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Dynamic Trajectory Planning with Dynamic Constraints:a `State-Time Space' ApproachaTh. FraichardLIFIA, INRIA Rhône-Alpes46, av. F�elix Viallet, 38031 Grenoble Cedex 1, Francetf@li�a.imag.frAbstract | This paper addresses dynamic trajectory planning which is de�ned as trajectoryplanning for a robot subject to dynamic constraints and moving in a dynamic workspace, i.e. with movingobstacles.To begin with, we propose the novel concept of state-time space as a tool to formulate dynamictrajectory planning problems. The state-time space of a robot is its state space augmented of the timedimension. It permits to study the di�erent aspects of dynamic trajectory planning in a uni�ed way. Thusthe constraints imposed by both the moving obstacles and the dynamic constraints can be representedby static forbidden regions of state-time space. Besides a trajectory maps to a curve in state-time spacehence dynamic trajectory planning simply consists in �nding a curve in state-time space.Then we apply this new concept in order to determine a time-optimal trajectory for a car-like robotsubject to dynamic constraints and moving along a given path on a dynamic planar workspace. Wepresent an approximate method which searches the solution trajectory over a restricted set of canonicaltrajectories. These canonical trajectories are de�ned as having piecewise constant acceleration that canonly change its value at given times. Besides the acceleration is selected so as to be either minimum, nullor maximum. Under these assumptions, it is possible to transform the problem of �nding the time-optimalcanonical trajectory to �nding the shortest path in a directed graph embedded in the state-time space.aThis work was supported by the European EUREKA EU-153 project PROMETHEUS Pro-Art.



Dynamic Trajectory Planning with Dynamic Constraints:a `State-Time Space' ApproachTh. FraichardLIFIA, INRIA Rhône-Alpes46, av. F�elix Viallet, 38031 Grenoble Cedex 1, Francetf@li�a.imag.frAbstract | This paper addresses dynamic trajectoryplanning which is de�ned as trajectory planning for a robotsubject to dynamic constraints and moving in a dynamicworkspace, i.e. with moving obstacles.To begin with, we propose the novel concept of state-timespace as a tool to formulate dynamic trajectory planning prob-lems. The state-time space of a robot is its state space aug-mented of the time dimension. It permits to study the di�erentaspects of dynamic trajectory planning in a uni�ed way. Thusthe constraints imposed by both the moving obstacles and thedynamic constraints can be represented by static forbidden re-gions of state-time space. Besides a trajectory maps to a curvein state-time space hence dynamic trajectory planning simplyconsists in �nding a curve in state-time space.Then we apply this new concept in order to determine a time-optimal trajectory for a car-like robot subject to dynamic con-straints and moving along a given path on a dynamic planarworkspace. We present an approximate method which searchesthe solution trajectory over a restricted set of canonical tra-jectories. These canonical trajectories are de�ned as havingpiecewise constant acceleration that can only change its valueat given times. Besides the acceleration is selected so as to beeither minimum, null or maximum. Under these assumptions, itis possible to transform the problem of �nding the time-optimalcanonical trajectory to �nding the shortest path in a directedgraph embedded in the state-time space.1 Introduction1.1 Dynamic Trajectory PlanningA robot is designed to perform actions in its workspace (mov-ing around, grasping and mating parts, etc.). Any such actionusually implies that a motion is made by the robot. This ac-counts for the importance of motion planning in Robotics. Thisimportance is naturally re
ected in the number and the vari-ety of research works dealing with motion planning (the readeris referred to [Latombe, 1990] for a recent and quite completesurvey of this topic). These works can be classi�ed accordingto the type of motions which are planned. Thus it is possibleto di�erentiate between path planningwhich is characterized bythe search of a continuous sequence of con�gurations1 betweenthe current con�guration of the robot and its goal con�gura-tion, and trajectory planning which is concerned with the timehistory of such a sequence.Path planning is restricted to the geometric aspects of motionplanning. The only constraints which can be taken into account1The con�guration of a robot is a set of independent parametersof minimal cardinality which uniquely de�nes the position and orien-tation of every point of the robot.

