
june 2013  ■  IEEE industrial electronics magazine  271932-4529/13/$31.00©2013IEEE

he ability to carry out
coordered activities in
distributed applications
is currently consid-
ered a basic require-
ment in most industrial
scenarios as well as in

many areas with demanding real-time
constraints, such as modern elec-
tric power systems, the automotive/
avionic domains, and some types of
networked embedded control sys-
tems. For this reason, the majority of
the networks that were conceived re-
cently for use in these environments
provide some means to deal with dis-
tributed clock (DC) synchronization.

The capability to synchronize de-
vices and applications accurately was
already available in some fieldbuses.
However, these kinds of networks typi-
cally have simpler mechanisms, wherein
broadcast messages are used to trigger
simultaneous actions on several nodes
directly. This is the case of, e.g., the
PROFIBUS [1] Sync and Freeze Modes or
the Sync Object in CANopen, an applica-
tion protocol based on controller area
network (CAN) [2]. Such an approach
is not as powerful as clock synchroniza-
tion, since communication delays and

jitters affect system accuracy directly.
Moreover, the loss of a synchronization
message usually leads to incorrect sys-
tem behavior, since the related actions
could not be triggered on devices.

The network time protocol (NTP)
[3] and precision time protocol (PTP)
[4] are two popular general-purpose
clock synchronization protocols
that are currently exploited in many

Digital Object Identifier 10.1109/MIE.2013.2248431

Date of publication: 17 June 2013

T

©istockphoto.com/john brueske

Synchronize
Your Watches

Part II:
 Special-Purpose

Solutions for
Distributed Real-Time

Control

GIANLUCA CENA,
IVAN CIBRARIO BERTOLOTTI,
STEFANO SCANZIO,
ADRIANO VALENZANO,
and CLAUDIO ZUNINO

28  IEEE industrial electronics magazine  ■  june 2013

industrial systems. In particular, NTP
is mostly used at the higher levels of
the automation pyramid [5] (compa-
ny), whereas PTP suits the needs of
the lower levels (field). Applications
belonging to the intermediate levels
(cell) can employ either one, depend-
ing on the required accuracy. As high-
lighted in [6], NTP and PTP do not
rely on specialized communication
technologies. For this reason, they
are able to provide high flexibility
and enable interoperability between
different platforms in heterogeneous
systems.

Since timing constraints are the
most important aspect at the field
level, high-performance solutions are
usually needed. When time-critical
applications (e.g., motion control) are
taken into account, a typical require-
ment is to keep synchronization errors
strictly below .1 sn In PTP—as in the
majority of high-accuracy synchroni-
zation protocols—these errors mainly
depend on the timestamping method.
To obtain submicrosecond accuracy,
timestamps must be acquired in
hardware (h/w). State-of-the-art h/w-
based timestamping approaches al-
low subnanosecond accuracy to be
reached [7]. Better results can only be
achieved by using modified physical
layers, for instance, synchronous
Ethernet (SyncE) [8], [9].

In addition, the approaches adopt-
ed in safety-critical networked control
systems must also be very depend-
able. For example, PTP is typically
used to synchronize intelligent elec-
tronic devices (IEDs) in today’s elec-
trical substations based on IEC 61850
[10], [11]. This is considered a critical
task because both submicrosecond
accuracy and high dependability are
required (e.g., synchrophasors are
used to sample electrical signals on
a smart grid). Automotive x-by-wire
applications [12]–[14] are another
example of safety-critical networked
control systems. In this case, precise
synchronization enables error detec-
tion in the time domain—in addition
to the mechanisms operating in the
value domain, like the cyclic redun-
dancy check—and ensures fail-silent
behavior through bus guardians.

Several real-time Ethernet (RTE)
solutions based on switched net-
work topologies rely on PTP (or some
modified version of it) to support
clock synchronization. Very impor-
tant examples of such networks are
EtherNet/Internet protocol (IP) and,
in particular, its common industrial
protocol (CIP) [15], in which the CIP
Sync object is defined to model the
first version of PTP (i.e., IEEE 1588-
2002), PROFINET IO [16], which is
based on a modified version of IEEE
1588-2008 known as precision trans-
parent clock protocol (PTCP), and
the next version of Ethernet POW-
ERLINK (EPL) [17], which will rely
on IEEE 1588 [6]. A brief description
of CIP Sync and PTCP is provided in
[6]. Generally speaking, their behav-
ior and performance are basically the
same as those of PTP.

Other RTE solutions, particularly
those adopting specific communica-
tion h/w, make use of ad hoc protocols
instead to improve synchronization
accuracy by typically taking advan-
tage of some peculiar feature of the
underlying network. Popular exam-
ples are Ethernet for control automa-
tion technology (EtherCAT) [18] and
the latest version of the serial real-
time communication system (SERCOS
III) [19], which rely on a ring network
topology, and EPL [17], which exploits
the fact that the network is connected
through hubs and repeaters.

The aforementioned approaches
are appropriate for industrial systems
because they rely on a centralized ap-
proach in which a single node (mas-
ter) maintains the reference time and
distributes it to all the other nodes
in the network (slaves). They enable
the creation of clear timing hierar-
chies in the network and, possibly,
the synchronization with an external
time source. Although absolute time
sources—e.g., coordinated universal
time (UTC)—are becoming a funda-
mental requirement in many applica-
tion fields (e.g., energy distribution),
there are several contexts that do not
require synchronization to an abso-
lute time. For example, industrial au-
tomation systems are typically closed
environments. It is worth pointing

out that energy distribution is also in-
creasingly relevant also in field-level
automation. Therefore, the need for
an absolute time reference will likely
arise in the near future in many indus-
trial plants.

A distinct kind of application ex-
ists that only requires syntonization.
In this case, only frequency is com-
pensated, so that the clocks tick at
the same speed, but their phases are
not aligned. Conversely, synchroni-
zation protocols conceived for auto-
motive/avionics networks, such as
FlexRay (FR) [20] and time-triggered
Ethernet (TTEthernet) [21], usually
derive the reference time by means
of a distributed approach. In this
way, fault tolerance is improved no-
ticeably with respect to master–slave
solutions. The main drawback is that
nodes only share a common relative
view of time.

Mechanisms in networked control
systems improve their robustness
against communication jitters and re-
duce reliance on strict synchroniza-
tion [22]–[24]. Such approaches can
be profitably adopted to improve
the quality of control over networks
characterized by high variations in
transmission times (IP channels, CAN
buses, etc.). However, they can hardly
be considered a replacement for syn-
chronization protocols when time-
critical applications are taken into
account (motion control, x-by-wire,
phasor measurement, etc.).

Three popular special-purpose
synchronization protocols for wired
networks are the DC mechanism
of EtherCAT, the synchronization
technique of EPL, and FR. The first
two protocols can be considered to
represent a wider class of central-
ized solutions for industrial environ-
ments, conceived to run on top of
RTE. In particular, DC is a sophisti-
cated mechanism that can measure
and compensate propagation delays
autonomously, whereas EPL is much
simpler but requires some more effort
in the setup phase. It should be noted
that other solutions, such as the one
adopted in SERCOS III, lie between DC
and EPL. Like DC, propagation delays
are evaluated at run time in SERCOS III,

june 2013  ■  IEEE industrial electronics magazine  29

although the synchronization scheme
resembles EPL. In fact, accurate iso-
chronous time marks are provided to
devices through specific messages—
i.e., master synchronization telegrams
(MSTs)—that enable coordered ac-
tions but do not implement (in the
initial version, at least) clock synchro-
nization. FR is instead a meaningful
example of fault-tolerant distributed
synchronization protocol.

A comparison between these pro-
tocols and general-purpose solutions
(NTP, PTP, and PTP-based approach-
es) is carried out at the end of the
article, taking into account the main
aspects that are relevant to control
systems.

EtherCAT DC
EtherCAT [18] is a high-performance
Ethernet-based industrial network.
Its main goal is to enable the adop-
tion of Ethernet communications in
automation applications that require
short cycle times and low communi-
cation jitters. This protocol is an open
standard based on master–slave ar-
chitecture. An important feature of
EtherCAT is the DC synchronization
mechanism, which enables all devices
to share the same system time. In this
way, typical control operations, such
as the generation of coordered output
signals or the precise timestamping of
input events, can be synchronized for
all devices in the network.

