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Networks—sets of objects connected by relationships—are important in a number of fields. The study of networks has long been central
to sociology, where researchers have attempted to understand the causes and consequences of the structure of relationships in large groups
of people. Using insight from previous network research, Killworth et al. and McCarty et al. have developed and evaluated a method for
estimating the sizes of hard-to-count populations using network data collected from a simple random sample of Americans. In this article
we show how, using a multilevel overdispersed Poisson regression model, these data also can be used to estimate aspects of social structure
in the population. Our work goes beyond most previous research on networks by using variation, as well as average responses, as a source
of information. We apply our method to the data of McCarty et al. and find that Americans vary greatly in their number of acquaintances.
Further, Americans show great variation in propensity to form ties to people in some groups (e.g., males in prison, the homeless, and
American Indians), but little variation for other groups (e.g., twins, people named Michael or Nicole). We also explore other features of
these data and consider ways in which survey data can be used to estimate network structure.

KEY WORDS: Negative binomial distribution; Overdispersion; Sampling; Social networks; Social structure.

1. INTRODUCTION

Recently a survey was taken of Americans asking, among
other things, “How many males do you know incarcerated in
state or federal prison?” The mean of the responses to this ques-
tion was 1.0. To a reader of this journal, that number may seem
shockingly high. We would guess that you probably do not
know anyone in prison. In fact, we would guess that most of
your friends do not know anyone in prison either. This number
may seem totally incompatible with your social world.

So how was the mean of the responses 1? According to the
data, 70% of the respondents reported knowing 0 people in
prison. However, the responses show a wide range of variation,
with almost 3% reporting that they know at least 10 prisoners.
Responses to some other questions of the same format, for ex-
ample, “How many people do you know named Nicole?,” show
much less variation.

This difference in the variability of responses to these “How
many X’s do you know?” questions is the manifestation of fun-
damental social processes at work. Through careful examina-
tion of this pattern, as well as others in the data, we can learn
about important characteristics of the social network connect-
ing Americans, as well as the processes that create this network.

This analysis also furthers our understanding of statistical
models of two-way data, by treating overdispersion as a source
of information, not just an issue that requires correction. More
specifically, we include overdispersion as a parameter that mea-
sures the variation in the relative propensities of individuals to
form ties to a given social group, and allow it to vary among so-
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cial groups. Through such modeling of the variation of the rel-
ative propensities, we derive a new measure of social structure
that uses only survey responses from a sample of individuals,
not data on the complete network.

1.1 Background

Understanding the structure of social networks, and the so-
cial processes that form them, is a central concern of sociology
for both theoretical and practical reasons (Wasserman and Faust
1994; Freeman 2004). Social networks have been found to have
important implications for the social mobility (Lin 1999), get-
ting a job (Granovetter 1995), the dynamics of fads and fashion
(Watts 2002), attitude formation (Lee, Farrell, and Link 2004),
and the spread of infectious disease (Morris and Kretzchmar
1995).

When talking about social networks, sociologists often use
the term “social structure,” which, in practice, has taken on
many different meanings, sometimes unclear or contradictory.
In this article, as in the article by Heckathorn and Jeffri (2001),
we generalize the conception put forth by Blau (1974) that so-
cial structure is the difference in affiliation patterns from what
would be observed if people formed friendships entirely ran-
domly.

Sociologists are not the only scientists interested in the
structure of networks. Methods presented here can be applied
to a more generally defined network, as any set of objects
(nodes) connected to each other by a set of links (edges).
In addition to social networks (friendship network, collabo-
ration networks of scientists, sexual networks), examples in-
clude technological networks (e.g., the internet backbone, the
world-wide web, the power grid) and biological networks (e.g.,
metabolic networks, protein interaction networks, neural net-
works, food webs); reviews have been provided by Strogatz
(2001), Newman (2003b), and Watts (2004).

1.2 Overview of the Article

In this article we show how to use “How many X’s do you
know?” count data to learn about the social structure of the ac-
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quaintanceship network in the United States. More specifically,
we can learn to what extent people vary in their number of ac-
quaintances, to what extent people vary in their propensity to
form ties to people in specific groups, and also to what extent
specific subpopulations (including those that are otherwise hard
to count) vary in their popularities.

The data used in this article were collected by McCarty,
Killworth, Bernard, Johnsen, and Shelley (2001) and consist of
survey responses from 1,370 individuals on their acquaintances
with groups defined by name (e.g., Michael, Christina, Nicole),
occupation (e.g., postal worker, pilot, gun dealer), ethnicity
(e.g., Native American), or experience (e.g., prisoner, auto ac-
cident victim); for a complete list of the groups, see Figure 4
in Section 4.2. Our estimates come from fitting a multilevel
Poisson regression with variance components corresponding to
survey respondents and subpopulations and an overdispersion
factor that varies by group. We fit the model using Bayesian in-
ference and the Gibbs–Metropolis algorithm, and identify some
areas in which the model fit could be improved using predictive
checks. Fitting the data with a multilevel model allows sepa-
ration of individual and subpopulation effects. Our analysis of
the McCarty et al. data gives reasonable results and provides
a useful external check on our methods. Potential areas of fur-
ther work include more sophisticated interaction models, ap-
plication to data collected by network sampling (Heckathorn
1997, 2002; Salganik and Heckathorn 2004), and application to
count data in other fields.

2. THE PROBLEM AND DATA

The original goals of the McCarty et al. surveys were (1) to
estimate the distribution of individuals’ network size, defined
as the number of acquaintances, in the U.S. population (which
can also be called the degree distribution) and (2) to estimate
the sizes of certain subpopulations, especially those that are
hard to count using regular survey results (Killworth, Johnsen,
McCarty, Shelley, and Bernard 1998a; Killworth, McCarty,
Bernard, Shelley, and Johnsen 1998b).

The data from the survey are responses from 1,370 adults
(survey 1, 796 respondents, January 1998; survey 2, 574 re-
spondents, January 1999) in the United States (selected by ran-
dom digit dialing) to a series of questions of the form “How
many people do you know in group X?” Figure 4 provides
a list of the 32 groups asked about in the survey. In addition
to the network data, background demographic information, in-
cluding sex, age, income, and marital status, was also collected.
The respondents were told, “For the purposes of this study,
the definition of knowing someone is that you know them and
they know you by sight or by name, that you could contact
them, that they live within the United States, and that there
has been some contact (either in person, by telephone or mail)
in the past 2 years.” In addition, there are some minor com-
plications with the data. For the fewer than .4% of responses
that were missing, we followed the usual practice with this sort
of unbalanced data of assuming an ignorable model (i.e., con-
structing the likelihood using the observed data). Sometimes
responses were categorized, in which case we used the central
value in the bin (e.g., imputing 7.5 for the response “5–10”).
To correct for some responses that were suspiciously large

(e.g., a person claiming to know over 50 Michaels), we trun-
cated all responses at 30. (Truncating at value 30 affects .25%
of the data. As a sensitivity analysis, we tried changing the
truncation point to 50; this had essentially no effect on our
results.) We also inspected the data using scatterplots of re-
sponses, which revealed a respondent who was coded as know-
ing seven persons of every category. We removed this case from
the dataset.