are time-independent constraints such as stationary obstaclesand kinematic constraints, i.e. constraints involving the con�gu-ration parameters of the robot and their derivatives. Dependingon whether it is holonomic or not2, a kinematic constraint eitherreduces the set of allowed con�gurations or restricts the geomet-ric shape of feasible paths (see [Barraquand and Latombe, 1990]for more details).On the other hand, trajectory planning with its time dimen-sion permits to take into account time-dependent constraintssuch as moving obstacles and the the dynamic constraints ofthe robot, i.e. the constraints imposed by the dynamics of therobot and the capabilities of its actuators.Path planning has been extensively studied in the past twentyyears. Whereas less attention has been paid to trajectory plan-ning. And yet, when planning the motion of an actual robot,it is important to take into account the various constraintswhich restrict its motion capabilities and especially dynamicconstraints. It is also important to deal with moving obsta-cles since an actual workspace will often be dynamic, i.e. withmoving obstacles.These two points, moving obstacles and dynamic constraints,have been addressed in the past, but, as far as we know, neversimultaneously3 and it is our goal to try to do so. Thus, inthis paper, we address dynamic trajectory planning whichis de�ned as trajectory planning for a robot subject to dynamicconstraints and moving in a dynamic workspace.1.2 Contribution of the PaperThe main contribution of this paper is the novel concept ofstate-time space which is a tool to formulate dynamic tra-jectory planning problems. In this respect, it is similar to theconcept of con�guration space [Lozano-Perez and Wesley, 1979]which is a tool to formulate path planning problems. State-timespace permits to study the di�erent aspects of dynamic trajec-tory planning, i.e. moving obstacles and dynamic constraints,in a uni�ed way. As we will see further down, it stems from twoconcepts which have been used before in order to deal respec-tively with moving obstacles and dynamic constraints, namelythe concepts of con�guration-time space, i.e. the con�gurationspace augmented of the time dimension, and state space, i.e.the space of the con�guration parameters and their derivatives.Merging these two concepts leads naturally to state-time space,i.e. the state space augmented of the time dimension. In thisframework, the constraints imposed by both the moving obsta-cles and the dynamic constraints can be represented by static2A kinematic constraint is holonomic if it is integrable, i.e. if thederivative of the con�guration parameters can be eliminated.3Except in [Fujimura and Samet, 1989] and [ �O'D�unlaing, 1987]but with far too simplifying assumptions.1



forbidden regions of state-time space. Besides a trajectory mapsto a curve in state-time space hence dynamic trajectory plan-ning simply consists in �nding a curve in state-time space, i.e. acontinuous sequence of state-times between the current state ofthe robot and a goal state. Such a curve must obviously respectadditional constraints due to the fact that time is irreversibleand that velocity and acceleration constraints translate to ge-ometric constraints on the slope and the curvature along thetime dimension. However it is possible to extend some basicpath planning methods in order to solve the problem at hand(see [Latombe, 1990]).For the sake of clarity, we have chosen to present the conceptof state-time space in the simple, yet rich enough, case of acar-like robot A which moves along a given path S on a planarworkspace W cluttered up with stationary and moving obsta-cles. It is assumed that S is collision-free with the stationaryobstacles ofW and that it respects the kinematic constraints ofA4. The problem then is to compute a trajectory for A whichfollows S, is collision-free with the moving obstacles of W andsatis�es the dynamic constraints which A is subjected to (en-gine force bounds, sliding and velocity constraints). In this case,it is possible to reduce a con�guration of A to a single variables which represents the distance traveled along S. Accordinglythe state-time space of A is a `simple' three-dimensional spaces� _s�t where t represents the time dimension. Depending onthe geometry of S, the dynamic constraints of A are trans-formed into constraints on the velocity _s and the acceleration�s. The constraints on _s translate into a velocity limit curve inthe s� _s plane. On the other hand, the constraints imposed bythe moving obstacles yield forbidden regions of the s�t plane.As we will see further down, both these constraints can be rep-resented by static forbidden regions in the state-time space ofA and planning a trajectory for A simply consists in �nding acurve in state-time space which avoids these forbidden regionsand respects extra acceleration constraints.An additional contribution of this paper is an approximatemethod which determines a near-time-optimal trajectory forA. The search for the solution trajectory is performed overa restricted set of canonical trajectories hence the near-time-optimality of the solution. These canonical trajectories are de-�ned as having piecewise constant acceleration that can onlychange its value at given times. Besides the acceleration isselected so as to be either minimum, null or maximum. Un-der these assumptions, it is possible to transform the problemof �nding the time-optimal canonical trajectory to �nding theshortest path in a directed graph embedded in the state-timespace.1.3 Content of the PaperThe works related to dynamic trajectory planning are reviewedin x2. Then x3, 4 and 5 describe the di�erent features of theproblem, i.e. the path S, the robot A and the moving obstacles.Afterwards x6 gives a formal statement of the state-time spaceof A and the problem which is to be solved. Finally x7 presentsthe algorithm developed in order to solve the problem at handalong with experimental results.2 Related WorksTo our knowledge, [Fujimura andSamet, 1989] and [�O'D�unlaing, 1987] are the only referenceswhich address dynamic trajectory planning. However they do4How S is obtained is beyond the scope of this paper. S may begiven a priori or result from a preliminary path planning step.