Communication Infrastructure
EtherCAT networks are based on
an open physical ring topology
connecting all the nodes, as shown
in Figure 1. Since standard Ethernet
frames are used, a conventional net-
work controller can be employed for
the master station, and no special h/w
is required. A PC provided with a full-
duplex Ethernet board is frequently
used for the purpose.

At the bottom of the protocol stack,
EtherCAT supports two different
kinds of physical layers, namely Eth-
ernet and E-BUS. The former is used
to set up a network according to the
traditional Ethernet specifications. A
typical use is the connection of the
master to the network segment(s)

including the slaves. Conversely, E-
BUS can be used only as a backplane
bus. In particular, its physical layer is
designed to reduce pass-through de-
lays inside the nodes. From a global
point of view, an EtherCAT segment
can be thought of as a single, distrib-
uted device that is connected to the
controller and is able to receive and
send Ethernet frames. This device,
however, includes a (possibly large)
number of EtherCAT slaves.

The master interacts with the
slaves by using EtherCAT com-
mands. Such commands are encoded
through telegrams contained in con-
ventional Ethernet frames. A number
of telegrams can be encapsulated in
the same frame to reduce the over-
heads when small-sized process data
have to be exchanged. In this way,
the protocol can achieve a very high
throughput. Telegrams are processed
on the fly by the slave nodes; this is
another reason for the very high
performance of this protocol. Since
on-the-fly processing capabilities re-
quire purposely designed EtherCAT
slave controllers (ESCs) [25], stan-
dard Ethernet equipment cannot be
used as slaves.

As mentioned previously, the DC
mechanism enables all the devices
in the network to share the same sys-
tem time. In particular, all slaves are
synchronized to the same reference
clock. DC is placed above the Ether-
CAT access protocol, and its imple-
mentation is not mandatory. For this

reason, both DC-enabled and non-DC-
enabled devices can quietly coexist
in the same network. It is worth not-
ing that DC is not a general-purpose
synchronization protocol, since it
relies on specific features of Ether-
CAT, such as its ring topology and the
on-the-fly processing capability for
telegrams.

To better understand the DC mech-
anism, let us introduce the follow-
ing definitions.

■■ The system time is a 64-b value rep-
resenting the elapsed time in nano-
seconds since 0:00 h of 1 January
2000.

■■ The reference clock is an EtherCAT
device that is responsible for pro-
viding the time reference. Usually,
the slave with DC capability closest
to the master along the ring is se-
lected for this purpose.

■■ Each DC device has a local clock
that, if not suitably controlled,
runs independently of the refer-
ence clock.

Synchronization Mechanism
The clock synchronization process
(CSP) consists of the following three
main actions:

■■ Propagation delay measurement:
After collecting specific time-
stamps from all the slaves, the
master, which is aware of the net-
work topology, computes the prop-
agation delay for each segment.

■■ Offset compensation: The master
computes the offset between the

Processing PathM
as

te
r

Slave
Logic

U
ps

tr
ea

m
 P

or
t

D
ow

ns
tr

ea
m

 P
or

t

Slave
Logic

Slave
Logic

Forwarding Path

FIGURE 1 – The EtherCAT network architecture.

An important feature of EtherCAT is the DC
synchronization mechanism, which enables all
devices to share the same system time.

30  IEEE industrial electronics magazine  ■  june 2013

reference and local clocks sepa-
rately for each DC-enabled slave.
The difference is then compensated
individually by writing the suitable
correction value into a specific reg-
ister of each slave. When this step
is completed, all devices share the
same absolute system time.

■■ Drift compensation: Drifts are com-
pensated by regular measurements
of differences and readjustments of
the local clocks.
The presence of a slave node

causes small processing/forwarding
delays, both inside the device and
over the communication medium.
For this reason, the propagation de-
lay between the reference node and
the slave has to be evaluated care-
fully. This procedure consists in turn
of three main steps. First, the master
sends a broadcast message (i.e., a

telegram executed by every slave).
Second, each slave stores the value
of its local clock when the first bit of
that message is received. This action
is performed for each port of the de-
vice (i.e., on both the processing and
forwarding paths in Figure 1). Finally,
the master collects the timestamps
and computes the path delays, taking
into account the topology of the net-
work. During this procedure, the slave
devices do not need to be synchro-
nized because only local clock values
are used.

The computation of each propaga-
tion delay ()tP Dropagation elay is based on
the differences between the receiving
times at the device ports. Moreover,
delays introduced by nodes without
DC capabilities are treated as ad-
ditional wire delays. Note, however,
that devices equipped with more than
two (bidirectional) ports are com-
pelled to support the measurement
of propagation delays. Figure 2 shows
a sample EtherCAT network consist-
ing of four slaves with two ports and
one device with three ports. The
node closer to the master (slave 1)
is selected as the reference clock.
Computation of propagation delay
uses the main elements summarized
in Table 1. The algorithm starts when
the master sends a set of telegrams
to reset the slaves’ DC registers. After
this initialization phase, the master

transmits a pair of telegrams to each
slave: the first message forces the de-
vice to record timestamps related to
the frame, while the second is used
to read the timestamps back. As men-
tioned previously, timestamps are
taken in both directions, i.e., a first
timestamp is acquired when the mes-
sage is received on the processing
path, while a second timestamp is re-
corded on the reception of the same
frame on the forwarding path.

In Figure 2, for instance, slave 2
records the timestamp tr02 when the
frame reaches its port 0, tr12 when the
frame is received back from slave 3
and, finally, tr22 when the message is
returned by slave 5. Since timing infor-
mation is referred to the same internal
clock, the difference between each
pair of timestamps can be evaluated
properly. Differences are then used
to evaluate all delays (processing,
forwarding, and wire contributions)
and compute the resulting propaga-
tion delay for the slave. The forward-
ing delay for the first slave (slave 1 in
Figure 2) cannot be computed, since
timestamps are recorded only for the
incoming messages. A possible solu-
tion is to assume that it is the same
as the other .tfx Alternatively, it can be
measured once and for all, at least in
theory, when the device is designed
and manufactured. The compensa-
tion is then performed directly by the

FIGURE 2 – Propagation delay computation.

Master

Reference Clock tr 22

tr02tr 01

tw12 tw23 tw34

tr12

tw32 tf 3

tr03

tp2 tp3

t34

tp1

t12 t23

tr11

EtherCAT
Processing

Unit

Slave 1 Slave 2

Port 2

Slave 3

Slave 5

Slave 4

EtherCAT
Processing

Unit

EtherCAT
Processing

Unit

EtherCAT
Processing

Unit

EtherCAT
Processing

Unit

P
or

t 0

P
or

t 1

P
or

t 0

P
or

t 1

TABLE 1—PROPAGATION DELAY PARAMETERS.

tpx Processing delay of slave x

tfx Forwarding delay of slave x

txy Propagation delay from slave x
to slave y

twxy Wire propagation delay between
slaves x and y (perfect symmetry
assumption)

trky Receive time on port k of slave y,
recorded with a write access to
the DC receive time register

june 2013  ■  IEEE industrial electronics magazine  31

master, likely by using a predefined
fixed value.

The second DC action is the offset
compensation. Local clocks (),t ocal imeL T
when not synchronized, resemble
free-running counters. At system
start-up, the clocks do not use the
same value as the reference clock, so
an offset compensation is needed. The
technique adopted for this purpose in
EtherCAT is based on the same time-
stamps introduced in the previous
step. In fact, after timestamps have
been collected, the master is also
able to evaluate the offset of each lo-
cal clock with respect to the reference
time ().t ffsetO This value is then written
into a suitable register (system time
offset) of the slave device and then
used to adjust the local time. As a
consequence, after the initialization
phase, each DC slave can determine
its own copy of the system time au-
tonomously by using its local time and
offset values.

The last action in DC is the drift
compensation. Natural drifts of local
clocks (due, for instance, to oscillator
tolerances) are corrected by means of
a time control loop (TCL) algorithm
implemented right into each Ether-
CAT slave controller. The master pe-
riodically distributes the system time
(tReceivedSystemTime as read from the refer-
ence clock) to all the slaves in the net-
work. The TCL algorithm in each slave
compares the received system time to
its local copy.

