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Since 1874, when it was first described in the medical literature as 
“symmetrical central choroido-retinal disease occurring in senile persons,”1 
age-related macular degeneration has also been referred to as senile, or diski-

form, macular degeneration, among many other terms. About 25 years ago, the 
term “age-related maculopathy” was coined and its end stage was acknowledged as 
age-related macular degeneration. In this review, I use the commonly accepted age-
related macular degeneration, although I have reservations about its appropriateness. 
After briefly describing the clinical features of age-related macular degeneration, 
I turn to the physiology of the aging macula and to mechanisms implicated in the 
cause. Reviews of treatment and detailed ocular data can be found elsewhere.2-4

Cl inic a l Signs a nd S ymp t oms

The diagnosis of age-related macular degeneration rests on signs in the macula 
(Fig. 1), irrespective of visual acuity.5 Drusen, derived from the German word for 
geodes, cavities in rocks often lined by crystals, are the characteristic physical signs 
of age-related macular degeneration (Fig. 2). As seen through the ophthalmoscope, 
drusen are dots ranging in color from white to yellow, sometimes with a crystal-
line, glittering aspect. The origin of drusen has remained unresolved for more than 
a century.7,8 Moreover, there is no agreement as to whether drusen in the absence of 
other ocular abnormalities always point to early age-related macular degeneration.9,10 
In this review, I consider all drusen to be a sign of age-related macular degeneration 
unless other clearly identifiable ocular or systemic abnormalities are present.

The stages of age-related macular degeneration are categorized as early, in which 
visual symptoms are inconspicuous,11 and late, in which severe loss of vision is 
usual. Early age-related macular degeneration is characterized by drusen or by 
hyperpigmentations or small hypopigmentations, without visible choroidal vessels. 
Drusen become visible on ophthalmoscopy when their diameter exceeds 25 μm.9 
The larger the drusen, the greater the area they cover, and the larger the areas of 
hyperpigmentation and hypopigmentation of the retinal pigment epithelium (RPE) 
in the macula, the higher the risk of late age-related macular degeneration.12 Late 
age-related macular degeneration has “dry” and “wet” forms, but the question of 
whether these two forms are really the same disease is a controversial one.4 Both 
dry and wet age-related macular degeneration can be found in the same patient: 
dry age-related macular degeneration can occur in one eye and wet age-related 
macular degeneration in the other, or both dry and wet age-related macular de-
generation can be seen in the same eye. In follow-up studies, dry age-related 
macular degeneration can become wet age-related macular degeneration, and wet 
age-related macular degeneration can become dry. Dry and wet age-related macu-
lar degeneration can resemble end stages of other retinal diseases, and for this 
reason, late age-related macular degeneration is a diagnosis of exclusion.
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Dry age-related macular degeneration, also 
called geographic atrophy, starts with a sharply 
demarcated round or oval hypopigmented spot 
that is often juxtafoveal and in which large cho-
roidal vessels are visible (Fig. 2B and 2D). The 
initial symptoms of dry age-related macular de-
generation are usually indicated by gaps in an 
image, as if letters had dropped out of a line of 
text. The first sign of wet age-related macular 
degeneration is serous or hemorrhagic fluid that 
causes the neuroretina or the RPE to detach from 
Bruch’s membrane (Fig. 2E and 2F). The fluid 
originates in a subretinal neovascular membrane. 
The detachment disturbs the fine arrangement 
of the photoreceptors and causes an image dis-
tortion called metamorphopsia, which is often 
the first symptom of wet age-related macular 
degeneration. These new subretinal vessels tend 
to grow toward the fovea. Within days or months, 
more extensive hemorrhages and scars can ap-
pear (Fig. 2G and 2H). Usually, a similar type of 
late age-related macular degeneration develops in 
both eyes. Each successive year after the initial 
diagnosis, about 15% of patients with unilateral 
wet age-related macular degeneration are found 
to have wet age-related macular degeneration in 
the opposite eye. If left untreated, wet age-related 
macular degeneration usually causes legal blind-
ness (visual acuity ≤0.1, 6/60) within months after 
the second eye becomes affected; in contrast, 
these events may take years in patients with dry 
age-related macular degeneration. Late age-relat-
ed macular degeneration often gives the patient 
enough vision to be ambulatory because the pe-
ripheral visual field around a central scotoma is 
intact (Fig. 1).

