Computing Behavioural Relations, Logically

Rance Cleaveland*
Department of Computer Science
North Carolina State University

Raleigh, NC 27695-8206
USA

Bernhard Steffen
Lehrstuhl fur Informatik II
RWTH Aachen
Ahornstrafie 55
W-5100 Aachen
GERMANY

Abstract

This paper develops a model-checking algorithm for a fragment of the modal mu-calculus
and shows how it may be applied to the efficient computation of behavioral relations between
processes. The algorithm’s complexity is proportional to the product of the size of the process
and the size of the formula, and thus improves on the best existing algorithm for such a fixed
point logic. The method for computing preorders that the model checker induces is also more
efficient than known algorithms.

1 Introduction

Equivalences, preorders and logical formulas have all proved to be useful in the specification and
verification of processes. Equivalences enable implementations to be related to complete specifica-
tions (which are also processes) when the two exhibit the same behavior, while preorders permit
implementations to be deemed correct when they provide “at least” the behavior stipulated by a
partial process specification. Formulas, on the other hand, allow one to establish whether specific
properties hold of implementations. In the case of finite-state processes, these techniques may be
automated [BSV, CES, CPS1, CPS2, Fe, MSGS, RRSV].

In this paper we present a linear-time model checking algorithm for a variant of the modal mu-
calculus [Ko, Sti, PS] and illustrate how it may be used to compute behavioral preorders efficiently.
The latter result relies on the fact that the logic is expressive enough to characterize processes
up to the prebisimulation preorder: a process is larger than another in the preorder if and only
if the larger process satisfies the characteristic formula of the smaller [Ste, SI]. As characteristic
formulas can be automatically constructed in time linear in the size of the argument processes,
this yields a method for preorder checking that outperforms the known algorithms. Moreover,
the prebisimulation preorder may be used as the basis for defining many behavioral preorders and
equivalences on processes. Thus our approach covers these relations as well.

Our results may therefore be summarized as follows. We develop a model checker that:

*Research supported by National Science Foundation/DARPA Grant CCR-9014775

e has complexity that is linear in the size of the process and in the size of the formula. To our
knowledge, the best algorithm that has been published for a similar fixed point logic is also
linear in the size of the process, but quadratic in the size of the formula [AC].

e may be used to compute preorders between processes. The resulting preorder checker, which
works by constructing characteristic formulas, is linear in the product of the sizes of the
argument processes. This also improves on the known complexity results about preorder

checking ([CPS1, CPS2]).

The remainder of the paper develops as follows. The next section presents our process model
(transition systems) and logic. The section following then describes our model-checking algorithm,
while Section 4 details the application of this algorithm to the computation of equivalences and
preorders. The final section contains our conclusions and directions for future research.

2 Transition Systems and Modal Logic

We use extended labeled transition systems [Sti, Wa] to model processes. These may be formally
defined as follows.

Definition 2.1 An extended labeled transition system 7 is a quadruple (S, Act,—, 1), where:
o S is a set of states;
e Act is a set of actions;
¢ —C S X Act xS is the transition relation; and
o | C S x Act is the divergence relation.

Intuitively, an extended labeled transition system encodes the operational behavior of a system.
The set S represents the set of states the system may enter, and Act contains the set of actions
the system may perform. The relation — describes the actions available to states and the state
transitions that may result upon execution of the actions. The relation T represents a notion of
partial definedness: (s,a) €] means that the behavior of s on action @ may be undefined, or
divergent.

In the remainder of the paper we write s = s’ and sTa in place of (s,a,s’) €— and (s,a) €].
We also use s |a in place of =(s Ja) and s T (resp. s]) to mean “for all a € Act, s Ta (resp.
sla)”, and we write s = when there is an s’ such that s = s'. If s = &' then we say that s is an
a-derivative of s.

Given an extended labeled transition system 7 = (S, Act,—,), we define processes as rooted
transition systems, i.e. as pairs (7,s), where s € § is a distinguished element, the “start state”. If
the transition system is obvious from the context, we omit reference to it when defining processes;
in this case, processes will be identified with states. Finally, when & and Act are finite, we shall
say that the extended labeled transition system is finite-state.

