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TWO SHEAF CONSTRUCTIONS FOR NONCOMMUTATIVE RINGS 

Jonathan S. Colan 

0. Introduction and background. There are two different methods of associating 

a sheaf of rings with a general noncommutative ring. The first of these, introduced by 

Pierce [8], has since been extended by Burgess and Stephenson [3,4] and by Bergman 

[2]. In [3], Burgess and Stephenson describe these sheaves for various classes of 

noncommutative rings, particularly for rings regular in the sense of Von Neumann. In 

[4] they make use of these sheaves to develop a structure theory for rings and apply 

this theory to various rings the properties of which are expressible in arithmetic, as 

opposed to module-theoretic, terms. The second method, first introduced in [5], 

involves the construction of a monopresheaf over the set of all prime torsion theories 

on the category of left modules over the ring and then the embedding of this 

monopresheaf into its associated sheaf. This was used for constructing the foundations 

of a representation theory for general noncommutative rings, the consideration of 

which has been extended in [6,7,1 1 ]. In particular, the results in [6] are used to lay 

the basis for an "algebraic geometry" over noncommutative rings. The purpose of this 

paper is to show the relation between these two constructions. 

Throughout the following, R will denote an associative (but not necessarily 

commutative) ring with unit element 1. All modules and module homomorphisms will 

be taken from the category R-mod of unitary left R-modules. The complete 

brouwerian lattice of all (hereditary) torsion theories on R-rood will be denoted by 

R-tors. Notation and terminology concerning R-tors will follow [ 5 ]. In particular, if M 

is a left R-module then •(M) will denote the meet of all torsion theories in R-tors 

relative to which M is torsion and x(M) will denote the join of all torsion theories in 

R-tors relative to which M is torsionfree. The unique minimal element of R-tors is then 

• = •(0) and the unique maximal element of R-tors is then X = X(0). If r • R-tots then 

we denote by Tr(M) the r-torsion submodule of a left R-module M and by R r the 
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quotient ring of R at 7. A left R-module N is said to be r-cocritical if and only if N is 

r-torsionfree but every proper homomorphic image of N is r-torsion. Elements of 

R-tots of the form x(N), where N is a nonzero left R-module which is cocritical with 

respect to some element of R-tors, are said to be prime. The family of all prime 

elements of R-tots is called the left spectrum of R and is denoted by R-sp. 

1. Skeletal torsion theories. If (L, v, ^) is an arbitrary complete brouwerian 

lattice then every element a of L has a meet pseudocomplement. That is to say, there 

exists a unique element a* of L satisfying the conditions 

(1) a ^ a*=0L; 

(2) If b is an element of L satisfying a ^ b = 0 L then b •< a*. 
Elements of L of the form a* for some a E L are said to be skeletal (some sources use 

the much-overworked term regular) and the set of all skeletal elements of L is called 

the skeleton of L. It is easily checked that an element a of L is skeletal if and only if 

a** = a. If L is a complete brouwerian lattice with skeleton S then we can define a 

new binary operation _v on S by setting a _v b = (a v b)**. By Gl;venko's Theorem [ 1, 
page 157] the lattice (S,_v, A) is boolean. Moreover, the map L • S given by a • a** is 

an epimorphism in the category of distributive lattices [ 1, page 158]. 

Since the lattice R-tots is brouwerian [9], every (hereditary)torsion theory 

r E R-tots has a meet pseudocomplement which, in order to conform to the notation 

of [5], we will denote by r -L. This meet pseudocomplement can be characterized as 
follows: 

PROPOSITION 1. [ 10] If r E R-tots then r -L= ̂ ( x(M)IM is a r-torsion simple 
left R-module }. 

In particular, we note that, the meet-pseudocomplement of any t•rsion theory in 

R-tors is semiprime (which is to say that it is the meet of prime torsion theories) or 

equals X. Using Proposition 1, it is straightforward to characterize the skeleton of 

R-tors. 

PROPOSITION 2. A torsion theory r ER-tors is skeletal if and only if 

r = ^ (x(M) IM E A) for some set A of simple left R-modules. 

PROOF. Let R-simp be a full set of representatives of isomorphism classes of 

simple left R-modules. By Proposition 1, we see that every skeletal torsion theory on 
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R-mod is of the desired form. Conversely, let A be a subset of R-simp and let r = 

,x {x(M)IM EA}. Set B = R-simp'xA. We claim that B = {M' E R-simpIM' is r-torsion}. 

Indeed, if M' • B then by Proposition 12.2 of [5] we see that M' is x(M)-torsion for 

each M • A and so M' is r-torsion. Conversely, if M' is r-torsion then surely M' • B. 

Therefore, using Proposition 1, we have r ñ = ̂  {x(M')IM' • B} and, using the same 
argument again, we get r -l-l- = ̂  { x(M)IM E A} = r. Therefore r is skeletal. 

Let us denote the skeleton of R-tors by R-skel. Then, using Glivenko's Theorem 

as previously cited, we see that R-skel can be turned into a boolean lattice by defining 

on it a new join operation _v defined by r 1 v_ r 2 = (r 1 v r2 )ll. 
2. Central idempotents. Let B(R) denote the set of all central idempotents of 

the ring R. Then we can turn B(R) into a boolean lattice (B(R),•,©) with lattice 

operations defined by 

e•f=e+f-ef 

and 

e©f=ef. 