In epidemiologic studies, an age of 50 years is 
arbitrarily chosen as the minimum age for the 
diagnosis of age-related macular degeneration.5 
In the population-based Rotterdam Study, 64% 
of 825 participants who were 80 years old or older 
showed signs of early or late age-related macular 
degeneration (unpublished data). Late age-related 
macular degeneration is now the most common 
cause of untreatable blindness in the Western 
world, with a prevalence that is 0.05% before the 
age of 50 years and that rises to 11.8% after 80 
years of age.13 Unless effective methods of pre-
vention and treatment are found, the prevalence 
of age-related macular degeneration is expected 
to double in the coming decades because of the 
projected increase in aging populations.13

The Outer Retina and Adjacent Tissues

Age-related changes that predispose a person to 
age-related macular degeneration occur in the 
outer retina (Fig. 1). The inner retina is adjacent 
to the vitreous and the outer retina is adjacent to 
the choroid. The outer retina includes the photo-
receptors (rods and cones), the RPE, and Bruch’s 
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Figure 1. Normal Fundus.

The area within the outer white circle (indicating a retinal diameter of 
about 6 mm) is the macula lutea, which is Latin for yellow spot or stain. 
The inner circle (diameter, 0.8 mm) borders the fovea, which is the central 
pit of the macula, where the preponderance of cones over rods is highest 
for sharp vision. The graph superimposed on this normal fundus shows 
the drop in attainable visual acuity in relation to the distance from the fo-
vea. The effect on visual acuity of the  location and area covered by a central 
age-related macular degeneration scar can be estimated on the basis of 
this measure. The retina, which has 10 layers, is the inner lining at the back 
of the eyeball. The inset shows the two outer layers that contain the purple 
light-sensitive rod and cone photoreceptor cells supported by Müller cells, 
all embedded in the interphotoreceptor matrix, in close contact with the 
retinal pigment epithelium (RPE). The RPE is surrounded by two extracellu-
lar matrixes, the interphotoreceptor matrix and Bruch’s membrane. Between 
the RPE and the outer wall of the eye (sclera) are Bruch’s membrane, the 
choriocapillaris, and a larger vessel layer, the choroid. Ruysch’s complex 
includes the RPE, Bruch’s membrane, and the choriocapillaris.
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membrane. The adjacent choriocapillaris, the cap-
illary layer of the choroid, is the vascular system 
that feeds the outer retina (Fig. 1). These struc-
tures, collectively called Ruysch’s complex,14 pro-
vide an optimal environment for retinal function 
― high-resolution and color vision (cones), and 
peripheral vision and vision at dusk (rods).

The Retinal Pigment Epithelium

The RPE is a central element in the pathogenesis 
of age-related macular degeneration. It is a post-
mitotic, cuboidal monolayer of cells with a very 
high metabolic rate. The RPE cell derives its name 

from the numerous melanosomes within its cy-
toplasm (Fig. 3). Of the 10 known functions of 
the RPE, the most important are regeneration of 
bleached visual pigments; formation and mainte-
nance of two extracellular matrixes, the inter-
photoreceptor matrix and Bruch’s membrane (Fig. 
1 and 3); transport of f luids and ions between 
photoreceptors and the choriocapillaris; and 
phagocytosis.

A pivotal function of the RPE is the regenera-
tion of the visual pigment rhodopsin. The absorp-
tion of light by rhodopsin creates a visual signal 
and results in a change in the molecule that ne-

A B

C D

E F

G H

Figure 2. Progression from Early to Late Age-Related 
Macular Degeneration.

