
Computing Behavioural Relations, LogicallyRance Cleaveland�Department of Computer ScienceNorth Carolina State UniversityRaleigh, NC 27695-8206USABernhard Ste�enLehrstuhl f�ur Informatik IIRWTH AachenAhornstra�e 55W-5100 AachenGERMANYAbstractThis paper develops a model-checking algorithm for a fragment of the modal mu-calculusand shows how it may be applied to the e�cient computation of behavioral relations betweenprocesses. The algorithm's complexity is proportional to the product of the size of the processand the size of the formula, and thus improves on the best existing algorithm for such a �xedpoint logic. The method for computing preorders that the model checker induces is also moree�cient than known algorithms.1 IntroductionEquivalences, preorders and logical formulas have all proved to be useful in the speci�cation andveri�cation of processes. Equivalences enable implementations to be related to complete speci�ca-tions (which are also processes) when the two exhibit the same behavior, while preorders permitimplementations to be deemed correct when they provide \at least" the behavior stipulated by apartial process speci�cation. Formulas, on the other hand, allow one to establish whether speci�cproperties hold of implementations. In the case of �nite-state processes, these techniques may beautomated [BSV, CES, CPS1, CPS2, Fe, MSGS, RRSV].In this paper we present a linear-time model checking algorithm for a variant of the modal mu-calculus [Ko, Sti, PS] and illustrate how it may be used to compute behavioral preorders e�ciently.The latter result relies on the fact that the logic is expressive enough to characterize processesup to the prebisimulation preorder: a process is larger than another in the preorder if and onlyif the larger process satis�es the characteristic formula of the smaller [Ste, SI]. As characteristicformulas can be automatically constructed in time linear in the size of the argument processes,this yields a method for preorder checking that outperforms the known algorithms. Moreover,the prebisimulation preorder may be used as the basis for de�ning many behavioral preorders andequivalences on processes. Thus our approach covers these relations as well.Our results may therefore be summarized as follows. We develop a model checker that:�Research supported by National Science Foundation/DARPA Grant CCR-90147751

� has complexity that is linear in the size of the process and in the size of the formula. To ourknowledge, the best algorithm that has been published for a similar �xed point logic is alsolinear in the size of the process, but quadratic in the size of the formula [AC].� may be used to compute preorders between processes. The resulting preorder checker, whichworks by constructing characteristic formulas, is linear in the product of the sizes of theargument processes. This also improves on the known complexity results about preorderchecking ([CPS1, CPS2]).The remainder of the paper develops as follows. The next section presents our process model(transition systems) and logic. The section following then describes our model-checking algorithm,while Section 4 details the application of this algorithm to the computation of equivalences andpreorders. The �nal section contains our conclusions and directions for future research.2 Transition Systems and Modal LogicWe use extended labeled transition systems [Sti, Wa] to model processes. These may be formallyde�ned as follows.De�nition 2.1 An extended labeled transition system T is a quadruple hS;Act;!; "i, where:� S is a set of states;� Act is a set of actions;� !� S �Act� S is the transition relation; and� "� S �Act is the divergence relation.Intuitively, an extended labeled transition system encodes the operational behavior of a system.The set S represents the set of states the system may enter, and Act contains the set of actionsthe system may perform. The relation ! describes the actions available to states and the statetransitions that may result upon execution of the actions. The relation " represents a notion ofpartial de�nedness : hs; ai 2 " means that the behavior of s on action a may be unde�ned, ordivergent.In the remainder of the paper we write s a! s0 and s"a in place of hs; a; s0i 2! and hs; ai 2 ".We also use s #a in place of :(s "a) and s " (resp. s #) to mean \for all a 2 Act; s "a (resp.s#a)", and we write s a! when there is an s0 such that s a! s0. If s a! s0 then we say that s0 is ana-derivative of s.Given an extended labeled transition system T = hS;Act;!; "i, we de�ne processes as rootedtransition systems, i.e. as pairs (T ; s), where s 2 S is a distinguished element, the \start state". Ifthe transition system is obvious from the context, we omit reference to it when de�ning processes;in this case, processes will be identi�ed with states. Finally, when S and Act are �nite, we shallsay that the extended labeled transition system is �nite-state.The logic we consider may be viewed as a variant of the modal mu-calculus [Ko], or the Hennessy-Milner Logic with recursion [La]. Let Var be a (countable) set of variables, A a set of atomicpropositions, and Act a set of actions. In what follows, X will range over Var, A over A, and aover Act. Then the syntax of basic formulas is given by the following grammar.� ::= A j X j � _ � j � ^ � j hai� j [a]�2

