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Abstract— In this paper, we formulate a stereo
matching algorithm with careful handling of
disparity, discontinuity and occlusion. The algo-
rithm works with a global matching stereo model
based on an energy-minimization framework.
The global energy contains two terms, the data
term and the smoothness term. The data term
is first approximated by a color-weighted corre-
lation, then refined in occluded and low-texture
areas in a repeated application of a hierarchical
loopy belief propagation algorithm. The experi-
mental results are evaluated on the Middlebury
data sets, showing that our algorithm is the top
performer among all the algorithms listed there.

Index Terms— 3D/stereo scene analy-
sis,Segmentation.

I. INTRODUCTION

Stereo is one of the most extensively researched
topics in computer vision. Stereo research has re-
cently experienced somewhat of a new era, as
a result of publicly available performance testing
such as the Middlebury benchmark [17], which
has allowed researchers to compare their algorithms
against all the state-of-the-art algorithms.

The stereo algorithm presented in this pa-
per springs from the popular energy minimiza-
tion framework that is the basis for most high-
performance algorithms, such as graph cuts [4], [16]
and belief propagation [19], [20]. In this framework,
there is typically a data term and a smoothness
term, where the data term consists of the matching
error implied by the extracted disparity map, and the
smoothness term encodes the prior assumption that

the world surfaces are piecewise smooth. However,
the algorithm presented in this paper differs from
the normal framework, in that in the final stages
of the algorithm, the data term is updated based
on the current understanding of which pixels in the
reference image are occluded or unstable due to low
texture. This is the main contribution of the paper.

Another contribution of the paper is the success-
ful integration of several recent ideas, including
color-weighted correlation [27], hierarchical belief
propagation (BP) [9], left/right checking [7], color
segmentation [6], plane fitting [21], and depth en-
hancement. We have evaluated our stereo algorithm
using the Middlebury benchmark, and showed that
our algorithm is the top performer in both integer-
based and sub-pixel accuracy. While quality is our
primary goal, we also take speed into account
during the design of our algorithm. In particular,
with the comparable quality, method suitable for
parallel execution are preferred. For instance, we
prefer hierarchical BP to Graph cuts because it is
easier for parallel hardware implementation while
achieving similar performance [4], [18], [22], so
is the left/right checking component for occlusion
handling [7]. Note that color-weighted correlation
[27] is a parallel algorithm too. Hence, except for
mean-shift, our algorithm is well suited for parallel
hardware acceleration, e.g., the GPU or the IBM’s
Cell Processor. In addition, a fast-converging BP
approach is proposed, which removes the redun-
dant computation involved in the message updat-
ing step. Unlike standard BP, the running time of
fast-converging BP is sub-linear to the number of
iterations.

The paper is organized as follows: Section II
gives a high-level overview of the approach. In
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Section III we present the detailed equations for all
the building blocks. Additionally, a depth-enhanced
approach is presented in Section IV. Section V re-
ports results showing that our algorithm is currently
the strongest available on the Middlebury data set.
Section VI concludes.

II. OVERVIEW OF THE APPROACH

The algorithm can be partitioned into three
blocks, initialization (Figure 1), pixel classification
(Figure 2) and iterative refinement (Figure 3). In
the initialization step (see Figure 1), the correlation
volume is first computed. A basic way to construct
the correlation volume is to compute the absolute
difference of the luminance of the corresponding
pixels in the left and right image, but there are many
other methods for correlation volume construction.
For instance, Sun et al. [19] use Birchfield and
Tomasi’s pixel dissimilarity [1] to construct the
correlation volume, and Felzenszwalb [9] suggests
smoothing the image first before calculating the
pixel difference. In this work, we are using color-
weighted correlation to build the correlation volume,
in a similar manner as was recently described by
Yoon and Kweon [27]. The color-weighting makes
the match scores less sensitive to occlusion bound-
aries by using the fact that occlusion boundaries
most often cause color discontinuities as well. The
initialization is applied twice with both the left and
the right image as the reference image respectively.
This is done just to support a subsequent mutual
consistency check (often called left-right check) that
takes place in the pixel classification block. The
initial data term E

(0)
D is computed from the color-

weighted correlation volume CL. As a global energy
minimization approach, a hierarchical BP module is
employed with the data term and the corresponding
reference image as input for the disparity map
estimation. The hierarchical belief propagation is
performed in a manner similar to Felzenszwalb
[9], resulting in the initial left and right disparity
maps D

(0)
L and DR, respectively. The left disparity

map D
(0)
L and the initial data term E

(0)
D is given

an iteration index i = 0 here, because it will be
iteratively refined. In summary, the initialization
step generates the following output: the initial left
and right disparity maps D

(0)
L , DR, and the initial

data term E
(0)
D .

In the pixel classification module (see Figure 2),
pixels are assigned one of three possible labels:
occluded, stable or unstable. The occluded pixels
are the ones that fail the mutual consistency check
that is performed using D

(0)
L and DR. The pixels

that pass the mutual consistency check are then
labeled stable or unstable based on a confidence
measure derived from the left correlation volume,
which measures if the peak in the correlation score
is distinctive enough that the local disparity can
be considered stable. The output from the pixel
classification module is the pixel class membership.