Drusen can be classified according to size, appearance, 
biochemical composition, and examination technique.5,6 
With increasing age, drusen become confluent and 
larger, sometimes crystalline, less circumscribed, or 
accompanied by hyperpigmentations or hypopigmen-
tations of the RPE. Panel A shows early age-related 
macular degeneration in two maculas: the macula 
shown on the left-hand side contains small drusen 
 (arrow) and some large, indistinctly bordered drusen 
in the fovea; the macula shown on the right-hand side 
contains more drusen and focal hyperpigmentation 
(arrow). The left-hand side of Panel B shows early age-
related macular degeneration characterized by extensive 
small and large drusen in and around the macula; the 
right-hand side shows crystalline drusen (arrowhead) 
and a small patch of late dry age-related macular degen-
eration (arrow). The left-hand side of Panel C shows 
early age-related macular degeneration, with crystalline 
and calcified drusen (arrowheads); on the right-hand 
side (also early age-related macular degeneration) are 
large confluent drusen leading to a drusenoid detach-
ment of the RPE, with hyperpigmentation (arrowheads). 
Panel D (late age-related macular degeneration) shows 
dry age-related macular degeneration, with a central is-
land in which photoreceptors are still functioning (arrow); 
this eye has a complete ring scotoma around a small 
central visual-field remnant. Panel E (late age-related 
macular degeneration) shows wet age-related macular 
degeneration in the form of a large serous detachment 
of the RPE (with borders marked by arrowheads) caused 
by fluid leaking from a subretinal neovascular mem-
brane. Panel F (late age-related macular degeneration) 
shows the development of wet age-related macular de-
generation with a subfoveal hemorrhage surrounded 
by detachment of the RPE (arrowheads). Panel G (late 
age-related macular degeneration) shows dry age-related 
macular degeneration (black arrows), in which the orange 
lines are large choroidal vessels, surrounded by glial 
scar tissue (arrowheads) resulting from a large subreti-
nal hemorrhage with a small remnant (white  arrow). 
Panel H (late age-related macular degeneration) shows 
cicatricial wet age-related macular degeneration, with 
glial scarring in the macula and remnants of hemor-
rhages at its temporal border (arrowhead).
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cessitates the reconstitution of dark-adapted vi-
sual pigment. This process occurs largely within 
the RPE through many complex intermediate 
steps. One of them entails RPE65, an enzyme 
that converts all-trans retinyl esters into 11-cis 
retinal, which is essential for the function of rods 
and cones.15

Phagocytosis by RPE Cells
The RPE is a phagocytic system that is essential 
to the renewal of photoreceptors. Each photore-
ceptor has an inner and outer segment, separated 

by an invagination, the connecting cilium. The 
outer segment of each rod has about 1000 disks,16 
and the outer segment of every cone has a mem-
brane that is folded 700 times, stacked like a roll 
of coins. The disks are necessary for the conver-
sion of light into electrical potentials. In each disk 
membrane, the transmembrane protein rhodopsin 
is positioned in combination with four phospho-
lipids and docosahexanoic acid.17 The tips of both 
types of photoreceptors are shed from their outer 
segments and engulfed and degraded within the 
RPE.18 The shedding is balanced by the addition 
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Figure 3. RPE Cell in a 3-Year-Old Child (Left-Hand Panel) and an 80-Year-Old Person (Right-Hand Panel).

The outer segments of the rods and cones are embedded in the interphotoreceptor matrix (blue-gray areas) and partially surrounded by 
apical pseudopodial RPE processes (APRP). The shed disks (right-hand panel) become encapsulated in the phagosomes and are digest-
ed in phagolysosomes in the cell cytoplasm of the RPE. Macrophages and fused macrophages (giant cells) remove cellular debris around 
the cell. Light-induced toxicity occurs as light is absorbed by the various chromophores in the lipofuscin granules. This damages DNA 
and cell membranes and causes inflammation and apoptosis. The right-hand panel shows enlarged lipofuscin granules, the thickened 
Bruch’s membrane, and the attenuation of the choriocapillaris. The central elastic lamina in Bruch’s membrane becomes more porous 
in old age.
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of membranes at the base of the outer segments 
of rods and the replacement of nucleic acids, pro-
teins, and lipid throughout the cones. In the rhe-
sus monkey, about 3000 disks are shed daily from 
30 photoreceptors in each RPE cell.19 These shed 
disks fuse with lysosomes, forming phagolyso-
somes (Fig. 3). The contents of the phagolyso-
somes are incompletely degraded within acid 
lysosomal compartments and form the residual 
bodies that are the substrates for lipofuscin for-
mation. At least eight lysosomal enzymes are ac-
tive in the RPE.20

From the age of 16 months on, the accumula-
tion of lipofuscin imposes an ever-increasing bur-
den on RPE cells.21 Moreover, RPE cells have a 
limited capacity to sequester malfunctioning cy-
toplasm before delivering it to lysosomes. This 
autophagic process cannot handle the immense 
amount of metabolic waste that accumulates in 
RPE cells over a lifetime. The parafoveal ring, 
where rod density is highest22 and where dry age-
related macular degeneration often begins, has 
the highest concentration of lipofuscin in the 
retina (Fig. 2D). When signs of early age-related 
macular degeneration progress toward late age-
related macular degeneration and RPE cells die, 
lipofuscin disappears from the cells ― a sign 
that foretells a poor outcome.