In evaluating the difference ,tD
propagation delays must also be taken
into account:

()t t t tT DLocal ime Offset Propagation elayD = + -

.tReceivedSystemTime- 	 (1)

If tD is positive, the local time is
running faster than the system time
and needs to be slowed down. On the
contrary, when tD is negative, the lo-
cal time is too slow and needs to be
sped up.

TCL is responsible for adjusting
the local clock speed. Slave devic-
es should nominally increment the
local time by ten units every 10 ns.
As a result of the comparison men-
tioned previously, however, the real

increment may be equal to either ,11
ten, or nine units, depending on the
value of .tD In this way, the monotonic
property of time is assured for each
DC-enabled slave.

To smoothen abrupt changes and
prevent oscillations of the tD value,
the mechanism is further controlled
through a filtering procedure. In par-
ticular, when the local clock is too fast,
a typical series of values used to com-
pensate tD might be (10, 10, 10, 10, and
9) ns, whereas, when the local clock
is too slow, the sequence would likely
be (10, 10, 10, 10, and 11) ns. After the
initialization of delays and offsets, the
master tries to compensate the static
clock deviations quickly, i.e., by send-
ing a high number of commands (e.g.,
15,000) in separate frames. In other
words, first the control mechanism
takes care of the static deviations to
synchronize local clocks, then com-
pensation frames are sent cyclically
to correct dynamic clock drifts.

Recent Advances
Synchronization to an external time
source has been recently introduced
in EtherCAT. In this way, the time align-
ment of separate EtherCAT segments
is now possible. The basic idea is to
control the DC time using an external
device. A possible solution relies on
the availability of a specific device
(e.g., Beckhoff EL6692 [26]), which
provides a common DC reference
time to different network segments. In
practice, the E-BUS is cross-connect-
ed to an Ethernet segment, and the
user has to decide which side (either
E-BUS or Ethernet) hosts the refer-
ence clock with the higher priority.
The connecting device will then be
responsible for sending a reference
clock correction value to the Ether-
CAT master with the lower priority.
In addition, when the reference time
in an EtherCAT system has to be ad-
justed to a higher-level clock, an ex-
ternal synchronization device can be
used that supports a synchronization
protocol different from DC. Terminals
exist (e.g., Beckhoff EL6688 [27]) that
enable the adoption of a PTP external
clock source. In principle, several oth-
er popular synchronization protocols

and clock sources can also be used,
e.g., global positioning systems, radio
clocks, NTP, and SNTP.

To cope with systems that demand
increased dependability, an optional
redundancy mechanism has been de-
fined as well, which both enables de-
vices to be replaced without having to
shut down the network and makes the
system resilient to slave failures. In
this case, a specific slave device (e.g.,
Beckhoff CU2508 Ethernet-Port-Multi-
plier) has to be used, which behaves
as the reference clock for network
segments.

Performance
Several articles in the literature have
dealt with EtherCAT and its perfor-
mance, but only a few of them have fo-
cused on DCs. In general, DC achieves
good precision (several tens of nano-
seconds), as confirmed by the experi-
ments presented in [28] for real-world
devices. In that study, the accuracy of
the DC mechanism was evaluated for
different network configurations. In
the considered situations, the authors
showed that accuracy is not signifi-
cantly affected by either the network
size or the number of devices. In [29],
the real network traffic was also ana-
lyzed by logging all the messages ex-
changed in the different phases of
the DC initialization. Results show
that, in real systems, some additional
tricks are implemented to enhance the
performance.

Some articles have also addressed
the problem of the synchronization
(or lack thereof) between master
and slave devices. For instance, [30]
proposes a master–slave synchroni-
zation technique for a force measure-
ment system, while [31] describes a
robust solution, based on EtherCAT,
to offer high-redundancy capabilities
in combination with accurate time
synchronization.

Ethernet POWERLINK
EPL is a hard real-time industrial
network that, unlike EtherCAT, was
conceived to use unmodified Ether-
net equipment. In its current version
[17], [32], EPL does not rely on IEEE
1588 for synchronization. On the

32  IEEE industrial electronics magazine  ■  june 2013

contrary, it defines its own mecha-
nism to achieve the best accuracy
for the specific network configura-
tion on which it is based. EPL belongs
conceptually to the same class of
synchronization protocols as DC (cen-
tralized master–slave, conceived to
run over RTE, and not based on PTP)
and shares many similarities with it,
including high accuracy. Neverthe-
less, it is noticeably simpler than DC,
mainly because it does not provide
any mechanism to evaluate propaga-
tion delays dynamically, and not even
true clock synchronization (it just
supports isochronous operations).

Communication Infrastructure
EPL relies on plain Ethernet. To en-
sure accurate timings, low-jitter re-
peaters and hubs should be used
instead of switches, at least in the
current version. Star, line, and tree
topologies are allowed. Collisions,
typical of half-duplex Ethernet, are
completely prevented in EPL pro-
tected segments thanks to a specific
mechanism, called slot communica-
tion network management (SCNM),
which lies just above the legacy Eth-
ernet and resembles the well-known
producer/consumer/arbiter approach.

Each EPL segment has exactly
one managing node (MN), which is
responsible for coordinating network
access of all the other nodes—also
known as controlled nodes (CNs).
Cyclically (and with a very low jitter,
well below 1 ns), the MN executes a
POWERLINK cycle. Each cycle begins
with the broadcast transmission of a
start-of-cycle (SoC) frame, which also
denotes the beginning of the isochro-
nous phase. Then, every CN is queried
separately by means of a PollRequest
frame (PReq). The CN has to reply
with a PollResponse (PRes) sent in
multicast to enable the producer/con-
sumer paradigm. The cycle ends with
an asynchronous phase to support
sporadic transmissions too.

Needless to say, all nodes must
obey the SCNM rules so as to ensure
deterministic communication and
maintain hard real-time behavior. For
this reason, suitable gateways are re-
quested to enable IP communication
between nodes on a protected EPL
segment and other IP-based networks
(e.g., the Ethernet backbone), which
are known as type 1 EPL routers. The
aim of these routers is to prevent non-
EPL messages from affecting the EPL
cycle by slotting TCP traffic properly.

Synchronization Mechanism
Isochronous transmission of frames
is supported by the POWERLINK pro-
tected mode cycle structure. Since
each EPL protected segment is basi-
cally a broadcast domain on which
collisions cannot occur, synchroni-
zation in EPL is accomplished in a
straightforward way. The SoC frame,
which is broadcast by the MN at the
beginning of every POWERLINK cy-
cle, is taken as the basis for the com-
mon timing of all CNs. Because of the
medium access rules, this frame can-
not be delayed by the other nodes.
When receiving the frame, every CN is
enabled to carry out highly accurate
network-wide coordinated data acqui-
sition and actuation.

In addition, the SoC frame may op-
tionally contain, encoded in the Net-
Time field, the network time as seen by
the MN. It is expressed as an absolute
time and includes the number of sec-
onds and nanoseconds elapsed from
1 January 1970 at 00:00 h. Although
there is no explicit mention of this in
the EPL specifications, when receiving
the SoC frame, each CN could, in theo-
ry, adjust its local clock consequently.

Recent Advances and Performance
As discussed previously, plans exist
to replace hubs by switches in the
next version of EPL and to use PTP for
clock synchronization. Synchroniza-
tion accuracy in the existing version of

the protocol basically depends on the
jitter with which SoC frames are sent
by the MN, which can be improved
noticeably by using customized im-
plementations (e.g., based on field-
programmable gate arrays). Moreover,
EPL does not compensate propagation
delays automatically. On the contrary,
every CN is enabled to do so by us-
ing a static approach by configuring
a specific parameter ()tpropag_CNn dur-
ing the network configuration phase.
Overall, accuracies below 100 ns are
attainable, according to the Ethernet
POWERLINK Standardization Group
(EPSG) [33].

FlexRay
FR is a communication protocol de-
veloped for automotive systems to
enable interconnection of electronic
control units in vehicles. It was explic-
itly conceived to overcome a number
of drawbacks of existing solutions, in
general, and of the CAN protocol, in
particular. Thanks to several factors,
such as the time-triggered medium ac-
cess technique, the native availability
of a redundant (double) physical chan-
nel and bit rates as high as 10 Mb/s, FR
achieves noticeably higher degrees of
determinism, fault-tolerance, and per-
formance than CAN.