Formulas are interpreted with respect to a �xed extended labeled transition system hS;Act;!; "i,a valuation V : A ! 2S , and an environment e : Var! 2S .[[A]]e = V(A)[[X]]e = e(X)[[�1 _ �2]]e = [[�1]]e[[[�2]]e[[�1 ^ �2]]e = [[�1]]e\ [[�2]]e[[hai�]]e = f s j 9s0: s a! s0 ^ s0 2 [[�]]e g[[[a]�]]e = f s j s#a ^ 8s0: s a! s0) s0 2 [[�]]e gFigure 1: The semantics of basic formulas.The formal semantics appears in Figure 1. It is given with respect to an extended labeled transitionsystem hS;Act;!; "i, a valuation V mapping atomic propositions to subsets of S, and an environ-ment e mapping variables to subsets of S. Intuitively, the semantic function maps formulas to thesets of states for which the formula is \true". Accordingly, a state s satis�es A 2 A if s is in thevaluation of A, while s satis�es X if s is an element of the set bound to X in e. The propositionalconstructs are interpreted in the usual fashion: s satis�es �1 _ �2 if it satis�es one of the �i andit satis�es �1 ^ �2 if it satis�es both of them. The constructs hai and [a] are modal operators ;s satis�es hai� if it has an a-derivative satisfying �, while s satis�es [a]� if s#a holds and eacha-derivative of s satis�es �. It should be noted that [a]� is interpreted somewhat di�erently thanin the classical modal mu-calculus; in fact, our logic may be seen as a fragment of an intuitionisticvariant of the standard modal mu-calculus along the lines of [PS, Sti].We may also de�ne formulas using mutually recursive sets of equations. Consider a system ofequations E X1 = �1...Xn = �n;where each �i is a basic formula and each Xi is distinct. Given a �xed environment e, we maybuild a function fE : (2S)n ! (2S)n as follows. Let Si � 2S for i = 1; : : : ; n, and let eS = e[X1 7!S1; : : : ; Xn 7! Sn] be the environment that results from e by updating the binding of Xi to Si.Then fE(hS1; : : : ; Sni) = h[[�1]]eS ; : : : ; [[�n]]eSi:Now (2S)n forms a complete lattice, where the ordering and the join and meet operations arethe pointwise extensions of the set-theoretic inclusion �, union [and intersection \, respectively.Moreover, for any E and environment e, fE is monotonic with respect to � and therefore, accordingto the Tarski �xed point theorem [Ta], has a greatest �xed point, �fE . In general, �fE has thefollowing description. �fE = [fS j S � fE(S) gIn the case that the extended labeled transition system is �nite-state, fE is continuous, and �fEalso has an iterative characterization. Letf0 = hS; : : : ;Si and3

