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The combinatorial search problem arising in feature selection in high dimensional spaces
is considered. Recently developed techniques based on the classical sequential methods
and the (/,r) search called Floating search algorithms are compared against the Genetic
approach to feature subset search. Both approaches have been designed with the view
to give a good compromise between efficiency and effectiveness for large problems. The
purpose of this paper is to investigate the applicability of these techniques to high di-
mensional problems of Feature Selection. The aim is to establish whether the properties
inferred for these techniques from medium scale experiments involving up to a few tens of
dimensions extend to dimensionalities of one order of magnitude higher. Further, relative
merits of these techniques vis-a-vis such high dimensional problems are explored and the
possibility of exploiting the best aspects of these methods to create a composite feature
selection procedure with superior properties is considered.

1. INTRODUCTION

The problem in Feature Selection (FS) can be easily stated as the search for a sufficiently
reduced subset of, say, d features out of the total number of available ones, D, without
significantly degrading (or even improving in some cases) the performance of the resulting
classifier when using either set of features. This search problem is driven by a certain
measure of performance or criterion function which is used to assess the validity of each
feature subset. This criterion has to be related to the final performance measure of the
resulting classifier, i.e. its recognition rate.

Recently the battery of tools for feature selection [2] has been augmented by a few im-
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portant techniques. First of all, the family of sequential feature set search procedures [5]
has been extended by the Floating Sequential Search Methods [7] in which the number
of forward and backtracking steps is dynamically controlled instead of being fixed before
hand as in the plus [ — take away r algorithm (or (I, r)-search [10]). Other important con-
tributions include the approaches based on Genetic Algorithms (GA) [9,3] which appear
to offer an attractive alternative to heuristic tree search methods. However, none of these
techniques has been thoroughly tested on large scale feature selection problems, involving
hundreds rather than tens of features.

The purpose of this paper is to investigate the applicability of the recently proposed
techniques to high dimensional problems of FS. The aim is to establish whether the
properties inferred for these techniques from medium scale experiments involving up to
a few tens of dimensions extend to dimensionalities of one order of magnitude higher.
Further, relative merits of these techniques vis-a-vis such high dimensional problems will
be explored and the possibility of exploiting the best aspects of these methods to create
a composite feature selection procedure with superior properties will be considered.

In the next section the different approaches to FS considered in this work are out-
lined and its main similarities and differences are put forward. Section 3 discusses some
implementation details about the particular type of F'S problems considered. All the ex-
periments carried out to validate the conclusions presented in this paper are explained in
Section 4 and the main implications of the results obtained are discussed in Section 5.
Section 6 sumarises the main conclusions about the presented work.

plus | — take away r Algorithm

Input: Y={y; | j=1,...,D} //available measurements//
Output: Xe=Az; | j=1,...0k 2;€Y}, k=0,1,...,D
Initialisation: if I >r then k:=0; Xy:=0; go to Step 1
else k:=D; Xp:=Y; go to Step 2
Termination: Stop when k equals the number of features required

Step 1 (Inclusion)
repeat | times

2t o= arg max J(Xj + 2) {the most significant fea-

z€Y — Xy ture? with respect to X,
Xpp1:=Xp+at; ki=k+1
go to Step 2

Step 2 (Fzclusion)
repeat r times

- _ the least significant
o= arg ;rel%()i J(Xk =) {feature in Xj,
Xp1r=Xp—2; k=k-1

go to Step 1

Figure 1. plus | — take away r algorithm.

?Note that we mean by this that =% satisfies J(X} + %) = max. J (X% + )
rEY —Xi



2. FEATURE SUBSET SEARCH ALGORITHMS

2.1. Sequential Search Algorithms

The well-known Sequential Forward Selection (SFS) and its backward counterpart
(SBS) are suboptimal methods that obtain a chain of nested subsets of features in a
straightforward manner, i.e. by adding (substracting) the locally best (worst) feature in
the set. This nesting effect constitutes one of their main drawbacks. The algorithms can-
not correct previous additions (deletions) of features. This methods are particular cases
of the more general plus [ — take away r method [10].

The plus | — take away r method also called (/,r) method, consists of applying SFS
during [ steps followed by r steps of SBS with the cycle of forward and backward selection
repeated until the required number of features is reached. Even though with this proce-
dures the problem of nested features can be partially overcome, other important problem
arises. There is no way of predicting the best values of [ and r to obtain good enough
solutions with a moderate amount of computation.