Killworth et al. (1998a,b) summarized the data in two ways.
First, for their first goal of estimating the social network size for
any given individual surveyed, they used his or her responses
for a set of subpopulations with known sizes and scaled up us-
ing the sizes of these groups in the population. To illustrate,
suppose that you know two persons named Nicole, and that
at the time of the survey, there were 358,000 Nicoles out of
280 million Americans. Thus your two Nicoles represent a frac-
tion 2

358,000 of all the Nicoles. Extrapolating to the entire coun-
try yields an estimate of

2

358,000
· (280 million) = 1,560 people

known by you. A more precise estimate can be obtained by av-
eraging these estimates using a range of different groups. This
is only a crude inference, because it assumes that everyone has
equal propensity to know someone from each group. However,
as an estimation procedure, it has the advantage of not requiring
a respondent to recall his or her entire network, which typically
numbers in the hundreds (McCarty et al. 2001).

The second use for which this survey was designed is to
estimate the size of certain hard-to-count populations. To do
this, Killworth et al. (1998a,b) combined the estimated network
size information with the responses to the questions about how
many people the respondents know in the hard-to-count popu-
lation. For example, the survey respondents know, on average,
.63 homeless people. If it is estimated that the average network
size is 750, then homeless people represent a fraction of .63

750 of
an average person’s social network. The total number of home-
less people in the country can then be estimated as

.63

750
· (280 million) = .24 million.

This estimate relies on idealized assumptions (most notably,
that homeless persons have the same social network size on
average as Americans as a whole) but can be used as a start-
ing point for estimating the sizes of groups that are difficult to
measure directly (Killworth et al. 1998a,b).

In this article we demonstrate a new use of the data from
this type of survey to reveal information about social structure
in the acquaintanceship network. We use the variation in re-
sponse data to study the heterogeneity of relative propensities
for people to form ties to people in specific groups. In addition,
we provide support for some of the findings of McCarty et al.
(2001) and Killworth et al. (2003).

3. FORMULATING AND FITTING THE MODEL

3.1 Notation

We introduce a general notation for the links between persons
i and j in the population (with groups k defined as subsets Sk of
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the population), with a total population size of N:

pij = probability that person i knows person j,

ai =
N∑

j=1

pij

= gregariousness parameter or
the expected degree of person i,

B =
N∑

i=1

ai

= expected total degree of the population

= 2 · (expected # link),

Bk =
∑

i∈Sk

ai

= expected total degree of persons in group k,
(1)

bk = Bk

B

= prevalence parameter or the proportion
of total links that involve group k,

λik =
∑

j∈Sk

pij

= expected number of persons in
group k known by person i,

gik = λik

aibk

= individual i’s relative propensity
to know a person in group k.

We are implicitly assuming acquaintanceship to be symmetric,
which is consistent with the wording of the survey question.
To the extent that the relation is not symmetric, our results still
hold if we replace the term “degree” by “in-degree” or “out-
degree” as appropriate.

The parameter bk is not the proportion of persons in the pop-
ulation who are in group k; rather, bk is the proportion of links
that involve group k. (For this purpose, we count a link twice
if it connects two members of group k.) If the links in the ac-
quaintance network are assigned completely at random, then
bk = Nk/N, where Nk is the number of individuals in group k.
Realistically, and in our model, the values of bk may not be
proportional to the Nk’s. If bk is higher than the population pro-
portion of group k, then this indicates that the average degree
of individuals from group k is higher than the average degree of
the population.

For the parameter gik, a careful inspection reveals that

gik =
∑

j∈Sk
pij/

∑N
j=1 pij

bk
(2)

is the ratio of the proportion of the links that involve group k
in individual i’s network, divided by the proportion of the links
that involve group k in the population network. In other words,
gik > 1 if individual i has higher propensity to form ties with

individuals from group k than an average person in the popula-
tion. This property of gik is why we have termed it the relative
propensity.

We use the following notation for our survey data: n survey
respondents and K population subgroups under study; for the
McCarty et al. data, n = 1,370 and K = 32. We label yik as the
response of individual i to the question, “How many people do
you know of subpopulation k?”; that is, yik = number of per-
sons in group k known by person i. We implicitly assume in
this section that the respondents have perfect recall of the num-
ber of acquaintances in each subpopulation k. Issues of imper-
fect recall are discussed in Section 4.2. We now discuss three
increasingly general models for the data yik.

Erdös–Renyi Model. We study social structure as depar-
tures from patterns that would be observed if the acquain-
tances are formed randomly. The classical mathematical model
for completely randomly formed acquaintances is the Erdös–
Renyi model (Erdös and Renyi 1959), under which the proba-
bility, pij, of a link between person i and person j is the same
for all pairs (i, j). Following the foregoing notation, this model
leads to equal expected degrees ai for all individuals and rela-
tive propensities gik that all equal to 1. The model also implies
that the set of responses yik for subpopulation k should follow a
Poisson distribution.

However, if the expected degrees of individuals were actu-
ally heterogenous, then we would expect super-Poisson varia-
tion in the responses to “How many X’s do you know?” ques-
tions ( yik). Because numerous network studies have found large
variation in degrees (Newman 2003b), it is no surprise the
Erdös–Renyi model is a poor fit to our yik data—a chi-squared
goodness-of-fit test values 350,000 on 1,369 × 32 ≈ 44,000 df.

Null Model. To account for the variability in the degrees
of individuals, we introduce a null model in which individu-
als have varying gregariousness parameters (or the expected
degrees) ai. Under this model, for each individual, the ac-
quaintances with others are still formed randomly. However,
the gregariousness may differ from individual to individual. In
our notation, the null model implies that pij = aiaj/B, and rela-
tive propensities gik are still all equal to 1. Departure from this
model can be viewed as evidence of structured social acquain-
tance networks. A similar approach was taken by Handcock and
Jones (2004) in their attempt to model human sexual networks,
although their model is different because it does not deal with
two-way data.

In the case of the “How many X’s do you know?” count
data, this null model fails to account for much of social re-
ality. For example, under the null model, the relative propen-
sity to know people in prison is the same for a reader of this
journal and a person without a high school degree. The fail-
ure of such an unrealistic model to fit the data is confirmed
by a chi-squared goodness-of-fit test that values 160,000 on
1,369 × 31 ≈ 42,000 df.

Overdispersed Model. The failure of the null model mo-
tivates a more general model that allows individuals to vary
not only in their gregariousness (ai), but also in their relative
propensity to know people in different groups (gik). We call
this the overdispersed model, because variation in these gik’s
results in overdispersion in the “How many X’s do you know?”
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count data. As is standard in generalized linear models (e.g.,
McCullagh and Nelder 1989), we use “overdispersion” to refer
to data with more variance than expected under a null model,
and also as a parameter in an expanded model that captures this
variation.

Comparison of the Three Models Using “How Many X’s Do
You Know?” Count Data. Figure 1 shows some of the data—
the distributions of responses, yik, to the questions “How many
people named Nicole do you know?” and “How many Jaycees
do you know?,” along with the expected distributions under
the Erdös–Renyi model, our null model, and our overdispersed
model. (“Jaycees” are members of the Junior Chamber of Com-
merce, a community organization of people age 21–39. Because
the Jaycees are a social organization, it makes sense that not
everyone has the same propensity to know one—people who
are in the social circle of one Jaycee are particularly likely to
know others.) We chose these two groups to plot because they
are close in average number known (.9 Nicoles, 1.2 Jaycees) but
have much different distributions; the distribution for Jaycees
has much more variation, with more zero responses and more
responses in the upper tail.