From a conceptual point of view,
FR builds on the same mechanisms
developed for Byteflight [34] and class
C time triggered protocol (TTP/C) [35]
(it likely adopts the best features from
both these protocols). With respect
to pure time-triggered protocols,
such as TTP/C, FR offers much high-
er flexibility, mostly because of its
ability to manage dynamically asyn-
chronous data exchanges through a
distributed prioritized medium ac-
cess mechanism.

Until 2009, specifications were
managed by the FR Consortium, which
included most of the leading car man-
ufacturers from all over the world.
The consortium was closed after final-
izing version 3 of the specifications.
The following description is based on
[20]. This document is basically an ex-
tension of version 2.1, which has been
adopted for the design of several FR
controllers.

Isochronous transmission of frames is supported by
the POWERLINK protected mode cycle structure.

june 2013  ■  IEEE industrial electronics magazine  33

Since FR can be seen as the suc-
cessor of CAN for in-car applications,
nothing prevents—from a technical
point of view—its adoption for indus-
trial applications as well [36]. How-
ever, its use outside the automotive
scenario was not envisaged in any
way by the FR Consortium. Conse-
quently, its expected penetration level
in factory automation environments is
currently quite low.

Communication Infrastructure
The communication subsystem of
FR is based on a peculiar medium
access control (MAC) technique,
which affects most of its properties
directly. Access to the shared trans-
mission support is based on a com-
munication cycle that is repeated
indefinitely, as shown in the upper
part of Figure 3. The duration of the
cycle is fixed, though configurable.

Each communication cycle is divid-
ed into segments (up to four), namely
the static and dynamic segments, the
symbol window, and the network idle
time (NIT). In the (mandatory) static
segment, a conventional time division
multiple access (TDMA) mechanism is
adopted. As each transmitting node is
assigned its own time slot, collision-
free communication is enabled, which
takes place with high determinism. In
the (optional) dynamic segment, a spe-
cial technique known as a flexible time

division multiple access (FTDMA) is
used. FTDMA relies on a minislotting
approach in which messages are char-
acterized by consecutive identifiers.
Each node that does not have a mes-
sage to transmit generates a period of
inactivity on the network (minislot).
The duration of a minislot is much
shorter than the static slot length, en-
abling flexible data exchanges, whose
schedule is decided at the run time.
The (optional) symbol window can be
used to exchange a single symbol and
its arbitration is not managed directly
by FR: it is mainly used in the startup
phase. Finally, NIT is a period at the
end of each cycle when the network is
kept idle. NIT is used to perform clock
corrections.

Precise synchronization of all
nodes in the network is a prerequisite
for the proper operation of the TDMA
and FTDMA mechanisms. For this rea-
son, a timing hierarchy is defined that
consists of four levels, as depicted in
Figure 3. The arbitration grid level is
placed just below the topmost com-
munication cycle level. This is where
the static segment is split into a fixed
(configurable) number of (static) slots
of the same duration. Each slot is as-
signed to a specific node (though the
same node can own more than one
slot) and can be used to send exactly
one frame. Such an assignment is car-
ried out in the configuration phase,

before the system is started, and
cannot be changed during the nor-
mal network operation. The dynamic
segment, in turn, consists of several
identical minislots. Each frame takes
an integral number of minislots for
its transmission, so messages of dif-
ferent sizes can be accommodated
easily. This technique permits the
spontaneous transmission of sporadic
frames when needed by a device. The
medium access technique in this seg-
ment is based on message priorities
and the resulting behavior someway
resembles CAN (but the actual mech-
anisms of the two protocols are very
different).

The macrotick level is found be-
neath the arbitration grid. At this
level, every node sees the time as
a sequence of macroticks with the
same duration. Precise alignment of
macroticks is maintained by means
of a suitable synchronization mecha-
nism. Action points are also defined
here: they are global time instants
when significant events must/can oc-
cur. The concept of global time in FR
is quite different from other popular
solutions. In this case, in fact, no ref-
erence node is present and a true,
absolute time is not defined. Never-
theless, at any instant, all nodes share
a common view of both the current
cycle (vCycleCounter parameter) and
macrotick (vMacrotick parameter)

FIGURE 3 – The FR protocol timing hierarchy.

Static Segment Dynamic Segment Symbol
Window NIT

0

Cycle 1

Static Slot 1

Communication
Cycle Level

Arbitration Grid
Level

Static Slot 2 Static Slot 3

Macrotick Level

Microtick Level
gMacroPerCycle-1

Cycle 2 Cycle 3 Cycle 62 Cycle 63 Cycle 1 Cycle 2 Cycle 3

M
in

is
lo

t

M
in

is
lo

t

M
in

is
lo

t

M
in

is
lo

t

M
in

is
lo

t

M
in

is
lo

t

34  IEEE industrial electronics magazine  ■  june 2013

in the cycle. This can easily be ex-
ploited by the upper levels to perform
coordinate actions, thus providing the
same kind of behavior enabled by the
global time.

Microtick is the lowest level in
the hierarchy. Every node gener-
ates microticks from the local oscil-
lator, usually through a prescaler.
Microticks in the different nodes nei-
ther have the same duration nor are
synchronized in any way. This level is
mainly related to practical controller
implementations.

Synchronization Mechanism
Unlike most synchronization mecha-
nisms, such as DC, NTP, and PTP,
which are placed on top of the com-
munication layer, communication
and synchronization in FR are tightly
interleaved. In fact, during the nor-
mal operation (i.e., after the startup
phase), correct FR transmissions re-
quire proper synchronization of all
the nodes in the network. At the same
time, the synchronization mechanism
is based on message exchanges be-
tween the nodes. It is worth noting
that such an approach was already ad-
opted successfully in other hard real-
time communication solutions such as
TTP/C. In particular, a lot of work was
done on TTP/C to prove its correct be-
havior and temporal and dependabil-
ity properties.

Clock synchronization in FR ba-
sically relies on two processes that
operate concurrently, namely the

macrotick generation (MTG) and the
CSP (see Figure 4). MTG grants the
alignment of macroticks (and, conse-
quently, of the arbitration grid) across
the whole network by applying suit-
able rate and offset corrections. In
contrast, CSP is responsible for both
measuring deviations of the local
clocks and computing values to cor-
rect their rate and offset.

Concerning the CSP, FR nodes
measure the difference between the
expected and the actual arrival times
for every sync frame exchanged in
the static segment. The expected ar-
rival time is a static slot action point,
whereas the actual time is the instant
when the frame is received. Time-
stamps are obtained through the lo-
cal oscillator and are expressed in
microticks.

Sync frames are a subset of all
static frames. In fact, only packets
sent by nodes equipped with high-
quality oscillators are marked sync.
In version 2.1 of the protocol, every
node was allowed to send at most one
sync frame per cycle, but this restric-
tion has been relaxed in version 3. A
minimum of three sync frames per
cycle are needed when a fault-tolerant
behavior has to be ensured, otherwise
two sync frames are enough to let the
mechanism work properly.

Nodes store deviation values (for
both channels and separately for
even- and odd-numbered cycles) in
local tables and then execute a fault-
tolerant midpoint (FTM) algorithm.

1)	 A suitable value k is selected based
on the number of rows in the table
(e.g., k 0= for one or two rows,
k 1= for three to seven rows, and
k 2= otherwise).

2)	 The list of measured values is sort-
ed, and the k smallest and largest
values are discarded.

3)	 The smallest and largest values in
the remaining set are selected, and
their average computed.
The value obtained from FTM is

assumed as the deviation of the local
clock from the global clock. For insta-
nce, if the ordered list of deviation val-
ues is (, , , , , , ,),10 7 3 1 4 5 12 16- - - + + + + +
which implies ,k 2= the values ,10-

,7- ,12+ and 16+ are first discarded,
and then the average between 3- and

5+ is computed to obtain a deviation
equal to .1+ The estimation of the off-
set deviation occurs on every cycle,
whereas the rate deviation is evalu-
ated once for every pair of consecu-
tive cycles. Indeed, a pair consists of
an even- and an odd-numbered cycle,
in that order. The rate deviation de-
termined in any pair is used to cor-
rect the oscillator rate in the following
cycle pair. Furthermore, computed
values are checked against suitable
limits before applying corrections. If
the values exceed the predefined lim-
its, suitable recovery procedures are
undertaken.

