general,
this method enables the host to identify geometry that is
likely to be visble n any frame for which the camera
transformation is known (or can be approximated),
allowing it to work ahead of graphics hardware and queue
up geometry to be rendered.

"Topiary Tower"
Given bounding boxes and favorable traversal order,
optimized_culling can efficiently cull virtualy any po-

lygona model, because a zm-pyramid represents nearly al
of the occluder fusion of previously processed polygons.
To illustrate that efficiency does not depend on construc-
tion from abutting polygons, as occurs in the skyscraper
model, we constructed

Topiary Tower (figure 13) by stacking topiary balls within
the skyscraper framework, one of which is shown sliced in
half. Even though individual balls make poor occluders,
collectively they occlude very effectively when culling
with a zm-pyramid. For figure 13, ztraffic generated by
optimized_culling was approximately 150% of the figure
for oracle z-buffering.

Note that for this model is highly problematic for
methods that precompute visibility for regions of space,
even those that are able to fuse occluders [Dur00],
because a great deal more is visible from reasonably-sized
view volumes than from a single viewpoint, due to the
multitude of pinhole lines of sight. Although thisisa con-
trived example, real-world scenes such as jungle canopies
have similar occlusion relationships.

Discussion

This article is intended to explore the theoretical per-
formance of our optimized culling algorithm. Clearly, we
do not provide a full discussion of practica implemen-
tation issues or predict relative performance compared
with actual systems. For one thing, our ztraffic com
parisons with standard zbuffering don't account for exist-
ing methods for reducing bandwidth, such as fast clear
and z compression [Mor00]. Also, we assume that values
in the zm-pyramid can be accessed individually, even
though actual systems often perform tile-based memory
accesses. Regarding box culling, our methods assume
that scenes are organized in boxes which can be easily
reordered without affecting the output image, even
though support for this is largely absent in today's
application programs.  Further, our approach doesn't
provide away of anticipating geometry that will be coming
into view, as preconputed visibility methods do [Tel92].
Despite these limitations, we hope that our analysis of
theoretical performance offers incites into practical
applications.
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8 Conclusion

Within zbuffer systems, memory traffic in image val-
ues can be dramatically reduced by including an optimized
conservative culling stage in the graphics pipeline that
employs a zm-pyramid and simple polygon-tiling opera-



tions to cull occluded geometry and identify image sam-
plesthat are actually visible. Commonly, optimized culling
reduces image memory traffic more effectively than
knowing in advance which polygons are visible in the
output image, and rendering only them with standard z
buffering. In some cases, this even applies to rendering
deeply occluded scenes of great visible complexity, pro-
vided that they are organized in bounding boxes and trav-
ersed in approxi mately front-to-back order. These charac-
teristics indicate that integrating optimized culling proce-
dures into hardware pipelines could go a long way
towards enabling real-time animation of complex arbitrary
scenes.

10



References

[Air90] J. Airey, “Increasing Update Rates in the Building
Walkthrough System with Automatic Model-Space Subdivision
and Potentially Visible Set Calculations,” PhD Thesis, Technical
Report TR90-027, Computer Science Dept., UNC Chapel Hill,
1990.

[AMOQ] T. Ailaand V. Miettinen, “Umbra Reference Man-
ual," Hybrid Holding, Ltd., Helsinki, Finland, Oct. 2000.
[Car84] L. Carpenter, “The A-Buffer, an Antialiased Hidden
Surface Method,” Proc. of SGGRAPH '84, July 1984, 103-108.
[CCS00] D. Cohen-Or, Y. Chrysanthou, and C. Silva, "A
Survey of Visibility for Walkthrough Applications,” Sggraph
2000 Course Notes: Vishility, Problems, Techniques, and
Applications, July, 2000.

[Cla76] J. H. Clark, “Hierarchica Geometric Models for
Visble Surface Algorithms” Communications of the ACM
19(10), Oct. 1976, 547-554.