The three models can be written as follows in statistical no-
tation as yik ∼ Poisson(λik), with increasingly general forms
for λik:

Erdös–Renyi model: λik= abk,

Our null model: λik= aibk,

Our overdispersed model: λik= aibkgik.

Comparing the models, the Erdös–Renyi model implies a
Poisson distribution for the responses to each “How many X’s
do you know?” question, whereas the other models allow for
more dispersion. The null model turns out to be a much bet-
ter fit to the Nicoles than to the Jaycees, indicating that there
is comparably less variation in the propensity to form ties with
Nicoles than with Jaycees. The overdispersed model fits both
distributions reasonably well and captures the difference be-
tween the patterns of the acquaintance with Nicoles and Jaycees
by allowing individuals to differ in their relative propensities to
form ties to people in specific groups (gik). As we show, using
the overdispersed model, both variation in social network sizes
and variations in relative propensities to form ties to specific
groups can be estimated from the McCarty et al. data.

Figure 1. Histograms (on the square-root scale) of Responses to “How Many Persons Do You Know Named Nicole?” and “How Many Jaycees
Do You Know?” From the McCarty et al. Data and From Random Simulations Under Three Fitted Models: The Erdös–Renyi Model (completely
random links), Our Null Model (some people more gregarious than others, but uniform relative propensities for people to form ties to all groups),
and Our Overdispersed Model (variation in gregariousness and variation in propensities to form ties to different groups). Each model shows more
dispersion than the one above, with the overdispersed model fitting the data reasonably well. The propensities to form ties to Jaycees show much
more variation than the propensities to form ties to Nicoles, and hence the Jaycees counts are much more overdispersed. (The data also show
minor idiosyncrasies such as small peaks at the responses 10, 15, 20, and 25. All values >30 have been truncated at 30.) We display the results
on square-root scale to more clearly reveal patterns in the tails.
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As described in the next section, when fitting the overdis-
persed model, we do not attempt to estimate all of the in-
dividual gik’s; rather, we estimate certain properties of their
distributions.

3.2 The Overdispersed Model

Overdispersion in these data can arise if the relative propen-
sity for knowing someone in prison, for example, varies from
respondent to respondent. We can write this in the generalized
linear model framework as

overdispersed model: yik ∼ Poisson
(
eαi+βk+γik

)
, (3)

where αi = log(ai), βk = log(bk), and γik = log(gik). In the null
model, γik ≡ 0. For each subpopulation k, we let the multiplica-
tive factor gik = eγik follow a gamma distribution with a value
of 1 for the mean and a value of 1/(ωk − 1) for the shape pa-
rameter. [If we wanted, we could allow the mean of the gamma
distribution to vary also; however, this would be redundant with
a location shift in βk; see (3). The mean of the gamma distribu-
tion for the eγik ’s cannot be identified separately from βk, which
we are already estimating from the data.] This distribution is
convenient because then the γ ’s can be integrated out of (3) to
yield

overdispersed model:

yik ∼ negative-binomial
(
mean = eαi+βk ,

overdispersion = ωk
)
. (4)

The usual parameterization (see, e.g., Gelman, Carlin, Stern,
and Rubin 2003) of the negative binomial distribution is
y ∼ Neg-bin(A,B), but for this article it is more convenient
to express in terms of the mean λ = A/B and overdispersion
ω = 1 + 1/B. Setting ωk = 1 corresponds to setting the shape
parameter in the gamma distribution to ∞, which in turn im-
plies that the gik’s have zero variance, reducing to the null
model. Higher values of ωk correspond to overdispersion, that
is, more variation in the distribution of connections involving
group k than would be expected under the Poisson model, as
would be expected if there is variation among respondents in
the relative propensity to know someone in group k.

The overdispersion parameter ω can be interpreted in a num-
ber of ways. Most simply, it scales the variance, var( yik) =
ωkE( yik), in the negative binomial distribution for yik. A per-
haps more intuitive interpretation uses the probabilities of
knowing exactly zero or one person in subgroup k. Under the
negative binomial distribution for data y,

Pr( y = 1) = Pr( y = 0)E( y)

overdispersion
. (5)

Thus we can interpret the overdispersion as a factor that de-
creases the frequency of people who know exactly one person
of type X, as compared to the frequency of people who know
none. As overdispersion increases from its null value of 1, it is
less likely for a person to have an isolated acquaintance from
that group.

Our primary goal in fitting model (4) is to estimate the
overdispersions ωk and thus learn about biases that exist in the
formation of social networks. As a byproduct, we also esti-
mate the gregariousness parameters ai = eαi , representing the

expected number of persons known by respondent i, and the
group prevalence parameters bk = eβk , which is the proportion
of subgroup k in the social network.

We estimate the αi’s, βk’s, and ωk’s with a hierarchical (mul-
tilevel) model and Bayesian inference (see, e.g., Snijders and
Bosker 1999; Raudenbush and Bryk 2002; Gelman et al. 2003).
The respondent parameters αi are assumed to follow a nor-
mal distribution with unknown mean µα and standard devia-
tion σα , which corresponds to a lognormal distribution for the
gregariousness parameters ai = eαi . This is a reasonable prior
given previous research on the degree distribution of the ac-
quaintanceship network of Americans (McCarty et al. 2001).
We similarly fit the group-effect parameters βk with a normal
distribution N(µβ,σ 2

β ), with these hyperparameters also esti-
mated from the data. For simplicity, we assign independent
uniform(0,1) prior distributions to the overdispersion parame-
ters on the inverse scale, p(1/ωk) ∝ 1. [The overdispersions ωk

are constrained to the range (1,∞), and so it is convenient to
put a model on the inverses 1/ωk, which fall in (0,1).] The
sample size of the McCarty et al. dataset is large enough so that
this noninformative model works fine; in general, however, it
would be more appropriate to model the ωk’s hierarchically as
well. We complete the Bayesian model with a noninformative
uniform prior distribution for the hyperparameters µα,µβ,σα ,
and σβ . The joint posterior density can then be written as

p(α,β,ω,µα,µβ,σα,σβ |y)

∝
n∏

i=1

K∏

k=1

(
yik + ξik − 1

ξik − 1

)(
1

ωk

)ξik
(

ωk − 1

ωk

)yik

×
n∏

i=1

N(αi|µα,σ 2
α )

K∏

k=1

N(βk|µβ,σ 2
β ),

where ξik = eαi+βk/(ωk −1), from the definition of the negative
binomial distribution.

Normalization. The model as given has a nonidentifiability.
Any constant C can be added to all of the αi’s and subtracted
from all of the βk’s, and the likelihood will remain unchanged
(because it depends on these parameters only through sums
of the form αi + βk). If we also add C to µα and subtract C
from µβ , then the prior density also is unchanged. It is possible
to identify the model by anchoring it at some arbitrary point—
for example, setting µα to 0—but we prefer to let all of the
parameters float, because including this redundancy can speed
the Gibbs sampler computation (van Dyk and Meng 2001).