If e • B(R) then Re is an idempotent ideal of R and so e defines a centrally-splitting 

torsion theory r e • R-tors characterized by the condition that a left R-module M is 

re-torsion if and only if eM = 0. Note that r 0 = X, rl = •, and that, for every e • B(R), 

we have r e = •(R/Re) = •(R(l-e)). 

PROPOSITION 4. If e • B(R) then Tre(R) = R(1-e) and Rre Re. 
PROOF. Clearly R(1-e) is re-torsion. Moreover, if r E Tre(R) then re = 0 so 

r = r - re = r(1-e) • R(1-e). Thus 

Re R/R(1-e) R/Tre(R) C = = _ Rr e- 

To show that we in fact have equality it suffices to show that Re is re-injective, 

namely that it is injective relative to every embedding 0 • R I -• R, where I is a left 

ideal of R satisfying the condition that R/I is re-torsion. Indeed, if I is such a left ideal 
of R then I = Ie ß l(1-e). Moreover, e(R/I) = 0 so Re C I whence Re C_ Ie. Therefore 

Ie = Re and so I = Re * I(1-e), where I(1-e) is a re-torsion left R-module. Since Re is 

re-trosionfree, this means that the restriction of any R-homomorphism a: I -• Re to 

I(1-e) must be the O-map and, thus, any such a can be extended to an 

R-homomorphism from R to Re. This is just what we wanted to prove. 
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We now establish a canonical embedding of B(R) into the boolean lattice R-skel. 

PROPOSITION 5. If R is a ring then the function 

0: (B(R),*,©) -• (R-skel,v, ^) 

defined by O: e w, re• iS an embedding in the category of boolean lattices. 
PROOF. If e G B(R) then we claim that re •= rl_ e in R-tors. Indeed, ifM is a left 

R-module which is (r e ^ rl_e)-torsion and if m C M then em = 0 = (1-e)m, so m = 0. 
ñ 

Thus r e ^ rl_ e = •, which implies that r e >• rl_ e. Assume that this inequality is strict. 
_1_ . 

There then exists a nonzero left R-module M which is re-tOrsion and r l_e-torsionfree. 

If 0 4= m C M then (1-e)m 4= 0. But e(1-e)m = 0 and so (1-e)m • Tre(M) , contradicting 
ñ 

the fact that M is re-torsion and hence re-torsionfree. Therefore we must have 

r e = rl_ e. In particular, this implies that re lj- = rl_(l_e) = r e and so r e G R-skel for each 
e G B(R). 

If e,fG B(R), we claim that r e v rf = ref. Indeed, if M is a re-torsion left 

R-mo dule then eM = 0 and so efM = 0. Therefore r e •< ref and, similarly, rf •< ref. This 

implies that r e v rf •< ref. To show the reverse inequality, let M be a left R-module 

which is (r e v rf)-torsionfree. If 0 4= m C M then em 4= 0 and so f(em) 4= 0. Therefore 

efm -• 0 for all 0 4= m G M, which implies that M is ref-torsionfree. Therefore ref •< 

r e v rf and so we have equality. Since ef G B(R), this implies that r e v rfis skeletal, 

and thus r e v rf -- r e v_ rf for all e,f G B(R). 

Next, we claim that, if e,fGB(R), then r e ^ rf = re, f. Incieed, if M is a 

(r e ^ rf)-torsion left R-module and if m C M then em = 0 = fm, and so (e * f)m = 0. 

Thus r e ^ rf •< re, f. Conversely, if M is a re,f-torsion left R-module and if m G M 

then 0 = (e * f)em = em and 0 = (e * f)fm = fm, and so M is (r e ^ rf)-torsion. Thus 

re, f = r e ^ rf. 

Therefore, making use of the above claims, we see that if e,f G B(R) we have 

(1) 0(e * f) = re, f = rl_(e,f ) = r(l_e)(l_f) = rl_ e v rl_ f = 0(e) v 0(f); 
_L 

(2) 0(e © f) = ref = rl_ef = r(l_e),(l_f) = rl_ e ̂  rl_ f = 0(e) ̂  0(f); 

(3) 0(l-e) = rl_ e = r e = 0(e) ñ. 
Thus 0 is a morphism in the category of boolean lattices which is clearly an 

embedding. 
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3. The Pierce spectrum. A subset P of the boolean lattice B(R) is said to be a 

prime ideal of B(R) if and only if the following conditions are satisfied: 

(1) Ife,fEPtheneSfEP; 

(2) If e E P and f E B(R) then ef E P; 

(3) If e,f G B(R)•P then ef E B(R)•P. 

The set of all prime ideals of B(R) is called the Pierce spectrum of R and will be 

denoted by Pspec(R). Every prime torsion theory on R-mod defines a prime ideal of 

B(R), as the following result shows. 

PROPOSITION 6. If •r E R-sp then W•r = (e E B(R)10(e) •< •r} is an element of 
Pspec(R). 