fi+1 = fE(fi) for i � 0:Then �fE = T1i=0 fi.We now de�ne what it means for a state in a transition system to satisfy a formula whosevariables are \bound" by a set of equations. First, we say that a basic proposition � is closed withrespect to a set of equations E if every variable in � appears on the left-hand side of some equationin E. We also refer to a set of equations E as closed if each right-hand side in E is closed withrespect to E. Notice that for closed systems of equations E the maximal �xed point �fE does notdepend on the environment e used in the de�nition of fE .Now let �fE = h�1; : : : ; �ni be the greatest �xed point for a closed system of equations E whoseleft-hand sides form the set fX1; : : : ; Xng. Moreover let � be a proposition being closed withrespect to E and e an environment mapping Xi to �i. Then we writes j=E �to mean s 2 [[�]]e.In the remainder of this paper we restrict our attention to �nite-state extended labeled transitionsystems.3 E�cient Model CheckingIn this section, we present an algorithm, solve, for computing �fE , given a �nite-state extendedlabeled transition system T = hS;Act;!; "i and a closed set of equations E. The algorithm'scomplexity is O(jT j � jEj), where jT j = jSj+ j!j and jEj is the number of symbols in the equationsystem E.Following [AC], we restrict our attention to equation sets E whose right-hand sides are simple,i.e. only have variables as nontrivial subterms and do not just consist of a variable. So X4 _ X3is simple, while hai(X4 _X3) and X4 are not. Any equation set E may be transformed in lineartime into a simple equation set E 0 with at most a linear blow-up in size. Accordingly, solve hasthe same complexity for our full logic as it does for the simple sublogic.3.1 OverviewAs with the algorithm in [AC], solve is bit-vector-based. Each state in S will have a bit vectorwhose ith entry indicates whether or not the state belongs to the set associated with Xi in thecurrent stage of the analysis.Initially, each component in every state's bit vector is set to true, with the following exceptions.� The right-hand side of the corresponding equation is atomic, and the state does not satisfythe atomic proposition.� The right-hand side of the corresponding equation is of the form haiXj, and the state has noa-derivatives.� The right-hand side of the corresponding equation is of the form [a]Xj, and the state divergeson a.Notice that when a component in a state's bit vector is set to false, the state is e�ectively eliminatedfrom the set associated with the proposition variable corresponding to the component.4

The algorithm then iteratively examines the bit-vector annotations of each state, and, if neces-sary, sets components to false on the basis of components that have been previously set to false,until no further changes are required.The key innovation in solve is that when a bit-vector component is set to false, the only com-ponents that are reinvestigated are those directly in
uenced by this change. This is in contrast to[AC], where the reinvestigation of components is less controlled; this accounts for their algorithm'shigher complexity.3.2 Data StructuresAssume that E is of the form Xi = �i, where i ranges between 1 and n. As in [AC], each state swill have the following �elds associated with it.� An array X [1::n] of bits. Intuitively, s:X [i] is true if s belongs to the set associated withproposition variable Xi. The array is initialized as described above.� An array C[1::n] of counters. If Xi = Xj _Xk is an equation in E, then s:C[i] records thenumber of disjuncts (0,1 or 2) of the right-hand side that are true for s. In this case, s:C[i] = 2initially. If Xi = haiXj is in E then s:C[i] records the number of a-derivatives of s that are inthe set associated with Xj. In this case, s:C[i] is initially set to the number of a-derivativesthat s has. The counters are not used in the other cases.� A �eld s:A for every atomic proposition A that indicates whether s satis�es A or not. Thisis assumed to be given at the start of the algorithm.In addition, the algorithm maintains two other data structures that allow one to determine e�-ciently which state/variable pairs must be reinvestigated. These structures enable the algorithmto run in time linear in the size of the equation system.� A list M of state-variable pairs; hs;Xii is in M if s:X [i] has just been changed from true tofalse.� An edge-labeled directed graph G with n vertices, one for each variable mentioned in E. Theedges are de�ned as follows.{ Xi _! Xj if there is an Xk such that either Xj = Xi_Xk or Xj = Xk_Xi is an equationin E.{ Xi !̂ Xj if there is an Xk such that either Xj = Xi^Xk or Xj = Xk^Xi is an equationin E.{ Xi hai! Xj if Xj = haiXi is in E.{ Xi [a]! Xj if Xj = [a]Xi is in E.Intuitively, there is an edge from Xi to Xj if the set of states associated with Xi directlyin
uences the set of states associated with Xj . This graph may be constructed in O(jEj)time from E, and it contains no more than 2n edges (recall that n is the number of equationin E). 5