However, in summarizing the model we want to identify the
α and β’s so that each bk = eβk represents the proportion of
the links in the network that go to members of group k. We
identify the model in this way by renormalizing the bk’s for the
rarest names (in the McCarty et al. survey, these are Jacqueline,
Christina, and Nicole) so that they line up to their proportions in
the general population. We renormalize to the rare names rather
than to all 12 names because there is evidence that respondents
have difficulty recalling all their acquaintances with common
names (see Killworth et al. 2003 and also Sec. 4.2). Finally,
because the rarest names asked about in our survey are female
names—and people tend to know more persons of their own
sex—we further adjust by adding half the discrepancy between
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a set of intermediately popular male and female names in our
dataset.

This procedure is complicated but is our best attempt at an
accurate normalization for the general population (which is
roughly half women and half men) given the particularities of
the data that we have at hand. In the future, it would be desir-
able to gather data on a balanced set of rare female and male
names. Figure 5(a) in Section 4.2 illustrates how after renor-
malization, the rare names in the dataset have group sizes equal
to their proportion in the population. This specific procedure is
designed for the recall problems that exist in the McCarty et al.
dataset. Researchers working with different datasets may need
to develop a procedure appropriate to their specific data.

In summary, for each simulation draw of the vector of model
parameters, we define the constant

C = C1 + 1

2
C2, (6)

where C1 = log(
∑

k∈G1
eβk/PG1) adjusts for the rare girls’

names and C2 = log(
∑

k∈B2
eβk/PB2) − log(

∑
k∈G2

eβk/PG2)

represents the difference between boys’ and girls’ names. In
these expressions G1, G2, and B2 are the set of rare girls’ names
(Jacqueline, Christina, and Nicole), somewhat popular girls’
names (Stephanie, Nicole, and Jennifer), and somewhat popular
boys’ names (Anthony and Christopher), and PG1,PG2 , and PB2

are the proportion of people with these groups of names in the
U.S. population.

We add C to all of the αi’s and to µα and subtract it from all
of the βk’s and µβ , so that all of the parameters are uniquely
defined. We can then interpret the parameters ai = eαi as the
expected social network sizes of the individuals i and the para-
meters bk = eβk as the sizes of the groups as a proportion of the
entire network, as in the definitions (1).

3.3 Fitting the Model Using the
Gibbs–Metropolis Algorithm

We obtain posterior simulations for the foregoing model
using a Gibbs–Metropolis algorithm, iterating the following
steps:

1. For each i, update αi using a Metropolis step with jumping
distribution α∗

i ∼ N(α
(t−1)
i , ( jumping scale of αi)

2).
2. For each k, update βk using a Metropolis step with jump-

ing distribution β∗
k ∼ N(β

(t−1)
i , ( jumping scale of βk)

2).
3. Update µα ∼ N(µ̂α, σ 2

α/n), where µ̂α = 1
n

∑n
i=1 αi.

4. Update σ 2
α ∼ Inv-χ2(n − 1, σ̂ 2

α ), where σ̂ 2
α = 1

n ×∑n
i=1 (αi − µα)2.

5. Update µβ ∼ N(µ̂β, σ 2
β/n), where µ̂β = 1

K

∑K
k=1 βk.

6. Update σ 2
β ∼ Inv-χ2(K − 1, σ̂ 2

β ), wherev σ̂ 2
β = 1

K ×∑K
k=1 (βk − µβ)2.

7. For each k, update ωk using a Metropolis step with jump-
ing distribution ω∗

k ∼ N(ω
(t−1)
k , ( jumping scale of ωk)

2).
8. Rescale the α’s and β’s by computing C from (6) and

adding it to all of the αi’s and µα and subtracting it from
all of the βk’s and µβ , as discussed at the end of Sec-
tion 3.2.

We construct starting points for the algorithm by fitting a
classical Poisson regression [the null model, yik ∼ Poisson(λik),
with λik = aibk] and then estimating the overdispersion for
each subpopulation k using 1

n

∑n
i=1 ( yik − âib̂k)

2/(âib̂k). The
Metropolis jumping scales for the individual components
of α,β , and ω are set adaptively so that average acceptance
probabilities are approximately 40% for each scalar parameter
(Gelman, Roberts, and Gilks 1996).

4. RESULTS

We fit the overdispersed model to the McCarty et al. (2001)
data, achieving approximate convergence (R̂ < 1.1; see Gelman
et al. 2003) of three parallel chains after 2,000 iterations.
We present our inferences for the gregariousness parameters
ai = eαi , the prevalence parameters bk = eβk , and the overdis-
persion parameters ωk, in that order.

We fit the model first using all of the data and then separately
for the male and female respondents (582 males and 784 fe-
males, with 4 individuals excluded because of missing gender
information). Fitting the models separately for men and women
makes sense because many of the subpopulations under study
are single-sex groups. As we show, men tend to know more men
and women tend to know more women, and more subtle sex-
linked patterns also occur. Other interesting patterns arise when
we examine the correlation structure of the model residuals, as
we discuss in Section 4.5.

4.1 Distribution of Social Network Sizes ai

The estimation of the distribution of social network sizes,
the distribution of the ai’s in our study, is a problem that
has troubled researchers for some time. Good estimates of
this basic social parameter have remained elusive despite nu-
merous efforts. Some attempts have included diary studies
(Gurevich 1961; Pool and Kochen 1978), phone book stud-
ies (Pool and Kochen 1978; Freeman and Thompson 1989;
Killworth, Johnsen, Bernard, Shelley, and McCarty 1990), the
reverse small-world method (Killworth and Bernard 1978), the
scale-up method described earlier in this article (Killworth et al.
1998a,b), and the summation method (McCarty et al. 2001).
Despite a great amount of work, this body of research offers lit-
tle consensus. Our estimates of the distribution of the ai’s shed
more light on this question of estimating the degree distribu-
tion of the acquaintanceship network. Further, we are able to go
beyond previous studies by using our statistical model to sum-
marize the uncertainty of the estimated distribution, as shown
in Figure 2.

Figure 2 displays estimated distributions of the gregarious-
ness parameters ai = eαi for the survey respondents, showing
separate histograms of the posterior simulations from the model
estimated separately to the men and the women. Recall that
these values are calibrated based on the implicit assumption that
the rare names in the data have the same average degrees as the
population as a whole (see the end of Sec. 3.2). The similarity
between the distributions for men and for women is intrigu-
ing. This similarity is not an artifact of our analysis, but instead
seems to be telling us something interesting about the social
world.

We estimate the median degree of the population to be
about 610 (650 for men and 590 for women), with an esti-
mated 90% of the population having expected degrees between
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Figure 2. Estimated Distributions of “Gregariousness” or Expected Degree, ai = eαi From the Fitted Model. Men and women have similar
distributions (with medians of about 610 and means about 750), with a great deal of variation among persons. The overlain lines are posterior
simulation draws indicating inferential uncertainty in the histograms.

250 and 1,710. These estimates are a bit higher than those of
McCarty et al. (2001), for reasons that we discuss near the end
of Section 4.2.

The spread in each of the histograms of Figure 2 represents
population variability almost entirely. The model allows us to
estimate the individual ai’s to within a coefficient of variation
of about ±25%. When taken together, this allows us to estimate
the distribution precisely. This precision can be seen in the solid
lines overlaid on Figure 2 that represent inferential uncertainty.