The logic we consider may be viewed as a variant of the modal mu-calculus [Ko], or the Hennessy-
Milner Logic with recursion [La]. Let Var be a (countable) set of variables, A a set of atomic
propositions, and Act a set of actions. In what follows, X will range over Var, A over A, and «a
over Act. Then the syntax of basic formulas is given by the following grammar.

Pu=A | X | OVD | PAD | () | [a]®

Formulas are interpreted with respect to a fixed extended labeled transition system (S, Act, —, 1),
a valuation V : A — 2%, and an environment e : Var — 2°.

[Ale = V(4)

[X]e = e(X)
[®1V ®3]le = [P1]eU[P2]e
[®1 A P3]le = [Pr]en[P2]e

[(a)®]e = {s]|3s'.5 > As €[P]e}
[[a]®]e = {s|slanVs.s > = c[®]e}

Figure 1: The semantics of basic formulas.

The formal semantics appears in Figure 1. It is given with respect to an extended labeled transition
system (S, Act,—, 1), a valuation V mapping atomic propositions to subsets of S, and an environ-
ment e mapping variables to subsets of §. Intuitively, the semantic function maps formulas to the
sets of states for which the formula is “true”. Accordingly, a state s satisfies A € A if s is in the
valuation of A, while s satisfies X if s is an element of the set bound to X in e. The propositional
constructs are interpreted in the usual fashion: s satisfies &1 vV ®, if it satisfies one of the ®; and
it satisfies @1 A @y if it satisfies both of them. The constructs (a) and [a] are modal operators;
s satisfies (a)® if it has an a-derivative satisfying @, while s satisfies [a]® if s|a holds and each
a-derivative of s satisfies ®. It should be noted that [a]® is interpreted somewhat differently than
in the classical modal mu-calculus; in fact, our logic may be seen as a fragment of an intuitionistic
variant of the standard modal mu-calculus along the lines of [PS, Sti].

We may also define formulas using mutually recursive sets of equations. Consider a system of
equations F

Xy = 9

Xn = (I)nv

where each ®; is a basic formula and each X; is distinct. Given a fixed environment e, we may
build a function fg : (25)" — (2°)" as follows. Let S; C 2 fori = 1,...,n, and let e5 = €[X;
S1ye..y X, — 9] be the environment that results from e by updating the binding of X; to 5;.
Then

fe((S1,...,9.)) = ([P1]es, - . ., [Pn]es).
Now (2%)" forms a complete lattice, where the ordering and the join and meet operations are
the pointwise extensions of the set-theoretic inclusion C, union U and intersection N, respectively.
Moreover, for any F and environment e, fr is monotonic with respect to C and therefore, according
to the Tarski fixed point theorem [Ta], has a greatest fixed point, vfg. In general, v fg has the
following description.

vie = |{S15C fe(9)}

In the case that the extended labeled transition system is finite-state, fz is continuous, and v fg
also has an iterative characterization. Let

fo = (S,...,8)and

fir1i = fe(fi) fori>0.

Then vfp = (o /i

We now define what it means for a state in a transition system to satisfy a formula whose
variables are “bound” by a set of equations. First, we say that a basic proposition ® is closed with
respect to a set of equations F if every variable in ® appears on the left-hand side of some equation
in IJ. We also refer to a set of equations I as closed if each right-hand side in F is closed with
respect to . Notice that for closed systems of equations F the maximal fixed point v fr does not
depend on the environment e used in the definition of fg.

Now let v fg = (v1,...,1,) be the greatest fixed point for a closed system of equations I whose
left-hand sides form the set {Xy,...,X,}. Moreover let ® be a proposition being closed with
respect to £/ and e an environment mapping X; to v;. Then we write

skErp®

to mean s € [P]e.
In the remainder of this paper we restrict our attention to finite-state extended labeled transition
systems.

3 Efficient Model Checking

In this section, we present an algorithm, solve, for computing v fg, given a finite-state extended
labeled transition system 7 = (8, Act,—,]) and a closed set of equations E. The algorithm’s
complexity is O(|7 |+ |E|), where |7| = |S| +|—| and | F] is the number of symbols in the equation
system F7.