The MTG process adjusts the local
MTG rate by tuning a parameter that
specifies the number of microticks
per cycle. This mechanism has been

FIGURE 4 – Clock synchronization in FR.

Offset Correction Offset Correction

Calculated
Offset
Correction Calculated

Rate
Correction

Cycle

S
ta

tic

S
ym

bo
l

N
IT

N
IT

N
IT

N
IT

O

R

Even (2n) Odd (2n + 1) Even (2n + 2) Odd (2n + 3)

Rate Correction Rate Correction Rate Correction Rate CorrectionMTG

CSP

MAC

S
ta

tic

S
ta

tic

S
ta

tic

S
ym

bo
l

S
ym

bo
l

S
ym

bo
l

OO

R

O

M M M M

Measurement

D
yn

am
ic

D
yn

am
ic

D
yn

am
ic

D
yn

am
ic

june 2013  ■  IEEE industrial electronics magazine  35

conceived so that corrections can be
applied smoothly and abrupt changes
in the local view of time avoided. It is
worth noting that rate correction is
carried out in every cycle, whereas
offset are corrected by enlarging (or
shortening) the NIT segment in odd-
numbered cycles only. In particular,
rate-correction parameters are varied
when entering the offset-correction
phase. Figure 4 shows the relationship
(and order) between the measurement
of deviations and the points in time
when correction values are calcu-
lated, together with the way they are
used for aligning clocks.

Network start-up deserves some
more explanation. In FR, no syn-
chronization is possible without
communication and vice versa. This
apparent deadlock is solved by means
of a suitable startup procedure. Some
selected sync frames, in fact, are re-
sponsible to act as startup frames.
Startup frame senders are known as
coldstart nodes. When the network
is booted, coldstart nodes detect that
no valid transmission is taking place
and begin the coldstart procedure. In
this phase, possible collisions among
coldstart nodes are solved. The
mechanism also assures that, after a
certain time has elapsed, one leading
coldstart node initiates the communi-
cation cycle successfully, whereas all
the other nodes simply join the cycle.
The FR specifications also include
a second class of devices, which are
not able to behave as coldstart nodes.
This means they have to wait until
someone else completes the startup
sequence, before being able to join the
steady-state communication cycle.

Recent Advances
In the above conditions, direct master–
slave synchronization is not possible.
In the same way, the protocol does not
provide any mechanism to allow the
synchronization of subordinate clus-
ters (either buses or rings) to a main
cluster. Both these characteristics,
indeed, reduce the degree of reliabil-
ity to some extent; however, they can
be exploited to decrease costs and
enhance composability. FR version
3 offers some more support in this

direction. In particular, two additional
synchronization modes (TT-L and TT-
E) have been added to the basic mech-
anism (TT-D).

The local sync mode (TT-L) is used
in very simple networks. In this case,
a single node (TT-L coldstart node) is
enabled to behave as a startup and
synchronization device by sending
two sync frames per cycle. The ex-
ternal sync mode (TT-E), instead, is
used in multicluster networks. Subor-
dinate clusters are synchronized to
the primary TT-D group by means of
a gateway (TT-E coldstart node). If the
TT-D cluster is not active, the system
reverts to the local sync mode. In both
cases, synchronization is transparent
to nonsync nodes, which means that
backward compatibility is preserved.

Performance
The synchronization mechanism of
FR features both high accuracy and
a very good degree of fault tolerance.
The latter characteristic is mandatory
to satisfy the tight safety constraints
imposed by control applications in the
automotive domain such as in x-by-
wire systems. As long as most nodes
are working correctly, FR is able to
ensure their accurate synchroniza-
tion. This means that no single point
of failure can affect synchronization
(and, consequently, communication).
The most important performance in-
dex for the protocol is then its ability
to preserve the correct behavior also
in case of node failures.

FR is a complex protocol that
makes use of many operating param-
eters, which, in turn, directly affect its
performance [37]. Generally speaking,
precisions in the order of several tens
of nanoseconds can be obtained. Stud-
ies presented in [38], [39] show that,
under realistic conditions, the system
precision stays in the order of a few
hundreds of nanoseconds, even when
the frequencies of some local oscilla-
tors deviate from their nominal values
in a nonnegligible way.

Comparison
Basically, all clock synchronization
protocols rely on similar techniques
(time measurement, propagation delay

evaluation, offset, and rate compensa-
tion), differing mainly in the way the
mechanisms are implemented. The
following comparison considers sev-
eral protocols: besides the special-
purpose mechanisms described here
(DC, EPL, SERCOS III, and FR), the
NTP and PTP general-purpose solu-
tions have been taken into account
as well (see [6] for more details). RTE
solutions based on PTP have not been
dealt with explicitly because they re-
semble PTP closely. The comparison
is carried out from several points of
view but focuses, in particular, on
their use in industrial and embedded
control systems. The main results are
summarized in Table 2.

Underlying Network
The first, main difference concerns
the type (and size) of underlying
network. NTP was primarily con-
ceived for geographic heterogeneous
networks, so it relies directly on the
user datagram protocol (UDP) and IP.
For this reason, it is also the most fre-
quently adopted solution for synchro-
nizing clocks of computer systems
interconnected through the Internet.
Currently, many popular operating
systems (e.g., Linux, Windows, and
Mac OS X) provide native (and free-of-
charge) NTP support.

PTP, on the contrary, was mainly
designed with local networks in mind.
Here, the term local does not neces-
sarily mean small, as they may easily
stretch over several kilometers—e.g.,
they are able to cover a whole industri-
al plant. Although PTP does not man-
date any specific kind of network, the
master is required to efficiently dis-
tribute the synchronization messages
to all the related slaves. As a matter of
fact, this does not make the protocol
very suitable for geographic networks.
PTP is likely the most popular solution
for enabling accurate synchronization
in Ethernet networks, and many in-
expensive off-the-shelf devices (i.e.,
switches and network interface cards)
are currently available that support
this protocol as well as some open-
source implementations [40].

By targeting smaller and more ho-
mogeneous networks, a noticeably

36  IEEE industrial electronics magazine  ■  june 2013

better accuracy than is possible with
NTP is usually obtained. For this rea-
son, PTP is currently considered a
flexible solution for high-precision
synchronization needs and is often
adopted, possibly in some modi-
fied versions, in many RTE networks
EtherNet/IP, PROFINET IO, etc.). More-
over, it is seen more and more as
the glue for achieving synchronized
behavior across distinct systems—
including those based on different
communication technologies. For
instance, nodes on a number of sep-
arate EtherCAT segments can be syn-
chronized by using suitable devices
known as IEEE 1588 external synchro-
nization interfaces [27], which are in-
terconnected through a PTP-enabled
Ethernet infrastructure.

Special-purpose synchronization
solutions are far less general than
NTP and PTP. For example, DC can
be used only on top of EtherCAT net-
works. Although EtherCAT systems
may actually stretch over large areas,
RTE networks are basically intended
for use on the shop floor of industrial
plants, and their size rarely exceeds
a few hundred meters. Several other
RTE networks exist that define their
own synchronization mechanism to
increase performance and reduce
complexity, e.g., EPL and SERCOS III.
The common aspect in all these cases
is that synchronization relies on pe-
culiar features of the underlying net-
work. For example, DC and SERCOS III

exploit the ring network topology to
evaluate propagation delays, whereas
EPL requires that the underlying net-
work be a collision domain to broad-
cast timing marks.

Unlike the other solutions that are
disjointed from the communication
subsystem, the FR synchronization
technique is strictly interleaved with
the MAC mechanism. Indeed, one may
not work in the absence of the other.
FR is currently tailored to in-vehicle
applications only, so the resulting
systems are usually quite small in size
(tens of meters).

Synchronization Technique
The protocols considered in this com-
parison adopt different approaches
to achieve synchronization of local
clocks. Typical NTP implementa-
tions are based on a client–(multi)
server architecture, wherein cli-
ents send requests for the current
time to one or more servers placed
elsewhere. PTP adopts instead a cen-
tralized hierarchical master–slave
approach, wherein the time is kept
by the grandmaster clock. In every
PTP subnetwork, a master is defined,
which, in turn, takes care of provid-
ing the current time to all the subor-
dinated nodes (from the point of view
of synchronization, they behave as
slaves).