The plus | — take away r method and consequently the SF'S and SBS methods (respec-
tively (1,0) and (0,1) methods) can be conveniently expressed as shown in Figure 1.

SFFS Algorithm

Input: Y ={y; | j=1,...,D} //available measurements//
Output: Xe=Az; | j=1,...0k 2;€Y}, k=0,1,...,D
Initialisation: Xo:=0; k:=0

(in practice one can begin with & = 2 by applying SFS twice)
Termination: Stop when k equals the number of features required

Step 1 (Inclusion)
+ . X
vTi=arg max J(Xi + )

Xppr = Xp+at; ki=k+1
Step 2 (Conditional Exclusion)

the most significant fea-
ture with respect to Xy

_ the least significant
o= arg ;rel%()i J(Xk —2) {feature m Xi
if J(Xp—A{27})> J(Xp-1) then
Xp1r=Xp—2; k=k—-1
go to Step 2
else

go to Step 1

Figure 2. Sequential Floating Forward Algorithm.

The aim behind the above methods can be more efficiently implemented by considering
conditional inclusion and exclusion of features. The Sequential Floating Forward Selection
(SFFS) procedure consists of applying after each forward step a number of backward steps
as long as the corresponding subsets are better than the previously evaluated ones at that



Genetic Algorithm

Input:
P Randomly initialised population
PeyPm: Crossover and Mutation rates
MAXGEN: Maximum number of generations

N: Population size, |P|
Output:

x: Best individual from current P
Method:

EvaluateFitness(P)

while (generation<MAXGEN)A (NotConvergence) do
M «— Recombine(P)
0O « Crossover(M,p.)
O — Mutate(O,p,)
EvaluateFitness(P)
P« Select(P,0)
generation ¢« generation + 1
endwhile

Figure 3. Genetic Algorithm.

level. The same applies for the Sequential Floating Backward Selection (SBFS) procedure.
Thus backtracking in these algorithms is controlled dynamically and, as a consequence,
no parameter setting is needed at all. A detailed description of these algorithms is given
in [8]. An outline of the SFFS algorithm is shown in Figure 2

2.2. The Genetic Algorithm Approach

The GA approach to FS constitutes a different way of looking for features since it
allows a randomised search guided by a certain fitness measure. GAs are a class of search
methods deeply inspired by the natural process of evolution. In each iteration of the
algorithm (generation), a fixed number (population) of possible solutions (chromosomes)
is generated by means of applying certain “genetic” operators in a stochastic process
guided by a fitness measure. The most important and commonly used genetic operators
are recombination, crossover and mutation. The result is a probabilistic algorithm which
obtains good (nearly optimal) solutions for problems in which classical methods fail or
are not applicable. A particular GA is identified by a particular method of coding the
solutions into strings of some alphabet (usually binary), a particular form of the genetic
operators adopted, and a particular definition of the fitness function.

The coding used to represent feature subsets consists of strings of D bits, a4, ..., ap,
where «; = 1 if the feature ¢ is in the subset and «; = 0 otherwise. This coding allows
the use of all the standard genetic operators.



The first GA approach [9] incorporates an appropriate penalty function to force the
algorithm to search those feature subsets near to the feasibility boundary (threshold on
the criterion function). Even though it was shown that this approach compares favourably
with the (2,1)-search for a 30-dimensional problem using error estimates of the 5-Nearest
Neighbour rule, no study of other criterion functions and how this approach behaves as
the dimensionality increases has been reported.

The other GA approach has been shown to be a kind of randomised backward search [3].
The approach consists of allowing the algorithm to select the best subsets depending on
its criterion only and then progressively weighting the solutions to make the algorithm
finish with the prespecified number of features. This algorithm was shown to perform rea-
sonably well as compared to sequential methods including Floating search. But a number
of problems arise specially for large dimensionalities mainly due the above mentioned
backward behaviour.

3. IMPLEMENTATION DETAILS

The main problem when applying F'S to large dimensional problems comes from the fact
that the criterion function must be evaluated in spaces of high dimensionality. Specially
when parametric approaches to classification are used, the inversion of (possibly rank
deficient) covariance matrices can lead to serious problems. From this point of view the
forward methods are better suited for this kind of problems because one can go forward
until the matrices cannot be inverted.

As a consequence of this, only the different sequential forward approaches are considered
in this study. In particular, in the experiments reported in the next section, only the
results corresponding to the SFFS method (the best) and to the SF'S method (for reference
purposes) are explicitly shown in the figures.