Following [AC], we restrict our attention to equation sets £ whose right-hand sides are simple,
i.e. only have variables as nontrivial subterms and do not just consist of a variable. So X4V X3
is simple, while (a)(X4V X3) and X4 are not. Any equation set £ may be transformed in linear
time into a simple equation set E’ with at most a linear blow-up in size. Accordingly, solve has
the same complexity for our full logic as it does for the simple sublogic.

3.1 Overview

As with the algorithm in [AC], solve is bit-vector-based. Each state in & will have a bit vector
whose " entry indicates whether or not the state belongs to the set associated with X; in the
current stage of the analysis.

Initially, each component in every state’s bit vector is set to true, with the following exceptions.

e The right-hand side of the corresponding equation is atomic, and the state does not satisfy
the atomic proposition.

o The right-hand side of the corresponding equation is of the form (a)X;, and the state has no
a-derivatives.

o The right-hand side of the corresponding equation is of the form [a]X;, and the state diverges
on a.

Notice that when a component in a state’s bit vector is set to false, the state is effectively eliminated
from the set associated with the proposition variable corresponding to the component.

The algorithm then iteratively examines the bit-vector annotations of each state, and, if neces-
sary, sets components to false on the basis of components that have been previously set to false,
until no further changes are required.

The key innovation in solve is that when a bit-vector component is set to false, the only com-
ponents that are reinvestigated are those directly influenced by this change. This is in contrast to
[AC], where the reinvestigation of components is less controlled; this accounts for their algorithm’s
higher complexity.

3.2 Data Structures

Assume that F is of the form X; = ®;, where ¢ ranges between 1 and n. As in [AC], each state s
will have the following fields associated with it.

e An array X[l..n] of bits. Intuitively, s.X[i] is true if s belongs to the set associated with
proposition variable X;. The array is initialized as described above.

o An array C[l..n] of counters. If X; = X; vV X}, is an equation in F, then s.C[¢] records the
number of disjuncts (0,1 or 2) of the right-hand side that are true for s. In this case, s.C[i] = 2
initially. If X; = (a)X; is in £ then s.C[7] records the number of a-derivatives of s that are in
the set associated with X;. In this case, s.C[¢] is initially set to the number of a-derivatives
that s has. The counters are not used in the other cases.

o A field s.A for every atomic proposition A that indicates whether s satisfies A or not. This
is assumed to be given at the start of the algorithm.

In addition, the algorithm maintains two other data structures that allow one to determine effi-
ciently which state/variable pairs must be reinvestigated. These structures enable the algorithm
to run in time linear in the size of the equation system.

o A list M of state-variable pairs; (s, X;) is in M if s.X[i] has just been changed from true to
false.

o An edge-labeled directed graph G with n vertices, one for each variable mentioned in £. The
edges are defined as follows.

X; A X if there is an X}, such that either X; = X;V X} or X; = X}, V X is an equation
in F.
- X, A X if there is an X}, such that either X; = X; A X} or X; = X A X, is an equation
in F.

X Y X0 X = (@)X is in E.

~ X M X X = ()X s in B

Intuitively, there is an edge from X; to X; if the set of states associated with X; directly
influences the set of states associated with X;. This graph may be constructed in O(|E])
time from F, and it contains no more than 2n edges (recall that n is the number of equation
in V).

3.3 The Algorithm and its Complexity

The procedure solve computes v fg in two stages.

o The initialization stage provides the data structures with their initial values; moreover, each
pair (s, X;) for which s.X[1] is set to false is added to M. Details of this procedure, called
initialize, may be found in the appendix.

o The update stage successively deletes pairs (s, X;) from the list M and processes them as
follows:

— For every X such that X; AR X, the counter s.C[j] is decremented by one. If s.C[j] is
now 0, then none of the disjuncts on the right-hand side of X; are satisfied by s, and
s must be removed from the set associated with X;. Accordingly, s.X[j] is set to false
and the pair (s, X;) is added to M.

— For every X; such that X; A X;, if s.X[j]is true then the component s.X[j]is set to
false and the pair (s, X;) is added to M.