In the iterative refinement module (see Figure 3),
the initial left disparity map D

(0)
L , the left image

IL, the pixel class membership and the initial data
term E

(0)
D are all used as input. The goal here

is to propagate information from the stable pixels
to the unstable and the occluded pixels. This is
done using color segmentation and plane fitting in
a way inspired by [21]. In our work, we use color
segments in IL extracted by mean shift [6]. In each
color segment, the disparity values for the stable
pixels are used in a plane fitting procedure. Note
that the disparity values used here are taken from
the current hypothesis D

(i)
L for the left disparity

map. This disparity map is first initialized with the
left disparity map D

(0)
L given by the initialization

module. The result of plane fitting within color
segments is then used together with the pixel class
membership and the initial data term E

(0)
D to give the

current data term hypothesis E
(i+1)
D , which is then

fed to the hierarchical BP module. Effectively, the
plane-fitted depth map is used as a regularization
for the new disparity estimation. The hierarchical
belief propagation yields the updated disparity map
hypothesis D

(i+1)
L , which is iteratively fed back into

the plane fitting procedure. Note that the right dis-
parity map DR is not updated in our implementation
for efficiency and simplicity, and our experimental
results show that, as a simplified method, it is still
the top performer on the Middlebury data set.

III. DETAILED DESCRIPTION

In this section, we give a more detailed de-
scription of the building blocks outlined above.
The order of description follows the above outline
through Figures 1,2 and 3. A detailed explanation
of the hierarchical belief propagation algorithm is
provided afterwards. To further improve the speed
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Fig. 1. The initialization module. Hierarchical BP is run with both the left and right images as the reference image. The initial data term
is computed based on the color-weighted correlation, and then fed to the hierarchical BP module for disparity map estimation, see the text
for more details.

Fig. 2. The pixel classification module. Pixels are classified into occluded pixels, unstable pixels and stable pixels. The occluded pixels are
the ones that fail a mutual consistency check. The non-occluded pixels are then further divided into stable and unstable pixels based on a
confidence measure derived from the correlation volume.

of standard belief propagation algorithms, a fast-
converging belief propagation approach is devel-
oped.

A. Initialization

The main building blocks of the initialization
module, shown in Figure 1, are color-weighted
correlation, initial data term and hierarchical BP.

The objective of the color-weighted cost aggre-
gation is to initialize a reliable correlation volume.
To obtain more accurate results on both smooth
and discontinuous regions, an appropriate window
should be selected adaptively for each pixel during
the cost aggregation step. That is, the window
should be large enough to cover sufficient area in

untextured regions, while small enough to avoid
crossing depth discontinuities. Many methods [14],
[3], [23], [24] have been proposed to solve this
ambiguity problem.

In our implementation, we use an amended ver-
sion of the color-weighted approach proposed re-
cently by Yoon and Kweon [27]. In this method,
instead of finding an optimal support window, adap-
tive support-weights are assigned to pixels in some
large window with side-length αcw based both on
the color proximity and the spatial proximity to the
pixel under consideration (the central pixel of the
support window).

In Yoon and Kweon’s work, the similarity be-
tween two pixels within the support window is
measured in the CIELab color space. However, we
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Fig. 3. The iterative refinement block, where the goal is to propagate information from the stable pixels to the unstable and the occluded
pixels. Mean shift color segmentation is used to derive segments. Within each segment the plane fitting is then applied to the stable pixels,
using the disparity values from the current disparity map hypothesis. The result D

(i)
pf from the plane fitting is then used together with the

correlation volume and the pixel class membership to produce a new approximation E
(i+1)
D of the data term. The data term is used with the

reference image in another round of hierarchical belief propagation. This gives a new disparity map hypothesis D
(i+1)
L , which is fed back

into the process.

simply measure it in the RGB color space and
instead of using a raw pixel difference, we use the
Birchfield and Tomasi’s pixel dissimilarity [1] to
improve the robustness against the image sampling
noise. RGB color space is employed because ac-
cording to our experiments, the performance of the
proposed method is robust to both color spaces. The
computation of our correlation volume is depicted
as follows, which is mainly a review of the method
presented in [27].

Assume the color difference ∆xy between pixel
x and y (in the same image) is expressed as

∆xy = (
∑

c∈{r,g,b}
|Ic(x)− Ic(y)|)/3, (1)

where Ic is the intensity of the color channel c. The
weight of pixel x in the support window of y (or
vice versa) is then determined using both the color
and spatial differences as

wxy = e−(β−1
cw ∆xy+γ−1

cw ‖x−y‖2), (2)

where βcw = 10 and γcw = 21. The values of
these and subsequent parameters were determined

empirically; see Section V-A for a discussion of
the parameter settings and their sensitivity. The sub-
scripted 2 at the end of Equation 2 is to symbolize
the L2 norm.

