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Abstract

If market ‘selection’ works, and if innovation leads to greater efficiency (higher quality and/or 
lower costs), then one should expect to find a relationship between innovation and firm 
growth. Yet the empirical evidence for the impact of innovation on firm growth is rather 
mixed.

The paper looks at the relationship between innovation and firm growth, and the effects of 
this relationship on market structure for the pharmaceutical industry (firms quoted on the US 
stock market between 1950-2003 and sub-periods).  We find that innovation (proxied via 
R&D spending, patents and citations) affects growth rates only for firms with particular 
characteristics.  These are firms that are persistent innovators, have biotechnology alliances, 
and are small. This suggests that market selection operates on a mix of firm characteristics.  
Furthermore, it is precisely firms with these characteristics which shape the ‘complex’ 
patterns in industry structure which have recently caused many industrial economists to 
puzzle over the non-gaussian properties of firm size and growth (e.g. bimodality of firm size 
distributions and fat tails in the growth distributions).    
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1. Introduction 
Both evolutionary and neoclassical approaches to market selection assume that more 

efficient firms grow more, and since innovation is aimed at achieving higher efficiency, this 

translates to an assumption that on average more innovative firms (firms with lower costs 

and/or better products) should grow more than less innovative ones (Friedman, 1953; 

Nelson and Winter, 1982). Yet the literature linking innovation to firm growth is inconclusive.  

In some cases it even appears that innovation has a negative effect on firm growth (Brouwer 

et al., 1993).  Furthermore, the finding that firm innovation (patents) and firm profits exhibit 

more ‘persistence’ than firm growth rates has also caused confusion amongst industrial 

economists on how market selection dynamics translate into the time series properties of 

firm performance (Geroski and Machin, 1992).  And studies using non-parametric 

techniques, which allow growth and size distributions to be studied without strong imposing 

theoretical assumptions, have found these to exhibit properties that do not coincide with 

assumptions of ‘normality’ in the neoclassical theory of the firm  (Bottazzi and Secchi, 2006).   

The paper is motivated by these findings, asking firstly, whether market selection fails to 

reward innovators or whether it rewards only certain types of innovative firms.  If so, which? 

And secondly, whether the answer to this question helps us to better understand the 

‘complex’ properties behind firm size and growth distributions alluded to above.  

The focus is on pharmaceutical firms quoted on the US stock market from 1950-2003, with 

innovation proxied by both innovation inputs and outputs: R&D spending, patent numbers 

and citations to patents1.   The pharmaceutical industry is a particularly interesting industry 

to study in this context due to the exponential increase in both R&D spending and patents 

since the 1980’s2.  Has this increase in innovative effort led to higher growth rates? If not, 

why not?  Recent alarms raised over the low efficiency of innovation in the industry, a sort of 

‘innovation paradox’3( i.e. the low amount of drugs that have resulted notwithstanding 

exponential rises in R&D spending), make it an even more interesting industry in which to 

study market selection dynamics (Drews and Ryser, 1996, Harris, 2002; Hopkins et al., 

2007; Grabowski, 2004).  It is also an industry which has undergone fundamental changes in 

the way that large and small firms interact around innovation.  Much has been written about 

the new division of innovative labor between large and small firms whereby the large firms 

                                                 
1 As discussed in Section 3 below, an innovation in this industry is not a patent but a new drug, hence both R&D 
and patents are just ‘proxies’ for the innovation ‘effort’ that a firm undertakes.  
2 This is due both to (1) institutional factors like the 1980  Bayh-Dole Act which allowed publicly funded research 
to be patented (Mowery and Ziedonis, 2002)—and to (2) competitive factors, such as the need for firms in this 
industry to constantly produce blockbuster drugs and/or to extend the patent life of existing drugs  
3 Provocatively we call this an ‘innovation paradox’ recalling the debates in the late 1990s on the ‘productivity 
paradox’ or the ‘computer paradox’ which asked why spending on IT technology did not appear to result in higher 
productivity or growth in the economy (“We see computers everywhere except in the productivity statistics.” 
(Solow, 1987).  
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focus more the marketing and distribution efforts around new drugs, while small dedicated 

firms, often biotech related, focus on the more uncertain process of innovation around niche 

drugs (Angell 2005; Arora and Gambardella, 1994; Gambardella 1995).  Figure 1 and 2 

illustrate that as the number of small firms in this industry has increased so has their ability 

to innovate.  How have these changes affected, if at all, the relationship between innovation 

and firm growth? And what impact has this had on industry market structure and the 

properties of firm size and firm growth rate distributions?  

The first part of the study uses econometric techniques to study the relationship between 

growth and innovation for firms with different innovation characteristics.  The second part of 

the study uses non-parametric techniques to study the distributions of firm size and firm 

growth rates  by dividing the sample using these same characteristics so to understand 

whether the relationship between innovation and growth is the key to better understanding 

the ‘complex’ properties in market structure that have been highlighted in recent papers.  

Our first main result is that innovation (proxied by R&D, patents and citations) appears to 

affect growth rates only for firms with particular characteristics.  These are small firms that 

are persistent innovators and/or have biotech alliances. This suggests that it is not that 

market selection doesn’t work properly but that it works on a mix of characteristics. And 

understanding this mix in the context of new forms of competition between large and small 

firms might shed some light on the dynamics of market selection as well as the fall in R&D 

efficiency which continues to puzzle and worry analysts of this sector. 

Our second main result is that it is firms with precisely these innovation characteristics (i.e. 

innovative persistence and participants of biotech alliances) which shape the ‘complex’ 

patterns in industry structure (Axtell, 2001). That is, we find that bimodal size distributions, 

as well as fat tails in growth rate distributions —both examples of non-gaussian behavior 

which cause problems for economics models which assume normality in these variables--

arise, at least in part, due to the presence of firms with these structural characteristics.   This 

is very important since up to now the presence of such complex patterns was assumed to be 

‘good news’ for evolutionary economists, without actually any real evidence that they were 

related to structural characteristics of innovation.  By making this link we think we indeed 

bring some ‘good news’.  

The paper is organized as follows. Section 2 reviews some of the growth literature that 

considers the impact of innovation on firm growth, as well as more general literature that 

considers the impact of inter-firm differences on growth.  Section 3 reviews the data and 

methodology used in the study. Section 4 presents a simple innovation-growth model and its 
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results. Section 5 looks at how these results allow us to better understand some ‘complex’ 

patterns in firm size and growth rate distributions. Section 6 concludes.  

2.  Heterogeneity and Growth 
Before presenting our model of growth and innovation in the pharmaceutical industry, we 

briefly review here some of the empirical literature that has considered how innovation 

affects the growth of different types of firms.  We focus on the role of innovative ‘persistence’ 

(innovation breeds new innovation), size, and alliances on firm growth since these three 

variables are found to be important factors affecting the impact of innovation on firm growth 

in Sections 4 and 5. 