DC, SERCOS III, and EPL are cen-
tralized master–slave solutions too,
but the network may include only

one segment. Subsegments can be
possibly envisaged in some cases,
which are connected through repeat-
ers operating at the physical layer
local area network (LAN) switching
is not allowed for performance rea-
sons). Unlike PTP-based solutions,
slaves cannot take the initiative in the
communication in these cases, since
the underlying networks rely on the
master–slave paradigm. This aspect
affects noticeably the way the syn-
chronization technique operates.

By measuring the propagation de-
lays dynamically, very high accuracy
can be achieved in DC with little effort
in the setup phase. The same holds for
SERCOS III. Synchronization in a single
EPL-protected segment is based more
or less on the same approach, but
delay compensation has to be con-
figured statically. In summary, the
DC, SERCOS III, and EPL mechanisms
actually work in a quite different way
from PTP.

Finally, FR is a fully distributed so-
lution, wherein a subset of the nodes
generates a synchronized time grid
for all devices in the network. The
exchange of timing information, in
this case, resembles the producer–
consumer paradigm.

H/W Support
Accuracy also depends on the fact
that the synchronization mechanism
relies on specific h/w. In this respect,
several cases can be distinguished,

TABLE 2—COMPARISON OF SYNCHRONIZATION PROTOCOLS.

PROTOCOL NTP PTP DC EPL FR

Specification IETF RFC 5905 IEEE 1588 IEC 61158 CPF 12 IEC 61158 CPF 13 FR communication system

Last version 2010 (Version 4) 2008 2010 (Ed. 2.0) 2010 (Ed. 2.0) 2010 (Version 3.0.1)

Synchronization Clock synchronization Accurate clock
synchronization

Accurate clock
synchronization

Accurate isochronous
synchronization

Accurate synchronized
time grid

Network Any with UDP/IP support Any with multicast Only EtherCAT Only EPL Only FR

Extension Geographic Plant Shop floor Shop floor Vehicle

Time reference UTC Centralized Centralized Centralized Distributed

Technique Client–(multi)server Hierarchical master–slave Ring-based master–slave Broadcast-domain
master–slave

Producer–consumer
self-aligning arbitration grid

H/W support Not foreseen Optional Mandatory Optional Mandatory

Quality ms (Sub-)ns Sub-ns Sub-ns Sub-ns

Dependability Several servers can be
set up

BMC, alternate master,
grandmaster clusters

Double ring and floating
reference time

Redundant MN Never-give-up strategy, FTM

june 2013  ■  IEEE industrial electronics magazine  37

depending on whether h/w support
is not foreseen, optional, or manda-
tory. In cases where it is an option,
different accuracies have to be expect-
ed for cases in which such support is
actually available and those in which
it is not.

Because of its intended applica-
tion fields, NTP basically does not
foresee any kind of h/w support. Al-
though not strictly forbidden, specific
NTP h/w is seldom used in real devic-
es, if at all. Concerning PTP, though no
specialized h/w is mandated, its use
is practically unavoidable when deal-
ing with applications with tight timing
requirements (e.g., motion control).
For this reason, almost all RTE solu-
tions that rely on this protocol (CIP
Sync) or its derivatives such as PTCP
(PROFINET IO) for synchronization
require some kind of h/w support. A
big advantage of PTP is that the only
operation that has to be carried out
in h/w (or through h/w-assisted ap-
proaches) to achieve high accuracy is
timestamping on frame transmission
and reception. Currently, the number
of Ethernet communication control-
lers and infrastructure components
that provide IEEE 1588 support is in-
creasing steadily.

In most special-purpose synchro-
nization protocols, such as DC and
FR, h/w support is mandatory. Some
of these solutions, e.g., EPL V2, are
in theory able to operate even in the
absence of specialized h/w. However,
doing so usually worsens the accuracy
noticeably.

Timing Hierarchy
For a number of reasons, real-world
control systems in which devices
are interconnected through a com-
munication network might demand
accurate synchronization of several
distinct subsystems to an external
time source. This requirement mainly
concerns power grids, and it is often
found in large enterprise networks as
well. However, the shop floor in in-
dustrial systems, as well as some net-
worked embedded control systems,
may exhibit similar needs to coordi-
nate operations on distinct parts of
the equipment.

Of course, the implementation of
the timing hierarchy can be signifi-
cantly different for each protocol. The
layered architecture of NTP, which re-
lies on several logical levels (strata),
deals with this aspect natively. The
same is the case with PTP and its hi-
erarchical physical network architec-
ture, which is based on a master–slave
approach. It is worth noting that the
shop floor in industrial networks may
have linear topologies that may in-
clude many cascaded devices. In these
cases, solutions based on transparent
clocks like PTCP are able to offer no-
ticeably better accuracy by reducing
the depth of the timing hierarchy and,
consequently, synchronization errors.

In the EPL specification, a device
known as the POWERLINK router is
envisaged that can optionally behave
as a boundary clock. As such, it can
synchronize an EPL-protected seg-
ment to an external time source (e.g.,
PTP). Although the basic DC mecha-
nism does not foresee such a feature
explicitly, a group of EtherCAT master
nodes are nevertheless allowed to
synchronize using another protocol.
In addition, slave devices of a special
type have been introduced recently
that are able to synchronize distinct
EtherCAT segments. Similarly, a lay-
ered architecture was not envisaged
in the original FR specifications, but
version 3 overcomes this limitation by
allowing the synchronization of differ-
ent segments.

Quality of Synchronization
The network type and size, as well as
the synchronization technique, affect
the quality of synchronization. Ac-
curacy and precision are frequently
adopted to quantify this characteris-
tic [41]: accuracy can be considered a
measure of the average offset between
local clocks and the reference time
in steady-state conditions (residual

offset), whereas precision indicates
how much local clocks may deviate
with respect to the reference time at
any given point in time (jitters).

A detailed analysis falls outside
the scope of this article. However,
NTP appears unable to ensure the
same synchronization quality as the
other solutions. Clock deviations
are typically in the order of millisec-
onds, though they can be noticeably
shorter in intranets. This is not sur-
prising, since NTP was developed
to work in large heterogeneous net-
works. On the contrary, DC, SER-
COS III, EPL, and FR, which were
purposely designed for control ap-
plications, can easily reach submicro-
second accuracy.

PTP performance mainly depends
on the actual network size, number of
switches, h/w support, and propaga-
tion scheme (boundary versus trans-
parent clock [4], [6]). Recent solutions
that rely on transparent clocks (e.g.,
PTCP) allow synchronization perfor-
mance in the order of tens of nano-
seconds for networks based on star or
tree topologies. This makes PTP-based
solutions suitable for distributed con-
trol applications with demanding tim-
ing constraints and explains why PTP
forms the basis for synchronization in
many RTE networks.

Dependability and Flexibility
Dependability and flexibility are
somehow related concepts, although
they are clearly distinct. Generally
speaking, all solutions include mecha-
nisms to guarantee satisfactory levels
for them. NTP clients can be config-
ured to get the time from more than
one server. In this way, synchroni-
zation is not disrupted in case the
reference node becomes unavailable.
Moreover, no explicit reconfiguration
is needed to cope with this unde-
sired event.

On the contrary, DC, SERCOS III, EPL, and FR,
which were purposely designed for control applications,
can easily reach submicrosecond accuracy.

38  IEEE industrial electronics magazine  ■  june 2013

A best master clock (BMC) mecha-
nism included in PTP permits the best
time source in the system (grandmas-
ter clock) to be selected at run time.
Besides increasing flexibility, this ap-
proach also improves dependability
because automatic replacement of the
reference clock is possible in case
of failures. Unfortunately, the BMC
may take exceedingly long times (lon-
ger than acceptable for some kinds of
application).