Lipofuscin and A2E
The retinoid A2E is an autofluorescent compo-
nent of lipofuscin.23 Precursors of A2E are formed 
within the outer segments of the photoreceptors,24 
but A2E itself arises within the phagolysosomal 
compartment of RPE cells. When it reaches a 
critical concentration, A2E inhibits the proton 
pump of lysosomes,25 causing leakage of the con-
tents of the lysosomes into the cytoplasm of RPE 
cells.23 A2E can also damage the DNA in RPE26 
and mitochondrial membranes. All these effects 
cause apoptosis.27 An important feature of A2E is 
its broad light-absorption spectrum, with peaks in 
the visible range, especially in the blue range, 
which predisposes RPE cells to light-induced le-
sions. Additional photosensitizing molecules in 
lipofuscin remain to be investigated.28

Chromophores
The number of RPE cells diminishes with age, 
increasing the phagocytic burden on the remain-
ing cells. In old age, pheomelanin29 and all-trans 
retinal dimers30 are formed. The absorption of 

light energy by these colored chromophores de-
pends on the wavelength of the light. Chromo-
phores impair the function of lysosomes in RPE 
cells. The injured RPE cells attract dendrites from 
choroidal dendritic cells,31 which are powerful 
antigen-presenting DC1 cells and constitute the 
core of approximately 40% of all drusen.32 Fur-
ther impairment with age causes the accumula-
tion of debris in the cytosol of RPE cells. This 
debris contains various chromophores, which in-
crease the risk of phototoxic damage, and in peo-
ple over 80 years of age, the debris can occupy 
more than one fifth of the total volume of an 
RPE cell.33

Bruch’s Membrane

Bruch’s membrane, which lies behind the RPE, 
has three layers: a central elastic layer sandwiched 
between two collagenous layers. These are lined 
by the basement membranes of the RPE and the 
choriocapillaris (Fig. 3). The elastic layer is one 
third to one fifth as thick in the fovea as in the 
peripheral retina.34 This feature could cause the 
centripetal growth of wet age-related macular de-
generation, owing to lowered tissue resistance. 
Proteoglycans are an important constituent of 
Bruch’s membrane.35,36 Their negative charge ham-
pers the passage of the positively charged mac-
romolecules that are necessary for maintenance 
of the RPE. 

Changes in Bruch’s membrane start at a rela-
tively early age.37,38 Basal laminar deposits and 
membranous debris, considered to be precursors 
of age-related macular degeneration, can appear 
in Bruch’s membrane as early as the third decade 
of life.38,39 Coated, membrane-bound bodies and 
hard drusen appear between the basement mem-
brane of the RPE and the inner collagenous layer 
of Bruch’s membrane in the third decade of life, 
and basal laminar deposits appear around the 
age of 40 years.40 How drusen develop and why 
they can vary in location and features are un-
known. Drusen often have a core of glycopro-
teins,32,41 and their outer domes contain crystal-
lins,10,42 chaperone proteins, apolipoprotein E 
(APOE), vitronectin, and proteins related to in-
flammation (amyloid P, C5, and C5b–9 comple-
ment complex).43 Drusen also contain fragments 
of RPE cells.4,10,32

Bruch’s membrane calcifies and doubles in 
thickness between the ages of 10 and 90 years.44 
It contains no lipids during the first 30 years of 
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life, but lipid concentrations rise in later years, 
reaching 220 mg per square meter of the mem-
brane by the age of 100 years.45-48 As lipid con-
centrations increase, the f luid permeability of 
Bruch’s membrane decreases.49,50 Uncontrolled 
proteolytic degradation of the membrane forms 
advanced glycation products that damage adja-
cent cells and increase the formation of extracel-
lular matrix.4 In the aging Bruch’s membrane, 
there is a linear thickening in which deposits of 
collagen, lipids, and debris cause a sharp reduc-
tion in fluid and nutrient transport across the 
membrane.50 Reductions in the concentration of 
metalloproteinases can cause Bruch’s membrane 
to thicken further. Bruch’s membrane functions 
as an intercellular matrix acting as a scaffold for 
adjacent RPE and choriocapillaris cells and regu-
lating their survival. Its diminished function re-
sults in diminished cell adhesion and anoikis 
— apoptosis resulting from incorrect cell adhe-
sion.51 Anoikis occurs in photoreceptors and RPE 
cells and probably in choriocapillaris endothelial 
cells. The extracellular deposits around Bruch’s 
membrane instigate chronic local inflammation, 
which promotes the development of age-related 
macular degeneration.9,32 Such deposits can in-
duce invasion by dendritic cells, which act as 
phagocytes and immune cells.32,52 Furthermore, 
RPE cells, macrophages,37,53-55 and dendritic cells 
release inflammatory cytokines,56,57 angiogenic 
factors, and immune complexes, and by these 
means sustain chronic inflammation.58 The spon-
taneous disappearance of drusen before wet age-
related macular degeneration begins59 may be due 
to macrophages originating in the choriocapil-
laris.