The correlation volume is then an aggregation
with the soft windows defined by the weights, as

CL,xL
(dx)=

∑
(yL,yR)∈WxL

×WxR
wxLyL

wxRyR
d(yL,yR)∑

(yL,yR)∈WxL
×WxR

wxLyL
wxRyR

,

where Wx is the support window around x and
d(yL,yR) represents the Birchfield and Tomasi’s
pixel dissimilarity, xL and yL are pixels in the left
image IL, xR = xL − dx and yR = yL − dx are the
corresponding pixels in the right image IR. dx is the
disparity value of pixel xL in the left image.

The initial data term is a truncated linear trans-
form of the correlation volume:

E
(0)
D,xL

(dx) = λbp min(CL,xL
(dx), ηbp), (3)

where λbp = 0.2 is a constant which is set experi-
mentally, and ηbp is set to be twice the average of the
correlation volume to exclude the outliers. E

(0)
D is
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then fed to the hierarchical loopy belief propagation
[9] module for disparity hypothesis estimation.

B. Pixel Classification

The main building blocks of the pixel classifica-
tion step (see Figure 2) are the mutual consistency
check and the correlation confidence measure.

The mutual consistency check requires that the
disparity value from the left and right disparity maps
are consistent, i.e.

DL(xL) = DR(xL −DL(xL)) (4)

for a particular pixel xL in the left image. If this
relation does not hold, the pixel is declared as
occluded. Otherwise, the pixel is declared non-
occluded and passed on to the correlation confidence
measure. Notice that some of the erroneous disparity
values due to the lack of texture may fail in this test,
but this is rare, because hierarchical BP algorithm
tend to propagate the disparity values from outside
the low-textured areas into the centers for both
the left and right disparity maps. Hence, most of
the disparity values in the low-texture areas maybe
incorrect in the initial disparity maps but will be
consistent for both views. As it is shown in Figure
4, although the upper right corner lacks texture, it
is not classified as an occluded area.

The correlation confidence is defined based on
how distinctive the highest peak in a pixel’s corre-
lation profile is. Assuming that the cost for the best
disparity value is C1

L, and the cost for the second
best disparity value is C2

L, the correlation confidence
is then

|C
1
L − C2

L

C2
L

|. (5)

If it is above a threshold αs, the pixel is declared
stable, otherwise unstable. αs = 0.04 is set experi-
mentally.

The experimental results of pixel classification on
the Tsukuba data set are provided in Figure 4. It
shows that most of the bad pixels are classified into
either occluded pixels or unstable pixels.

C. Iterative Refinement

The main building blocks of the iterative refine-
ment, see Figure 3, are the mean shift color segmen-
tation, the plane fitting within segments, the data
term formulation, and another hierarchical belief

Fig. 5. Color segmentation on the Tsukuba data set.

propagation process identical to that in Section III-
A.

The mean shift color segmentation is performed
as described in [6]; an example is shown in Figure
5.

The plane fitting is performed in the disparity
space, and applied per segment. This is done ro-
bustly using RANSAC [10] on the disparity values
of the stable pixels only. The error threshold for
inlier selection is set to be 0.3, and the number
of trials is predetermined to be 300. The output
D

(i)
pf from this step is computed individually for

each segment and depends on the ratio of stable
pixels of this segment. If the ratio of stable pixels
is above a parameter value ηs = 0.7, it means
most of the current disparity values for the segment
are approximated accurately so we use D

(i)
L for the

stable pixels, and for the remaining pixels (i.e. the
unstable and occluded pixels), we use the result of
the plane fitting. If the ratio of the stable pixels is
below ηs we use the result of the plane fitting for
all pixels.

The data term is formulated differently for the
occluded, unstable and stable pixels. The absolute
difference

ai = |D(i+1)
L −D

(i)
pf | (6)

between the new disparity map D
(i+1)
L and the

plane-fitted disparity map D
(i)
pf is used to regularize

the new estimation process. The difference is used
to define the data term of the occluded, unstable and
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(a) Pixel class membership. (b) Bad pixels. (c) Disparity map.

Fig. 4. The left figure is the result after applying pixel classification on the Tsukuba data set. The black pixels are occluded pixels, the
gray pixels are unstable pixels, the others are stable pixels. The middle figure shows the bad pixels (black pixels) detected by comparing the
disparity map with the ground truth. The right figure is the corresponding disparity map calculated by applying the winner-takes-all approach
to the color-weighted correlation volume CL.

stable pixels as

E
(i+1)
D =





κoai, if occluded,

E
(0)
D + κuai, if unstable,

E
(0)
D + κsai, if stable,

respectively. The constants κo = 2.0, κu = 0.5
and κs = 0.05 reflect the fact that the unstable
and occluded pixels need the most regularization.
Hence, the whole iterative refinement step works
as employing a local smoothness constrain to make
sure that the unstable/occluded pixels will be on
the same plane surface as the stable pixels, which
have been clustered to the same segment as the
unstable/occluded pixels.