Figure 3 presents a simple regression analysis estimating
some of the factors predictive of αi = log(ai), using the data
on the respondents in the McCarty et al. survey. These explana-
tory factors are relatively unimportant in explaining social net-
work size; the regression summarized in Figure 3 has an R2 of
only 10%. The strongest patterns are that persons with a col-
lege education, a job outside the home, and high incomes know
more people and that persons over 65 and those with low in-
comes know fewer people.

4.2 Relative Sizes bk of Subpopulations

We now consider the group-level parameters. The left panel
of Figure 4 shows the 32 subpopulations k and the estimates

Figure 3. Coefficients (and ±1 standard error and ±2 standard error
intervals) of the Regression of Estimated Log Gregariousness Parame-
ters αi on Personal Characteristics. Because the regression is on the
logarithmic scale, the coefficients (with the exception of the constant
term) can be interpreted as proportional differences: thus, with all else
held constant, women have social network sizes 11% smaller than men,
persons over 65 have social network sizes 14% lower than others, and
so forth. The R2 of the model is only 10%, indicating that these predic-
tors explain little of the variation in gregariousness in the population.

of eβk , the proportion of links in the network that go to a mem-
ber of group k (where Beβk is the total degree of group k). The
right panel displays the estimated overdispersions ωk. The sam-
ple size is large enough so that the 95% error bars are tiny
for the βk’s and reasonably small for the ωk’s as well. [It is
a general property of statistical estimation that mean parame-
ters (such as the β’s in this example) are easier to estimate than
dispersion parameters such as the ω’s.] The figure also displays
the separate estimates from the men and women.

Considering the β’s first, the clearest pattern in Figure 4
is that respondents of each sex tend to know more people in
groups of their own sex. We can also see that the 95% intervals
are wider for groups with lower β’s, which makes sense be-
cause the data are discrete, and for these groups, the counts yik
are smaller and provide less information.

Another pattern in the estimated bk’s is the way in which they
scale with the size of group k. One would expect an approxi-
mate linear relation between the number of people in group k
and our estimate for bk; that is, on a graph of log bk versus
log(group size), we would expect the groups to fall roughly
along a line with slope 1. However, as can be seen in Figure 5,
this is not the case. Rather, the estimated prevalence increases
approximately with square root of population size, a pattern that
is particularly clean for the names. This relation has also been
observed by Killworth et al. (2003).

Discrepancies from the linear relation can be explained by
difference in average degrees (e.g., as members of a social or-
ganization, Jaycees would be expected to know more people
than average, so their bk should be larger than an average group
of an equal size), inconsistency in definitions (e.g., what is the
definition of an American Indian?), and ease or difficulty of
recall (e.g., a friend might be a twin without you knowing it,
whereas you would probably know whether she gave birth in
the last year).

This still leaves unanswered the question of why a square
root (i.e., a slope of 1/2 in the log–log plot), rather than a linear
(a slope of 1) pattern. Killworth et al. (2003) discussed vari-
ous explanations for this pattern. As they note, it is easier to
recall rare persons and events, whereas more people in more
common categories are easily forgotten. You will probably re-
member every Ulysses you ever met, but may find it difficult to
recall all the Michaels and Roberts you know even now.

This reasoning suggests that acquaintance networks are
systematically underestimated, and hence when this scale-up
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Figure 4. Estimates (and 95% intervals) of bk and ωk , Plotted for Groups X in the “How Many X’s Do You Know?” Survey of McCarty et al.
(2001). The estimates and uncertainty lines are clustered in groups of three; for each group, the top, middle, and bottom dots/lines correspond
to men, all respondents, and women. The groups are listed in categories—female names, male names, female groups, male (or primarily male)
groups, and mixed-sex groups—and in increasing average overdispersion within each category.

(a) (b)

Figure 5. Log–Log Plots of Estimated Prevalence of Groups in the Population (as estimated from the “How many X’s do you know?” survey)
Plotted versus Actual Group Size (as determined from public sources). Names (a) and other groups (b) are plotted separately, on a common scale,
with fitted regression lines shown. The solid lines have slopes .53 and .42, compared to a theoretical slope of 1 (as indicated by the dotted lines)
that would be expected if all groups were equally popular and equally recalled by respondents.
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method is used to estimate social network size, it is more appro-
priate to normalize based on the known populations of the rarer
names (e.g., Jacqueline, Nicole, and Christina in this study)
rather than on more common names such as Michael or James,
or even on the entire group of 12 names in the data. We dis-
cussed the particular renormalization that we use at the end of
Section 3.2. This also explains why our estimate of the mean of
the degree distribution is 750, as compared with the 290 esti-
mated from the same data by McCarty et al. (2001).

Another pattern in Figure 5 is that the slope of the line is
steeper for the names than for the other groups. We suppose that
this is because for a given group size, it is easier to recall names
than characteristics. After all, you know the name of almost
all your acquaintances, but you could easily be unaware that a
friend has diabetes, for example.

4.3 Overdispersion Parameters ωk for Subpopulations

Recall that we introduced the overdispersed model in an at-
tempt to estimate the variability in individuals’ relative propen-
sities to form ties to members of different groups. For groups
where ωk = 1, we can conclude that there is no variation in
these relative propensities. However, larger values of ωk imply
variation in individuals’ relative propensities.

The right panel of Figure 4 displays the estimated overdis-
persions ωk, and they are striking. First, we observe that the
names have overdispersions of between 1 and 2—indicating
little variation in relative propensities. In contrast, the other
groups have a wide range of overdispersions, ranging from
near 1 for twins (which are in fact distributed nearly at ran-
dom in the population) to 2–3 for diabetics, recent mothers, new
business owners, and dialysis patients (who are broadly dis-
tributed geographically and through social classes), with higher
values for more socially localized groups, such as gun dealers
and HIV/AIDS patients, and demographically localized groups,
such as widows/widowers; and even higher values for Jaycees
and American Indians, two groups with dense internal net-
works. Overdispersion is highest for homeless persons, who are
both geographically and socially localized.

These results are consistent with our general understanding
and also potentially reveal patterns that would not be apparent
without this analysis. For example, it is no surprise that there
is high variation in the propensity to know someone who is
homeless, but it is perhaps surprising that AIDS patients are
less overdispersed than HIV-positive persons, or that new busi-
ness owners are no more overdispersed than new mothers.

One way to understand the parameters ωk in the data, which
range from about 1 to 10, is to examine the effect these
overdispersions have on the distribution of the responses to
the question, “How many people do you know of type X?”
The distribution becomes broader as the ai’s vary and as ω in-
creases. Figure 6 illustrates that for several values of ω, as the
overdispersion parameter increases, we expect to see increas-
ingly many 0’s and high values and fewer 1’s [as expressed an-
alytically in (5)].

