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Recent Developments in
the Cohomology of
Finite Groups
Alejandro Adem

In this expository paper we describe some recent
work in the cohomology of finite groups. In par-
ticular, we discuss techniques for calculation and
how they apply to key examples from group the-
ory, namely, the sporadic simple groups. We also
mention recent theoretical results arising from
these calculations and interactions between al-
gebra and topology which occur in the context of
finite group cohomology.

Definitions and Motivation
Let G denote a finite group. One of the basic
tools for understanding G is its expression as
a group extension

1→ N → G → K → 1

where N is a normal subgroup in G and K is the
quotient G/N. An obvious problem is to try to
understand all extensions of this type and indeed
determine what different groups can arise in
this way. Assume that N is abelian; if we choose
a section φ : K → G , k 7→ gk , then the group
structure on G implies that for k, l ∈ K there
must exist nk,l ∈ N such that gkgl = nk,lgkl. This
defines a function K ×K → N satisfying certain
“cocycle properties”. Group cohomology arises
when trying to understand equivalence classes

of these functions in a functorial way. In par-
ticular, isomorphism classes of extensions as de-
scribed above are in one-to-one correspondence
with these equivalence classes of 2-cocycles,
which can be regarded as elements in a “coho-
mology group”, denoted by H2(K,N) (see [3],
Chapter I). It was, however, the impetus from
topology that eventually gave rise to a global de-
finition of group cohomology using machinery
from homological algebra, generalizing specific
low-dimensional information. We refer the reader
to the excellent historical account by S. Mac Lane
[17].

Let us review the essential elements in the gen-
eral definition (for complete details the reader
may look at [14] or [3]). Let Z denote the inte-
gers with the trivial action of a finite group G .
It is evident that we can map a copy of the group
ring ZG onto it with a finitely generated kernel
IG (this is, in fact, the augmentation ideal). Now
taking generators for IG as a ZG-module, we can
map a free ZG-module of finite rank onto IG.
Continuing in this way, we obtain a sequence of
free ZG-modules and ZG-maps

· · · −→ Fi
di−→ Fi−1 → ·· · → F1

d1−→ F0

such that at each stage the image of the ho-
momorphism coming in is equal to the kernel
of the homomorphism going out (it is said to be
exact), and F0/image (d1) = Z ; i.e., F0 maps onto
Z . Such an object is called a free resolution for
Z , and an obvious analogue can be constructed
for any finitely generated ZG-module taking the
place of Z .
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Now let A denote any ZG-module. We can
consider all G-homomorphisms from the Fi to
A and put these together to obtain a cochain
complex

HomG(F0, A) → HomG(F1, A) → ·· ·
→ HomG(Fi−1, A) → HomG(Fi,A) → ·· · .

The cohomology of G with coefficients in A is
defined as the cohomology of this cochain com-
plex; that is, Hi(G,A) = Hi(HomG(F∗, A)). Note
that the exactness of F1 → F0 → Z → 0 implies
the exactness of 0→ HomG(Z, A) →
HomG(F0, A) → HomG(F1, A) , whence we see
that H0(G,A) = HomG(Z, A) = AG, the submod-
ule of invariants. Furthermore, if A has a triv-
ial action, then a similar argument shows that
H1(G,A) = HomG(IG,A) , where IG is the aug-
mentation ideal in ZG . This group is isomorphic
to the group of homomorphisms from G to A .
A slightly more complicated argument can be
used to show that in fact H2(G,A) will recover
the isomorphism classes of extensions described
previously. If R is any commutative ring with 1,
then we can define Hi(G,M) for any finitely gen-
erated RG-module M using RG-resolutions of
the trivial module R. It turns out that any two
resolutions will give rise to the same cohomol-
ogy groups.1

Let us fix as coefficients a field Fp of char-
acteristic p which divides the order of G . If G
happens to be a finite p-group, then it is possi-
ble to construct minimal resolutions P∗ of the
trivial module Fp which are directly related to
the cohomology data. In fact, we have that in this
situation H∗(G,Fp) ∼= HomG(P∗,Fp) ; i.e., the
cochain complex has zero coboundary maps.
From this it is evident that computing minimal
resolutions is an important aspect of group co-
homology. Indeed, computer-assisted calcula-
tions of minimal resolutions can provide sub-
stantial information on the low-dimensional
cohomology of a finite p-group of reasonable
size (see [10] or check out the Web site www.
math.uga.edu/~jfc/groups/cohomology.
html).