— For every X; with X; f) X, each counter C[j] for each s’ such that s’ = s is decremented

by one, and if it becomes 0 (meaning that s’ now has no a-derivatives satisfying X;),
then s’.X[j]is set to false and (s, X;) is added to M.

— For every X; with X] X, each state s’ such that s’ = s has its X[j]-component

examined, and if it is ¢rue then it is changed to false and (s, X;) is added to M.
Details of this procedure, called update, may be found in the appendix.

The procedure solve now consists of a call to initialize and a call to update. It always terminates,
since the number of states is finite and for any state s and any i, the component s.X[i] can be
changed at most once, from true to false, during execution. Moreover, upon termination (i.e. when
M is empty), the bit-vector annotations represent a fixed point of fz that is in fact the greatest
fixed point v fg; this follows from the following observations.

e The initial bit-vector annotation “contains” v fg.

e Processing a pair (s/, X;) transforms a bit-vector annotation that contains vfg into a bit-
vector annotation that contains v fr as well.

Thus, solve correctly computes the greatest fixed point of fg.

Theorem 3.1 (Correctness)

LetT = (S, Act,—, 1) be an extended labeled transition system, F be a closed set of simple equations,
and vfr = (v1,...,v,) be the greatest fized point of fr. Then solve terminates, and for any s € S
we have that s € v; if and only if s.X[i] = true.

Finally, we state and prove our complexity result.

Theorem 3.2 (Complexity)

Let T = (S, Act,—, 1) be an extended labeled transition system and E be a closed set of simple
equations. Then the worst-case time complexity of solve is O(|7T| * | F|), where |T| = |S|+ | —|
and |E| is the number of equations in E.

Proof. In order to prove this theorem, it is enough to prove the result for initialize and
update. The case of initialize it straightforward. Thus it remains to show that update takes
time proportional to |7 || F/|. The first thing to notice is that, in the worst-case, every state-variable
pair will be added to M once and will require analysis. This is because the corresponding bit-vector
component can only be set to false once during the analysis. Thus there exists a constant ¢ so that
the worst-case time complexity is bounded by the following expression:

ck Yy XX~ X; v 2 X+

(5,X:)
cr NS S s XX v x Yy
(5,X:)

(a) [a]

This fact relies on the observation that (the sets of pairs) l>, A, — and — are pairwise-disjoint.
Now this expression can be evaluated as follows to complete the proof of the theorem:

C*ZZ|{Xj|Xil>vaXiﬁ>Xj}|+
s X,

x SOST S S s G x Y Xy x gy
s X

7

IN

cx (S| |E[+ D {8 |8 = s} +|E])

= cx([S|+]—=1)*|E]
= cx|T|*|E|

4 Verifying Behavioural Relations

In this section we show how the model checking algorithm presented in the previous section may
be applied to the efficient verification of behavioral relations between finite-state extended labeled
transition systems. Central to our approach is the prebisimulation preorder , which relates states
(processes) in a given extended labeled transition system on the basis of their transitions and their
relative “definedness” [Sti, Wa).

Definition 4.1 Let (S, Act,—, 1) be an extended labeled transition system. Then G C S x S is the
largest relation satisfying the following, whenever s1Gsy:

1. sy = &b implies s9 = s and s, Cs!y for some sb,.
2. If s1 la then:
(a) s2 la, and
(b) sq % sl implies s = s and s\ sl for some s.

It is straightforward to establish that such a largest relation exists and is a preorder. Definition 4.1
may be extended to states from (state-disjoint) transition systems as follows. Let (Sy, Acty, —1, T1)
and (Sz, Acty, —2, |2) be two such transition systems, and let s; € $; and s € S3. Then s1 5 s is
defined to hold if it holds in (S1 U Sz, Act; U Acty, —1 U —2, T2 U T2).

In [CH, Ste, SI] it is shown how various other process equivalences and preorders, including
observational equivalence [Mil, Mi2], the divergence preorder [Wa], the testing preorder [DH], and
trace containment, may be computed by applying appropriate transformations to the extended
labeled transition systems and then determining the prebisimulation preorder. These relations
have all been studied extensively as means for verifying processes; this stresses the importance of
the prebisimulation preorder and motivates the need for efficient tools for its automatic verification.
To our knowledge, the model-checking-based algorithm we are going to develop in the remainder of
the paper is the most efficient algorithm for preorder checking that has been published until now.