so with far too simplifying assumptions. On the other handthere is a large body of works which are of a particular interestto our problem, namely the works which address either movingobstacles or dynamic constraints. They are reviewed in the nexttwo sections.2.1 Moving ObstaclesA general approach which deals with moving obstacles is thecon�guration-time space approach which consists in addingthe time dimension to the robot's con�guration space. Therobot maps in this con�guration-time space to a point mov-ing among stationary obstacles. Accordingly the di�erentapproaches developed in order to solve the path planningproblem in the con�guration space can be adapted in orderto deal with the speci�city of the time dimension and used(see [Latombe, 1990]). Among the existing works, we can distin-guish those based upon extensions of the visibility graph [Erd-mann and Lozano-Perez, 1986; Fujimura and Samet, 1990;Kant and Zucker, 1986; Reif and Sharir, 1985] from thosebased upon cell decomposition [Fujimura and Samet, 1989;Shih et al., 1990].2.2 Dynamic ConstraintsThere are several results for time-optimal trajectory plan-ning for Cartesian robots subject to bounds on their velocityand acceleration [Canny et al., 1990; �O'D�unlaing, 1987]. Be-sides optimal control theory provides some exact results inthe case of robots with full dynamics and moving along agiven path [Bobrow et al., 1985; Shiller and Dubowsky, 1985;Shiller and Lu, 1990]. Using these results, some authors havedescribed methods which computes a local time-optimal trajec-tory [Shiller and Dubowsky, 1989; Shiller and Chen, 1990]. Thekey idea of these works is to formulate the problem as a two-stage optimization process: optimal motion time along a givenpath is used as a cost function for a local path optimization(hence local time-optimality).However the di�culty of the general problem and the needfor practical algorithms led some authors to develop approx-imate methods. Their basic principle is to de�ne a gridwhich is searched in order to �nd a near-time-optimal solu-tion. Such grids are de�ned either in the workspace [Shiller andDubowsky, 1988], the con�guration space [Sahar and Holler-bach, 1985], or the state space of the robot [Canny et al., 1988;Donald and Xavier, 1990; Jacobs et al., 1989].3 The Path SAs mentioned earlier, the robot A moves along a given path Swhich is collision-free with the stationary obstacles of W andrespects the kinematic constraints of A. In this section, westart by brie
y presenting the kinematic model of a car-likerobot so as to derive the kinematic constraints which are takeninto account in the de�nition of S.3.1 The Kinematic Model of ALet A be a car-like robot. It has two rear wheels and twodirectional front wheels. It is assumed that A moves on theplane IR2. A con�guration of A is uniquely de�ned by thetriple (x; y; �) 2 IR2�[0; 2�[ where (x; y) are the coordinates ofthe rear axle midpoint R and � the orientation of A (Fig. 1).A body moving on the plane has only one centre of rotation.Let G be A's center of rotation. Assuming pure rolling condi-tion, a wheel can only move in a direction which is normal toits axle. Therefore, when A is moving, the axles of its wheels2
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x� �R GFigure 1: a car-like robot.intersect at G. The orientation of the rear wheels being �xed,G is located on the rear wheels axle (possibly at an in�nite dis-tance) and R moves in a direction which is normal to this axle.In other words, the following constraint holds :tan � = _y= _x (1)Besides, due to the fact that the front wheels orientation ismechanically limited, the distance � between R and G, i.e. thecurvature radius at point R, is lower bounded:� � �min (2)Relations (1) and (2) are non-holonomic [Barraquand andLatombe, 1989]. As we will see further down, they restrict thegeometric shape of feasible paths for A.3.2 De�ning SA path for A is a continuous sequence of con�gurations, i.e. acurve in the xy�-space, which must verify the non-holonomicconstraints (1) and (2). However (1) implies that the xy-curvefollowed by R, say �, completely de�nes a path for A. As aconsequence of (1), � must be piecewise of class C1 (a curve isof class Cn if it is di�erentiable n times and if its nth derivativeis continuous). Besides (2) implies that the curvature of �(wherever it is de�ned) must be upper-bounded by 1/�min andthat the cusp points of � should correspond to inversion ofA's direction of motion (back-up man�uvres). A path whichrespects these three constraints is feasible but, it is importantto note that A has to stop at each cusp point (so as to changeits direction of motion) and whenever a curvature discontinuityoccurs (so as to change its front wheels' orientation).Our main concern being in planning `high' speed and for-ward motions only, S is de�ned as a planar curve of class C2whose curvature is upper-bounded by 1/�min. The C2 propertyinsures that the path is man�uvre-free and that A could fol-low it without having to stop (no cusp points and no curvaturediscontinuity).Assuming that A moves along S , it is possible to reduce acon�guration of A to the single variable s which represents thedistance traveled along S.