To further improve dependability
and reduce the reaction time in case
of failure of the grandmaster clock, the
IEEE 1588-2008 standard defines two
optional features, namely the grand-
master clusters (subclause 17.3) and
the alternate master (subclause 17.4).
Besides these static approaches, a so-
lution called master groups was pro-
posed in [42], wherein the reference
time is obtained as the average of the
times of a group of masters through
a fault-tolerant average algorithm. In
this way, the failure of one (or more)
master(s) only marginally affects the
overall accuracy of the group of mas-
ters and the synchronized slaves.

DC does not foresee any specific
mechanism to increase dependabil-
ity. In fact, fault tolerance is rarely re-
quired on the shop floor, since all the
slaves and the network have to be in the
working state to allow the correct opera-
tion of control applications. This implies
that the synchronization mechanism
must also be working properly. A cer-
tain degree of flexibility is ensured in
DC too, as the reference clock is not
fixed but selected as the first slave in
the segment. Moreover, a double-ring
topology can be optionally adopted in
EtherCAT (and in SERCOS III as well),
which increases the communication re-
liability. In the case of EPL, the concept
of redundant MN is defined in [43] to
increase dependability.

Even in this respect, FR is quite
different from the other protocols
because dependability and fault tol-
erance are mandatory in automotive
systems. Therefore, synchronization
is ensured as long as at least a mini-
mum number of nodes are in the
operational state, according to a nev-
er-give-up strategy.

Conclusions
At present, several solutions are prac-
tically available to achieve accurate
clock synchronization in distributed
control systems, wherein devices are
interconnected through a digital com-
munication network. Modern indus-
trial plants, energy distribution, and
networked embedded control systems
are typical examples of application ar-
eas that can benefit from the availabil-
ity of such a support. Three popular
special-purpose synchronization pro-
tocols have been considered and ana-
lyzed here, i.e., the DC mechanism of
EtherCAT, the synchronization tech-
nique in EPL, and FR. General-purpose
solutions, i.e., NTP and PTP, along
with some related implementations in
commercial industrial networks (i.e.,
EtherNet/IP and PROFINET IO) were
dealt with in detail in [6].

Although a number of other pro-
tocols exist that are able to address
this problem, the solutions mentioned
previously provide a meaningful pic-
ture of the issues typically involved
in time synchronization and the
techniques used to overcome them.
Protocols differ in the type and size
of the underlying network, the syn-
chronization approach (centralized
versus distributed), and the relation-
ships with communication (ranging
from complete independence to tight
integration). In turn, these technical
choices significantly affect the qual-
ity of the attainable synchronization,
with accuracies that may range from
hundreds of milliseconds down to
tens of nanoseconds and even less.
Flexibility and dependability are oth-
er important issues related to the use
of synchronization protocols in real-
time distributed control applications.

Security aspects and synchroniza-
tion over wireless networks, though of
primary relevance, were not considered
in this article. This omission was inten-
tional because a proper discussion of
these topics would have enlarged the
scope of the article too much.

Biographies
Gianluca Cena (gianluca.cena@ieiit.
cnr.it) has been director of research at
the Istituto di Elettronica e di Ingegne-

ria dell’Informazione e delle Telecomu-
nicazioni, Torino, Italy, of the National
Research Council of Italy, since 2005.
His research interests include indus-
trial communication systems and, par-
ticularly, real-time protocols. He is a
Senior Member of the IEEE. His recent
research activities have also included
accurate distributed synchronization
mechanisms for both wired and wire-
less networks. He served as program
cochair for the 2006 and 2008 edi-
tions of the IEEE Workshop on Factory
Communication Systems. He has been
associate editor of IEEE Transactions
on Industrial Informatics since 2009.
Ivan Cibrario Bertolotti (ivan.
cibrario@ieiit.cnr.it) has been a re-
searcher with the National Research
Council of Italy since 1996. Currently,
he is with the Istituto di Elettronica
e di Ingegneria dell’Informazione
e delle Telecomunicazioni, Torino,
Italy. He is a Member of the IEEE. His
current research interests include
real-time operating system design and
implementation, industrial commu-
nication systems and protocols, and
formal methods for vulnerability and
dependability analysis of distributed
systems. He has coauthored a book on
real-time, embedded operating sys-
tems and regularly serves as a techni-
cal referee for several primary inter-
national conferences and journals.

Stefano Scanzio (stefano.scanzio@
ieiit.cnr.it) received his Laurea and
Ph.D. degrees in computer science
from the Politecnico di Torino, Italy,
in 2004 and 2008, respectively. Since
2009, he has been working with
the National Research Council of
Italy. Currently, he is with the Isti-
tuto di Elettronica e di Ingegneria
dell’Informazione e delle Telecomuni-
cazioni, Torino, Italy. He is a Member
of the IEEE. His current research inter-
ests include communication protocols,
industrial communication systems,
real-time networks, and real-time oper-
ating systems. He has gained expertise
in synchronization algorithms by de-
veloping, studying, and evaluating the
accuracy of some of the most popular
synchronization protocols.

Adriano Valenzano (adriano.
valenzano@ieiit.cnr.it) is director of

june 2013  ■  IEEE industrial electronics magazine  39

research of the National Research
Council of Italy. He is currently with
the Istituto di Elettronica e di Ingeg-
neria dell’Informazione e delle Tele-
comunicazioni, Torino, Italy, where
he is responsible for research con-
cerning industrial computer networks
and systems. He is a Senior Member
of the IEEE and vice president of the
Piedmont Chapter of the Italian Na-
tional Association for Automation. In
more than 30 years of scientific ac-
tivities, he has been involved in many
research projects concerning distrib-
uted and networked industrial appli-
cations with real-time constraints. He
has coauthored about 200 refereed
journal and conference papers in the
area of computer engineering. Since
2007, he has served as an associate
editor for IEEE Transactions on Indus-
trial Informatics.

Claudio Zunino (claudio.zunino@
ieiit.cnr.it) received his degree in
computer engineering and his Ph.D.
degree in software engineering from
the Politecnico di Torino, Italy, in 2000
and 2005, respectively. Since 2006,
he has been a researcher with the Is-
tituto di Elettronica e di Ingegneria
dell’Informazione e delle Telecomuni-
cazioni, Torino, Italy, of the National
Research Council of Italy. His research
interests include wireless communi-
cation, industrial Ethernet protocols,
computer graphics, parallel and dis-
tributed computing, and scientific vi-
sualization. He serves as a reviewer for
a number of international conferences
and journals.

References
[1]	 Industrial Communication Networks—Pro-

files—Part 1: Fieldbus Profiles—CP 3/1 (PROFI-
BUS DP) and CP 3/2 (PROFIBUS PA), IEC 61784-
1, Ed. 3.0, 2010.

[2]	 CANopen Application Layer and Communica-
tion Profile, CiA 301, Ver. 4.2.0, 2011.

[3]	 D. L. Mills, “A brief history of NTP time: Confes-
sions of an Internet timekeeper,” ACM Comput.
Commun. Rev., vol. 33, no. 2, pp. 9–22, Apr. 2003.

[4]	 IEEE Standard for a Precision Clock Synchro-
nization Protocol for Networked Measurement
and Control Systems, IEEE 1588-2008 (Revision
of IEEE 1588-2002), 2008.

[5]	 T. Sauter, “The continuing evolution of integra-
tion in manufacturing automation,” IEEE Ind.
Electron. Mag., vol. 1, no. 1, pp. 10–19, 2007.

[6]	 G. Cena, I. Cibrario Bertolotti, S. Scanzio,
A. Valenzano, and C. Zunino, “Synchronize
your watches. General-purpose solutions
for distributed real-time control,” IEEE Ind.
Electron. Mag., vol. 7, no. 1, pp. 18-29, Mar. 2013.

[7]	 P. Loschmidt, R. Exel, and G. Gaderer, “Highly
accurate timestamping for Ethernet-based
clock synchronization,” J. Comput. Netw. Com-
mun., vol. 2012, pp. 1–11, 2012.

[8]	 Timing Characteristics of Synchronous Ethernet
Equipment Slave Clock (EEC), ITU-T G.8262,
2007.

[9]	 M. Lipinski, T. Wlostowski, J. Serrano, and
P. Alvarez, “White rabbit: A PTP application
for robust sub-nanosecond synchronization,”
in Proc. Int. IEEE Symp. Precision Clock Synchro-
nization Measurement Control and Communica-
tion (ISPCS), Sept. 2011, pp. 25–30.