4.1 Characteristic Formulae

Steffen [Ste] and Ingdlfsdéttir [SI] have shown how one may construct a set £ of propositional
equations, one for each state, from an extended labeled transition system 7 that characterizes the
prebisimulation preorder for states in 7 in the following sense. Let s be a state in 7. Then for any
state s’ in any extended labeled transition system, s s’ if and only if s’ g X, where X, is the
left-hand side of the equation associated with s in /. Here we briefly review their setup.

The logic used in [SI] is essentially a special case of the logic proposed in Section 2, where the
atomic formulas are given by the subsets of Act (note that Actis finite, since we are restricting our
attention to finite-state systems). The semantics of such a formula A C Act is the following:

[Ale = {s|{als> Vv sla}CA)}

Thus a state s satisfies A if every action initially available to s, or on which s may diverge, is
contained in A.

For an extended labeled transition system ({s1,...,s,}, Act,—, 1) the characteristic set of equa-
tions F is now given by:

X, = /\ (a)X; A /\ [a](\/ X;) A d{alsi = vVsila}

{<a75J>|5ii5J} {a]slans=} {5J|5i_a*sj}

where X; is the variable associated to s; for every states s; of the transition system. The main
theorem in [SI] is the following.

Theorem 4.2 Let T be an extended labeled transition system and s one of its states. Furthermore,
let I/ be the characteristic equation set of T and X, the variable in F associated with s. Then for
any state s' in any extended labeled transition system, s’ if and only if s’ =g X.

4.2 Computing the Prebisimulation Preorder

The result from the previous section suggests a technique for computing the prebisimulation pre-
order between states in transition systems: construct the characteristic equation set, apply the
model-checking procedure from Section 3, and determine whether the desired state is in the set
associated with the relevant variable. To calculate the complexity of this approach, we note the
following.

e Given an extended labeled transition system 7, the characteristic equation set £ may be

built in O(|7]) time. Moreover, |F|is O(|7]).
e A simple equation set for | F| may be constructed in O(|F]) time.

e Model checking of an extended labeled transition system 7’ with respect to £ can be done
in time proportional to |77 * | E|.

Therefore, computing whether s5 s, where s and s’ are states of 7 and 7" respectively, may be
performed in O(|7]#|7"|) time. This improves dramatically on the complexity result mentioned in
[CPS1, CPS2], which is O((|S]+ [S)* * (|7|+|7"])), in the following sense. For a fixed action
set, the new result is of fourth order in the number of states of the transition systems involved,
whereas the previous algorithm exhibits complexity that is sixth order in its worst case.

5 Conclusions and Future Work

In this paper we have presented a linear-time algorithm for model checking in a variant of the modal
mu-calculus, and we have shown how it may be used to compute the prebisimulation preorder. Both
algorithms are more efficient than existing algorithms in the literature. As the prebisimulation
preorder may be used as the basis for defining many behavioral preorders and equivalences on
processes, our approach covers these relations as well.

There are a number of directions that may pursued from this work. First, it is a straightforward
matter to modify our algorithm to compute least fixed points as well as greatest fixed points.
Provided that alternated fized points are excluded [EL], i.e. there are no mutually recursive greatest
and least fixed point equations, the resulting algorithm would have the same complexity as the one
presented in this paper. Once least fixed points are added in this fashion, the formulas of the
temporal logic CTL [CES] may be translated via a linear-time procedure into formulas in our logic.
As aresult, the CTL model checking algorithm obtained by applying our more general procedure to
the translated formulas would have the same complexity as the model checking procedure described
in [CES].

It would also be interesting to see how the algorithm in this paper could be extended to handle
the full modal mu-calculus, which includes alternating fixed points [Ko]. Algorithms of this gen-
erality can be found in [C, EL, SW, Wi]. However, only Emerson and Lei [EL] give a complexity
analysis. Their algorithm is exponential in ad 4+ 1, where ad, the alternation depth of the formula,
is a measure of the degree of mutual recursion among greatest and least fixed points.