D. Hierarchical Belief Propagation

The core energy minimization of our algorithm
is carried out via the hierarchical BP algorithm.
Here we briefly review the max-product BP algo-
rithm [25] we have adopted. The max-product BP
algorithm works by passing messages around the
graph defined by the four-connected image grid.
Each message is a vector of dimension given by
the number of possible labels, and at each iteration,
the new messages are computed as follows:

M t
X,Y(d) = arg min

dX

(ED,X(dX) +
∑

s∈N(X),X 6=Y

M t−1
s,X (dX) + h(dX, d)), (7)

where M t
X,Y is the message vector passed from

pixel X to one of its neighbors Y, ED,X is the data
term of pixel X, and h(dX, d) is the jump cost. d is
the label that minimizes the total energy for pixel

X, which contains the data term and the smoothness
term:

EX(d) = ED,X(d) + ES,X(d)

= ED,X(d) +
∑

Y∈N(X)

MY,X(d). (8)

The common cost functions for the jump cost
h(dX, d) are based on the degree of difference
between labels. In order to allow for discontinuities,
the truncated linear model is commonly adopted:

h(dX, d) = min(αbp, ρbp | dX − d |), (9)

where ρbp = 1 is the rate of increase in the cost, and
αbp = nd/8 controls when the cost stops increasing.
nd is the number of disparity levels. Equation 9 is
defined under the assumption of piecewise-constant
surfaces. However, the jump cost should decrease at
depth edges. The color difference

δX,Y =
∑

c∈{r,g,b}
|Ic(X)− Ic(Y)| (10)

between neighboring pixels X and Y is used to
decide the amount of the decrease of the cost,
since the color edges are likely to coincide with
the depth edges. The difference δX,Y is normalized
to span the interval [0, 1]. The mean of δX,Y over
the whole frame δmean is then subtracted out to
yield the normalized difference δnorm. Define the
cost coefficient

ρs = 1− δnorm, (11)

the cost assigned to the pixel pair (X,Y) is then

h(dX, d) = min(αbp, ρsρbp | dX − d |). (12)
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h(dX, d) depends on both δX,Y and δmean. h(dX, d)
steadily decreases with the increase of δX,Y, because
it is likely to be a color edge. A large δmean

means that the scene is heavy-textured, and it is
less likely to be a color edge even δX,Y is large.
Hence, h(dX, d) steadily increases with the increase
of δmean.

The global energy is observed empirically to con-
verge after a certain number of iterations. Finally,
the label d that minimizes EX(d) individually at
each pixel is selected.

Standard loopy belief propagation algorithm is
too slow to be practically used to achieve nice
results. Felzenszwalb [9] proposed a hierarchical
algorithm which runs much faster than the previous
algorithms while maintaining comparable accuracy.
The main difference between hierarchical BP and
standard BP is that hierarchical BP works in a
coarse-to-fine manner. The basic steps are: (a) ini-
tialize the messages at the coarsest level to all zeros,
(b) apply loopy BP at the coarsest scale to iteratively
refine the messages. (c) use refined messages from
the coarser level to initialize the messages for the
next scale. In detail, assume X is one pixel in the
coarsest scale, and its corresponding pixels in the
finer scale are X′

i, i ∈ [1, 4] as it is shown in Figure
6, then

ED,X =
∑

i∈[1,4]

ED,X′
i
, (13)

MX′
i,Y

′
i,j

= MX,Yj
, i, j ∈ [1, 4], (14)

where Y ′
i,j are the four neighbors of pixel X′

i, and
Yj are the corresponding four neighbors of pixel
X. For instance, assume Y ′

i,j is the upper pixel of
X′

i, then Yj is also the upper pixel of X. Hence
the number of the messages in the finer lever is
four times larger than those in the coarser level.
As a result, the messages will be hierarchically
refined while the data term stays unchanged, since
the data term for the coarser level is the sum of the
corresponding four data terms of the finer level as
it is shown in Equation 14. And for simplicity, ρs

is set to 1.0 for all the coarse levels, which means
that the colors of the reference image are not used to
define the jump cost. Finally, the refined messages
and the data term are used to construct the total
energy according to Equation 8.

Two main parameters sbp and nbp define the
behavior of this hierarchical belief propagation al-
gorithm, sbp is the number of scales and nbp is the

Fig. 6. Illustration of two levels in the coarse-to-fine method. Each
node X in left figure corresponds to a block of four nodes X′

i in the
right figure.

number of iterations in each scale. In the paper,
we experimentally set sbp = 4 and nbp = 50,
a discussion of the parameter settings and their
sensitivity are provided in Section V-A.

E. Fast-Converging Belief Propagation

In standard BP algorithm, in order to achieve high
quality stereo results, a large number of iterations
is required to guarantee convergence. Therefore the
application of BP is mainly restricted to off-line
processing.