At this point things look a bit artificial to say
the least, and no doubt any geometrically inclined
reader feels unhappy. It is time to explain what
is really going on here! The fact is that homo-
logical constructions originate in topology, and
group cohomology is no exception. It turns out
that we can construct a contractible topological
space EG (in fact, a cell complex) with a free G-

action (i.e., no isotropy). The complex of singu-
lar or cellular chains on EG will then give rise to
a free ZG resolution of Z as before. Hence we
can use this topological construction to compute
group cohomology. A direct consequence of this
is the following: if BG denotes the orbit space
EG/G, then the singular cohomology of BG co-
incides with group cohomology. Using the ho-
motopy invariance of homology, we in fact have
that if BG is any path-connected topological
space with contractible universal cover and fun-
damental group G ,  then H∗(G,Fp) ∼=
H∗(BG,Fp), where the term on the right is the
usual singular cohomology ring. This isomor-
phism makes the cohomology of finite groups an
interesting object in both algebra and topology.
Aspects of this are summarized in the following
diagram of interactions:

Group Theory
Representation Theory
Homological Algebra
Number Theory
K-Theory

↗
COHOMOLOGY
OF FINITE
GROUPS

↘
Classifying Spaces
Group Actions
Characteristic Classes
Homotopy Theory

A classical example of this is given by the fol-
lowing result, which combines work of P. Smith
and R. G. Swan (see [3], pg. 146).

Theorem. A finite group G acts freely on a finite
complex X homotopy equivalent to a sphere if
and only if every abelian subgroup in G is cyclic.

In this example the topological notion is con-
nected to the group-theoretic hypothesis via the
concept of groups with periodic cohomology. The
point is that a finite group G satisfies the group-
theoretic condition above if and only if there ex-
ists an integer d > 0 such that
Hi(G,Z) ∼= Hi+d(G,Z) for all i > 0. Given a free
G-action on the n-sphere Sn, one can in fact take
d = n + 1.

Another important instance stems from
Quillen’s foundational work on algebraic K-the-
ory [22]. Given a perfect group S (i.e., S is equal
to its commutator subgroup [S, S]), one can con-
struct a space BS+ from BS by attaching 2- and
3-dimensional cells and such that π1(BS+) = {1}
but, H∗(BS+,Z) ∼= H∗(BS,Z). The higher homo-
topy groups of BS+ are very interesting invari-

1We should mention that the traditional bar resolution
(see [3], Chapter II) provides a functorial construction
for producing a free resolution of the trivial module Z
in terms of free modules constructed from n-tuples of
elements in G ; however, it is far too large to be used
in actual computations.
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ants that in some instances contain important
information about the stable homotopy group
of spheres. More generally, the plus construction
is an indication of the deep relationship between
finite groups and stable homotopy theory which
has many other manifestations (we refer to [18]
for more on this). The cohomology of groups is
necessarily a key ingredient in all of this, and
computations play an important part.

Calculational Methods
Unfortunately, computing the cohomology of a
finite group can be quite difficult. In this section
we will attempt to describe some of the more use-
ful calculational tools available. One of the main
features about group cohomology is the impor-
tance of understanding the contributions from
subgroups. Given H ⊂ G, one can induce a re-
striction map H∗(G,Fp) → H∗(H,Fp) which car-
ries a lot of information. In order to assemble
the information from subgroups, we need to or-
ganize the combinatorial information in a suit-
able way. This was first done by K. Brown in a
topological context via the construction of “sub-
group complexes”. The idea is to take a collec-
tion of subgroups in G and use inclusions to de-
vise a partially ordered set with interesting
properties. The two most important complexes
associated to finite groups in this context (see
[2], pg. 170) are the poset of all nontrivial p-sub-
groups in a finite group G (denoted Sp(G)) and
the poset of all nontrivial p-elementary abelian
subgroups in a finite group G (denoted Ap(G)).
Both of these posets are endowed with a G-ac-
tion via conjugation, and their realizations
|Sp(G)| , |Ap(G)| are finite complexes (i.e., com-
pact spaces assembled by gluing simplices) with
an action of G which is compatible to this “sim-
plicial” structure.