2.1.  Testing for Structure 

Industrial economists have over the last decades continued to puzzle over the sources and 

patterns of firm growth.  The work of Gibrat (1931) set off a stream of works that studied 

whether firm growth follows a more ‘random walk’ type behavior or a more structured pattern 

due to different types of dynamic increasing returns (Ijiri and Simon, 1977; for a review see 

Marsili 2001).   Models interested in looking at the effect of innovation on the firm growth 

process often use the Gibrat assumption that firms grow independently of their initial size 

and with small  uncorrelated stochastic shocks as a null hypothesis of a lack of structural 

characteristics (Geroski and Mazzucato, 2002).  Results in this empirical literature are 

inconclusive. Some studies have found a positive impact of innovation on growth (Coad and 

Rao, 2008; Del Monte and Papagni, 2003; Geroski and Machin, 1992; Geroski and Toker 

1996).   Others no significant impact (Almus ,1999). And still others even a negative impact

(Brouwer et al., 1993). The most interesting work in this line, and the one that our work 

builds on most closely,, is the literature which acknowledges that the impact of innovation on 

growth is indeed different for different types of firms, i.e. slow growing/fast growing; above-

average R&D intensity/below-average R&D intensity, low tech/high tech (Coad and Rao, 

2008; Brouwer et al., 1993, and Del Monte and Papagni, 2003).  Most studies, however, 

tackle the innovation-firm growth question at a more general level with little reference to 

differences in firm characteristics.    

2.2. Innovation, Growth and Heterogeneity

Given the heterogeneity of firms’ innovative activities within an industry and within size 

classes, it is important to understand how differences between firms affect the influence of 

innovation on firm growth. For example, do persistent innovators grow as fast as the non-

persistent ones? Does the degree of openness to technology collaborations determine how 



5 
 

innovation affects firm growth? What role does firm size play in the innovation-growth 

relationship? We review here some of the literature that looks at the effects of these 

differences since they will prove to be important for understanding the results in Sections 4 

and 5.

(a)Firm Size 

The innovative characteristics of firms differ by size. Small and large firms are known to 

conduct different types of innovative activities that vary in scale, scope, and efficiency levels. 

Small firms tend to explore more the novel technologies and concentrate on product 

innovations while large firms excel in process innovations and incremental changes to 

established technologies (Baldwin and Gellatly, 2003). Small firms also differ from large 

firms by conducting innovations on a less persistent basis (Cefis, 2003;Geroski and Walters, 

1997) and undertaking mostly informal R&D distributed among various operational units 

(Santarelli and Sterlacchini, 1990).  Small firms appear to score higher on R&D productivity 

figures, measured by number of patents per unit of R&D expenditure (Acs and Audretsch, 

1988) which is attributed to the advantages of small firms in innovation and the informal 

organisation of R&D in small firms which cannot be captured by official R&D figures 

(Rothwell, 1989).

The innovative activities of firms are not only different across size classes but also within 

size classes. Among firms of the same size, there exists a wide range of differences in R&D 

capabilities, sources of innovation (e.g. suppliers/customers/scientific developments), 

degrees of innovativeness and innovative persistence (Baldwin and Gellatly, 2003;  

Utterback and Suarez, 1993). Managerial attitudes towards innovation also vary in terms of 

planning and external orientation (i.e. the degree of openness in search for innovation) (De 

Jong and Marsili, 2006).   

(b) Persistence 

Many studies have found that most innovating firms tend to innovate occasionally rather than 

persistently (Geroski et al.,1997). The few persistent innovators, however, are the source 

of the majority of innovations in each industry (Cefis and Orsenigo, 2001; Cefis, 2003). The 

degree of persistence in innovative activities in an industry determines the characteristics of 

innovating firms (i.e. small/large/young/established), the degree to which innovations build 

on existing knowledge and capabilities, and the degree to which the identity  of innovators 

persists over time  (i.e. the probability of established innovators being replaced by new 

ones). Hence, despite their small numbers, persistent innovators have a significant role in 

shaping (a) the direction of technological change and (b) the industry structure by defining 
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the composition and characteristics of innovators as well as the specific entry and exit 

features in the industry.   

(c)Alliances   

Small firms often use alliances for improving their access to financial resources and markets 

as well as gaining recognition and scale-scope advantages in the market place (Havnes and 

Senneseth, 2001; Stuart, 2000) while large firms benefit from the technological expertise of 

small firms (Powell et al., 1996). Small-large firm alliances are especially common in 

industries such as pharmaceuticals where the knowledge base is complex, diverse and 

expanding (Powell et al., 1996). 

How does involvement in the technology based alliances affect firm growth? Do those firms 

involved in such alliances grow faster than those not involved? And if there is a growth 

premium associated with involvement in technology based alliances, is that similar for small 

and large firms which have very distinct roles in the alliance? 

Powell et al. (1996), Link and Bauer (1987) and Baum et al. (2000) find that small firms in ‘hi-

tech’ industries grow as a result of being involved in a network. Stuart’s (2000) results 

suggest that only alliances with large innovative firms boost firm growth because affiliation to 

a large and innovative firm brings recognition and social status alongside other benefits 

alliances deliver. On the other hand, Havnes and Senneseth (2001) do not identify any short 

term effects of alliances on firm growth but they find being involved in an alliance is 

important for the long term benefits of the small firms. 

Even though there is evidence that these alliances deliver innovative products the growth 

benefits of such alliances for large firms is less clear. For instance, Stuart (2000) finds 

partnering with small firms does not deliver growth for large firms. Similarly, in a study based 

on the IT industry, Mortehan and De La Potterie (2007) find that alliances solely based on 

R&D have very weak or even negative effects on the sales of large and incumbent firms 

while benefiting their small partners. More broad and informal alliances based on a mix of 

activities such as sales, marketing and R&D seems to deliver positive growth for large firms.

Given the heterogeneity of firms’ innovative activities within an industry and within size 

classes, it is important to understand how each of the factors individually influences firm 

growth. For example, do persistent innovators grow as fast as the non-persistent ones? 

Does the degree of openness to technology collaborations determine how innovation affects 

firm growth? What role does firm size play in the innovation-firm growth relationship? 
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3. Data

The above studies suggest that there is still much to learn about the innovation-growth 

relationship—and hence for our understanding of market selection.  We approach the 

problem by building a simple growth model where growth rate is dependent on firm size, 

past growth as well as  different innovation measures (R&D intensity, number of patents, and 

citation weighted patents), and test the model for different types of firms (sources of 

heterogeneity) in terms of their size, their innovative persistence, and their alliances.  The 

reason we choose to focus on these sources of heterogeneity is due to important issues 

raised by the literature reviewed in 2.2 above.  We first review how the various variables are 

constructed.  

The model we develop in in Section 4 explores the impact of innovation on firm growth rates 

using simple panel regression analysis. Firm size is measured in terms of (logarithm) 

revenues and firm growth rate is the change in firm size from year t-1 to t. Three proxies for 

innovation are used: R&D intensity of firms (between 1950 and 2003), patent counts

(between 1965 and 1998) and citation weighted patent counts (between 1975 and 1998)4.