3.3 The Algorithm and its ComplexityThe procedure solve computes �fE in two stages.� The initialization stage provides the data structures with their initial values; moreover, eachpair hs;Xii for which s:X[i] is set to false is added to M . Details of this procedure, calledinitialize, may be found in the appendix.� The update stage successively deletes pairs hs;Xii from the list M and processes them asfollows:{ For every Xj such that Xi _! Xj , the counter s:C[j] is decremented by one. If s:C[j] isnow 0, then none of the disjuncts on the right-hand side of Xj are satis�ed by s, ands must be removed from the set associated with Xj . Accordingly, s:X [j] is set to falseand the pair hs;Xji is added to M .{ For every Xj such that Xi !̂ Xj , if s:X [j] is true then the component s:X [j] is set tofalse and the pair hs;Xji is added to M .{ For everyXj withXi hai! Xj , each counter C[j] for each s0 such that s0 a! s is decrementedby one, and if it becomes 0 (meaning that s0 now has no a-derivatives satisfying Xi),then s0:X [j] is set to false and hs0; Xji is added to M .{ For every Xj with Xi [a]! Xj , each state s0 such that s0 a! s has its X [j]-componentexamined, and if it is true then it is changed to false and hs0; Xji is added to M .Details of this procedure, called update, may be found in the appendix.The procedure solve now consists of a call to initialize and a call to update. It always terminates,since the number of states is �nite and for any state s and any i, the component s:X [i] can bechanged at most once, from true to false, during execution. Moreover, upon termination (i.e. whenM is empty), the bit-vector annotations represent a �xed point of fE that is in fact the greatest�xed point �fE ; this follows from the following observations.� The initial bit-vector annotation \contains" �fE .� Processing a pair hs0; Xii transforms a bit-vector annotation that contains �fE into a bit-vector annotation that contains �fE as well.Thus, solve correctly computes the greatest �xed point of fE .Theorem 3.1 (Correctness)Let T = hS;Act;!; "i be an extended labeled transition system, E be a closed set of simple equations,and �fE = h�1; : : : ; �ni be the greatest �xed point of fE. Then solve terminates, and for any s 2 Swe have that s 2 �i if and only if s:X [i] = true.Finally, we state and prove our complexity result.Theorem 3.2 (Complexity)Let T = hS;Act;!; "i be an extended labeled transition system and E be a closed set of simpleequations. Then the worst-case time complexity of solve is O(jT j � jEj), where jT j = jSj + j ! jand jEj is the number of equations in E. 6

Proof. In order to prove this theorem, it is enough to prove the result for initialize andupdate. The case of initialize it straightforward. Thus it remains to show that update takestime proportional to jT j�jEj. The �rst thing to notice is that, in the worst-case, every state-variablepair will be added toM once and will require analysis. This is because the corresponding bit-vectorcomponent can only be set to false once during the analysis. Thus there exists a constant c so thatthe worst-case time complexity is bounded by the following expression:c � Xhs;Xii jfXj j Xi _! Xj _Xi !̂ Xj gj+c � Xhs;Xii jf s0 j s0 a! s gj � jfXj j Xi hai! Xj _Xi [a]! Xj gjThis fact relies on the observation that (the sets of pairs) _!, !̂, hai! and [a]! are pairwise-disjoint.Now this expression can be evaluated as follows to complete the proof of the theorem:c �Xs XXi jfXj j Xi _! Xj _Xi !̂ Xj gj+c �Xs XXi jf s0 j s0 a! s gj � jfXj j Xi hai! Xj _Xi [a]! Xj gj� c � (jSj � jEj+Xs jf s0 j s0 a! s gj � jEj)= c � (jSj+ j ! j) � jEj= c � jT j � jEj24 Verifying Behavioural RelationsIn this section we show how the model checking algorithm presented in the previous section maybe applied to the e�cient veri�cation of behavioral relations between �nite-state extended labeledtransition systems. Central to our approach is the prebisimulation preorder <�, which relates states(processes) in a given extended labeled transition system on the basis of their transitions and theirrelative \de�nedness" [Sti, Wa].De�nition 4.1 Let hS;Act;!; "i be an extended labeled transition system. Then <� � S �S is thelargest relation satisfying the following, whenever s1<�s2:1. s1 a! s01 implies s2 a! s02 and s01<�s02 for some s02.2. If s1 #a then:(a) s2 #a, and(b) s2 a! s02 implies s1 a! s01 and s01<�s02 for some s01.It is straightforward to establish that such a largest relation exists and is a preorder. De�nition 4.1may be extended to states from (state-disjoint) transition systems as follows. Let hS1;Act1;!1; "1iand hS2;Act2;!2; "2i be two such transition systems, and let s1 2 S1 and s2 2 S2. Then s1<� s2 isde�ned to hold if it holds in hS1 [S2;Act1 [Act2;!1 [!2; "2 ["2i.7