4.4 Differences Between Men and Women

A more subtle pattern in the data involves the differences
between male and female respondents. Figure 7 plots the dif-
ference between men and women in the overdispersion pa-
rameters, ωk, versus the “popularity” estimates, bk, for each
subpopulation k. For names and for the other groups, there is
a general pattern that overdispersion is higher among the sex
for which the group is more popular. This makes some sense;
overdispersion occurs when members of a subgroup are known
in clusters or, more generally, when knowing one member of the
subgroup makes it more likely that you will know several. For
example, on average, men know relatively more airline pilots
than women, perhaps because they are more likely to be pilots
themselves, in which case they might know many pilots, yield-
ing a relatively high overdispersion. We do not claim to under-
stand all of the patterns in Figure 7, for example, that Roberts
and Jameses tend to be especially popular and overdispersed
among men compared with women.

4.5 Analysis Using Residuals

Further features of these data can be studied using residuals
from the overdispersed model. A natural object of study is cor-
relation; for example, do people who know more Anthonys tend
to know more gun dealers (after controlling for the fact that so-
cial network sizes differ, so that anyone who knows more X’s
will tend to know more Y’s)? For each survey response yik, we
can define the standardized residual as

residual: rik = √
yik − √

aibk, (7)

the excess people known after accounting for individual and
group parameters. (It is standard to compute residuals of count
data on the square root scale to stabilize the variance; see Tukey
1972.)

For each pair of groups k1 and k2, we can compute the corre-
lation of their vectors of residuals; Figure 8 displays the matrix

Figure 6. Distributions of “How Many X’s Do You Know?” Count Data Simulated From the Overdispersed Model Corresponding to Groups of
Equal Size (representing .5% of the population) With Overdispersion Parameters 1 (the null model), 1.5, 3, and 10. All of the distributions displayed
here have the same mean; however, as the overdispersion parameter (ω) increases, we observe broader distributions with more 0’s, more high
values, and fewer 1’s.
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Figure 7. Differences Between Men and Women in the Overdispersion Parameter ωk and Log-Prevalence βk , for Each Group k. In each graph,
the y-axis shows the estimate of ω

(men)
j − ω

(women)
j , the difference in overdispersions among men and women for group j, and the x-axis shows

β
(men)
j −β

(women)
j , the difference in log-prevalences among men and women for group j. Names and other groups are plotted separately on different

scales. In general, groups that are more popular among men have higher variations in propensities for men. A similar pattern is observed for women.

of these correlations. Care must be taken when interpreting this
figure, however. At first, it may appear that the correlations are
quite small, but this is in some sense a natural result of our
model; that is, if the correlations were all positive for group k,
then the popularity bk of that group would increase.

Several patterns can be seen in Figure 8. First, there is a slight
positive correlation within male and female names. Second,
perhaps more interesting sociologically, there is a positive cor-
relation between the categories that can be considered negative
experiences—homicide, suicide, rape, died in a car accident,

Figure 8. Correlations of the Residuals rik Among the Survey Respondents (e.g., people who know more HIV-positive persons know more AIDS
patients, etc.). The groups other than the names are ordered based on a clustering algorithm that maximizes correlations between nearby groups.



Zheng, Salganik, and Gelman: Estimate Social Structure in Networks 419

homelessness, and being in prison. That is, someone with a
higher relative propensity to know someone with one bad expe-
rience is also likely to have a higher propensity to know some-
one who had a different bad experience. The strength of this
correlation is a potentially interesting measure of inequality.
Another pattern is the mostly positive correlations among the
names and mostly positive correlations among the non-name
groups, but not much correlation between these two general
categories. One possible explanation for this is that for some
individuals names are easier to recall, whereas for some others
non-name traits (such as new births) are more memorable.

Instead of correlating the residuals, we could have examined
the correlations of the raw data. However, these would be more
difficult to interpret, because we would find positive correla-
tions everywhere, for the uninteresting reason that some respon-
dents know many more people than others, so that if you know
more of any one category of person, then you are likely to know
more in just about any other category.

Another alternative would be to calculate the correlation of
estimated interactions γik (the logarithms of the relative propen-
sities of respondents i to know persons in group k) rather than
the residuals (7). However, estimates of the individual γik are
extremely noisy (recall that we focus our interpretation on their
distributional parameter ωk) and so are not very useful. How-
ever, as shown in Figure 8, the residuals still provide useful
information.

In addition to correlations, one can attempt to model the
residuals based on individual-level predictors. For example,
Figure 9 shows the estimated coefficients of a regression model
fit to the residuals of the null model for the “How many males
do you know in state or federal prison?” question. It is no sur-
prise that being male, nonwhite, young, unmarried, and so on
are associated with knowing more males than expected in state
or federal prison. However, somewhat surprisingly, the R2 of
the regression model is only 11%.

As with the correlation analysis, by performing this regres-
sion on the residuals and not on the raw data, we are able to
focus on the relative number of prisoners known without being
distracted by the total network size of each respondent (which
we analyzed separately in Fig. 3).

Figure 9. Coefficients (and ±1 standard error and ±2 standard error
intervals) of the Regression of Residuals for the “How Many Males Do
You Know Incarcerated in State or Federal Prison?” Question on Per-
sonal Characteristics. Being male, nonwhite, young, unmarried, and so
on are associated with knowing more people than expected in federal
prison. However, the R2 of the regression is only 11%, indicting that
most of the variation in the data is not captured by these predictors.

4.6 Posterior Predictive Checking

We can also check the quality of the overdispersed model
by comparing posterior predictive simulations from the fitted
model to the data (see, e.g., Gelman et al. 2003, chap. 6). We
create a set of predictive simulations by sampling new data, yik,
independently from the negative binomial distributions given
the parameter vectors α,β , and ω drawn from the posterior sim-
ulations already calculated. We can then examine various as-
pects of the real and simulated data, as illustrated in Figure 10.
For now, just look at the bottom row of graphs in the figure;
we return in Section 5 to the top three rows. For each subpop-
ulation k, we compute the proportion of the 1,370 respondents
for which yik = 0, yik = 1, yik = 3, and so forth. We then com-
pare these values with posterior predictive simulations under
the model. On the whole, the model fits the aggregate counts
fairly well but tends to underpredict the proportion of respon-
dents who know exactly one person in a category. In addition,
the data and predicted values for y = 9 and y = 10 show the arti-
fact that persons are more likely to answer with round numbers
(which can also be seen in the histograms in Fig. 1). This phe-
nomenon, often called “heaping,” was also noted by McCarty
et al. (2001).

5. MEASURING OVERDISPERSION WITHOUT
COMPLETE COUNT DATA

Our approach relies crucially on having count data, so that
we can measure departures from our null model of independent
links; hence the Poisson model on counts. However, several pre-
vious studies have been done in which only dichotomous data
were collected. Examples include the position generator studies
(for a review, see Lin 1999) and the resource generator studies
(van Der Gaag and Snijders 2005), both of which attempted
to measure individual-level social capital. In these studies, re-
spondents were asked whether they knew someone in a specific
category—either an occupational group (e.g., doctor, lawyer) or
a resource group (someone who knows how to fix a car, some-
one who speaks a foreign language)—and responses were di-
chotomous. It would be important to know whether could use
such data to estimate the variation in popularities of individuals,
groups, and overdispersions of groups—the αi’s, βk’s, and ωk’s
in our model.