Several approximated BP algorithms have been
developed recently. Chen [5] used K-L divergence
to measure the similarity of the previous messages,
and decided whether to send a message or not
by setting a threshold on it. Elidan [8] maintained
a priority queue of messages and updated the
one with the highest residual. Ihler [13] provided
some theoretical analysis for the approximated sum-
product BP algorithms. In this section, we propose
a fast-converging BP based on the max-product BP
employed in Section III-D. In essence, by only
updating the pixels that have not yet converged, our
method effectively removes the redundant computa-
tion involved in standard BP.

In detail, according to Equation 7, the new mes-
sages (M t

X,Yj
, j ∈ [1, 4]) delivered by a pixel

X to its neighbors Yj in iteration t are updated
according to its own data term (ED,X), the old
messages (M t−1

Yj ,X) received from Yj , and the jump
cost function h. Since ED,X and h stay unchanged
for every iteration, M t

X,Yj
is updated according to

M t−1
Yj ,X only. For every pixel X, fast-converging

BP algorithm will first check the similarity of the
messages delivered from its four neighboring pixels
at iteration t−1 and iteration t−2, and then update
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M t
X,Yj

only if the L1-norm of their difference is
larger than a threshold that is small enough:

|M t−1
Yj ,X −M t−2

Yj ,X|1 ≥ ηz (15)

where ηz is experimentally set to 0.1 in our paper.
If the L1-norm value is smaller than ηz, X is
declared converged. Note that a converged pixel
in the current iteration t may be non-converged in
the next iteration t + 1, since the messages of its
four neighboring pixels may be updated during the
current iteration, that is M t

Yj ,X may not be the same
as M t−1

Yj ,X.
We then demonstrate that the accuracy will be

well-preserved with ηz ∈ [1.0e−16, 1.0e−01]. Let
Esbp(t) denote the energy of standard BP and
Efbp(t) denote the energy of fast-converging BP.
Assume ∆E(t) = |Esbp(t) − Efbp(t)| and R(t) =
∆E(t)
Esbp(t)

, and let ∆̃E and R̃ denote the average of
∆E(t) and R(t) over 50 iterations respectively.
Table I shows that ∆̃E and R̃ decrease as the

ηz ∆̃E R̃
1.0e-01 1.084e+02 3.120e-04
1.0e-04 0.361e-05 0.101e-10
1.0e-16 0 0

TABLE I

COMPARISON OF THE PERFORMANCE OF STANDARD BP AND

FAST-CONVERGING BP OF THE TSUKUBA DATA SET.

threshold ηz decreases, and finally reach zero when
ηz = 1.0e−16. But please note that smaller ηz

implies more non-converged pixels as shown in
Figure 7 (a), and thereby increases the running time.
In our experiments, we set ηz = 0.1, which is
observed to greatly improve the speed while well
preserve the accuracy. Figure 7 (b) shows that after
a number of iterations, most of the pixels on the
graph converge. Fast-converging BP algorithm thus
ignores these pixels, and the updating scheme is
only applied to the non-converged pixels, which
greatly decreases the running time of BP approaches
with large number of iterations. Figure 7 (c) shows
that unlike standard BP, the running time of fast-
converging BP is sub-linear to the number of itera-
tions.

IV. DEPTH ENHANCEMENT

To reduce the discontinuities caused by the quan-
tization in the depth hypothesis selection process,

a sub-pixel estimation algorithm is proposed based
on quadratic polynomial interpolation. In this paper,
quadratic polynomial interpolation is used to ap-
proximate the cost function between three discrete
depth candidates: d, d− and d+. d is the discrete
depth with the minimal cost, d− = d − 1, and
d+ = d + 1. The cost function is approximated as:

f(x) = ax2 + bx + c. (16)

Hence, given d, f(d), f(d−) and f(d+), the depth
with the minimum of the quadric cost function f(x)
can be computed:

xmin = d− f(d+)− f(d−)

2(f(d+) + f(d−)− 2f(d))
. (17)

At the end of our integer-based stereo pipeline,
the disparity map D

(5)
L is produced, which means

that the three depth candidates d, d−, d+ are known
immediately. d is extracted from the input depth
map, d− = d − 1 and d+ = d + 1. To perform
depth enhancement with two views, three slices
of the matching cost f(d), f(d−), f(d+) of the
three depth candidates are selected from the color-
weighted correlation volume, which is denoted by
CL in Figures 1 and 2. The sub-pixel estimation is
then carried out by using Equation (17) to calculate
the sub-pixel disparity map. Finally, we replace each
value with the average of those values that are
within one disparity over a 9× 9 window.

Figure 8 provides a visual comparison of the
disparity maps and their synthesized views before
and after sub-pixel estimation. Notice that the quan-
tization effect on the man’s face and the background
on the synthesized view is removed after sub-pixel
estimation.

V. EXPERIMENTS

A. Parameter Settings

In this section, we provide all the parameter
settings used in our algorithm. The same parameter
settings were used throughout.