Annual revenues and R&D expenditures of firms are extracted from the S&P 500 

Pharmaceutical industry database (GICS Code 352020). These figures are then deflated by 

the US Medical Care Inflation Index to adjust for inflationary effects5. All revenues and R&D 

data is presented in 1982-84 real terms.  

R&D expenditures signal a firm’s commitment to innovation.  Different studies have found 

R&D to be positively correlated with different performance measures such as market value 

(Hall et al., 2001). Yet because R&D is an input to innovation, it does not reveal much 

information about the quality and effectiveness of the research undertaken by firms. As a 

complement to this input variable, two output variables are used as proxies for innovation: 

patent counts and citation weighted patent counts. Patent counts reflect the number of 

patents a firm has applied for (and eventually received a grant for) in a given year. The 

application year is used as the year patents are assigned to firms (Hall et al. 2001).  Both 

patent counts and citation counts are extracted from the NBER patent database 

(http://elsa.berkeley.edu/~bhhall/bhdata.html) that covers patents granted to firms by the US 

                                                 
4 Note that pharmaceutical industry patents do not have a one-to-one relationship with a certain product (i.e. 
drug). . Firms take several patents for a single drug often to fight off competition. In this study, all innovation 
variables are used as a “signal” of innovative activity rather than proof of an innovative product. 

5 Grabowski and Vernon (1990) find evidence that drug prices have not always correlated with economy-wide 
prices. In the 1970s, drug prices lagged behind overall economy prices while in the 1980s, drug prices far 
exceeded economy-wide prices. The Medical Care Inflation Index makes it possible to capture the real impacts 
on drug pricing over time. 
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Patent Office between 1963 and 2002 and citations made to these patents between 1975 

and 2002. These patents and citations are matched to the pharmaceutical firms in the S&P 

500 database. After cleaning the database for firms that have less than 7 years of 

consecutive data, 256 pharmaceutical firms comprise the final sample. Approximately one-

third of the firms in the database do not have any patents. Table 1 reports the mean and 

standard deviation of the key variables in the final sample. 

Table 1 

A third database that is used in this database is the BioAbility database that presents an 

exhaustive list of biotechnology related external actions between firms in the 1978-1999 

period (http://www.bioability.com/). The 256 firms in the final sample were screened for a 

wide range of external actions in the Bioability Database namely: Equity/ Legal/Joint 

Venture/ Licensing Agreement/ Marketing Agreement/ Production Agreement/ Partial 

Acquisition/ Research Contract/ Supply Agreement and New Venture. Those firms involved 

in any one of these actions within the period 1978-1999 were classified as ‘involved in 

biotechnology related external actions’ while those that never participated were classified as 

‘not involved’. The participation of a pharmaceutical firm in any of the biotechnology related 

external actions listed above signals its involvement and commitment to biotechnology 

related alliances which may potentially affect firm growth as discussed in Section 2.2. 

A major challenge in using patent and citations data is correcting for the two types of 

truncations in this database: patents (as the database only contains data on patents that are 

eventually granted, those still pending at the end of the sample are not included) and 

citations (i.e. future citations to patents towards the end of the database are not known). Hall 

et al. (2001) suggest two ways for dealing with the truncation in patents and citations: the 

fixed effects and the quasi-structural approach. The fixed effects approach scales the 

patents/citations with the average number of patent/citation counts in a given year for a 

group of patents/citations. The quasi-structural approach, on the other hand, uses 

econometric estimation techniques to distinguish the multiple effects on citations and 

corrects for them. 

We have chosen to correct for truncation using the fixed effects method. Following 

Mazzucato and Tancioni (2007), we use a slightly modified version of the fixed effects 

correction. To correct for patent and citation truncation, we divide these by yearly industry 

averages instead of the total. The main reason for using this method is the unbalanced 

nature of the data.  As is clear in Figure 1 below, the number of firms increases over time; 

therefore, the total number of patents and citations increases proportionally. Dividing by the 

total would introduce a downward bias in the corrected patent counts especially in the post-
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1980 period when more firms entered the industry (See Mazzucato and Tancioni, 2007 

p.13). The last 4 years of data are cut off as the truncation problem for both the patents and 

citations becomes so severe that a truncation correction would not provide satisfactory 

results. In the final version of the regressions, we use patent data between 1965 and 1998 

and citations data between 1975 and 1998. 

Figure 1: Total Number of Firms in the Pharmaceutical Industry 

Note: Small firms have less than 500 employees and large firms have at least 500 employees. 

To look into the impact of innovations on firm growth rates and other performance variables, 

the innovation variable can be included in either flow or stock form, i.e. the depreciated 

cumulative values of the flow variables over time (Hall, 1993).  We prefer to specify the 

innovation variables in stock form as this is more standard in the literature (e.g. Niefert, 

2005), specifically because using the flow forms of innovation variables poses a model 

specification challenge due to the unbalanced structure of our panel6.

Appendix 1 explains how the innovation stocks are calculated. Note that the stock innovation 

variables are divided by the lagged firm revenues  in the model discussed in 

Section 4 to avoid potential problems that could result from the correlation between firm size 

and the right hand side innovation variables (Hall and Marisse, 1995). 

                                                 
6 The major difficulty occurs when determining the right lags at which innovation variables enter into the 
regressions to impact firm growth. The most commonly used method to determine the lags of the right hand side 
variables is looking at the Akaike Information Criterion (AIC) (or the Schwarz Bayesian Criterion (SBC) if the 
sample size is small)) and choosing the model that minimizes this criterion. Neither of these criteria is adjusted to 
the sample size which means that samples in the models being compared must be the same size (Greene, 
2003). Unfortunately, this is not possible for our data as firms enter and exit the panel at various times causing 
the sample size to vary. We have not considered balancing our panel to allow for a constant sample size as we 
value the information provided by the entry and exit of the firms. 
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4.  The innovation-growth model 
To inspect the impact of innovation on firm growth, equations 1, 2 and 3 are used in which 

the innovation variables are defined in stock form. Firm size for firm i in year t is defined as 

the logarithm of firm revenues in that year ( 7. Firm growth is defined as the 

change in firm size (i.e., revenues) between year t and t-1 (i.e. 

). In the following equations  refers to the 

( ),  to the ( ) and  to the 

( ) Subscripts i and t respectively refer to the ith firm 

and year t. The Hausman specification tests reveal that the fixed effects specification is a 

better fit for our data in all of the equations and samples we have worked with. This 

specification allows for the unobserved firm specific effects to be correlated with the right 

hand side variables. Note that alongside with the fixed firm effects, we also introduce fixed 

time effects  in our equations8.

The growth model we use is a nested model whose null hypothesis is that firm growth is a 

random walk as in Gibrat’s Law, i.e. no structural dynamic. Gibrat’s Law (or the Law of 

Proportionate Effect) states that firms grow independently of initial firm size and with small 

and uncorrelated stochastic shocks (Gibrat, 1931; Kalecki, 1945; Ijiri and Simon, 1977). In 

other words, one expects Gibrat’s Law to hold in cases where (firm growth is 

independent of firm size),  (i.e. firm growth does not persist over time) and  (i.e. 

innovation is not a systematic determinant of growth rates).    