[CT96] S. Coorg and S. Teller, “Temporally Coherent
Conservative Visibility,” Proc. Of 12" ACM Symposium on
Computational Geometry, 1996..

[Dee94] M. Deering, S. Schlapp, and M. Lavelle, “FBRAM:
A new Form of Memory Optimized for 3D Graphics,” Proc. of
S GGRAPH '94, July 1994, 167-174.

[Dur00] F. Durand, G. Drettakis, J. Thollot, and C. Puech,
“Conservative Vishility Preprocessing using Extended Pro-
jections,” Proc. of SGGRAPH '00, July 2000, 239-248.

[Fuc85] H. Fuchs, J. Goldfeather, J. Hulquist, S. Spach, J.
Austin, F. Brooks, Jr., J. Eyles, and J. Poulton, “Fast Spheres,
Shadows, Textures, Transparencies, and Image Enhancementsin
Pixd-Planes,” Proc. of SGGRAPH '85, July 1985, 111-120.
[Fun93]  T. Funkhouser and C. Sequin, “Adaptive Display
Algorithm for Interactive Frame Rates During Visualization of
Complex Virtua Environments,” Proc. of SGGRAPH '93, Aug.
1993, 247-254.

[GBW90] B. Garlick, D. Baum, and J. Winget, “Interactive
Viewing of Large Geometric Databases Using Multiprocessor
Graphics Workstations,” Sggraph '90 Course Notes: Paralld
Algorithms and Architectures for 3D Image Generation, 1990.
[GKM93] N. Greene, M. Kass, and G. Miller, “Hierarchica
Z-Buffer Visibility," Proc. of SGGRAPH '93, July 1993, 231-
238.

[Gred5]  N. Greene, “Hierarchicad Rendering of Complex
Environments,” PhD Thesis, Univ. of California at Santa Cruz,
Report UCSC CRL-95-27, June 1995.

[Gre96] N. Greene, “Hierarchical Polygon Tiling with
Coverage Masks,” Proc. of SGGRAPH '96, Aug 1996.
[Gre99a] N. Greene, “Occlusion Culling with Optimized
Hierarchical Z-Buffering,” Siggraph Technical Sketch, Siggraph
'99 Conference Abstracts and Applications, Aug. 1999.
[Gre99b] N. Greene, “Optimized Hierarchical Occlusion
Culling for Z-Buffering Systems, Siggraph '99 Conference
Abstracts and Applications (CD-ROM only), Aug. 1999.

1

[Hop96] H. Hoppe, “Progressive Meshes,” Proc. of
S GGRAPH '96, Aug 1996, 99-108.

[Hud97] T. Hudson, D. Manocha, J. Cohen, M. Lin, K.
Hoff, and H. Zhang, “Accelerated Occlusion Culling Using
Shadow Frusta,” Proc. Of ACM Symposium on Computational
Geometry, 1997.

[KS01] J. Klosowski and C. Silva, "Efficient Conservative
Visibility Culling Using the Prioritized-Layered Projection
Algorithm, IEEE Transactions on Visualizaion and Computer
Graphics, to appear.

[LG95] D. Luebke and C. Georges, “Portals and Mirrors:
Simple, Fast Evauation of Potentialy Visible Sets” ACM
Interactive 3D Graphics Conference, 1995.

[Mor00] S. Morein, "ATlI Radeon HyperZ Technology"
(dlides outline only), Graphics Hardware 2000, Hot3D Pro-
ceedings, Aug. 2000.

[Mea82] D. Meagher, “The Octree Encoding Method for Ef-
ficient Solid Modeling,” PhD Thesis, Electrical Engineering
Dept., Rensselaer Polytechnic Institute, Troy, New York, Aug.
1982.

[Mued5] C. Mueller, "Architectures of Image Generators for
Flight Simulators,” Tech. Report TR95-015, Dept. of Computer
Science, Univ. of North Carolina, Chapel Hill, 1995.

[Nay92] B. Naylor, “Partitioning Tree Image Representation
and Generation from 3D Geometric Models,” Proc. of Graphics
Interface, 1992.