4 The Robot AIn this section, we start by presenting the dynamic model of Athat is used5. Then we describe the dynamic constraints thatare taken into account.4.1 The Dynamic Model of AA is modelled as a rigid body supported by four wheels withrigid suspensions. For the sake of simplicity, the e�ect of steer-ing is ignored. Although simple, this model is rich enough in thesense that the constraints associated are truly dynamic (theylead to state-dependence of the set of allowable accelerations).RS
y

xz ~t~n ~b
Figure 2: the frame attached to A.Without loss of generality, it is assumed that the ~t axis ofthe frame attached to A coincides with the unit vector tangentto the path S at point R (Fig. 2). The ~b axis points in thepositive direction normal to the plane. The ~n axis is chosen sothat (~t, ~n, ~b) is right-handed. Note that the line of the radiusof curvature at point R coincides with ~n.The motion of A along S obeys Newtonian dynamics. Theexternal forces acting on A are the gravity force ~G and theground reaction ~R which can be decomposed into their perpen-dicular components:~G = �mg ~b (3)~R = Rt ~t+Rn ~n+ Rb ~b (4)where m is the mass of A and g the gravity constant. The equa-tion of motion of A can be expressed in terms of the tangentialvelocity _s and the tangential acceleration �s, namely:~G+ ~R = m�s ~t+m�s _s2 ~nwhere �s is the signed curvature of the path at position s (�sis positive if the radial direction coincides with ~n and negativeotherwise, �1=�min � �s � 1=�min). Using (3) and (4), thisequation can be rewritten in the following set of equations:Rt = m�s (5)Rn = m�s _s2 (6)Rb = mg (7)5This model is the two-dimensional instance of the model pre-sented in [Shiller and Chen, 1990].3



Equations (5) to (7) represent the forces required to maintainthe velocity _s and the acceleration �s of A at a given position salong the path.4.2 The Dynamic Constraints of AThree dynamic constraints are taken into account (engine force,sliding and velocity constraints). They are presented in the nextthree sections. Afterwards they are transformed into constraintson the tangential velocity _s and the tangential acceleration �s.4.2.1 Engine Force ConstraintWhen the robot is moving, the torque applied by the engineon the wheels translates into a planar force F whose directionis ~t and whose modulus is m�s. This force is bounded by themaximum (resp. minimum) equivalent engine force:Fmin � F � Fmax (8)These bounds are assumed to be constant and independent ofthe velocity.4.2.2 Sliding ConstraintThe component of ~R in the plane ~t� ~n represents the frictionthat is applied from the ground to the wheels. This friction isconstrained by the following relation:pRt2 +Rn2 � �Rb (9)where � is the friction coe�cient between the wheels and theground. If this constraint is violated then A will slide o� thepath.4.2.3 Velocity ConstraintOur main constraint being in planning forward motions, thevelocity _s is constrained by the following relation:0 � _s � _smax (10)where _smax is the highest velocity allowed.4.2.4 Tangential Acceleration ConstraintsThe engine force constraint (8) yield the following feasible ac-celeration range: Fminm � �s � Fmaxm (11)Besides substituting (5), (6) and (7) in (9) and solving itfor �s yields the following relation which expresses the feasibleacceleration range due to the sliding constraint:�p�2g2 � �s2 _s4 � �s �p�2g2 � �s2 _s4 (12)The �nal feasible acceleration range is therefore given by theintersection of (11) and (12):�s � max�Fminm ;�p�2g2 � �s2 _s4�and �s � min �Fmaxm ;p�2g2 � �s2 _s4� (13)4.2.5 Tangential Velocity ConstraintsVelocity _s must respect (10). Besides the argument under thesquare roots in (12) should be positive. Accordingly _s mustrespect the following constraint:�r �gj�sj � _s �r �gj�sj (14)