In the following equations  ,  and  refer to the R&D, patent and citation 

weighted patent stocks divided by the lagged revenues variable( ) Subscripts i and t 

respectively refer to firm i and time t and the  is the time effects in our equations 

   (1) 

   (2) 

   (3)          

                                                 
7 To avoid the problem of missing values that result with firm exit when the firm size falls to zero, we augment the 
firm revenues series by 0.1 as in Audretsch et al. (1999). 
8 Note that there is a possibility of endogeneity problem in our equations as firm growth and innovation may be 
determined endogeneously and the causality could be running in either way. As is the case for most innovation 
studies, we cannot find good exogenous instruments for the innovation variables as the lagged values of the 
‘stock’ innovation variables are also correlated with firm growth. Our tests of causality reveal that firm growth 
results from innovation in most cases and not the other way round. Hence, we believe that endogeneity is not a 
serious problem in our case. If the endogeneity problem is present, our estimates of the coefficients for 
innovation variables would be upwardly biased, but they still remain as the best “predictors”. 
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The pharmaceutical firms in the sample are classified into several categories based on the 

characteristics reviewed in Section 2.2: size, persistence and alliances (in this case biotech 

related alliances). We run each regression for the whole pharmaceutical sample as well as 3 

sub-categories to investigate whether the impact of innovation on firm growth rates varies 

across different types of firms.  The different categories are:  

 

1. The first firm category is firm size. Following Acs and Audretsch (1988), we define small 

firms as those with fewer than 500 employees and large firms as those with a minimum of 

500 employees. We take the average number of employees throughout the life of a firm to 

determine its classification as a small or a large firm9. Fewer than 500 employees seems like 

a reasonably good definition for a small pharmaceutical company since the average number 

of employees per firm has always been more than 5000 employees for this industry. Figure 1 

shows that the number of small firms increased in the pharmaceutical industry especially in 

the post 1980 period. Moreover, as Figure 2 shows, small firms started playing an increased 

role in their share of innovative activities (measured by patents and citation weighted 

patents), which far exceed their share in industry revenues and employment. 

Figure 2: Share of Small firms in Industry Revenues, Employment and Innovative Activities 

2. The second way that firms are divided is by their patenting behavior: whether they are a 

patenter or not and whether this patenting is persistent. Patentee firms are those firms 

which have applied for and were granted at least one patent between 1965 and 2002. A firm 

                                                 
9 Employee numbers are not as consistently reported as firm revenues that we use as the proxy for firm size. 
Hence, there are missing values especially at the beginning and the end of the data series. Averaging the 
reported employee numbers over time for a given firm addresses the database’s missing values problem.  
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is classified as a persistent patentee if it is granted at least one patent each year for any 3 

consecutive years between 1965 and 2002. The average length of patent spells in our 

sample of patenting firms is 2.97 years and hence, 3 years of consecutive patenting is a 

reasonable definition for “innovative persistence”10.

3. The third way that firms are divided is according to whether they are involved or not in 

alliances with the biotech industry. We assume that the participation of a pharmaceutical 

firm in any of the biotech related external actions listed in the Bioability Database in the 

1978-1999 period signals its involvement and commitment to biotech related activities. 

Hence, firms are classified as either ‘involved in biotech’ or ‘not involved in biotech’ 

depending on their participation in at least one of the biotechnology related external actions 

listed above. Although we are aware that different types of alliances (e.g. marketing 

agreement, acquisition, R&D cooperation) have very different implications, rather than apriori 

discriminating between types, we allow all the different alliances to define our ‘proxy’ for the 

connection of the firm with the biotech industry11.

Table 2 reports the number of firms in each firm category as well as the key descriptive 

statistics according to the firm categories. 

Table 2

4.1.  Results 

(a) The Impact of R&D Stock on Firm Growth Rates 
The results from regressions (1), (2) and (3) are reported in Tables 3 and 5. We first look at 

the impact of R&D stock on firm growth rates. The overall impact on the whole sample of 

pharmaceutical firms is positive. However, the results vary when we consider the firm 

subcategories in Table 2.  

Table 3 reports the impact of R&D stock on the growth rates of different categories of 

pharmaceutical firms and Table 4 summarizes these results.  

Table 3

Small Pharmaceutical Firms: For small pharmaceutical firms, the impact of R&D on firm 

growth rates is positive for patentee firms. Yet, among the small patentee firms, R&D has a 

positive impact only for the persistent patentees.  

                                                 
10 Defining persistence as 5 years of consecutive patenting does not dramatically alter the results in Section 4 
and 5. 
11 To investigate the impact of alliances further, it would be necessary to test whether different types of alliances 
have a different impact on firm growth.  This is not the object of the present paper but an excellent avenue for 
further research (Mortehan and De la Potterie 2007).   
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When small pharmaceutical firms are divided into two groups based on their participation in 

biotech related external actions (referred as “involved in biotech” in the tables), we find that 

only the small firms involved in biotech related external activities grow faster as a result of 

their R&D activities. 

Large Pharmaceutical firms: Similar to small firms, while large patentee firms grow faster 

as a result of their R&D activities, the R&D activities of large non-patentees have no 

significant impact on firm growth rates. 

Among the large patentees, only the persistent ones grow faster due to their R&D efforts. As 

in the case of small pharmaceutical firms, large pharmaceutical firms that participate in 

biotech related external activities grow faster as a result of their R&D. Yet, those large firms 

that do not participate in biotech related external activities experience negative growth as a 

result of their R&D. 

Table 4:  The Impact of R&D Stock on Firm Growth Rates (1950-2003) 

Small

Firms

Large

Firms

All Firms 

Patentee + + +

Non-patentee 0 0 0

Persistent Patentees + + +

Non-persistent Patentees 0 0 0

Involved in Biotech + + +

Not involved in Biotech 0 - 0

(b) The Impact of Citation-weighted Patent Stock on Firm Growth Rates 
In the next stage of our investigation, we limit our sample to patentee firms only, to 

investigate the impact of firms’ patent and citation-weighted patent stocks on their growth 

rates. Our results from the raw-patent stock model clearly reveal the noise associated with 

raw patent counts and hence, in Table 5, we only report the results from the model with 

citation-weighted patent counts.  

Table 5

Small Pharmaceutical Firms: Similar to the results when using R&D stock, we find that 

only the small firms that patent persistently grow faster as a result of their innovative 
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activities when citation-weighted patent stock is used as the innovation proxy. Likewise, 

among the small patentee firms, only those that participate in biotech related external 

actions grow faster as a result of the innovative activities they undertake. 

Large Pharmaceutical Firms: Firm growth does not seem to respond to innovation 

activities for any type of patentee firms when citation weighted patent stock is used as a 

proxy for their innovative activities. There is no evidence that large persistent patentees, or 

large patentees that participate in biotech related research grow faster due to innovative 

activities.