For the same reason, only the first genetic approach is considered for the experimental
study considering large problems. In this approach, the smallest subset of features for
which the criterion function is above a certain specified feasibility threshold is searched for.
To allow the GA to handle this constrained optimization problem, the following penalty
function is introduced [9].

J—t

o)) = —— (1)

where t and m are the feasibility threshold and margin respectively. The feasibility margin,
m, controlls the width of the search by changing the weighting function. From this penalty
function the criterion to be minimised by the GA is constructed for each feature subset,

X;, as
F(Xi) = [Xi| + o(J (X)) (2)

This function can readily be converted into a standard fitness function to be used with
the GA using the maximum value of F' at each generation. For example, as in [9].

F(X0) = (L4 ) pax F(Y,) = F(X0) (3)



The particular GA settings used in this study consists of the usual 2-point crossover
and mutation along with the rank-based selection scheme with an elitist strategy [4].

The particular value of the feasibility threshold, ¢, will be selected according to the
available knowledge about the problem. In principle, a sequential method can be used
prior to the application of the GA, and then, the parameter ¢ is fixed according to the
result obtained with this method. the search. The results obtained may depend on the
parameter m, but, as in the original paper, we have found a value of m between .01/,
and .005.J,, particularly suitable for a wide range of problems, where .J,, is either the
maximum obtained value of the criterion or 1 if we use the recognition rate as a criterion
function.

4. EXPERIMENTS

We consider first a 20-dimensional Diagnostic problem [1] for which both floating and
GA approaches seem to perform reasonably well using various criterion functions with
the only difference that all GA approaches need a certain “parameter tuning”. Moreover,
GA approaches cannot benefit from the fast computation of probabilistic distances and
consequently they are highly inefficient in this case.
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Figure 4. Recognition Rate for different number of features ob-
tained by SFS, SFFS and Exhaustive search. Different runs of the

GA are also shown using symbols.

Figure 4 shows the results obtained with the GA with different feasibility threshold
values using the parameter setting suggested in [9], compared to the optimal and SFFS



ones considering the recognition rate as a criterion function (when the Mahalanobis or
Battacharyya distances are used, all the methods considered obtain approximately the
same —good— results for this problem). For this medium size problem both approaches
obtained similar results. Note, the GA led to the optimal solution in comparable time
(about 1500 subset evaluations) even taking into account the need to run it a number
of times to achieve good performance. In this experiment, the GA was run 10 times for
each value of ¢ and, in more than half of the cases the GA obtained better or the same
results than the SFF'S ones (the figure can be misleading in this sense because each plotted
symbol may represent more than one result).
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Figure 5. Results of Feature Selection obtained by SFS and SFFS
methods for the D = 30 experiment. Crosses and asterisks show the
results corresponding to different runs of the GA with two different
values of the threshold parameter.

We then considered a document recognition problem in which the problem consists of
discriminating between correct and defective records of banking documents consisting of
360 optical measurements. Previous experimentation showed that both classes could be
conveniently modelled by Gaussian distributions.

To study the behaviour of the different methods as the dimensionality increases, we
considered different subproblems acording to the number of features taken into account
in the FS process. In particular, values of D = 30, 50, 120 and 360 were considered.
For this time-consuming experiment only the (generalised) Mahalanobis distance was
considered as criterion function.

In order to minimise the effects of random starting points in the GA optimisation pro-
cess, 20 different runs of the GA were carried out in the D = 30 and D = 50 experiments,



2.5

Q
o
c
g
2
o
220 2
o
c
s
©
<
g —— SFFS
—— SFS
* GA (t=2.0)
X GA (t=2.3)
1.5\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
5 10 15 20 25 30 35 40

Number of features

Figure 6. Results of Feature Selection obtained by SFS and SFFS
methods for the D = 50 experiment. Crosses and asterisks show the
results corresponding to different runs of the GA with two different
values of the threshold parameter.

and only 5 runs in the D = 120 and D = 360 ones. In all the cases the GA was forced
to stop when the total number of trials (criterion functions evaluated) reached the same
number of trials as for the SFFS algorithm (approximately, 5000, 15000, 100000 and
500000°). Both SFS and SFFS results are displayed in the figures along with the GA
results for comparison purposes.

Althoug many different parameter settings were tried for the GA approach (both genetic
options as well as criterion threshold and margin), only the results corresponding to the
ones explained in Section 3 are shown in the figures.