In [CH, Ste, SI] it is shown how various other process equivalences and preorders, includingobservational equivalence [Mi1, Mi2], the divergence preorder [Wa], the testing preorder [DH], andtrace containment, may be computed by applying appropriate transformations to the extendedlabeled transition systems and then determining the prebisimulation preorder. These relationshave all been studied extensively as means for verifying processes; this stresses the importance ofthe prebisimulation preorder and motivates the need for e�cient tools for its automatic veri�cation.To our knowledge, the model-checking-based algorithm we are going to develop in the remainder ofthe paper is the most e�cient algorithm for preorder checking that has been published until now.4.1 Characteristic FormulaeSte�en [Ste] and Ing�olfsd�ottir [SI] have shown how one may construct a set E of propositionalequations, one for each state, from an extended labeled transition system T that characterizes theprebisimulation preorder for states in T in the following sense. Let s be a state in T . Then for anystate s0 in any extended labeled transition system, s<� s0 if and only if s0 j=E Xs, where Xs is theleft-hand side of the equation associated with s in E. Here we brie
y review their setup.The logic used in [SI] is essentially a special case of the logic proposed in Section 2, where theatomic formulas are given by the subsets of Act (note that Act is �nite, since we are restricting ourattention to �nite-state systems). The semantics of such a formula A � Act is the following:[[A]]e = f s j f a j s a! _ s"a g � A gThus a state s satis�es A if every action initially available to s, or on which s may diverge, iscontained in A.For an extended labeled transition system hfs1; : : : ; sng;Act;!; "i the characteristic set of equa-tions E is now given by:Xi = ^f ha;sji j si a!sj ghaiXj ^ ^fa j s#a^s a!g[a](_f sj j si a!sj gXj) ^ f a j si a! _si "a gwhere Xi is the variable associated to si for every states si of the transition system. The maintheorem in [SI] is the following.Theorem 4.2 Let T be an extended labeled transition system and s one of its states. Furthermore,let E be the characteristic equation set of T and Xs the variable in E associated with s. Then forany state s0 in any extended labeled transition system, s<�s0 if and only if s0 j=E Xs.4.2 Computing the Prebisimulation PreorderThe result from the previous section suggests a technique for computing the prebisimulation pre-order between states in transition systems: construct the characteristic equation set, apply themodel-checking procedure from Section 3, and determine whether the desired state is in the setassociated with the relevant variable. To calculate the complexity of this approach, we note thefollowing.� Given an extended labeled transition system T , the characteristic equation set E may bebuilt in O(jT j) time. Moreover, jEj is O(jT j).� A simple equation set for jEj may be constructed in O(jEj) time.� Model checking of an extended labeled transition system T 0 with respect to E can be donein time proportional to jT 0j � jEj. 8

Therefore, computing whether s<� s0, where s and s0 are states of T and T 0 respectively, may beperformed in O(jT j � jT 0j) time. This improves dramatically on the complexity result mentioned in[CPS1, CPS2], which is O((jSj+ jS 0j)4 � (jT j+ jT 0j)), in the following sense. For a �xed actionset, the new result is of fourth order in the number of states of the transition systems involved,whereas the previous algorithm exhibits complexity that is sixth order in its worst case.5 Conclusions and Future WorkIn this paper we have presented a linear-time algorithm for model checking in a variant of the modalmu-calculus, and we have shown how it may be used to compute the prebisimulation preorder. Bothalgorithms are more e�cient than existing algorithms in the literature. As the prebisimulationpreorder may be used as the basis for de�ning many behavioral preorders and equivalences onprocesses, our approach covers these relations as well.There are a number of directions that may pursued from this work. First, it is a straightforwardmatter to modify our algorithm to compute least �xed points as well as greatest �xed points.Provided that alternated �xed points are excluded [EL], i.e. there are no mutually recursive greatestand least �xed point equations, the resulting algorithm would have the same complexity as the onepresented in this paper. Once least �xed points are added in this fashion, the formulas of thetemporal logic CTL [CES] may be translated via a linear-time procedure into formulas in our logic.As a result, the CTL model checking algorithm obtained by applying our more general procedure tothe translated formulas would have the same complexity as the model checking procedure describedin [CES].It would also be interesting to see how the algorithm in this paper could be extended to handlethe full modal mu-calculus, which includes alternating �xed points [Ko]. Algorithms of this gen-erality can be found in [C, EL, SW, Wi]. However, only Emerson and Lei [EL] give a complexityanalysis. Their algorithm is exponential in ad + 1, where ad, the alternation depth of the formula,is a measure of the degree of mutual recursion among greatest and least �xed points.Our algorithm outperforms this algorithm in the special case that the alternation depth is 1(i.e. there are no mutually recursive greatest and least �xed points): our approach is linear, whiletheirs is quadratic. We conjecture that our algorithm can be generalized into an algorithm for theentire mu-calculus that is exponential just in ad.Finally, our algorithm may be used to automate e�ciently the compositional proof techniquesin [CS, GS], which rely on determining whether processes have certain safety properties that canbe expressed in the logic studied here. We also plan to implement this algorithm as an extensionof the Concurrency Workbench [CPS1, CPS2].References[AC] Arnold, A., and P. Crubille. \A Linear Algorithm To Solve Fixed-Point Equations onTransition Systems." Information Processing Letters, v. 29, 30 September 1988, pp. 57{66.[BSV] Boudol, G., de Simone, R. and Vergamini, D. \Experiment with Auto and Autograph ona Simple Case Sliding Window Protocol." INRIA Report 870, July 1988.[CES] Clarke, E.M., E.A. Emerson and Sistla, A.P. \Automatic Veri�cation of Finite State Con-current Systems Using Temporal Logic Speci�cations." ACM Transactions on Program-ming Languages and Systems, v. 8, n. 2, 1986, pp. 244-263.9