Table 6: The Impact of Citation-Weighted Patent Stock on Firm Growth Rates (1975-1998)

Small

Patentees

Large

Patentees

All Patentee 
Firms

Persistent Patentees + 0 +

Non-persistent Patentees 0 0 0

Involved in Biotech + 0 +

Not involved in Biotech 0 NA 0

Notes: The sample is limited to patentee firms only. The sample size for large patentees not involved in biotech 
is too small and hence, we do not report the regression results in the table.  

The different impacts of R&D stock and citation weighted patent stock on the growth rates of 

large firms may result due to a combination of two factors: (1) R&D expenditures is an input 

measure of innovation while the citation weighted patent stock is an output measure. As 

documented by various sources (NIHCM, 2002; Tufts CSDD, 2007), large pharmaceutical 

firms suffer from declining R&D productivity problems in which the innovative output of large 

firms are low despite the growing levels of R&D expenditures. Hence, the output measures 

of innovation are better indicators of the actual innovation undertaken by firms. (2) The R&D 

figures of large pharmaceutical firms often include the marketing and sales related 

expenditures and this makes the R&D data a less precise measure of innovation (Angell, 

2005).Hence, we believe the citation-weighted patent stock presents a better proxy for 

innovation in our equations.These finding suggest that innovation leads to an increase in 

growth only for firms that have a mix of particular characteristics. We find that innovation 

positively affects the growth of firms under at least one of the two firm categories: persistent 

patentees and firms involved in biotech alliances. Yet, when these two firm categories are 

further divided by firm size, we find that only small firms that patent persistently and/or 

participate in biotechnology.  alliances grow faster as a result of their innovative activities.  
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Since firm growth dynamics have an impact on industry market structure, we now ask 

whether these growth dynamics are responsible for some of the interesting properties on 

market structure and firm size/growth distributions that have been recently highlighted by the 

industry dynamics literature.  

 5.  Innovation, Growth and ‘Complex’ Patterns in Market Structure 

Puzzles concerning the growth-innovation relationship have also emerged recently from 

studies that have used non-parametric techniques to study the distributions of growth and 

size.  These studies have found that firm growth rates exhibit much fatter tails than the 

normal distribution (Axtell, 2001).  Bottazzi and Secchi (2006) have hypothesized that the  

underlying structure of fat tails is due to firms’ persistence (autocorrelations) in capturing 

opportunities for growth (e.g. innovations), but it remains only a hypothesis since they don’t 

use any innovation data in the analysis.  Dosi (2005) interprets fat tails to mean that there is 

some underlying ‘structural dynamic’ which is ‘good news’ for evolutionary economists.  Yet 

this may be an overly optimistic conclusion unless one can show that the degree of fat tails 

co-evolves with changing structural dynamics, such as the changing characteristics of 

innovation.  If not, it is hard to interpret the existence of non-gaussain behaviour as evidence 

of structure. Our goal in this section is to explore for this evidence. 

Demirel and Mazzucato (2007) show that bimodality emerges at a specific period in the life-

cycle of the pharma industry, i.e. the post 1980’s after the biotech revolution and the advent 

of a new division of labor between large and small firms.  In this section of the paper we ask 

whether the complex properties around size and growth rate distributions, such as bimodality 

and fat tails, emerge due to the structural characteristics of the firms studied in Section 4, for 

example whether fat tails are due to in fact to the inclusion of persistent innovators in the 

sample.

We use a Normal Kernel function with an automatic Silverman bandwidth to look at the 

shape of the FSD and analyse the kurtosis values of the FGD to identify the degree to which 

fat tails exist.  Others pursuing this line of research have fitted Subbotin distributions to the 

data to identify the departures from normality (Bottazzi and Secchi, 2006).  

As identified by Reichstein and Jensen (2005) and Demirel and Mazzucato (2007) the FSD 

of the pharmaceutical industry has a bimodal distribution while the FGD has significantly 

fatter tails compared to the Gaussian distribution.  Our contribution here is to see whether 

the bimodality and the fat tails is related in any way to the innovation dynamics. For 

example, do fat tails disappear if we look only at non-persistent innovation (one-off success 

that would be more similar to an iid type explanation)? To do so, we compare the kernel 
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density estimates of the FSD for different types of pharmaceutical firms (i.e. patentees/non-

patentees/persistent patentees/firms involved in biotech/not involved in biotech etc.) to 

identify whether the peculiar bimodal shape of the FSD can be traced back to certain types 

of firms. The (log) firm size distributions are plotted for different time periods and different 

types of pharmaceutical firms. Similar to Bottazzi and Secchi (2004), here, the firm size 

observations are grouped for a range of years instead of presenting a snapshot of a given 

year. The evolution of FSD is rather slow and FSDs of different years display a large degree 

of overlap. Hence, grouping observations from different years should not lead to any serious 

problems especially because the way that innovation and firm growth evolve over the 

industry life-cycle and over time (as the knowledge regimes are changing (Gambardella, 

1995)) is taken into account in the following analysis as we consider the breaks in the data 

(e.g. the year when many small firms enter and change the shape of the FSD). 

Similarly growth rate observations are grouped together over years while taking special care 

to mark different time periods when firm growth dynamics are significantly different (i.e 

pre/post 1960, pre/post 1980 etc.). As in Reichstein and Jensen (2005), 5% of the growth 

rate observations that deviate most from the mean growth rate are eliminated so that the 

results are not sensitive to outliers. The kurtosis values of the FGD for different types of firms 

are compared to identify whether the fat tails emerge due to the activities of certain types of 

firms such as persistent patentees. 

5.1. Firm Size Distribution (FSD) 

Bottazzi et al. (2003) note the high degree of diversity in the FSDs across the manufacturing 

sector with different degrees of skewness, and different kurtosis values as well as major 

differences in how the distributions look. In their work, the pharmaceutical industry also 

stands out as a unique industry with the peculiar bimodal shape of its FSD. Bimodal size 

distributions are interpreted as a) the disappearance of the moderate/middle size classes b)
evidence of two separate centers of attraction for firm size c) co-existence of an oligopolistic 

core and a fringe and (d) sub-populations with different size distributions aggregated under 

one industry classification .The emphasis in these studies is on the statistical properties of 

the FSD since the suggested economic reasoning behind the bimodality remains mostly 

untested. The following results make a contribution to this specific literature by testing 

whether the bimodality is related to the innovation dynamics (i.e. patenting and persistence 

in patenting) and the biotech related external actions among small and large innovative firms 

in the pharmaceutical industry. 
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The following plots include a histogram and a kernel density estimate for FSD. Kernel plots 

are produced as described using the STATA module “kdensity”. The total number of 

observations used in each plot is indicated. 