The fact that G is finite allows us to make use
of Sylow’s theorems in our computations.
Namely, let Sylp(G) denote a p-Sylow subgroup
of G . Then the first basic fact is that the inclu-
sion Sylp(G) ⊂ G induces an embedding of mod
p cohomology H∗(G,Fp) ↪→ H∗(Sylp(G),Fp) .
This is proved by making use of a map in the
other direction (called the transfer) which when
composed with the restriction yields multipli-
cation by the index [G : Sylp(G)] on H∗(G,Fp) ,
which is a mod p isomorphism. Obtaining the
exact image of the restriction requires under-
standing the intersection of the p-Sylow sub-
group with its conjugates in G , but this can be
done very efficiently using a double coset de-
composition for G in terms of Sylp(G) (see [3],
pg. 78). In simpler terms, this is the familiar fact
that H∗(G,Fp) restricts injectively into the co-
homology of a p-Sylow subgroup, and the image
can be computed as the “stable elements” in
H∗(Sylp(G),Fp). For example, if Sylp(G) is nor-

mal in G , then this result simply says that there
is an isomorphism H∗(G,Fp) ∼=H∗(Sylp(G),Fp)K

where K = G/Sylp(G) has an action on the co-
homology induced by conjugation.

Next we have a landmark result due to Quillen
[23] which tells us that the p-elementary abelian
subgroups can be used to understand most of
the mod p cohomology of G . The restriction
maps corresponding to elementary abelian sub-
groups can be assembled to define a map

H∗(G,Fp) −→ lim
E∈Ap(G)

H∗(E,Fp).

In this expression the limit consists of the se-
quences of cohomology classes xE ∈ H∗(E,Fp)
indexed by elements in Ap(G) which are com-
patible with respect to inclusion and conjugation.
In other words, if E1 ⊂ E2, then xE1 = res(xE2 ),
and if E2 = gE1g−1, then xE1 = c∗g (xE2 ), where
c∗g is the map induced by conjugation on coho-
mology. Quillen’s result tells us that the kernel
of the map above consists entirely of nilpotent
elements and that a sufficiently high power of
any element in the limit is in the image of the
map. This result provides critical input for co-
homology calculations.

We should also mention here another result
which is useful for calculations and which is
due to P. Webb [24]. He shows that the coho-
mology of G can be computed using an alter-
nating sum with the cohomology of the stabi-
lizers of either one of the G-complexes above.

From Quillen’s result it is apparent that we are
interested in understanding the image of the re-
striction map to the cohomology of an elemen-
tary abelian subgroup. This can often be quite
complicated, but under special conditions there
exist techniques to compute this (see [3], pg.
113). In fact, in many cases it is possible to show
that the image of the restriction map to
H∗(E,Fp) is exactly the ring of invariants
H∗(E,Fp)NG(E), where NG(E) denotes the nor-
malizer of E in G .

We can now roughly outline an approach for
computing H∗(G,Fp) :

Step 1: Calculate H∗(Sylp(G),Fp)
using minimal resolutions and spec-
tral sequences. In many cases it is
now feasible to use a computer to
find low-dimensional generators for
the cohomology of a p-group. A typ-
ical p-group will fit into many ex-
tensions, each of which provides a
Lyndon-Hochschild-Serre spectral se-
quence. Classical methods from al-
gebraic topology can be used here.

Step 2: Understand the structure of
Ap(G). Once again, computer pack-
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ages such as MAGMA make this fea-
sible.

Step 3: Calculate lim
E∈Ap(G)

H∗(E,Fp)

and the restriction map from
H∗(G,Fp) . Here a basic ingredient is
given by the invariants
H∗(E,Fp)NG(E).

Step 4: Determine the radical of
H∗(G,Fp) , i.e., the nilpotent ele-
ments. This is perhaps the trickiest
step and requires a good hold on
H∗(Sylp(G),Fp).

Having described these computational steps,
we need to point out that they obviously will not
work for a sufficiently large and complicated
group. However, in the next section we will see
that recently they have been successfully ap-
plied to examples identified as interesting from
the point of view of group theory, the so-called
sporadic simple groups.

Examples
In order to understand and develop theoretical
results in group cohomology, it is fairly clear
that the computation of interesting examples
is desirable. In this section we will consider
the mod 2 cohomology of certain specific ex-
amples which are important in group theory,
namely, simple groups. Here we can make use
of information provided by the Classification
Theorem for Finite Simple Groups, which is an
enormous achievement of finite group theory
(see [16]). Briefly stated, there is now a com-
plete list of all finite simple groups, divided into
three types: alternating groups, finite groups of
Lie type (and twisted versions of them), and the
so-called sporadic simple groups (there are ex-
actly 26 of these). From our point of view we can
make use of this to single out important exam-
ples and obtain calculations for large classes of
simple groups.