The �nal feasible velocity range is therefore given by the in-tersection of (10) and (14):0 � _s � min� _smax;r �gj�sj� (15)The latter constraint can be expressed as a set of forbiddenstates, i.e. points of the s� _s plane. Let TV be this set of states,it is de�ned as:TV = �(s; _s) j 0 > _s > min� _smax;r �gj�sj��5 The Moving ObstaclesA moves in a workspace W = IR2 which is cluttered up withstationary and moving obstacles. The path S being collision-free with the stationary obstacles, only the moving obstacleshave to be considered when it comes to planning A's trajectory.Let Bi; i 2 [1;m], be the set of moving obstacles. Let Bi(t)denotes the region of W occupied by Bi at time t and A(s) theregion of W occupied by A at position s along S. If, at timet, A is at position s and if there is an obstacle Bi such thatBi(t) intersects A(s) then a collision occurs between A and Bi.Accordingly the constraints imposed by the moving obstacleson A's motion can be represented by a set of forbidden pointsof the s�t plane. Let TB be this set of forbidden points, it isde�ned as:TB = f(s; t) j 9i 2 [1;m]; A(s) \ Bi(t) 6= ;g6 The State-Time Space of AAs mentioned earlier, the con�guration of A is reduced tothe single variable s which represents the distance traveledalong S. A state of A is therefore represented by a pair(s; _s) 2 [0; smax]�[0; _smax] where smax is the arc-length of S.A state-time of A is de�ned by adding the time di-mension to a state hence it is represented by a triple(s; _s; t) 2 [0; smax]�[0; _smax] �[0;1). The set of every state-time is the state-time space of A, it is denoted by ST .A state-time is admissible if it does not violate the no-collisionand velocity constraints presented earlier. Before de�ning anadmissible state-time formally, let us de�ne TB0, the set of state-times which entail a collision between A and a moving obstacle.TB0 is simply derived from TB:TB0 = f(s; _s; t) j 9i 2 f1; mg; A(s) \ Bi(t) 6= ;gSimilarly we de�ne TV 0, the set of state-times which violatethe velocity constraint (15). TV 0 is simply derived from TV:TV 0 = �(s; _s; t) j 0 > _s > min� _smax;r �gj�sj��Accordingly a state-time q is admissible if and only if:q 2 ST n (TB0 [ TV 0)where EnF denotes the complement of F in E. The set of everyadmissible state-time is the admissible state-time space ofA, it is denoted by AST and de�ned as:AST = ST n (TB0 [ TV 0)Figure 3 depicts the state-time space of A in a simple casewhere there is only one moving obstacle which crosses S.4
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Figure 3: ST , the state-time space of A.In this framework, a trajectory � for A between an initialstate (si, _si) and a �nal state (sf , _sf) can be represented by acurve of ST , i.e. a continuous sequence of state-times betweenthe initial state-time (si, _si, 0) and a �nal state-time (sf , _sf ,tf ). tf is simply the time of the trajectory �. The accelerationpro�le of � is a continuous map �s : [0; tf ]�!IR. �s(t) representsthe acceleration which is applied to A at time t. Note that thevelocity _s and position s of A along S are respectively de�nedas the �rst and second integral of �s subject to an initial positionand velocity. In order to be feasible, � has to verify the di�erentconstraints presented in the previous sections, i.e. it must becollision-free with the moving obstacles and respect (13) and(15). Figure 4 depicts an example of trajectory between (si, _si)and (sf , _sf ).Finally, we can formally state the problem which is to besolved. Let (si, _si) be the start state of A and (sf , _sf ) its goalstate. A trajectory � : [0; 1]�!ST is a solution to the problemat hand if and only if:1. �(0) = (si; _si; 0) and �(1) = (sf ; _sf ; tf ).2. � � AST .3. �'s acceleration pro�le respects (13).Naturally, we are interested in �nding a time-optimal trajec-tory, i.e. a trajectory such that tf should be minimal.7 A Solution Algorithm7.1 The General IdeaThe method that we have developed in order to solve the prob-lem at hand, i.e. to �nd a curve � of the state-time spaceST which respect the various constraints presented in the pre-vious section, was initially motivated by the work describedin [Canny et al., 1988]. For reasons which will be discussedlater in x7.6, we follow the paradigm of near-time-optimization,i.e. instead of trying to �nd out the exact time-optimal trajec-tory between an initial and a �nal state, we compute an ap-proximate time-optimal solution by performing the search over