First, the two-way structure in the data could be used to es-
timate overdispersion from mere yes/no data, given reasonable
estimates of bk’s. However, good informative estimates of bk
are not always available. Without them, estimates from binary
data are extremely noisy and not particularly useful. More en-
couragingly, we find that by slightly increasing the response
burden on respondents and collecting data of the type 0, 1, 2,
and 3 or more, researchers would be able to make reasonable
estimates of overdispersion even with such censored data. Such
multiple-choice question naturally would capture less informa-
tion than an exact count but would perhaps be less subject to
the recall biases discussed in Section 4.2.

5.1 Theoretical Ideas for Estimating the Model
From Partial Data

We briefly discuss, from a theoretical perspective, the infor-
mation needed to estimate overdispersion from partial informa-
tion such as yes/no data or questions such as, “Do you know 0,
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Figure 10. Model-Checking Graphs: Observed versus Expected Proportions of Responses yik of 0, 1, 3, 5, 9, 10, and ≥13. Each row of plots
compares actual data with the estimate from one of four fitted models. The bottom row shows our main model, and the top three rows show models
fit censoring the data at 1, 3, and 5, as explained in Section 5. In each plot, each dot represents a subpopulation, with names in gray, non-names
in black, and 95% posterior intervals indicated by horizontal lines.

1, 2, or more than 2 person(s) of type X?” We illustrate with the
McCarty et al. data in the next section.

With simple yes/no data (“Do you know any X’s?”), overdis-
persion can only be estimated if external information is avail-
able on the bk’s. However, overdispersion can be estimated if
questions are asked of the form “Do you know 0,1, . . . , c or
more person(s) named Michael?” for any c ≥ 2. It is straight-
forward to fit the overdispersed model from these censored
data, with the only change being in the likelihood function.
From the negative binomial model, Pr( yik = 1) = exp(log ai +
log bk − logωk − logωk

ωk−1 aibk), and with information on the bk’s,
bk and ωk can be separated. If yik is the number of acquain-
tances in group k known by person i, then we can write the
censored data (for, say, c = 2) as zik = 0 if yik = 0, 1 if yik = 1,
and 2 if yik ≥ 2. The likelihood for zik is then simply the neg-
ative binomial density at 0 and 1 for the cases zik = 0 and 1,
and Pr(zik ≥ 2) = 1 − ∑1

m=0 Pr( yik = m) for zik = 2, the “2
or more” response, with the separate terms computed from the
negative binomial density.

5.2 Empirical Application With Artificially
Censored Data

To examine the fitting of the model from partial information,
we artificially censor the McCarty et al. (2001) data, creating
a yes/no dataset (converting all responses yik > 0 to yeses),
a “0/1/2/3+” dataset, and a “0/1/2/3/4/5+” dataset, fitting the
appropriate censored-data model to each, and then compar-
ing the parameter estimates with those from the full dataset.
We compare the estimated group prevalence parameters βk and
overdispersion parameters ωk from each of the three censored

datasets with the estimates from the complete (uncensored)
data. From these results (not shown), we conclude that censor-
ing at 3 or 5 preserves much but not all of the information for
estimation of βk and ωk, whereas censoring at 1 (yes/no data)
gives reasonable estimates for the βk’s but nearly useless esti-
mates for the ωk’s. In addition, the Gibbs–Metropolis algorithm
is slow to converge with the yes/no data.

Along with having wider confidence intervals, the estimates
from the censored data differ in some systematic ways from the
complete-data estimates. Most notably, the overdispersion pa-
rameters ωk are generally lower when estimated from censored
data.

To better understand this phenomenon, we repeat our proce-
dure—fitting the model to complete and censored data—but us-
ing a fake dataset constructed by simulating from the model
given the parameter estimates (as was done for posterior predic-
tive checking in Sec. 4.6). Our computation (not shown) reveals
that the estimation procedure seems to be working well with the
fake data when censored at 3 or 5. Most notably, no underesti-
mation for the overdispersion parameters ωk is observed due to
the censoring. However, the nonidentification appears up when
estimating from yes/no data.

A comparison of the results using the real data and the results
using the simulated fake data reveals that some of the changes
obtained from fitting to censored data arise from the poor fit
of model to the data. To explore this further, we compute the
expected proportions of yik = 0, yik = 1, etc., from the model
as fit to the different censored datasets. The top three rows of
Figure 10 show the results. The censored-data models fit the
data reasonably well or even better than the noncensored data
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for low counts but do not perform as well at predicting the rates
of high values of y, which makes sense because this part of the
distribution is being estimated entirely by extrapolation.

6. DISCUSSION

6.1 Connections to Previous Work

We have developed a new method for measuring one as-
pect of social structure that can be estimated from sample
data—variation in the propensities for individuals to form ties
with people in certain groups. Our measure of overdispersion
may seem similar to—but is, in fact, distinct from—previous
measures that have attempted to uncover deviations from ran-
dom mixing, such as homophily (McPherson, Smith-Lovin, and
Cook 2001) and assortative mixing (Newman 2002, 2003a).

Originally defined by Lazarsfeld and Merton (1954), ho-
mophily represents the tendency for people to associate with
those who are similar. Later, Coleman (1958) developed a
way of quantifying this tendency that is now commonly used
(see, e.g., Heckathorn 2002). Newman’s measures of assorta-
tive mixing are another attempt to measure the tendency for
vertices in networks to be connected to other similar vertices.

Our object of study is different because we are estimating the
variation in propensities of respondents to form ties to people
in a specific group, whether or not the respondents are actually
in the group themselves. That is, we are looking at how contact
with a group is distributed throughout the population (group
members and non–group members), whereas homophily and
assortative mixing focus only on the tendency for group mem-
bers to form ties to other group members. For example, people
with certain diseases may not necessarily associate with each
other, but they could have a higher propensity to know health
care workers.

From the McCarty et al. data, we estimate overdispersion
for groups that do not appear in our sample (e.g., homeless,
death by suicide, death by autoaccident, homicide victims,
males in prison). We estimate varying degrees of overdisper-
sion for these groups without the need for, or even the possibil-
ity of, measuring the homophily or assortative mixing of these
groups.

We are able to make estimates about these groups that are not
included in our sample because our method of detecting social
structure is indirect. By surveying a random sample of 1,370
Americans and then asking about all of their acquaintances, we
are gathering partial information about the hundreds of thou-
sands of persons in their social network (using our estimate of
the mean of the degree distribution, the survey potentially gath-
ers information on 1,370 × 750 = 1 million individuals), thus
providing information on small and otherwise hard-to-reach
groups.

Further, by explicitly focusing on variation among people,
our method differs from many existing network measures that
tend to focus on measures of central tendency of group behav-
iors. Our method also differs from many statistical models for
count data that treat super-Poisson variation as a problem to be
corrected and not a source of information itself. We suspect that
this increased attention to variation could yield useful insights
on other problems.

6.2 Future Improvements and Applications
of These Methods

Our model is not perfect, of course, as can be seen from the
model-checking graphs of Figure 10. For one thing, the model
cannot capture underdispersion, which can be considered an in-
creased probability of knowing exactly one person of type X
[see (5)], which could occur with, for example, occupational
categories where it is typical to know exactly one person (e.g.,
dentists). To model this phenomenon, it would be necessary
to go beyond the negative binomial distribution, with a natural
model class being mixture distributions that explicitly augment
the possibility of low positive values of y.