The parameters are shown in Table II and sep-
arated into four parts: three parameters (αms, βms,
γms) for the mean shift segmentation, three param-
eters (αcw, βcw, γcw) for the color-weighted filter,
six parameters (αbp, ηbp, ρbp, λbp, sbp, nbp) for the
hierarchical belief propagation, and six parameters
(κs, κu, κo, αs, ηs, ns ) for the iterative refinement.
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Fig. 7. (a) shows the percentage of the non-converged pixels after every iteration for three ηz values: 1.0e−01, 1.0e−04 and 1.0e−16. By
setting ηz = 0.1, (b) provides the percentage of the non-converged pixels after every iteration for different scales, and (c) compares the
running time of fast-converging BP and standard hierarchical BP algorithms. Both algorithms are run on the Tsukuba data set with the same
number of iterations and scales.

(a) γms = 20 (b) γms = 50

Fig. 9. Performance according to the mean shift parameters (αms is spatial bandwidth, βms is color bandwidth, and γms is the minimum
region size) for Tsukuba data set. (a) is the behavior of the algorithm according to the parameters αms and βms by setting γms = 20, and
in (b), γms = 50. Apparently, the performance is pretty constant with respect to the parameter γms.

(a)Color-Weighted Filter. (b)Hierarchical BP.

Fig. 10. Performance according to the color-weighted filter and the hierarchical BP parameters for Tsukuba data set. αcw is the size of
the support window, βcw is defined in Equation (2), ρbp is the rate of increase in the jump cost and λbp is the scaling factor applied to the
correlation volume after the truncation.

In the next few paragraphs we explain these param-
eters and evaluate their effect on the stereo results.

For mean shift color segmentation, αms is the
spatial bandwidth, βms is the color bandwidth, and
γms is the minimum region size. They are set as the
default values. Figure 9 shows the performance of
the proposed method according to the mean shift

segmentation parameters. Figure 9 (a) and (b) set
γms to constants 20 and 50 respectively, and show
the behavior of the proposed method for αms and
βms, both range from 4 to 10. The proposed method
is very robust against αms and βms, especially within
the range of 6 and 10. Visually comparison of Figure
9 (a) and (b) also shows that the method is robust
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(a) (b)

Fig. 11. Performance according to the iterative refinement parameters for Tsukuba data set. κu is the weight for unstable pixels, κo is the
weight for occluded pixels, αs is the threshold on correlation confidence defined in Section III-B and ηs is the threshold on the ratio of the
stable pixels to all pixels.

(a) Disparity maps. (b) Synthesized views.

Fig. 8. (a) Disparity maps. (b) Synthesized views using (a). First
row shows results without sub-pixel refinement, second row shows
results with sub-pixel refinement. Notice that the quantization effect
on the man’s face and the background on the synthesized view before
sub-pixel is removed after sub-pixel estimation.

against γms. The running time of the mean shift
segmentation is about 20 seconds for the Tsukuba
data set.

For color-weighted filter, αcw is the size of the
support window and βcw and γcw are defined in
Equation (2). Figure 10 (a) shows the performance
of the proposed method according to αcw and βcw by
keeping γcw constant. We can see that the proposed
method is fairly robust against different sizes of a
support window (αcw). This is because the effect
of outliers (i.e., pixels from different depths) does
not increase in the proposed method even though the
size of a support window increases. Our method also

Mean Shift αms βms γms

Segmentation 7 6 20
Color-Weigh. αcw βcw γcw

Correlation 33 10 21
Hierarchical λbp ηbp ρbp αbp sbp nbp

BP 0.2 2c 1.0 nd/8 4 50
Iterative κs κu κo αs ηs ns

Refinement 0.05 0.5 2 0.04 0.7 5

TABLE II

PARAMETER SETTINGS USED THROUGHOUT. nd IS THE NUMBER

OF DISPARITY LEVELS. c IS THE AVERAGE OF THE VALUES IN THE

CORRELATION VOLUME.

appears to be fairly robust against different values
of βcw, the error rate is almost constant for βcw

between 8 and 12. The running time of the color-
weighted filtering depends mostly on the parameter
αcw. When αcw = 33, the running time is about 30
seconds for the Tsukuba data set.