We will now present examples of cohomology
calculations for sporadic simple groups with co-
efficients in F2, the field with two elements (note
that by the Feit-Thompson Theorem, any non-
abelian finite simple group is of even order).
Coefficients will be suppressed.2

Example. The Mathieu group M12 (see [8]): this
is a group of order 95,040. Let H = Syl2(M12);
this is a group of order 64 which can be ex-
pressed as a semidirect product Q8 ×T D8,
where D8 denotes the dihedral group of order
eight and Q8 the quaternion group of order
eight. There are subgroups W1,W2 ⊂M12, both

of order 192 intersecting along H such that the
configuration of subgroups

H −→ W2y y
W1 −→ M12

determines H∗(M12) as the intersection
resW1

H (H∗(W1))∩ resW2
H (H∗(W2)) in H∗(H) . We

obtain generators for H∗(M12) in degrees

2, 3, 3, 3, 4, 5, 6, 7

with 14 relations among them. Taking the
4−,6−,7−dimensional generators D4, D6, D7,
we in fact have that they generate a polynomial
subalgebra F2[D4,D6,D7] in H∗(M12) over
which H∗(M12) is free and finitely generated. A
convenient way to express cohomology infor-
mation is via a Poincaré series. Let
p(t) =

∑∞
i=0 dimF2 Hi(M12)ti , then from the cal-

culation above it follows that

p(t)= 1+t2+3t2+t4+3t5+4t6+2t7+4t8+3t9+t10+3t11+t12+t14

(1−t4)(1−t6)(1−t7)
.

How can we interpret this Poincaré series? To do
this, we must recall that the exceptional Lie
group G2 is a 14-dimensional manifold which
admits a classifying space BG2 such that its
mod 2 cohomology is precisely F2[D4,D6,D7].
Now an appropriate homomorphism M12 → G2
might reveal the numerator in terms of the fiber
of the map induced on classifying spaces, but
unfortunately no such homomorphism exists.
However, this works topologically: it is possible
to construct (2-locally) a map BM+

12 → BG2 such
that the cohomology of the base injects pre-
cisely as the polynomial algebra described above
and such that its fiber X has the homotopy type
of a 14-dimensional Poincaré duality complex
with Poincaré series equal to the numerator of
p(t) (see [18]). Note that this explains the palin-
dromic nature of this polynomial. This example
illustrates how group cohomology can have sub-
stantial geometric content which is not at all ap-
parent from the original group.

Example. The O’Nan group O’N (see [4]): this is
a group of order > 460 billion. However, the quo-
tient space |A2(O′N)|/O′N can be schematically
represented by Figure 1. We have labelled the sta-
bilizers of the simplices using group theory no-
tation.

The cohomology of O’N is detected on two
abelian subgroups, M ∼= (Z/4)3 and N ∼=
Z/4× Z/2× Z/2; in fact, H∗(O’N) has 12 gen-

2Note that the cohomology will have a ring structure,
as it is the singular cohomology of a topological space.
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erators, one each in dimensions 3 through 14.
For this group the Poincaré series is of the form

q(t)
(1− t8)(1− t12)(1− t14),

where q(t) is a palindromic polynomial of de-
gree 31.

Let us recall that H∗(G,Fp) is Cohen-
Macaulay if it is free and finitely generated over
a polynomial subalgebra. Using the explicit in-
formation provided by the classification theorem
for finite simple groups combined with the ex-
amples above and other (substantially easier)
examples, we have [6].

Theorem. Let G denote a finite simple group
which does not contain a subgroup isomorphic
to (Z/2)4. Then the cohomology ring H∗(G,F2)
is Cohen-Macaulay.

As one would expect, the situation for rank 4
and beyond is much more complicated, although
surprisingly many groups are tractable.

Example. The Mathieu group M22: we have
|M22| = 27 · 32 · 5 · 7 · 11; its 2-Sylow subgroup
S can be characterized as the largest 2-group oc-
curring as the symplectic automorphism group
of a K3 surface. This is proved by first observ-
ing that if a 2-group P acts on a K3 surface as
above, then a central involution z ∈ P must have
8 fixed points. Hence the quotient P/ < z > will
permute these 8 fixed points, and this in fact pro-
vides an embedding into the alternating group
A8. Comparing orders provides 27 as an upper
bound on the order of P. On the other hand, there
is only one possible central extension of this
type which can occur, namely, S . Finally, it can
be shown that in fact S acts symplectically on
the K3 surface described by the equation

X4 + Y4 + Z4 + T4 + 12XYZT = 0

in P3 (see [21] for complete details).