Ruysch’s Complex

Ruysch’s complex, comprising the RPE, Bruch’s 
membrane, and choriocapillaris, receives its blood 
supply from the choriocapillaris, which has ex-
tensive fenestrations on the side facing Bruch’s 
membrane. The inner retina on the side of the 
vitreous cavity has a limited oxygen supply as 
compared with the oxygen-rich Ruysch’s com-
plex. Photoreceptors consume more than 90% of 
this oxygen.60 With increasing age, the lumina of 
the choriocapillaris and the choroidal thickness 
become reduced by half (Fig. 3).44 In the dark, 
oxygen consumption by photoreceptors increases 
by 50%, creating a near-hypoxic environment.61 
With thinning or destruction of the RPE, the 

underlying choriocapillaris becomes less fenes-
trated, reducing the transport of macromolecules, 
and then disappears altogether.62,63 The result-
ing hypoxia stabilizes hypoxia-inducible factor 1α 
by inhibiting its degradation in proteasomes. Hy-
poxia-inducible factor 1α activates genes encod-
ing proteins such as erythropoietin that protect 
the photoreceptors.64 Hypoxia also increases the 
secretion of growth factors such as vascular en-
dothelial growth factor A within Ruysch’s com-
plex on the basal side of the RPE cells, causing 
development of choroidal neovascular mem-
branes.65,66

Mech a nisms

Is age-related macular degeneration a normal pro-
cess of aging,38,67,68 which will affect us all if we 
live long enough? More likely, physiologic aging 
of the RPE is not the sole factor — genetic and 
environmental influences are also important. Age-
related macular degeneration has a strong genetic 
component. Mutations in several genes (Table 1) 
are now known to predispose people to age-related 
macular degeneration in various ways. The most 
consistently identified environmental risk factor 
is smoking; recently, the role of dietary antioxi-
dants in the prevention of age-related macular 
degeneration has become of interest.

Genetics

Genetic influences on age-related macular de-
generation are well known from family and twin 
studies.1,79,84-91 First-degree relatives of patients 
with age-related macular degeneration, as com-
pared with first-degree relatives in families with-
out the disorder, are at increased risk for the con-
dition (odds ratio, 2.4),90 are affected at a younger 
age,92,93 and have an increased lifetime risk of 
late age-related macular degeneration (risk ratio, 
4.2).92 Studies have implicated many genes in age-
related macular degeneration,69 but most of these 
studies are inconclusive. Table 1 lists the genes 
that have the best-documented associations with 
age-related macular degeneration. An increased 
risk of age-related macular degeneration has been 
reported among carriers of the APOE ε2 allele, 
and a protective effect has been found for carriers 
of the APOE ε4 allele.79,94 It is possible that these 
allelic variants are not causally related to the dis-
ease but are associated with it because of their 
close position to an unknown causative genetic 
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variant on chromosome 19q. The same holds for 
LOC38755, which probably flags an unknown caus-
ative variant. Mutations in the ATP-binding cas-
sette transporter A4 (ABCA4) and E (ABCE) genes 
are rare, and their role in age-related macular de-
generation is uncertain.