For the D = 30 subproblem, the Figure 5 shows that the results of the GA algorithm
are quite similar to the ones from SFFS. Some of the GA runs obtained better results
than the SFFS.

Figure 6 shows the corresponding results for the D = 50 subproblem. The results
obtained in this case for both approaches exhibit the same behaviour as in the previous
subproblem. The results obtained by the GA range from the “good” ones from SFFS to
the “bad” ones from SFS.

This tendency of the GA to obtain deteriorating results as the dimensionality increases
is clearly confirmed in Figure 7 in which the results corresponding to D = 120 are shown.
In this case, some of the results from the GA are even worse than the ones from SFS.

The results for the original problem with D = 360 are even more discouraging from

3in the case D = 360 the SFFS and SFS algorithms were only run from d = 1 to d = 120
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Figure 7. Results of Feature Selection obtained by SFS and SFFS
methods for the D = 120 experiment. Crosses and asterisks show
the results corresponding to different runs of the GA with two dif-
ferent values of the threshold parameter.

the point of view of the GA approach compared to the SFFS algorithm. In fact, the GA
results hardly approached the results of the SFS algorithm.

Additional experimentation has been carried out to test both approaches in a more
realistic case when the criterion function used is known to be nonmonotonic. To this end,
estimates of the recognition rate of the gaussian classifier are used as criterion function
and experiments for D = 50 and D = 360 only where repeated.

The results corresponding to D = 50 are shown in Figure 8. The time-consuming case
of D = 360 was repeated only 5 times for the GA approach and from 1 to 80 features for
the SF'S and SFFS algorithms.

In the “full” experiment, D = 360 using the recognition rate as criterion function,
the SFFS algorithm allowed us to obtain feature subsets of up to 80 features using the
recognition rate as a criterion function. The best solution consisted of 76 features with
99.9% recognition rate while the best solution obtained by the GA for this problem was a
subset of 74 features with a 97.6% recognition rate. For this experiment the GA was forced
to stop so that the number of subsets evaluated by both approaches were approximately

the same as for the SFFS algorithm (50,000).

5. DISCUSSION

From the results obtained for both families of methods it is possible to draw some
conclusions. In principle, this work confirms the results in [9] about moderate size (20 —
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Figure 8. Results of Feature Selection obtained by SFS and SFFS
methods for the D = 50 experiment using the recognition rate as
a criterion function. Crosses and asterisks show the results corre-
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the threshold parameter.

30 features) problems. In this case the only contribution consists of comparing the GA
with the SFFS algorithm. In this sense, we can say that both algorithms obtain similar
results both in performance and efficiency.

The other interesting fact is the behaviour of both approaches when the dimensionality
increases. As we can see in the figures, this effect makes the GA results worse and worse
on average. It appears from these experiments, that the region of the search space the
GA needs to explore increases faster than the region searched by the SFFS algorithm.
If this were true it would be in contradiction with the conclusions in [9] where a linear
increase of time complexity was postulated for this GA approach!

Another interesting behaviour that can be extracted from these experiments is the
dependence of the GA results on the problem and, in particular, on the shape of the
criterion function. Obviously, the feasibility threshold defines a kind of “hyperplane” in
the search space. The particular shape and size of the subspace affects the genetic search
for D fixed. This could be the reason for the different results obtained for the same
problem with different values of ¢. For example, in Figure 8 the GA outperforms the
SFFS method if ¢ = .80. But, for ¢ = .85 the GA results are quite far from the best
obtained by the SFFS method.



6. CONCLUDING REMARKS

From the experimental results obtained it appears that the Floating methods yield
very good performance even for high dimensional problems. Although the GA approach
gives reasonable solutions, some of the problems that arise make them of limited appli-
cability in general. However, the GA approach has a significant advantage in its ability
to perform the search in the near-optimal region of the space by virtue of the inherent
randomisation mechanism employed in searching. This fact can be exploited to hybridise
the GA approach with sequential methods in order to benefit from the best features of
both approaches. Some tentative experiments using SFS and SFFS methods to partially
initialise the population have been carried out. The results confirm a well-known effect in
GA theory. When a “too good” solution is found, the genetic search is disabled because
of the so-called premature convergence. As a consequence of this the results obtained
were worse than the presented ones. A number of different approaches to maintain the
diversity of the search in the GA have already been proposed [4,6]. Apart from this,
another approach in which the floating search were embedded into the genetic operators
appears to be a more attractive way of hybridising the GA.
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