Our algorithm outperforms this algorithm in the special case that the alternation depth is 1
(i.e. there are no mutually recursive greatest and least fixed points): our approach is linear, while
theirs is quadratic. We conjecture that our algorithm can be generalized into an algorithm for the
entire mu-calculus that is exponential just in ad.

Finally, our algorithm may be used to automate efficiently the compositional proof techniques
in [CS, GS], which rely on determining whether processes have certain safety properties that can
be expressed in the logic studied here. We also plan to implement this algorithm as an extension

of the Concurrency Workbench [CPS1, CPS2].

References

[AC] Arnold, A., and P. Crubille. “A Linear Algorithm To Solve Fixed-Point Equations on
Transition Systems.” Information Processing Letters, v. 29, 30 September 1988, pp. 57—
66.

[BSV] Boudol, G., de Simone, R. and Vergamini, D. “Experiment with Auto and Autograph on
a Simple Case Sliding Window Protocol.” INRIA Report 870, July 1988.

[CES] Clarke, E.M., E.A. Emerson and Sistla, A.P. “Automatic Verification of Finite State Con-
current Systems Using Temporal Logic Specifications.” ACM Transactions on Program-
ming Languages and Systems, v. 8, n. 2, 1986, pp. 244-263.

[CPS1]

[CPS2]

[CS]

[DH]

[EL]

[Mil]

[Mi2]

[PS]

[RRSV]

Cleaveland, R. “Tableau-Based Model Checking in the Propositional Mu-Calculus.” Acta
Informatica, 1990.

Cleaveland, R. and Hennessy, M.C.B. “Testing Equivalence as a Bisimulation Equiva-
lence.” In Proceedings of the Workshop on Automatic Verification Methods for Finite-State
Systems. Lecture Notes in Computer Science series 407, Springer-Verlag, Berlin, 1989.

Cleaveland, R., Parrow, J. and Steffen, B. “The Concurrency Workbench.” In Proceed-
ings of the Workshop on Automatic Verification Methods for Finite-State Systems, 1989,
Lecture Notes in Computer Science 407, pp. 24-37. Springer-Verlag, Berlin.

Cleaveland, R., Parrow, J. and B. Steffen. A Semantics based Verification Tool for Finite
State Systems, In pro. of the Ninth International Symposium on Protocol Specification,
Testing, and Verification; North Holland, 1989.

Cleaveland, R. and Steffen, B. “When is ‘Partial” Complete? A Logic-Based Proof Tech-
nique using Partial Specifications.” In Proceedings LICS5’90, 1990.

DeNicola, R. and Hennessy, M.C.B. “Testing Equivalences for Processes.” Theoretical
Computer Science 24, 1984, pp. 83-113.

Emerson, E.A. and Lei, C.-L. “Efficient Model Checking in Fragments of the Propositional
Mu-Calculus.” In Proceedings of the First Annual Symposium on Logic in Computer Sci-
ence, 1986, pp. 267-278.

Fernandez, J.-C. Aldébaran: Une Systéme de Vérification par Réduction de Processus
Communicants. Ph.D. Thesis, Université de Grenoble, 1988.

Graf, S. and Steffen, B. “Using Interface Specifications for Compositional Reduction.” To
appear in Proceedings of the Workshop on Computer-Aided Verification.

Kozen, D. “Results on the Propositional u-Calculus.” Theoretical Computer Science, v.
27, 1983, pp. 333-354.

Larsen, K.G. “Proof Systems for Hennessy-Milner Logic with Recursion.” In Proceedings

of CAAP, 1988.

Malhotra, J., Smolka, S.A., Giacalone, A. and Shapiro, R. “Winston: A Tool for Hier-
archical Design and Simulation of Concurrent Systems.” In Proceedings of the Workshop
on Specification and Verification of Concurrent Systems, University of Stirling, Scotland,
1988.

Milner, R. A Calculus of Communicating Systems. Lecture Notes in Computer Science 92.
Springer-Verlag, Berlin, 1980.

Milner, R. Communication and Concurrency, Prentice Hall, 1989.