The group S is rather remarkable in that it oc-
curs as the 2-Sylow subgroup of several inter-
esting groups: M22, M23 (the next Mathieu
group), McL (the McLaughlin group), U4(3) and
Ã8 (the double cover of A8). None of these
groups have Cohen-Macaulay mod 2 cohomol-
ogy.

In M22 there are exactly three conjugacy
classes of maximal elementary abelian 2-sub-
groups, V3, V4, and W4 (subindex denotes rank).
The invariants in their cohomology under the ac-
tions of the respective normalizers are

H∗(V3)L3(2) = F2[D4,D6,D7]

H∗(V4)Σ5 = F2[d3, d5, d8, d12](1, x6, x8, x9, x10,
x12, y12, x14, x15, x16, x18, x24)

H∗(W4)A6 = F2[d3, d5, d8, d12](1, x9, x15, x24).

One can in fact show that H∗(M22) restricts
onto each of these invariant rings. Using Quillen’s
Theorem, we obtain (see [5]) that there is an
exact sequence

0→ Rad H∗(M22) → H∗(M22) → H∗(V3)L3(2)

⊕H∗(V4)Σ5 ⊕H∗(W4)A6

with explicit image and such that

Rad H∗(M22) ∼= F2[d8, d12](a2, a7, a11, a14).

An interesting point to note is that the low-
dimensional cohomology is quite sparse. In fact,
Milgram has used the above to compute
H∗(M23) , showing that Hi(M23,Z) ∼= 0 for
1 ≤ i ≤ 4 [19]. This is the first known instance
of such a highly connected finite group. An ob-
vious question here is whether or not there ex-
ists a fixed integer K > 0 such that for any fi-
nite group G if Hi(G,Z) = 0 for 1 ≤ i ≤ K, then
G = {1}.

Other rank 4 examples which have been cal-
culated recently include the McLaughlin group
McL [7], the Janko groups J2, J3 [11], and the

Figure 1.
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Lyons group [2]. This last group is rather re-
markable in that its cohomology is actually “de-
tected” on elementary abelian subgroups, mean-
ing that for Step 3 (as described in the section
“Calculational Methods”) we obtain an injective
map.

In fact, looking at the list of sporadic groups,
we see that only two rank 4 sporadics are left:
the Higman-Sims group HS and Conway’s group
Co3. Currently (in a joint project with Carlson
and Milgram) we are working on the mod 2 co-
homology of the Higman-Sims group HS. Com-
puter-generated low-dimensional classes play
an important role in the calculation. The situa-
tion for Co3 seems rather more complicated.

Essential Cohomology
Examples are important for testing conjectures
and hence can provide a major thrust for theo-
retical developments. One of the basic facts em-
anating from the previous calculations is the
use of “detecting subgroups” in cohomology.
More precisely, a collection of proper subgroups
H1, . . . ,Hn in G detects the cohomology of G if
the map induced by restrictions

H∗(G,Fp) −→ H∗(H1,Fp)⊕ · · · ⊕H∗(Hn,Fp)

is injective. In the case of complicated p-groups,
finding computable detecting subgroups is an
important aspect of most calculations. Another
important collection of examples is given by the
finite symmetric groups, whose mod 2 coho-
mology is detected on elementary abelian sub-
groups (see [3], Chapter VI, and the more recent
[15], where complete calculations are an-
nounced). This naturally leads us to consider
groups with undetectable cohomology classes,
i.e., those which restrict to 0 on every proper sub-
group. We shall say that an element
x ∈ H∗(G,Fp) is essential if resGH (x) = 0 for all
proper subgroups H ⊂ G. We denote the set of
all essential classes by Ess∗(G). A key problem
is to characterize those groups such that
Ess∗(G) 6= 0 (see [12], page 438, where it ap-
pears as a problem in J. F. Adams’s problem list,
suggested by M. Feshbach). We should point out
that in fact these groups are “universal detectors”
for group cohomology. Indeed, a moment’s
thought reveals that any cohomology class must
restrict nontrivially to a subgroup with nonzero
essential cohomology, unless of course the group
itself is of this type.

Recently the following has been established
(see [1]):

Theorem. Let G denote a finite group. Then the
following two statements are equivalent:

(1) H∗(G,Fp) is Cohen-Macaulay, and
Ess∗(G) 6= 0.

(2) G is a p-group such that every element of
order p in G is central.