A different way to study variance in the propensity to form
ties to specific groups would be to classify links using the
characteristics of the survey respondents, following the ideas
of Hoff, Raftery, and Handcock (2002), Jones and Handcock
(2003), and Hoff (2005) in adapting logistic regression models
to model social ties. For example, the McCarty et al. data show
that men on average know nearly twice as many commercial
pilots than do women, and the two sexes have approximately
the same average social network size, so this difference repre-
sents a clear difference in the relative propensities of men ver-
sus women to know an airline pilot. The nonuniformity revealed
here would show up in simple yes/no data as well, for example,
35% of men in our survey, compared to 29% of women, know at
least one airline pilot. So we can discern at least some patterns
without the need to measure overdispersion.

Given the complexity of actual social networks, however,
in practice there will always be overdispersion even after ac-
counting for background variables. A natural way to proceed
is to combine the two approaches by allowing the probability
of a link to a person in group k to depend on the observed
characteristics of person i, with overdispersion after controlling
for these characteristics. This corresponds to fitting regression
models to the latent parameters αi and γik given individual-level
predictors Xi. Regressions such as those displayed in Figures
3 and 9 would then be part of the model, thus allowing more
efficient estimation than could be obtained by postprocessing
of parameter estimates and residuals. Controlling for individual
characteristics also allows poststratified estimates of popula-
tion quantities (see, e.g., Lohr 1999; Park, Gelman, and Bafumi
2004).

For the goal of estimating social network size, it would make
sense to include several rare names of both sexes to minimize
the bias, demonstrated in Figure 5 and discussed by Killworth
et al. (2003), of underrecall for common categories. Using rarer
names would increase the variance of the estimates, but this
problem could be mitigated by asking about a large number of
such names. Fundamentally, if recall is a problem, then the only
way to get accurate estimates of network sizes for individuals
is to ask many questions.

In this article we have fit the overdispersion model sepa-
rately for men and women. One would also expect race and
ethnicity to be important covariates, especially for the recogni-
tion of names whose popularity varies across racial groups. We
have run analyses separately for the whites and the nonwhites
(results not shown), and found that the differences for most esti-
mated parameters were not statistically significant. A difficulty
with these analyses is that there were only 233 nonwhites in the
survey data.
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6.3 Understanding the Origins and
Consequences of Overdispersion

Perhaps the biggest unanswered questions that come from
this article deal not with model formulation or fitting, but rather
with understanding the origins and consequences of the phe-
nomena that we have observed. We found a large variation in
individual propensities to form ties to different groups, but we
do not have a clear understanding of how or why this happens.
In some cases, the group membership itself may be important
in how friendships are formed, for example, being homeless or
being a Jaycee. However, for other groups [e.g., people named
Jose (a group that, unfortunately, was not included in our data)],
there might be variation in propensity caused not by the group
membership itself, but rather by associated factors, such as eth-
nicity and geographic location. Sorting out the effect of group
membership itself versus its correlates is an interesting problem
for future work. Insights in this area may come from the gener-
alized affiliation model of Watts, Dodds, and Newman (2002).
Understanding how social institutions like schools help create
this variation in propensity is another area for further research.

In addition to trying to understand the origins of overdis-
persion, it is also important to understand its consequences.
A large amount of research in psychology has shown that un-
der certain conditions, intergroup contact affects opinions (for
a review, see Pettigrew 1998). For example, one could imagine
that a person’s support for the death penalty is affected by how
many people that he or she knows in prison. These psychologi-
cal findings imply that the distribution of opinions in the society
are determined at least partially by the social structure in a soci-
ety, not simply by the demographics of its members. That is, we
could imagine two societies with exactly the same demographic
structures but with very different distributions of opinions only
because of differences in social structure.

Overdispersion, which means that acquaintanceship counts
with specific subpopulations have more 0’s and more high num-
bers than expected under the null model, will have the effect of
polarizing opinions on issues. If contact with the specific sub-
population were more evenly distributed in the population, then
we might see a different, more homogeneous, distribution of
opinions about that group.

In addition to changing the distribution of opinions, overdis-
persion can also influence the average opinion. For example,

consider support for the rights of indigenous people in the
two hypothetical populations in Figure 11. Figure 11(a) shows
the distributions of the number of American Indians known.
In both distributions the mean is the same (as our estimate
from McCarty et al. data), but the distributions differ in their
overdispersion. In one population there is no variation in rela-
tive propensities to form ties to the American Indians (ω = 1),
whereas in the other population there is substantial variation in
relative propensities—in this case ω = 7.7, which matches our
estimate with respect to the American Indians in the acquain-
tanceship network of Americans.

Figure 11(b) shows a hypothetical function that maps the
number of people known in a specific group to an opinion (on a
scale of 0–1, with 1 being most positive) on a specific issue—
in this example a map from the number of American Indians
known—to a composite score measuring an individual’s sup-
port for the rights of indigenous people. Here we assume that
the function is increasing, monotonic, and nonlinear with di-
minishing returns (with derivative and second derivative that
approach 0). In this case the change in a subject’s opinion
caused by knowing an American Indian is likely to be larger
if that person previously knew 0 American Indians than if the
subject previously knew 10 American Indians. In our simpli-
fied example this mapping is the same for everyone in both of
these populations, so the two populations can considered as be-
ing made up of identical people.

Even though the people in both populations are identical,
Figure 11(c) shows that the distributions of opinions in the pop-
ulations are substantially different. There is much more support
for the American Indians in the population without overdis-
persion (ω = 1) than in the population with overdispersion
(ω = 7.7). One way to think about this difference is that in the
population in which contact with American Indians is overdis-
persed, the impact of the contact is concentrated in fewer peo-
ple, so each contact is likely to have less of an effect.

The difference in mean support for the rights of indigenous
people (.42 vs. .28 on a scale of 0–1) in the two populations
can be attributed entirely to differences in social structure. In
both cases the populations are made up of identical individuals
with identical mean amount of contact with American Indians;
they differ only in social structure. This hypothetical example
indicates that it is possible that certain macro-level sociological

(a) (b) (c)

Figure 11. Illustration of the Effect of Overdispersion on Mean Opinion in a Population. (a) Two different populations each with the same number
of people and the same mean number of connections to a specific group but different overdispersions [ω = 1 (gray bars) and ω = 7.7 (empty bars)].
(b) A function, which applies to all individuals in both populations, that maps the number of persons an individual knows in a specific group to that
individual’s opinion on a specific issue. (c) The resulting distribution of opinions. The population with no overdispersion has substantially higher
mean opinion (.42 vs. .28, indicated in the graph); thus observed differences in opinion distributions across different societies could potentially be
attributed entirely to differences in social structure rather than to any differences between individuals.
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differences between societies are not attributable to differences
between individuals in these societies. Rather, macro-level dif-
ferences of opinion can sometimes be attributed to micro-level
differences in social structure.

In this article we have shown that Americans have varying
propensities to form ties to specific groups, and we have es-
timated this variation for a number of traits. Future empiri-
cal work could explore this phenomenon for groups other than
those included in the McCarty et al. (2001) data or explore this
phenomena in other countries. Important work also remains to
be done in better understanding the origins and consequences
of this aspect of social structure.

[Received September 2004. Revised June 2005.]
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