Demirel and Mazzucato (2007) indicate that the bimodality of the FSD emerges in the 1970s 

and becomes a stable characteristic of the FSD in the following decades. Notably, the 

second mode (the left hand side mode) that emerges in 1970s keeps growing over time and 

eventually far exceeds the size of the initial mode (the right hand side). However, the initial 

mode that consists of large firms shows a large degree of persistence in the identity of firms: 

80% of the firms in this mode (e.g. Abbot Labs, Johnson & Johnson etc.)  in 1970 are still in 

in the same mode in the late 1990s.  This suggests that the innovative and fast growing 

small firms in BIMODE II are not able to replace the large firms in the industry’s core, i.e., a 

low probability that a firm will move from one mode to the other. 

Next, in Figures 3 and 4, we examine the FSD for different firm types to uncover the 

underlying dynamics of the bimodality. The plots in Figure 3 reveal the bimodality feature 

only holds for persistent patentees.  

Note that the number of non-patentees and non-persistent patentees are very small for the 

pre-1980 period when the industry consisted of mainly large firms that innovated 

persistently. Hence, the FSD representations in Figures 3.(c) and 3.(g) are not as robust as 

the post- 1980 representations (3.(d) and 3.(h)). Yet, we include these in Figure 3. for the 

reader’s information. 
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Figure 3: FSD for Different Types of Firms
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3 (g) Pre-1980 Non-persistent Patentees: 57 obs 3 (h):Post-1980 Non-Persistent Patentees: 689 obs   

Clearly, the bimodality feature is closely related to innovations in this industry. When the 

non-patentee firms or the non-persistent patentees are considered, FSD shows less 

divergence from the Gaussian distribution. Bimodal FSD only emerges among persistent 

patentees.

Finally, Figure 4, illustrates whether “being involved in biotech related external actions” 

relates to FSD bimodality. The results suggest that bimodality only holds for small and large 

firms involved in biotech related external actions. Fifty two percent of small pharmaceutical 

firms and 72% of large pharmaceutical firms are involved in biotech related external actions. 

The significance of these biotech related collaborations should be considered in the context 

of the biotechnology industry’s post-1980 rise and the concurrent emergence of innovative 

divisions of labour among small and large firms (Gambardella, 1995).

Finally, to summarise the findings of this section, Figure 5 shows that bimodal FSD is 

evident in persistentlypatenting firms involved in biotech related external actions.  

Conversely, FSD shows little divergence from the Gaussian distribution among non-patentee 

firms and non-persistent patentees not involved in biotech related research. 
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Figure 4: FSD for Firms Involved/Not Involved in Biotech Related External Actions
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 Note: Again, the number of firms not involved in biotech related external actions in the pre-1980 period is very 
small. The representation of FSD in Figure 4.3.c is less robust than the post-1980 period representation of FSD 
for similar firms in 4.3.d. 

Figure 5: Post-1980 (a) Non-patentees and Non-persistent Patentees not involved in biotech 
related research vs. 5(b) Persistent Patentees Involved in Biotech Related Research    
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5.2 Firm Growth Rate Distributions (FGD) 
Firm growth rate distributions (FGD) show a large degree of similarity across different 

sectors with their tent-like, fat tailed shapes that resemble exponential (Laplace) distributions 

(or an even fatter tailed distribution like the Subbotin family of distributions) instead of 

Gaussian distribution. The FGD for the pharmaceutical industry is no exception to this with 

its tent-shaped, fat tailed distribution. 

Bottazzi and Secchi (2005) interpret fat tails as evidence of dynamic increasing returns to 

scale, such as economies of scale and scope, network externalities and increasing returns to 

knowledge accumulation (p.18). Dosi (2005) argues that fat tails imply much richer structure 

in the growth dynamics than that assumed by Gibrat’s law. Bottazzi et al.’s (2008) work finds 

that the extreme growth rates (both positive and negative) at the tails of the FGD result from 

firms less likely to default financially.  However, neither Bottazzi’s work nor other 

subsequently related studies (e.g. Reichstein and Jensen, 2005, Coad and Rao, 2008) 

directly explore what constitutes the “structure” underlying fat tails in the FGD. Our work 

contributes to this literature by empirically testing whether fat tails are related to the dynamic 

increasing returns from innovations. The results confirm that fat tails are closely related to 

the characteristics of innovative pharmaceutical firms. 

In Table 7, the kurtosis values are shown for different time periods and different types of 

firms. Kurtosis value of a distribution indicates the degree to which it has fat tails. Gaussian 

distribution has a kurtosis value of 3. Distributions with kurtosis values higher than 3 are 

known to have fatter tails compared to Gaussian distribution.   

Important findings from Table 7 include12:

a) The FGD has fat tails for all firm categories, yet the degree of “fatness” is 

different for different types of firms. 

b) The FGD of patentees displays fatter tails than that of non-patentees. Note 

the higher kurtosis values in Table 7. 

c) The FGD for persistent patentees displays fatter tails than that of the non-

persistent patentees. 

d) The FGD for firms involved in biotech related external actions has fatter tails 

compared to that of firms which do not participate in biotech related external actions. 

                                                 
12 We have checked the robustness of these results by taking out random sets of firms (e.g. first 100 firms or last 
100 firms in alphabetical order) from the sample to see whether the tails of the FGD become thicker in all cases 
when one limits the sample size. We found that in some cases the tails were thicker yet in others, they were 
slimmer. This suggests that what affects the thickness of the tails is not solely affected by taking out a number of 
firms but the “type” of firms we take out. 
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Fat tails indicate that firm growth events are indeed “lumpy” instead of being normally 

distributed, small and independent (Dosi, 2005,p.11 ). This is much in line with Schumpeter’s 

view in which he argued that “innovations are not at any time distributed randomly… but they 

are by nature lopsided and disharmonious…[G]rowth based on technical innovation [is] more 

like a series of explosions than a gentle and incessant transformation” (Freeman, 1995). The 

majority of firms in an industry experience very close to average growth rates while only a 

few experience big spurts of growth due to higher levels of available opportunities (Bottazzi 

and Secchi, 2005). The results from Table 7 show that patentee firms (and especially 

persistent patentees) and firms involved in biotech related external actions) experience more 

extreme growth compared to other firms in the industry. Hence, fat tails of the FGD in the 

pharmaceutical industry possibly result more so from the growth activities of innovating (i.e. 

patentee/ persistent patentee) firms and firms that participate in biotech related actions. As 

already shown in Sections 4, these are exactly the types of firms that have the innovative 

characteristics favoured by market selection forces. However, for other firms less involved in 

innovations, biotech related activities and cooperation (non-patentees/ non-persistent 

patentees/ not involved in biotech related external actions), the FGD’s tails are not as fat, 

which suggests firm growth is more normally distributed for these types of firms. 

Is this good news for evolutionary economists? Dosi (2005) argues that fat tails might be 

signals that innovations in the form of new products lead to lumpy growth. The empirical 

tests in this section provide evidence (the first that we know of) for this view by showing that 

in fact fat tails emerge especially for firms that are persistent innovators with particular 

alliances. That is, firms with particular structure behind their innovation experience even 

more lumpy growth.  