PROOF. If e,f E W•r then 0(e ß f) = 0(e) v 0(f) •< •r and so e ß f E W•r. If e E W•r 

and if f E B(R) then 0(ef) = 0(e) ̂  0(f) •< •r and so ef E W•r. If e,f E B(R)\W•r then 
0(e) d• •r and 0(f) d• •r. By Proposition 19.1 1 of [5] this implies that 

0(eO = 0(e) ^ 0(0 q; •r 

and so ef G B(R)\W•r. 
For any e G B(R), let V(e) = (P G Pspec(R)le ½ P} = (P G Pspec(R)ll-e G P}. 

Then the function e • V(e) is an embedding of B(R) into P(Pspec(R)) in the category 

of boolean lattices. Moreover, one can define a topology on Pspec(R), called the Stone 

topology, by taking as a subbase of open sets the family (V(e)le • B(R)}. See [ 1 ] for 

details. 

For any r G R-tors, let pgen(r)= {•r G R-spl•r>•r}. Then one can define a 

topology on R-sp, called the basic order topology, by taking as a base of open sets the 

family (pgen(•(R/I))1I a left ideal of R}. See [5] for details. 

PROPOSITION 7. If R-sp is topologized with the basic order topology, and 

Pspec(R) is topologized with the Stone topology, then the function 

co: R-sp -> Pspec(R) defined by co: rr •> Wrr is continuous. 
PROOF. If e G B(R) then 

co -1 (V(e)) = (•r G R-sp IW•r G V(e)} 
= (•r G R-sp le • W•r} 

= {•r • R-spl0(e) • •r} 
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and this is an open subset of R-sp. 

= {,r G R-sp10(1-e) •< ,r} 

= pgen(r e) = pgen(•(R/Re)) 

We can define a sheaf of rings on the space Pspec(R), topologized with the Stone 

topology, by assigning to each open set of the form V(e) the ring Re. (This uniquely 

defines the sheaf since the family of all sets of the form V(e) is a subbase for the Stone 

topology on Pspec(R).) This construction was defined by Pierce [8] and later 

extended in [2,3,4]. We will call this sheaf the Pierce Sheaf of R and denote it by 

S(_). We can also define a monopresheaf of rings Q(_,R) on the space R-sp, 

topologized with the basic-order topology, by setting Q(U,R) = R ̂ U for any open 
subset U of R-sp. This construction was introduced in [ 5 ]. We say that a ring R is left 

semidefinite if and only if r = ^ pgen(r) for every r • R-tors. The class of all left 

semidefinite rings is quite large and includes, for example, all rings having left Gabriel 

dimension (these are the left seminoetherian rings). See Section 20 of [5]. 

The Pierce sheaf over a left semidefinite ring may be far from trivial. For 

example, consider the ring R defined in the following manner: for each prime integer 

p •> 2, let Zp be the field of integers modulo p. Let S = II p•>2Zp and let R be the 
smallest subring of S containing A = Zp>•2Z p and the multiplicative identity 1S of S. 
Then R is a ring having infinitely-many central idempotents and hence a nontrivial 

Pierce sheaf. Moreover, the elements of R are of the form n l S + a for n G Z and 
a G A.. We claim that R is left semidefinite and, to prove this, it suffices to prove that 

every nonzero left R-module has a cocritical submodule [5]. Indeed, let Rx be a 

nonzero cyclic left R-module. If Ax 4= 0 then there exists a prime i•teger p for which 
Zp Cq (0:x) = 0 and so Zp is isomorphic to a submodule of Rx. But Zp is simple as a 
left R-module and so is surely cocritical. If Ax = 0 then Rx is isomorphic to a 

homomorphic image of R/A and, hence, to Z or to Zn, for some integer n. But Z is 

clearly cocritical as a left Z-module and hence as a left R-module, while Z n has a 

simple (and hence cocritical) submodule. This proves that R is left semidefinite. 

If R is a left semidefinite ring then we note that 

Q(pgen(r),R) = R r for every X 4= r • R-tors. 

Since •(_,R) is a monopresheaf, it can be embedded in a sheaf of rings Q(_,R). If R is 
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sufficiently nice, then Q(_,R) has the property that its stalk at •r C R-sp is just R•r. See 
[6,7,11 ] for details. 

We now use the above discussion to characterize the sheaf S(_) in terms of the 

monopresheaf Q(_,R). 

PROPOSITION 8. If R is a left semidefinite ring then S(_) = co,Q(_,R), where 

co.Q(_,R) is the direct image of Q(_,R) defined by the continuous map co. 

PROOF. Recall that the direct image co.Q(_,R) defined by co is the presheaf on 

Pspec(R) defined by the condition that for any open subset W of Pspec(R) we have 

co,(W,R) = (co-1 (W),R). 

In particular, for any e G B(R) we then have 

co,•(V(e),R) = •(co-1 (V(e)),R) 

= Q(pgen(re),R ) 

= R ̂  pgen(re) 
= Rre = Re = S(V(e)). 

Since two monopresheaves which agree on a subbase are equal,. this implies that 

= S(_). 
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