Single-nucleotide polymorphisms in the com-
plement factor H (CFH), factor B (CFB), and C2 
genes, which probably render the protein prod-
ucts of these genes ineffective in inhibiting or 
regulating the complement pathway, are associ-
ated with 50 to 70% of cases of age-related 
macular degeneration.70-73,76 Estimates of the 
relative risk of age-related macular degeneration 
among carriers of these polymorphisms, as com-
pared with noncarriers, range from 2.7 to 7.4. 
The CFH protein is involved in inhibiting the 
alternative complement cascade, in part by bind-
ing to the C-reactive protein that is induced by 
damaged tissues.95,96 CFH is detectable in drusen 
and plays a role in type II membranoproliferative 
glomerulonephritis, a disease associated with 
retinal drusen.97 These findings suggest causal 
relations among CFH, drusen formation, and neo-
vascular macular degeneration in both age-related 
macular degeneration and the renal disorder. 
The membrane-attack complexes (which consist 
of the terminal lytic components of complement) 
that form when CFH is ineffective or deficient 
may destroy the photoreceptor and RPE mem-
branes in the vicinity of the drusen. Complement 

is also activated by hypoxia of the vascular endo-
thelium.98

The CFH Y402H polymorphism has the stron-
gest association with age-related macular degen-
eration. The proportion of carriers of this poly-
morphism is 39% in white populations, 31% in 
black populations, and only 8% in persons of 
Japanese ancestry and 7% in persons of Chinese 
ancestry.99 The equally high prevalence of this 
polymorphism in blacks and whites should be 
associated with a high prevalence of age-related 
macular degeneration in both groups. For un-
known reasons, however, late age-related macu-
lar degeneration is much less common in blacks 
than in whites.

The view that age-related macular degenera-
tion is a multifactorial disorder is supported by 
the following findings: the odds ratio for late 
age-related macular degeneration is 11.0 among 
persons who are homozygous for CFH Y402H as 
compared with noncarriers of this polymor-
phism74; in the presence of an elevated erythro-
cyte sedimentation rate, the odds ratio is 20.2; 
and in the presence of an elevated concentra-
tion of serum C-reactive protein, it is 27.7.74 The 
population attributable risk for late age-related 
macular degeneration that varies between 2475 
and 54%74 for CFH Y402H was recently adjusted 
to 61% when both CFH and LOC387715 polymor-
phisms were present in former or current smok-
ers (Table 1).75

Table 1. Selected Candidate Genes Most Likely Associated with AMD.*

Gene Putative Mechanism of Normal Gene
Estimated Population 
Attributable Risk (%) References

CFH Complement factor H inhibits activation of alter-
native complement pathway by binding to 
heparin and C-reactive protein, thus increas-
ing affinity for complement protein C3b

24–61 Haines et al.,70

Klein et al.,71

Edwards et al.,72

Hageman et al.,73

Despriet et al.,74

Schmidt et al.75

CFB and C2 Similar to that of CFH; 1 risk and 2 protective 
haplotypes

60 Gold et al.76

LOC387715 Unknown NI Jakobsdottir et al.,77

Rivera et al.78

APOE Apolipoprotein E transports lipids and cholester-
ol in the central nervous system

NI Klaver et al.,79

Baird et al.,80

Schmidt et al.81

ABCA4–ABCE ATP-binding protein transports vitamin A deriva-
tives 

1.3 Allikmets et al.,82

Allikmets83 

* A complete overview of candidate genes associated with age-related macular degeneration is available elsewhere.69 
NI denotes not informative.
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Smoking

There is reproducible evidence of a consistent as-
sociation between smoking and age-related mac-
ular degeneration.100,101 Analysis of pooled data 
from three population-based cohort studies showed 
that the relative risk of late age-related macular 
degeneration is 2.4 among current smokers as 
compared with those who never smoked, with an 
insignificant risk of 1.29 among former smok-
ers.102 However, current smokers who are homo-
zygous for the CFH Y402H polymorphism have a 
relative risk of 34.0 for late age-related macular 
degeneration as compared with nonsmokers who 
do not have this polymorphism.74 The risk is 7.6 
for nonsmokers who are homozygous for the CFH 
Y402H polymorphism.74

Smoking reduces the concentration of macu-
lar pigment by as much as 50% in a dose–response 
relationship.103 The nicotine and cotinine in the 
plasma of smokers activate retinal phospholipase 
A2, causing the formation of arachidonic acid, 
a precursor of prostaglandins and leukotrienes, 
which are inflammatory mediators.104 Tar from 
cigarettes also contains a high concentration of 
a pro-oxidant hydroquinone. Lesions similar to 
those in the aging Ruysch’s complex develop in 
the eyes of mice that are exposed to cigarette 
smoke or dietary hydroquinone.105 There is no 
validated evidence, however, that environmental 
hydroquinone explains the rising prevalence of 
age-related macular degeneration in some coun-
tries.106-108

Light-Induced Toxic Effects

Because it is difficult to measure lifelong light 
exposure in humans, there is only weak epidemio-
logic evidence that excessive exposure to light 
is associated with age-related macular degenera-
tion.109,110 It appears that the shorter the wave-
length and the higher the light intensity, the great-
er the chance of photochemically induced light 
damage. For this reason, artificial lenses inserted 
after cataract extraction now usually have block-
ing filters for ultraviolet and blue light.