6. Conclusions 

The paper has shown that the impact of innovation on firm growth is far from being a simple 

causal relationship where innovation leads to growth. Innovating alone does not boost firm 

growth unless the firm is of a certain type.

The results suggest that the fitness criteria upon which market selection processes operate 

is a mix between firm size and the different aspects of the firms’ innovative activities such as 

patenting, persistence in patenting and involvement in biotech related external actions. Small 

firms grow faster as a result of innovative efforts while large firm growth is not necessarily 

related to innovative activities. Whether a firm is a persistent patentee affects its subsequent 

growth resulting from innovative activities. Innovation-growth dynamics also depend on 

whether firms participate in biotech related external actions, such as research agreements.  
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While small firms that participate in biotech related external actions grow faster as a result of 

their innovative activities, large firms display a more mixed result.  

Most importantly, the paper reveals how market selection plays a key role in determining 

some ‘complex’ properties of industry structure, such as the bimodality and fat tails found in 

firm size and firm growth distributions (Axtell, 2001; Bottazzi and Secchi, 2006)  Firms able 

to grow through innovative activities are those that shape these peculiar aspects of industry 

structure which are not consistent with the Gaussian behavior assumed by Neoclassical 

theory.  This is good news for evolutionary economists for several reasons: Not only does 

firm growth not behave as it would in a world of representative agents where innovation is an 

iid random variable, but even more importantly, the structure behind growth appears to react 

directly to the innovative characteristics of firms. More persistent innovators have fatter tails.

Do these results help us better understand the falling efficiency of R&D (the ‘innovation 

paradox’) recently highlighted in the financial pages?  To investigate this further it would be 

essential to study whether the low R&D efficiency in this sector is due to the wrong mix of 

firm activities, and if so, which mix of characteristics.  This study suggests to start looking at 

the variables around persistence of innovation, size and alliances.  For example, does the 

fact that the small dedicated biotech firms in this sector are often later acquired by the large 

firms, hinder the efficiency of the division of labor between them and impact on the strength 

of the initial alliance13?  What factors prevent first time innovators to become ‘persistent’ 

innovators? Does State funding of the knowledge base have an impact on persistence?   

These questions are interesting to consider in light of the Lisbon Agenda (2005) which has 

set a target of 3% R&D spending in Europe in order to achieve higher growth.  Industrial 

policy can be informed by these results lwhich suggest that increases in R&D spending 

should be done in the context of specific mixes of innovative abilities needed by the firms 

doing the R&D.  Future research might focus on the different mix of characteristics needed 

by firms for their R&D spending to translate into growth, and how this mix differs (or not) 

between sectors and between phases of the industry life-cycle. 

                                                 
13 The fact that the core firms in the right hand side mode are very stable (as discussed in Demirel and 

Mazzucato (2007)) implies some inertia. Hence one might also investigate whether the degree to which small 

firms, grow, replacing the large firms in the ‘core’, with a new cohort of small firms entering to form the left hand 

side mode, would also affect the R&D efficiency in the industry.  
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Table 1: Descriptive Statistics for Key Variables in the Final Sample 

Mean Standard Deviation
Revenues ($mil.) 823.22 1866.76 
Patent Applications 249.21 908.34 
R&D Expenditures ($ 
mil.)

78.63 207.41 

Employees 9170 18490 

Table 2: Key Descriptive Statistics for Firm Categories

 Mean 

R&D

($mil)

Mean 

Revenues

($mil)

Mean 

Employee 
Numbers 

Mean Patent 
Applications per 
firm

Average R&D 
Intensity 

Small Patentees (120 
firms)

3.34 9.36 1014 17.97 0.36

Small Non-Patentees 
(50 firms) 

2.22 17.68 1900 0 0.12 

Small Persistent 
Patentees (60 firms) 

4.27 9.97 1099 33.65 0.43

Small Non-Persistent 
Patentees (60 firms) 

2.29 8.75 931 3.13 0.26 

Small Firms Involved in 
Biotechnology (89 
firms)

3.76 9.034 1303 19.65 0.41

Small Firms Not 
Involved in 
Biotechnology (81 
firms)

1.94 10.05 1286 3.81 0.19 

Large Patentees (66 
firms)

196.23 2070.63 218929 824.79 0.09

Large Non-Patentees 
(20 firms) 

15.38 193.47 31769 0 0.08 

Large Persistent 
Patentees (44 firms) 

215.94 2237.96 235955 1039 0.096

Large Non-Persistent 
Patentees (22 firms) 

28.26 519.83 62346 2.66 0.05 

Large Firms Involved in 
Biotechnology (62 
firms)

187.76 1977.37 207985 774.34 0.09

Large Firms Not 
Involved in 
Biotechnology (24 
firms)

87.45 914.54 121271 10.18 0.09 
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Table 3: Regression results: The Impact of R&D Stock on Firm Growth Rates (Dependent 
Variable: Firm Growth Rate) 

Firm Categories Number of 
Cross Sections 
and Total 
Observations 

R2

      
Small Patentees 

Small Non-Patentees 

Small Persistent Patentees 

Small Non-Persistent Patentees 

Small Firms Involved in Biotech 

Small Firms Not-Involved In Biotech 

Small Firms 

Large Patentees 

Large Non-Patentees 

Large Persistent Patentees 

Large Non-Persistent Patentees 

Large Firms Involved in Biotech 

Large Firms Not Involved in Biotech 

Large Firms 

Patentees

Persistent Patentees 

Involved in Biotech 

Non-Patentees

Non-Persistent Patentees 

Not Involved in Biotech 

-0.44* 
(0.048) 

 
-0.31* 
(0.077) 

 
-0.35* 
(0.063) 

 
-0.61* 
(0.075) 
 
-0.38* 
(0.05) 
 
-0.40* 
(0.074) 
 
-0.39* 
(0.04) 
 
-0.08* 
(0.017) 
 
-0.22* 
(0.08) 
 
-0.068* 
(0.017) 
 
-0.33* 
(0.059) 
 
-0.08* 
(0.018) 
 
-0.22* 
(0.04) 
 
-0.10* 
(0.017) 
 
-0.34* 
(0.03) 
 
-0.24* 
(0.038) 
 
-0.30* 
(0.038) 
 
-0.30* 
(0.07) 
 
-0.58* 
(0.069) 
 
-0.39* 
(0.069) 

-0.024 
(0.049) 

 
0.073 

(0.081) 
 

-0.05 
(0.058) 

 
0.034 

(0.09) 
 

0.005 
(0.05) 

 
-0.016 
(0.083) 

 
0.0006 

(0.04) 
 

-0.07 
(0.056) 

 
0.007 

(0.09) 
 

-0.13 
(0.08) 

 
-0.055 
(0.103) 

 
-0.08 
(0.05) 

 
0.13 

(0.09) 
 

-0.07 
(0.045) 

 
-0.06 
(0.04) 

 
-0.08t 

(0.05) 
 

-0.025 
(0.04) 

 
0.05 

(0.07) 
 

0.017 
(0.082) 