[Sch00] G. Schaufler, J. Dorsey, X. Decoret, and F. Sillion,
“Conservative Volumetric Visibility with Occluder Fusion,”
Proc. of SGGRAPH '00, July 2000, 229-238.

[Sco98] N. Scott, D. Olsen, and E. Gannett,. “An Overview
of the VISUALIZE fx Graphics Accelerator Hardware,” The
Hewlett-Packard Journal, 49(2), May 1998, 28-34.

[SG99] O. Sudarsky and C. Gotsman, “Dynamic Scene Oc
cluson Culling,” IEEE Transactions on Visualization and
Computer Graphics, 5(1), Jan. 1999.

[Tar99] Gary Tarolli, persona communication, 1999.

[Tel92] S. Teler, “Visbility Computations in Densely
Occluded Polyhedral Environments,” PhD Thesis, Univ. of
California at Berkeley, Report UCB/CSD 92/708, Oct. 1992.
[Tit93] “Dendi Technicad Overview,” Kubota Pecific
Computer, Jan 1993.

[War69] J. Warnock, “A Hidden Surface Algorithm for
Computer Generated Halftone Pictures,” PhD Thesis, TR 4-15,
Computer Science Dept., Univ. of Utah, June 1969.

[XS99] F. Xie and M. Shantz, “Adaptive Hierarchical
Visibility in a Tiled Architecture,” Proc. Eurographics/Sggraph
Workshop on Graphics Hardware, Aug. 1999, 75-84.

[Zha97] H. Zhang, D. Manocha, T. Hudson, and K. Hoff,
“Visihility Culling Using Hierarchical Occlusion Maps,” Proc. of
S GGRAPH '97, Aug. 1997, 77-88.

[Zzha98] H. Zhang, “Effective Occlusion Culling for the In-
teractive Display of Arbitrary Models,” PhD Thesis, Computer
Science Dept., UNC Chapel Hill, 1998.



Winbench *Canyon™

Figure 6a Figure fiy Figure 6 Figure 6

[rmige (Hyect Tag numbier of z-buffer accesses

(trace order) {reverse onder)
1. 11 per sample avg 133 per sample avg,

Lightscape Interior

Figure Ta Figure Th Figure Te Figure 7d
oo % P

Image Cibjeet Tag visible polvgons outlined  number of w-buffer aceesses
! * in white, occluded (reverse ordar)
polvoons cutlined in black 133 per sample avg

actual scale

Figure 12
Simplificed occheder
¥ model supenimposed
sy =y over corresponding
elip

Figure 11, Z-buller accesses gencrated In
opiimized culling when rendering figure 8
with frome-coheront box culling {1.74
aceesses per sample on average). Figure B. opimzed culfing gencrales fewer = reads
ond writes in rendering this scene than “orcle 2-
buffering” (z-buffering just the polygons that ore
actually visible in froni-to-back order)

Figure 9. Wirclrame closcup of skyscraper.

Figure 13. “Topiary Tower™ model creaed by
replacing office modules with topiary balls. Even with
this  pathological  scene.  optimized colling  culls
effestvely because the zm-pyramid exploits nearly all
available oecluder fusion



y
% From-region Visibility
(second part)

Vladlen Koltun
Tel-Aviv University

Visibility Preprocessing using
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Extended projections

» Projection from a P volume
* Overlap and depth tests

* image-space inclusion implies
object-space occlusion (
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Extended projections

Conservative
- intersection for the occluders
- union for the objects
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Occluder fusion

* Projection of the bioct
two occluders objec

- Aggregation in a bitmap i[ (
B E
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Problem of the choice of the plane

The intersections
of the views is null
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The choice of the plane

- Contradictory constraints

group 1%

group 2

cell
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Re-projection
* Re-project the information of plane 1 onto
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Occlusion sweep

Projection and Re-projection
to aggregate the occlusions
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The algorithm

- Identify occluders
* Place projection planes

* Project all occluders onto the
projection planes, and construct HOMs

* For each occludee, project it onto the
closest projection plane, and test
whether occluded
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Volumetric Visibility with
Occluder Fusion

Gernot Schaufler et.al.
SIGGRAPH 2000
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Scene Discretisation

From polygonal representation
to a volumetric representation
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Voxel Classification

- Classify voxels that are occluded by
opaque voxels as opaque.