Light can induce the formation of reactive 
oxygen species, which in turn can lead to the 
formation of toxic lipid and protein peroxidation 
products.111 In principle, all light, even ambient 
natural light, can damage the retina, provided the 
exposure is long enough. Retinal degeneration 
occurs in rodents exposed to normal light levels 
for 5 to 7 days and nights. Rodents became blind 

within 1 to 2 days after being exposed to bright 
(3000 lux) fluorescent light for 1 hour. In ani-
mals, ultraviolet, blue, or white light can induce 
irreversible lesions in the central retina.112-114 The 
visual pigments of rods and cones are the pri-
mary mediators of these lesions. In mice lacking 
rhodopsin, the retina cannot be injured by intense 
white light.115 Moreover, the rate of regeneration 
of rhodopsin is a crucial determinant of the 
threshold for light-induced damage.115 There is 
indirect evidence that metabolites of visual pig-
ments can trigger phototoxic lesions that culmi-
nate in protein and lipid oxidation.10 Light-induced 
damage in humans depends on the duration of 
exposure, the wavelength, age, the degree of oxy-
genation of the retina, unknown genetic factors, 
and endogenous chromophores. Furthermore, ex-
ogenous chromophores — amiodarone, chloro-
quine, phenothiazines, lithium, and herbs such 
as St. John’s wort — can increase susceptibility 
to light-induced toxic effects.116

Light absorption by lipofuscin, chiefly retinoid 
A2E and other retinoids or chromophores,117,118 
can also damage the RPE. The presence of low 
concentrations of A2E in genetically modified 
animals seems to lower the potential for light-
induced damage.119 Dendritic cells in the chorio-
capillaris present the cell debris left by phototoxic 
effects to the immune system32 and attract mac-
rophages, which in turn can evoke a local auto-
immune response120 and chronic inflammation.121 
Antioxidants partially protect photoreceptors and 
the RPE against light-induced damage.112,122

There may be a link between phototoxic ef-
fects and chronic inflammation in the retina. 
Exposure to light releases arachidonic acid from 
fatty acids in the outer segments of photorecep-
tors.123,124 The prostaglandins and leukotrienes 
thus generated up-regulate inflammatory cyto-
kines and attract macrophages to the damaged 
retina (Fig. 3).114 The light-damaged photorecep-
tors and RPE cells undergo apoptosis, and the 
apoptotic cells signal microglia or macrophages 
or both to invade the injured region. Dying photo-
receptors and RPE cells are substrates for the 
formation of drusen, which in turn activate den-
dritic cells, thereby sustaining a vicious circle of 
inflammation within the retina.

Converging Risk Factors

The main risk factors for age-related macular de-
generation — smoking, exposure to light, and in-
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flammation — are all associated with local acti-
vation of macrophages. In the retina, the invasion 
and activation of macrophages require adhesion 
molecules, chemokines, cytokines, complement 
components, free radicals, proteases, and prote-
ase inhibitors.121 All these molecules are abun-
dant in Ruysch’s complex, and they lead to an in-
crease in photochemically damaged lipids and 
proteins to induce apoptosis of RPE cells and 
photoreceptors.

There are reports that antioxidants provide 
protection against age-related macular degen-
eration, although the data are inconsistent.125 
A case–control study showed a protective effect 
of high doses of vitamins C and E and β-caro-
tene, combined with zinc.126 A protective effect 
of the upper third as compared with the lower 
third of normal dietary concentrations of these 
nutrients has been reported in a population-
based cohort in which only 14% of the subjects 
used supplements,127 but the finding remains un-
confirmed.

A final NOTE ON NOMENCLATURE

Our thinking about the pathophysiology of dis-
eases changes continually, and this evolution in 
thought is reflected in their various names. Pa-
tients today do not like to hear that they are se-
nile or have a degenerative disease. To avoid the 
use of such derogatory terms and to emphasize 
that the aging process of the RPE is a key compo-
nent of this disorder, I prefer to use the term 
“aging macula disorder.”
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