This result was motivated by examining nu-
merous calculations, which seems to be a new
approach in a subject which until recently had
few interesting examples. The proof requires
using methods developed by Duflot [13] and
Benson-Carlson [9] for Cohen-Macaulay coho-
mology rings. Preliminary evidence also indi-
cates that it relates to the existence of free group
actions on products of spheres. More specifically,
given a p-group G of rank k, there is a canoni-
cal action of G on (S2(|G|/p)−1)k such that the ac-
tion is free if and only if every element of order
p in G is central. The case of groups of lower
depth with nontrivial essential cohomology can
be studied using this perspective, which seems
related to the problem of making a group of
rank k act freely on a finite complex homotopy
equivalent to a product of k spheres.

Example. To illustrate the previous discussion,
we will provide a simple example. Let Q8 denote
the quaternion group of order 8. It has a unique,
hence central, element of order 2. One can ver-
ify (see [3]) that

H∗(Q8,F2)

∼= F2[x1, y1, u4]/(x2
1 + x1y1 + y2

1 , x
2
1y1 + x1y2

1 ).

Then Ess∗(Q8) is the ideal generated by x1y1
and x2

1. Regarding Q8 as a subgroup of the 3-
sphere S3 , it will act freely on it, and in fact the
cohomology of the orbit space S3/Q8 can be
identified with H∗(Q8)/(u4) ∼=
{1, x1, y1, x2

1, x1y1, x2
1y1}. These classes in turn

can be identified with a basis for the cohomol-
ogy as a free F2[u4]-module. The Poincaré series
for the mod 2 cohomology is

q(t) =
1 + 2t + 2t2 + t3

1− t4 .

The denominator describes the four-dimensional
polynomial generator, whereas the numerator is
precisely the Poincaré series for the mod 2 co-
homology of the orbit space S3/Q8.

Next we will discuss examples of groups with
essential cohomology which arise from field the-
ory but which surprisingly are related to certain
topological questions. Let F denote a field of
characteristic different from 2, and suppose
that |F•/(F•)2| <∞ , where F• denotes the
nonzero elements in F . Let Fq denote the qua-
dratic closure of F and G = Gal(Fq/F ). The W-
group of F has been defined in [20] as
UF = G/G4[G2, G]. Under our conditions, this is
a finite 2-group. Moreover, if |UF | 6= 2, all of its
elements of order 2 are central if and only if F
is not formally real.
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Hence UF is a group with essential cohomol-
ogy in many interesting instances. One would of
course like to compute its mod 2 cohomology;
in fact, there is a “universal” W-group, W (n) ,
mapping onto any such UF, where n is the di-
mension of F•/(F•)2. This group will satisfy the
2-central property and can be described as a cen-
tral extension

1→ (Z/2)n+
(
n
2

)
→ W (n) → (Z/2)n → 1.

Recently, in joint work with Karagueuzian
and Minac, we have shown that H∗(W (n),F2) is
free and finitely generated over a polynomial sub-
algebra on n +

(
n
2

)
2-dimensional generators. If

pn(t) is the Poincaré series, then in fact we have
that pn(t) = vn(t)/(1− t2)n+

(
n
2

)
, where vn(t) is

the Poincaré series for an n +
(
n
2

)
-dimensional

manifold constructed as follows. The group
E = (Z/2)n acts in a canonical and free way on

Xn = (S1)n+
(
n
2

)
via rotations on the first n coor-

dinates and complex reflections on the others.
Then vn(t) is the Poincaré series for the orbit
space Xn/E.

One would like to compute the cohomology
of this orbit space, which is in fact equivalent to
computing the group cohomology of the tor-
sion-free discrete group Γn = π1(Xn/E). No gen-
eral formula exists yet, but it is not hard to show
that v2(t) = 1 + 2t + 2t2 + t3 and v3(t) = 1 + 3t+
8t2 + 12t3 + 8t4 + 3t5 + t6. Note that, in particu-
lar, knowing v3(t) allows us to determine the
Poincaré series for W (3), a group of order 29.

Final Remarks
The real interest in the cohomology of finite
groups lies in its interactions with other areas
of mathematics. In this note we have described
instances of this which arise from basic questions
and examples in both algebra and topology. En-
hanced computational ability has greatly in-
creased the complexity and scope of the exam-
ples which can be understood in a meaningful
way. Not surprisingly, this has already con-
tributed to new theoretical insight. This trend will
lead to an even better understanding of the co-
homology of finite groups in the near future.
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