Plotkin, G. and Stirling, C. “A Framework for Intuitionistic Modal Logics.” Theoretical
Aspects of Reasoning about Knowledge, Monterey, 1986.

Richier, J., Rodriguez, C., Sifakis, J. and Voiron, J. “Verification in XESAR of the Sliding
Window Protocol.” In Proceedings of the Seventh IFIP Symposium on Protocol Specifica-
tion, Testing, and Verification, 1987, North-Holland.

10

Steffen, B.U. “Characteristic Formulae for CCS with Divergence.” In Proceedings ICALP,
Lecture Notes in Computer Science 372, pp. 723-733. Springer-Verlag, Berlin, 1989.

Steffen, B.U., and Ingélfsdéttir, A. “Characteristic Formulae for CCS with Divergence.”
To appear in Theoretical Computer Science.

Stirling, C. “Modal Logics for Communicating Systems.” Theoretical Computer Science,
v. 49, 1987, pp. 311-347.

Stirling, C., and Walker, D. “Local Model Checking in the Modal Mu-Calculus.” In Pro-
ceedings CAAP’89, Lecture Notes in Computer Science 351, pp. 369 - 383, 1989.

Tarski, A. “A Lattice-Theoretical Fixpoint Theorem and its Applications.” Pacific Journal
of Mathematics, v. 5, 1955.

Walker, D. “Bisimulations and Divergence.” In Proceedings of the Third Annual Sympo-
sium on Logic in Computer Science, 1988, pp. 186-192. Computer Society Press, Wash-
ington DC.

Winskel, G. “On the Compositional Checking of Validity.” In Proceedings CONCUR’90,
Lecture Notes in Computer Science 458, pp. 481 - 501, 1990.

11

Appendix: The Algorithms

The Initialization Algorithm

Input:

e An extended labeled transition system 7 = (S, Act, —, 1), whose states s are annotated with
the atomic propositions that hold of s.

¢ An auxiliary graph ¢ whose nodes are the variables of the equation system F and whose
edges describe their mutual dependencies.

Output:

e An extended labeled transition system whose states are annotated with appropriately initial-
ized bit-vectors s.X and counters s.C.

o A list M, initialized with pairs (s, X;) that determine the reinvestigation process.

procedure initialize ((S, Act,—,1),G);

M := empty;
for each s € § do
for : := 1 to n do
begin
case right hand side of X; in F is:

A: s.X[i] :=s.A

X; vV Xy begin s.C[t]:=2; s.X[i] := true end

(a)X;: begin
s.Clil:={s]|s N s H;
if s.C[i] =0

then s.X[i] := false
else s.X[i] := true
end

[a] X;: if sla
then s.X[i]:= false
else s.X[i]:= true

ELSE: s.X[i] := true;
if not(s.X[¢]) then add (s, X;) to M

end
end.

12

The Update Procedure

Input:

e An extended labeled transition system whose states are annotated with appropriately initial-
ized bit-vectors s.X and counters s.C.

o A list M, initialized with pairs (s, X;) that determine the reinvestigation process.

¢ An auxiliary graph ¢ whose nodes are the variables of the equation system F and whose
edges describe their mutual dependencies.

Output:

e An extended labeled transition system whose states are annotated with bit-vectors s.X that
represent the greatest fixed point v fg.

procedure update ((S, Act,—,71), M,G);

while M is not empty do begin
remove the first pair from M, calling it (s, X;);

foreach X; such that X; AR X; do begin
s.C[j] == s.Clj] - 1;
if s.C[7] = 0 then begin
8. X[j] := false;
add (s, X;) to M
end
end;

foreach X; such that X; A X; do
if s.X[j] then begin
8. X[j] := false;
add (s, X;) to M
end;

foreach X; such that X; <i>> X; do
foreach s’ such that s’ = s do begin
§.Cl=5.C - 1;
if .C'[j] := 0 then begin

s X1[j] := false;
add (s, X;) to M
end

end;

foreach X; such that X; [i]> X; do

foreach s’ such that s’ % s and s'.X[j] do begin
s X[j] := false;
add (s, X;) to M

13

end
end.

end

14