For hierarchical BP, αbp and ηbp are truncations of
the jump cost and correlation volume, respectively.
The parameter ρbp is the rate of increase in the
jump cost and λbp is a scaling factor applied to
the correlation volume after the truncation. The
parameter sbp is the number of scales and nbp is
the number of iterations, as defined in Section III-
A. Parameters ρbp, λbp, sbp and nbp are set experi-
mentally. According to our experiments, we found
that ρbp and λbp are the most sensitive ones, and
their performances are studied in Figure 10 (b).
Our method is very robust when ρbp ∈ [0.5, 1.5]
and λbp ∈ [0.15, 0.25]. The running time of the
hierarchical BP is about 2 seconds for the Tsukuba
data set.
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Parameters κs, κu and κo for the iterative refine-
ment are defined in Section III-C. Among them,
κs is less important because it is the weight for
the stable pixels. The performance of our method
according to κu and κo are provided in Figure 11 (a)
which shows that our method is pretty robust over
non-trivial ranges. αs is the threshold on correlation
confidence defined in Section III-B. Parameter ηs is
related to the plane fitting process, as defined in Sec-
tion III-C. Figure 11 (b) evaluates the performance
of our method according to αs and ηs, which shows
the performance does not depend much on ηs unless
it is very small. The smaller ηs is, the fewer number
of the color segments will the iterative refinement
apply to. The performance according to αs is robust
within the range of 0.02 and 0.12. However, the
larger the αs, the fewer the stable pixels are in
each segment, which makes the RANSAC plane
fitting less robust; also, the smaller the αs, the more
unstable pixels will be classified to stable pixels,
which also decreases the robustness of the RANSAC
plane fitting. The final parameter ns is the number of
iterations for the iterative refinement process, Figure
13 shows that it always converge after five iterations.
The running time of the refinement is about 10
seconds per iteration for the Tsukuba data set.

B. Experimental results

We evaluate our algorithm on the Middlebury
data set and we show in Table III and IV that
our algorithm on average outperforms all the other
algorithms listed on the Middlebury homepage with
both error threshold 1 and error threshold 0.5. The
result on each data set is computed by measuring the
percentage of the pixels with an incorrect disparity
estimate. This measure is computed for three subsets
of the image:

• The subset of the non-occluded pixels, denoted
“nonoccl”.

• The subset of the pixels near the occluded
areas, denoted “disc”.

• The subset of the pixels being either non-
occluded or half-occluded, denoted “all”.

The ranks show that our algorithm works pretty
well in the non-occluded and discontinuous areas.
In most data sets, we take first or second place,
which demonstrates that our algorithm is robust to
different inputs. Also note that our algorithm has a
better performance in the occluded areas than [26].

This is because the correlation volume computed
from the pixels in the border occlusions is not
aggregated. Note that only partial disparity range
can be evaluated since the matching pixels may be
outside the image. This trivial scheme better predicts
the disparity values around the border occlusions,
while preserves the accuracy of the other areas.

In Figure 12 the results after different interme-
diate stages are shown. This provides a visual ex-
planation of how the different stages in the pipeline
improve the results. For comparison we also give the
ground truth. The scores for the intermediate results
are given in Table V along with D

(5)
L SPECIAL.

It is the same as D
(5)
L except that we do not use

the colors of the reference image to define the jump
cost, which has a strong impact on the Teddy and
Cones data sets.

In Figure 13 and Figure 14, we show how an
increased number of iterations in estimating the data
term ED improves the result. The result with zero
iteration is D

(0)
L , which is the initial disparity map.

Based on this we chose to use five iterations in our
method.

We also test our algorithm with some outdoor
scenes, which are probably more challenging. Some
experimental results are provided in Figure 15. As
no ground truth is available, we used the disparity
map to synthesize novel right image, and compare
with the real one. The experimental results show
that our algorithm works well with outdoor scenes,
especially for color images.

To achieve sub-pixel accuracy, we proposed a
depth-enhanced approach for post-processing pur-
pose. The experimental results on the Middlebury
data sets are provided on the fifth row in Figure
12. A set of synthesized views using the disparity
maps on the fourth and the fifth row in Figure 12
are shown in Figure 16, providing a visual com-
parison of the algorithms with and without depth
enhancement. The improvement is obvious. The
results shown in column (a) are quantized to discrete
number of planes. After sub-pixel estimation, the
quantization effect is removed, as it is shown in
column (b). The average ranks are provided in Table
IV, showing that our algorithm is currently state-of-
the-art with sub-pixel accuracy.

VI. CONCLUSIONS

In this paper, a stereo model based on energy min-
imization, color segmentation, plane fitting, repeated
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Avg. Tsukuba Venus Teddy Cones
Algorithm Rank nonocc all disc nonocc all disc nonocc all disc nonocc all disc
Our Algorithm 2.1 0.881 1.291 4.761 0.132 0.453 1.872 3.531 8.3039.631 2.903 8.785 7.792

AdaptingBP [15] 2.2 1.114 1.373 5.794 0.101 0.211 1.441 4.223 7.06211.83 2.481 7.922 7.321

DoubleBP [26] 3.4 0.882 1.292 4.762 0.143 0.6 7 2.004 3.552 8.7149.702 2.904 9.246 7.803

SymBP+occ [20] 6.3 0.973 1.756 5.093 0.164 0.332 2.195 6.477 10.7517.08 4.7913 10.71010.99

Segm+visib [2] 6.4 1.307 1.574 6.929 0.7910 1.0686.7611 5.004 6.54112.34 3.727 8.624 10.28

C-SegmGlob [12] 7.3 2.6118 3.29139.89 15 0.256 0.574 3.247 5.145 11.8613.05 2.772 8.353 8.204

TABLE III

COMPARISON OF THE RESULTS ON THE MIDDLEBURY DATA SET WITH ERROR THRESHOLD 1. THE NUMBERS IN THE LAST TWELVE

COLUMNS ARE THE PERCENTAGE OF THE PIXELS WITH INCORRECT DISPARITIES ON THE DIFFERENT SUBSETS OF THE IMAGES. OUR

ALGORITHM IS RANKED AT THE FIRST PLACE ON AVERAGE.