[C] Cleaveland, R. \Tableau-Based Model Checking in the Propositional Mu-Calculus." ActaInformatica, 1990.[CH] Cleaveland, R. and Hennessy, M.C.B. \Testing Equivalence as a Bisimulation Equiva-lence." In Proceedings of the Workshop on Automatic Veri�cation Methods for Finite-StateSystems. Lecture Notes in Computer Science series 407, Springer-Verlag, Berlin, 1989.[CPS1] Cleaveland, R., Parrow, J. and Ste�en, B. \The Concurrency Workbench." In Proceed-ings of the Workshop on Automatic Veri�cation Methods for Finite-State Systems, 1989,Lecture Notes in Computer Science 407, pp. 24{37. Springer-Verlag, Berlin.[CPS2] Cleaveland, R., Parrow, J. and B. Ste�en. A Semantics based Veri�cation Tool for FiniteState Systems, In pro. of the Ninth International Symposium on Protocol Speci�cation,Testing, and Veri�cation; North Holland, 1989.[CS] Cleaveland, R. and Ste�en, B. \When is `Partial' Complete? A Logic-Based Proof Tech-nique using Partial Speci�cations." In Proceedings LICS'90, 1990.[DH] DeNicola, R. and Hennessy, M.C.B. \Testing Equivalences for Processes." TheoreticalComputer Science 24, 1984, pp. 83-113.[EL] Emerson, E.A. and Lei, C.-L. \E�cient Model Checking in Fragments of the PropositionalMu-Calculus." In Proceedings of the First Annual Symposium on Logic in Computer Sci-ence, 1986, pp. 267-278.[Fe] Fernandez, J.-C. Ald�ebaran: Une Syst�eme de V�eri�cation par R�eduction de ProcessusCommunicants. Ph.D. Thesis, Universit�e de Grenoble, 1988.[GS] Graf, S. and Ste�en, B. \Using Interface Speci�cations for Compositional Reduction." Toappear in Proceedings of the Workshop on Computer-Aided Veri�cation.[Ko] Kozen, D. \Results on the Propositional �-Calculus." Theoretical Computer Science, v.27, 1983, pp. 333-354.[La] Larsen, K.G. \Proof Systems for Hennessy-Milner Logic with Recursion." In Proceedingsof CAAP, 1988.[MSGS] Malhotra, J., Smolka, S.A., Giacalone, A. and Shapiro, R. \Winston: A Tool for Hier-archical Design and Simulation of Concurrent Systems." In Proceedings of the Workshopon Speci�cation and Veri�cation of Concurrent Systems, University of Stirling, Scotland,1988.[Mi1] Milner, R. A Calculus of Communicating Systems. Lecture Notes in Computer Science 92.Springer-Verlag, Berlin, 1980.[Mi2] Milner, R. Communication and Concurrency, Prentice Hall, 1989.[PS] Plotkin, G. and Stirling, C. \A Framework for Intuitionistic Modal Logics." TheoreticalAspects of Reasoning about Knowledge, Monterey, 1986.[RRSV] Richier, J., Rodriguez, C., Sifakis, J. and Voiron, J. \Veri�cation in XESAR of the SlidingWindow Protocol." In Proceedings of the Seventh IFIP Symposium on Protocol Speci�ca-tion, Testing, and Veri�cation, 1987, North-Holland.10