- Conceptually equivalent to strong occlusion

e T ?ﬁ“

Blocker extension

- Adjacent opaque voxels are merged into
larger blockers to yield larger occlusion

Occlusion of a Occlusion of a
single voxel combined occluders
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Extend blockers into hidden
regions (iteratively)
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Results

Without blocker extension
(strong occlusion only)
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Occluder Fusion by Occluder
Shrinking and Point Sampling

Peter Wonka et.al.

EGRW' 2000
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Shrink the occluder by ¢ and compute its
occlusion from a point P (in red), then the
occlusion is valid for an e-region around

Occluder

Conservative
umbra for
e-neighborhood

Sample point \
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Occluder

/ Fused umbra

View
cell

Single Occluder umbra

Apply occlusion culling
from a set of points
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If we shrink the

= _F occluders by € then
- the aggregate umbra
“F is small | (see the
yellow sight ray)
0 2 &
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Hardware-Accelerated from-
Region Visibility using a Dual
Ray Space

Vladlen Koltun
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Overview of the new method

 Place the scene in

an axis aligned T T R COO ]

partitioning
tree (kd-tree)

- Select a region of interest ____

(viewcell) izt

- Traverse the kd-tree g
hierarchically top-down P

* At each step decide if
node is visible
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Determine Visibility Between
Two Boxes

+ Q! given two axis
aligned boxes (A, B)
and a set of
occluding objects
(S),are Aand B
mutually visible?
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Reduction to a Planar Problem

- Assumption: All
occluders are xy-
monotonic

- Observation: A and
B are mutually
visible if and only if
their upper rims are
visible
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Reduction to a Planar Problem

Visibility between A and B is equivalent to
visibility inside the plane T

By

Top view Side view
SIGGRAPH 2001
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Planar Visibility Test

- Q:given two edges, s,

and s, in the plane and
a set of occluder edges
O, are the edges —
mutually visible?

» Linear separation, O(n?)
on the number of )
occluder edges
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The Dual Ray Space

0 S, 1

Ray Poin? in
in R? Ray Space

0 Sll

Ray Space

2
SR SIGGRAPH 2001

14



The Dual Ray Space
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The Dual Ray Space

0 S, 1 +S,

0 Sll

Ray Space
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Hardware Accelerated

* Render all the trapezes and double-triangles (the
segments in the dual space)

* Check whether the frame buffer is fully covered
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Results

- Visibility for a 100x100
viewcell is computed in
2.5 seconds on average

- It takes 60 seconds to

walk 100 meters with a
speed of 6 km/h

* It can be employed on-

line, without
preprocessing!
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Demo

2D oferview
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xy-monotone occluders

- Commercial Virtual Environments
usually model realistic scenes, e.g.
urban and architectural environments

- xy-monotone occluders can be
synthesized (e.g. by techniques similar
to [Andujar et.al., CAD 2000])

* Our approach is not as restrictive as
assuming xy-monotonicity of the whole
scene. SIGGRAPH 2001

Ensuring conservativity

« Shrinking is employed to ensure that only
pixels that are fully covered are colored

* The edges are moved inward by (¥2/2)a,
where a is the pixel size

SIGGRAPH 2001
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Results

« Visibility for a 100x100 viewcell is
computed in 2.5 seconds on average

« It takes 60 seconds to walk 100 meters
with a speed of 6 km/h

* From-region visibility can be employed
on-line, without preprocessing!

SIGGRAPH 2001

On-line from-region visibility

* No lengthy preprocessing

* No enormous preprocessing results
* No unnecessary network lag

* Real-time frame-rates
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Thank you
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