Avg. Tsukuba Venus Teddy Cones
Algorithm Rank nonocc all disc nonocc all disc nonocc all disc nonocc all disc
Our Algorithm 3.0 8.785 9.453 14.92 0.721 1.121 5.241 10.12 16.4221.31 8.497 14.77 16.54

C-SemiGlob [12] 4.5 13.910 14.71018.913 3.303 3.822 10.95 9.821 17.4422.82 5.372 11.71 12.81

SemiGlob [11] 6.0 13.49 14.39 20.315 4.555 5.386 15.79 11.04 18.5526.15 4.931 12.52 13.52

AdaptingBP[15] 6.3 19.115 19.313 17.46 4.847 5.085 7.842 12.86 16.7326.36 7.024 13.25 14.03

Segm+visib[2] 6.8 12.77 12.96 15.85 10.414 11.01419.513 11.03 13.2123.73 8.126 13.14 17.36

DoubleBP[26] 8.8 18.713 19.112 15.84 7.8511 8.3810 11.66 14.37 19.9624.34 11.911 18.11019.911

TABLE IV

COMPARISON OF RESULTS ON THE MIDDLEBURY DATA SET WITH ERROR THRESHOLD 0.5. THE NUMBERS IN THE LAST TWELVE

COLUMNS ARE THE PERCENTAGE OF PIXELS WITH INCORRECT DISPARITIES ON DIFFERENT SUBSETS OF THE IMAGES. THE AVERAGE

RANKS SHOW THAT OUR ALGORITHM IS THE STATE-OF-THE-ART. THE TOP PERFORMER FOR THE TSUKUBA DATA SET IS NOT SHOWN IN

THE TABLE BECAUSE ITS AVERAGE RANK IS MUCH LOWER THAN THE ONES PROVIDED.

Tsukuba Venus Teddy Cones
Algorithm nonocc all disc nonocc all disc nonocc all disc nonocc all disc
Dcw 2.70 4.74 7.37 3.59 5.21 12.9 14.6 23.4 24.0 12.5 22.3 18.9
D

(0)
L 1.21 3.28 5.95 0.68 1.96 8.03 7.83 15.5 15.5 4.25 12.7 10.4

D
(4)
pf 2.60 2.98 7.31 0.13 0.47 1.85 3.82 8.52 10.1 2.87 8.41 7.91

D
(5)
L 0.88 1.29 4.76 0.13 0.45 1.87 3.53 8.30 9.63 2.90 8.78 7.79

D
(5)
L SPECIAL 0.88 1.30 4.77 0.14 0.48 1.95 3.71 8.87 10.3 3.07 8.81 8.17

TABLE V

THE FIRST FOUR ROWS IN THE TABLE CORRESPOND TO THE FIRST FOUR ROWS IN FIGURE 12. THE LAST ROW IS THE SAME THE

FOURTH ROW (D(5)
L ) EXCEPT THAT WE DO NOT USE THE COLORS OF THE REFERENCE IMAGE TO DEFINE THE JUMP COST.

application of hierarchical belief propagation, and
depth enhancement was proposed. Typically, one
application of the hierarchical belief propagation
brings the error down close to its final value, so that
the algorithm could perhaps be used as a two-step
approach, where occlusions and untextured areas are
first detected and then filled in from neighboring
areas. In addition, a fast converging belief propaga-
tion approach is proposed, which preserves the same

accuracy as the standard BP. The running time of
fast-converging BP is sub-linear to the number of
iterations.

Our algorithm is currently outperforming the
other algorithms on the Middlebury data set on
average, but there is space left for improvement.
For instance, in our algorithm, we only refined the
disparity map for the reference image, but [20]
suggests that by generating a good disparity map
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 12. Intermediate results from our algorithm for the four different standard test sets compared to the ground truth. (a) provides the
disparity maps after applying the winner-takes-all approach to the color-weighted correlation volume CL. (b) are the output of the initial
hierarchical BP. This result is denoted by D

(0)
L in Figure 1,2 and 3. (c) are the results after fitting planes to the regions from the color

segmentation. These are denoted by D
(i)
pf in Figure 3. (d) shows the integer-based disparity maps from our stereo pipeline. These results are

denoted by D
(i+1)
L in Figure 3. (e) are the disparity maps after depth enhancement, and (f) provides the ground truth for visual comparison.

for the right image, the occlusion constraints can be
extracted more accurately. Our algorithm performs
well when the scene is mainly composed of planar
surfaces, because the depth information of the un-
stable areas are propagated from the stable pixels
around the neighborhood by fitting a 3D plane.
Thus if the scene is mainly composed of smooth

curved (e.g. quadric) surfaces, the performance of
the propose algorithm may drop.
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