[Ste] Ste�en, B.U. \Characteristic Formulae for CCS with Divergence." In Proceedings ICALP,Lecture Notes in Computer Science 372, pp. 723-733. Springer-Verlag, Berlin, 1989.[SI] Ste�en, B.U., and Ing�olfsd�ottir, A. \Characteristic Formulae for CCS with Divergence."To appear in Theoretical Computer Science.[Sti] Stirling, C. \Modal Logics for Communicating Systems." Theoretical Computer Science,v. 49, 1987, pp. 311-347.[SW] Stirling, C., and Walker, D. \Local Model Checking in the Modal Mu-Calculus." In Pro-ceedings CAAP'89, Lecture Notes in Computer Science 351, pp. 369 - 383, 1989.[Ta] Tarski, A. \A Lattice-Theoretical Fixpoint Theorem and its Applications." Paci�c Journalof Mathematics, v. 5, 1955.[Wa] Walker, D. \Bisimulations and Divergence." In Proceedings of the Third Annual Sympo-sium on Logic in Computer Science, 1988, pp. 186-192. Computer Society Press, Wash-ington DC.[Wi] Winskel, G. \On the Compositional Checking of Validity." In Proceedings CONCUR'90,Lecture Notes in Computer Science 458, pp. 481 - 501, 1990.

11

Appendix: The AlgorithmsThe Initialization AlgorithmInput:� An extended labeled transition system T = hS;Act;!; "i, whose states s are annotated withthe atomic propositions that hold of s.� An auxiliary graph G whose nodes are the variables of the equation system E and whoseedges describe their mutual dependencies.Output:� An extended labeled transition system whose states are annotated with appropriately initial-ized bit-vectors s:X and counters s:C.� A list M , initialized with pairs hs;Xii that determine the reinvestigation process.procedure initialize ((S;Act;!; "); G);M := empty;for each s 2 S dofor i := 1 to n dobegincase right hand side of Xi in E is:A: s:X [i] := s:AXj _Xk: begin s:C[i] := 2; s:X [i] := true endhaiXj: begins:C[i] := jf s0 j s a! s0 gj;if s:C[i] = 0then s:X [i] := falseelse s:X [i] := trueend[a]Xj: if s"athen s:X [i] := falseelse s:X [i] := trueELSE: s:X [i] := true;if not (s:X [i]) then add hs;Xii to Mendend. 12

The Update ProcedureInput:� An extended labeled transition system whose states are annotated with appropriately initial-ized bit-vectors s:X and counters s:C.� A list M , initialized with pairs hs;Xii that determine the reinvestigation process.� An auxiliary graph G whose nodes are the variables of the equation system E and whoseedges describe their mutual dependencies.Output:� An extended labeled transition system whose states are annotated with bit-vectors s:X thatrepresent the greatest �xed point �fE .procedure update ((S;Act;!; ");M;G);while M is not empty do beginremove the �rst pair from M , calling it hs;Xii;foreach Xj such that Xi _! Xj do begins:C[j] := s:C[j]� 1;if s:C[j] = 0 then begins:X [j] := false;add hs;Xji to Mendend;foreach Xj such that Xi !̂ Xj doif s:X [j] then begins:X [j] := false;add hs;Xji to Mend;foreach Xj such that Xi hai! Xj doforeach s0 such that s0 a! s do begins0:C[j] := s0:C[j]� 1;if s0:C[j] := 0 then begins0:X [j] := false;add hs0; Xji to Mendend;foreach Xj such that Xi [a]! Xj doforeach s0 such that s0 a! s and s0:X [j] do begins0:X [j] := false;add hs0; Xji to M 13

endendend.

14