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0 _s s(si, _si) (sf , _sf ) tfFigure 4: a trajectory between (si, _si) and (sf , _sf ).a restricted set of canonical trajectories. These canonical tra-jectories are de�ned as having piecewise constant acceleration�s that can only change its value at given times k� where � isa time-step and k some positive integer. Besides �s is selectedso as to be either minimum, null or maximum. Under these as-sumptions, it is possible to transform the problem of �nding thetime-optimal canonical trajectory to �nding the shortest pathin a directed graph G embedded in ST . The vertices G forma regular grid embedded in ST while the edges correspondsto canonical trajectory segments that each takes time � . Thenext sections respectively present the canonical trajectories, thegraph G, the search algorithm and experimental results. Finallywe discuss the interest of such an approach.7.2 The Canonical TrajectoriesThe de�nition of the canonical trajectories depends on discretiz-ing time | a time-step � is chosen | and selecting an accel-eration �s which is either minimum, null or maximum. From apractical point of view, the set of accelerations is discretized |an acceleration-step � is chosen | and the acceleration appliedto A at each time-step, i.e. the minimum, null or maximum one,is selected from this discrete set. As we will see further down,this discretization yields a regular grid in ST .First let us determine �, the discrete set of accelerations.The minimum (resp. maximum) acceleration �smin (resp. �smax)which can be applied to A when it traverses S can be derivedfrom (13): �smin = max�Fminm ;�p�2g2��smax = min�Fmaxm ;p�2g2�The interval [�smin; �smax] is the maximum range of acceler-ations allowed along S. Given the acceleration step �, � isde�ned in the following way:� = ni�ji 2 IN; �d �smin� e � i � �b �smax� co5



Let � : [0; 1]�!ST be a trajectory and �s : [0; tf ]�![�smin;�smax] its acceleration pro�le. � is a canonical trajectory ifand only if:� �s only changes its value at times k� wherek2IN; 0�k�btf=�c.� Let �sk�min (resp. �sk�max) be the minimum (resp. maximum)acceleration allowed w.r.t. the state of A at time k� . �s(k�)is chosen from � so as to be either null or as close aspossible of �sk�min and �sk�max. Thus we have:�s(k�) 2 f�d �sk�min� e; 0; b �sk�max� cgSuch a trajectory is very similar to the so-called `bang-bang'trajectory of the control literature except that, in our case, theacceleration switches occur at regular time intervals.7.3 The State-Time Graph GLet q be a state-time, i.e. a point of ST . It is a triple (s; _s; t).It can equivalently be represented by q(t) = (s(t); _s(t)). Letq(k�) = (s(k�); _s(k�)) be a state-time of A and q((k+1)�) oneof the state-times that A can reach by a canonical trajectory ofduration � . q((k+1)�) is obtained by applying an acceleration�s 2 � to A for the duration � . Accordingly we have:s((k + 1)�) = s(k�) + _s(k�)� + 12 �s� 2_s((k + 1)�) = _s(k�) + �s�By analogy with [Canny et al., 1988], the trajectory betweenq(k�) and q((k + 1)�) is called a (�s; �)-bang. The state-timeq((k+1)� ) is reachable from q(k�). Obviously a canonical tra-jectory is made up of a sequence of (�s; �)-bangs.Let q(m�), m � k, be a state-time reachable from q(k� ).Assuming that _s(k�) is a multiple of �� , it can be shown thatthe following relations hold for some integers �1 and �2:s(m�) = s(k� ) + �1 12��2_s(m�) = _s(k� ) + �2��Thus all state-times reachable from one given state-time by acanonical trajectory lie on a regular grid embedded in ST . Thisgrid has spacings of ��2=2 in position, of �� in velocity and of� in time.Consequently it becomes possible to de�ne a directed graphG embedded in ST . The nodes of G are the grid-points whilethe edges of G are (�s; �)-bangs