 
-0.02 
(0.08) 

0.0004* 
(0.00018) 

 
0.0018t 

(0.0009) 
 

0.00043* 
(0.00016) 

 
0.00008 

(0.0008) 
 

0.0004* 
(0.00016) 

 
0.0006 

(0.0006) 
 

0.00042* 
(0.0001) 

 
0.013* 

(0.005) 
 

-0.04 
(0.029) 

 
0.014* 

(0.005) 
 

0.016 
(0.029) 

 
0.013* 

(0.005) 
 

-0.07* 
(0.026) 

 
0.012* 

(0.0056) 
 

0.00053* 
(0.0001) 

 
0.00055* 

(0.0001) 
 

0.00051* 
(0.00016) 

 
0.001 

(0.009) 
 

0.000 
(0.0007) 

 
0.0007 

(0.0006) 

120/858 
 
 

50/392 
 
 

60/462 
 
 

60/396 
 
 

89/746 
 
 

81/504 
 
 

170/1250 
 
 
66/1165 
 
 
20/117 
 
 
44/1058 
 
 
22/107 
 
 
62/1168 
 
 
24/114 
 
 
69/1282 

 
 

186/2023 
 
 

104/1520 
 
 

151/1914 
 
 

70/509 
 
 

82/503 
 
 

105/618 
 

0.365 
 
 

0.373 
 
 

0.38 
 
 

0.41 
 
 

0.36 
 
 

0.356 
 
 

0.35 
 
 

0.287 
 
 

0.46 
 
 

0.27 
 
 

0.69 
 
 

0.26 
 
 

0.70 
 
 

0.30 
 
 

0.32 
 
 

0.32 
 
 

0.31 
 
 

0.36 
 
 

0.40 
 
 

0.35 

All Firms -0.333* 
(0.033) 

-0.022 
(0.038) 

0.00052* 
(0.0001) 

239/2532 0.32 

      
Data Source: S&P 500 Pharmaceutical Industry Database and the NBER patent and citations Database 
Notes: Heteroskedasticity robust White Errors reported in parentheses. * significant at 5% and t significant at 10%. 
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Table 5: Regression results: The Impact of Patent Citation Stock on Firm Growth Rates 
(Dependent Variable: Firm Growth Rate) 

Firm Categories Number of 
Cross Sections 
and Total 
Observations 

R2

      
 
Small Persistent Patentees 

Small Non-Persistent Patentees 

Small Patentees Involved in Biotech 

Small Patentees  
not Involved in Biotech 

Small Patentees 

Large Persistent Patentees 

Large Non-Persistent Patentees 

Large Patentees Involved in Biotech 

Large Patentees not Involved in Biotecha

Large Patentee Firms 

Persistent Patentees 

Non-Persistent Patentees 

Patentees Involved in Biotech 

Patentees Not Involved in Biotech 

All Patentee Firms 

 
-0.29* 
(0.077) 

 
-0.55* 
(0.09) 

 
-0.35* 
(0.066) 

 
-0.49* 
(0.17) 

 
-0.38* 
(0.06) 

 
-0.13* 
(0.047) 

 
-0.36* 
(0.12) 

 
-0.14* 
(0.04) 

 
 
 

-0.145* 
(0.04) 

 
-0.22* 
(0.05) 

 
-0.54* 
(0.09) 

 
-0.31* 
(0.05) 

 
-0.49* 
(0.15) 

 
-0.329* 
(0.047) 

 
-0.18* 
(0.09) 

 
0.08 

(0.09) 
 

-0.10 
(0.08) 

 
0.06 

(0.13) 
 

-0.06 
(0.07) 

 
-0.02 
(0.117) 

 
-0.09 
(0.13) 

 
0.004 

(0.07) 
 
 
 

0.003 
(0.07) 

 
-0.16* 
(0.07) 

 
0.07 

(0.08) 
 

-0.098 
(0.065) 

 
0.068 

(0.11) 
 

-0.068 
(0.05) 

 
0.004* 

(0.0019) 
 

-0.07 
(0.14) 

 
0.003* 

(0.001) 
 

0.043 
(0.11) 

 
0.003t 

(0.0017) 
 

-0.019 
(0.064) 

 
0.07 

(0.105) 
 

-0.03 
(0.05) 

 
 
 

-0.03 
(0.05) 

 
0.004* 

(0.0018) 
 

-0.065 
(0.13) 

 
0.003* 

(0.001) 
 

0.04 
(0.1) 

 
0.003* 

(0.001) 

 
51/310 

 
 

48/308 
 
 

68/473 
 
 

31/165 
 
 

99/618 
 
 

43/634 
 
 

22/125 
 
 

47/663 
 
 
 
 

65/759 
 
 

94/944 
 
 

70/433 
 
 

115/1136 
 
 

49/241 
 
 

164/1377 

 
0.38 

 
 

0.40 
 
 

0.36 
 
 

0.47 
 
 

0.36 
 
 

0.22 
 
 

0.66 
 
 

0.24 
 
 
 
 

0.26 
 
 

0.33 
 
 

0.40 
 
 

0.32 
 
 

0.46 
 
 

0.33 

 
 

     

      
 
Data Source: S&P 500 Pharmaceutical Industry Database and the NBER patent and citations Database 
Notes: Heteroskedasticity robust White Errors reported in parenthesis. * significant at 5% and t significant at 10%. 
a The results are not reported due to small sample size. 
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Table 7: FGD Kurtosis Values for Different Types of Firms 
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APPENDIX : 

Calculation of the Stock Innovation Variables: 

When calculating the innovation stock (R&D, patent and citation-weighted patent stocks), the 

perpetual inventory method is used in which a 15% depreciation rate and a 5% annual 

growth rate is assumed for the stock (Hall and Marisse, 1995). In what follows, we 

demonstrate the calculation of the R&D stock. 

 represents the depreciation rate which is assumed to be 15% in this case, RDSTOCKi,t is 

the R&D stock  for firm i in year t, RDi,t is the R&D expenditures of firm i in year t (in flow 

form).

oi
t

titititi RDRDRDRDRDSTOCK ,2,
2

1,,, )1(...)1()1( ��� �������� ��     (A1) 

Equation (A1) can be reduced to (A2) as in Lach (1995) 

ti,1ti,ti, RD�)RDSTOCK(1RDSTOCK ��� �       (A2) 

For (A2) to make sense, we need to know the firm’s R&D stock value in year zero, the year a 

firm first enters the market (in our case, the year it gets quoted on the American Stock 

Exchange). To calculate this, we assume that the innovation stock grows at an annual rate 

of 5%. According to (A3), Lach (1995, p.102-103) shows that the R&D stock is roughly equal 

to 5 times the R&D expenditures the firm makes in the first year it enters the database 

(assuming that ).

g)/(�RDRDSTOCK i,oi,o ��        (A3) 

The same method above is used to calculate the stock of patents and citation weighted 

patents. The truncation in patents and citations is corrected first, then the stock calculation 

operations are undertaken.  