[10]	 Communication Networks and Systems in Sub-
station, IEC 61850, 2003.

[11]	 C. De Dominicis, P. Ferrari, A. Flammini, S. Rin-
aldi, and M. Quarantelli, “On the use of IEEE
1588 in existing IEC 61850-based SASs: Current
behavior and future challenges,” IEEE Trans.
Instrum. Meas., vol. 60, no. 9, pp. 3070–3081,
Sept. 2011.

[12]	 S. Shaheen, D. Heffernan, and G. Leen, “A com-
parison of emerging time-triggered protocols
for automotive X-by-wire control networks,”
Proc. Inst. Mech. Eng. Part D J. Automobile Eng.,
vol. 217, no. 1, pp. 13–22, Jan. 2003.

[13]	 N. Navet, Y. Song, F. Simonot-Lion, and C.
Wilwert, “Trends in automotive communi-
cation systems,” Proc. IEEE, vol. 93, no. 6,
pp. 1204–1223, June 2005.

[14]	 N. Navet and F. Simonot-Lion. (2009). A review
of embedded automotive protocols. Automo-
tive Embedded Systems Handbook (Indus-
trial Information Technology Series) [Online],
pp. 4.1–4.31. Available: http://hal.inria.fr/
inria-00336168

[15]	 Industrial Communication Networks—Profiles—
Part 2: Additional Fieldbus Profiles for Real-Time
Networks Based on ISO/IEC 8802-3-CP 2/2 (Eth-
erNet/IP) and 2/2.1 (EtherNet/IP and Time Syn-
chronization), IEC 61784-2, Ed. 2.0, 2010.

[16]	 Industrial Communication Networks—
Profiles—Part 2: Additional Fieldbus Profiles
for Real-Time Networks Based on ISO/IEC 8802-
3-CP 3/4-5-6 (PROFINET IO Class A-B-C), IEC
61784-2, Ed. 2.0, 2010.

[17]	 Industrial Communication Networks—Pro-
files—Part 2: Additional Fieldbus Profiles for
Real-Time Networks Based on ISO/IEC 8802-3-
CP 13/1 (EPL), IEC 61784-2, Ed. 2.0, 2010.

[18]	 Industrial Communication Networks—Profiles—
Part 2: Additional Fieldbus Profiles for Real-
Time Networks Based on ISO/IEC 8802-3-CP
12/1 (EtherCAT Simple IO) and CP 12/2 (Ether-
CAT Mailbox and Time Synchronization), IEC
61784-2, Ed. 2.0, 2010.

[19]	 Industrial Communication Networks—Profiles—
Part 2: Additional Fieldbus Profiles for Real-
Time Networks Based on ISO/IEC 8802-3-CP
16/3 (SERCOS III), IEC 61784-2, Ed. 2.0, 2010.

[20]	 Road vehicles—FlexRay communications sys-
tem—Part 2: Data link layer specification, ISO
17458-2, Ed. 1, 2013.

[21]	 Society of Automotive Engineers (SAE). (2011,
Nov.). Time-triggered Ethernet. SAE Interna-
tional. [Online]. Available: http://standards.sae.
org/as6802

[22]	 S. Soucek, T. Sauter, and T. Rauscher, “A
scheme to determine QoS requirements for
control network data over IP,” in Proc. 27th
Annu. Conf. IEEE Industrial Electronics Society
(IECON), 2001, vol. 1, pp. 153–158.

[23]	 S. Soucek, T. Sauter, and G. Koller, “Effect of de-
lay jitter on quality of control in EIA-852-based
networks,” in Proc. 29th Annu. Conf. IEEE In-
dustrial Electronics Society (IECON), Nov. 2003,
vol. 2, pp. 1431–1436.

[24]	 P. Martí, A. Camacho, M. Velasco, P. Marés, and
J. Fuertes, “Synchronizing sampling and actua-
tion in the absence of global time in networked
control systems,” in Proc. IEEE Int. Conf. Emerg-
ing Technologies and Factory Automation
(ETFA), Sept. 2010, pp. 1–8.

[25]	 Beckhoff Automation GmbH. (2010). Hardware
Data Sheet ET1100—EtherCAT Slave Control-
ler, Ver. 1.8 [Online]. Available: http://www.
beckhoff.com/

[26]	 Beckhoff Automation GmbH. (2011). EL6692
EtherCAT Bridge Terminal [Online]. Available:
http://www.beckhoff.com/

[27]	 Beckhoff Automation GmbH. (2010). EL6688
IEEE 1588 external synchronization interface
[Online]. Available: http://www.beckhoff.com/

[28]	 G. Cena, I. Cibrario Bertolotti, S. Scanzio, A. Va-
lenzano, and C. Zunino, “Evaluation of Ether-
CAT distributed clock performance,” IEEE
Trans. Ind. Informat., vol. 8, no. 1, pp. 20–29,
Feb. 2012.

[29]	 G. Cena, I. Cibrario Bertolotti, S. Scanzio, A. Va-
lenzano, and C. Zunino, “On the accuracy of the
distributed clock mechanism in EtherCAT,” in
Proc. IEEE Int. Workshop Factory Communication
Systems (WFCS), May 2010, pp. 43–52.

[30]	 M. Rehnman and T. Gentzell, “Synchronization
in a force measurement system using Ether-
CAT,” in Proc. IEEE Int. Conf. Emerging Tech-
nologies and Factory Automation (ETFA), Sept.
2008, pp. 1023–1030.

[31]	 G. Prytz and J. Skaalvik, “Redundant and syn-
chronized EtherCAT network,” in Proc. Int.
Symp. Industrial Embedded Systems, SIES 2010,
pp. 201–204.

[32]	 Ethernet POWERLINK, Communication Profile
Specification, EPSG Draft Standard 301, Ver.
1.1.0, 2008.

[33]	 Ethernet POWERLINK Standardization Group
(2013). Industrial Ethernet facts, system com-
parison, the 5 major technologies [Online].
Available: http://www.ethernet-powerlink.org/

[34]	 M. Peller, J. Berwanger, and R. Griessbach,
“Byteflight specification (draft)—version 0.5,
BMW AG,” Spec., Oct. 1999.

[35]	 TTTech. (2003, Nov.). Time-triggered protocol
TTP/C high-level specification document—
version 1.1, Spec. ed. 1.4.3. [Online]. Available:
http://www.ttagroup.org/ttp/specification.
htm

[36]	R. Froschauer and F. Auinger, “A survey on the
integration of the FlexRay bus in distributed
automation and control systems,” in Proc. 2nd
Int. Symp. Logistics and Industrial Informatics,
LINDI 2009, pp. 1–6.

[37]	 J. Ungermann. (2009, Dec.). On clock precision
of FlexRay communication systems [Online].
Available: http://www.flexray.com/

[38]	E. Armengaud, A. Steininger, and M. Horauer,
“Towards a systematic test for embedded
automotive communication systems,” IEEE
Trans. Ind. Informat., vol. 4, no. 3, pp. 146–155,
Aug. 2008.

[39]	 M. Fugger, E. Armengaud, and A. Steininger,
“Safely stimulating the clock synchronization
algorithm in time-triggered systems: A com-
bined formal and experimental approach,”
IEEE Trans. Ind. Informat., vol. 5, no. 2, pp.
132–146, May 2009.

[40]	 K. Correll and N. Barendt, “Design consider-
ations for software only implementations of
the IEEE 1588 precision time protocol,” in Proc.
Conf. IEEE 1588 Standard Precision Clock Syn-
chronization Protocol Networked Measurement
and Control Systems, 2006, pp. 1–6

[41]	 B. N. Taylor and C. E. Kuyatt. (1994, Sept.).
Guidelines for evaluating and expressing the
uncertainty of NIST measurement results
[Online]. Available: http://www.nist.gov/pml/
pubs/tn1297/index.cfm

[42]	 G. Gaderer, P. Loschmidt, and T. Sauter, “Im-
proving fault tolerance in high-precision clock
synchronization,” IEEE Trans. Ind. Informat.,
vol. 6, no. 2, pp. 206–215, May 2010.

[43]	 Ethernet POWERLINK, Part A: High Availability,
EPSG Draft Standard 302-A, Ver. 1.0.0., 2008