between pairs of nodes. G iscalled the state-time graph, Let � be a node in G, the state-times reachable from � by a (�s; � )-bang lie on the grid, they arenodes of G (Fig. 5). An edge between � and one of its neigh-bours represents the corresponding (�s; � )-bang. A sequence ofedges between two nodes de�nes a canonical trajectory. Thetime of such a canonical trajectory is trivially equal to � timesthe number of edges in the trajectory. Therefore the shortestpath between two nodes is the time-optimal canonical trajec-tory between these nodes.Let s = (si; _si) be the initial state of A and g = (sf ; _sf ) be itsgoal state. Without loss of generality it is assumed that the cor-responding initial state-time s� = (si; _si; 0) and the correspond-ing set of goal state-times G� = f(sf ; _sf ; k�) with k � 0g aregrid-points. Accordingly searching for a time-optimal canonicaltrajectory between s and g is equivalent to searching a shortestpath in G between the node s� and a node in G�.

�� 12��2k�(k + 1)�t s_s qFigure 5: G, the graph embedded in ST .From a practical point of view, the state-time graph G isembedded in a compact region of ST . More precisely, the timecomponent of the grid-points is upper bounded by a certainvalue tmax which can be viewed as a time-out. The numberof grid-points is therefore �nite and so is G. Accordingly thesearch for the time-optimal canonical trajectory can be done ina �nite amount of time.7.4 Searching the State-Time Graph7.4.1 The AlgorithmWe use an A� algorithm to search G [Nilsson, 1980]. Startingwith s� as the current node, we expand this current node, i.e.we determine all its neighbours, then we select the neighbourwhich is the best according to a given criterion (a cost function)and it becomes the current node. This process is repeated untilthe goal is reached or until the whole graph has been explored.The time-optimal path is returned using back-pointers. In thenext two sections, we detail two key-points of the algorithm,namely the cost function assigned to each node and the nodeexpansion.7.4.2 The Cost FunctionA� assigns a cost f(�) to every node � in G. Since we arelooking for a time-optimal path, we have chosen f(�) as beingthe estimate of the time-optimal path in G connecting s� to G�and passing through �. f(�) is classically de�ned as the sum oftwo components g(�) and h(�):� g(�) is the time of the path between s� and �, i.e. the timecomponent of �.� h(�) is the estimate of the time-optimal path between �and an element of G�, i.e. the amount of time it would takeA to reach g from its current state with a `bang-coast-bang'acceleration pro�le6 in an obstacle-free workspace. Whensuch an acceleration pro�le does not exist, h(�) is set to+1.The heuristic function h(�) is trivially admissible, thus A�is guaranteed to generate the time-optimal path whenever itexists [Nilsson, 1980]. Besides the fact that f(�) is locally con-sistent improves the e�ciency of the algorithm.6I.e. maximum acceleration, null acceleration and minimumacceleration.6



7.4.3 The Node ExpansionThe neighbours of a given node � = (s, _s, k�) are the nodeswhich can be reached from � by a (�s; � )-bang. As mentionedearlier, �s 2 fb�sk�min + �c; 0; d�sk�max � �eg. �sk�min and �sk�maxhave to be computed so as to ensure that the acceleration con-straint (13) is respected along the corresponding (�s; �)-bang.This computation is done in a conservative way. First the far-thest position, say s+, that A could reach from its current stateis determined. It is the position reached after a (�smax; �)-bang.Then the maximum curvature between s and s+ is determinedand substituted into (13) so as to yield the desired accelera-tion bounds �sk�min and �sk�max. Finally it remains to check thatthe (�s; �)-bang associated with each of the candidate neighboursdoes not violate the velocity and collision avoidance constraints,i.e. that the (�s; � )-bang is included in AST .7.5 Implementation and ExperimentsThe algorithm presented earlier has been implemented in C ona Sun SPARC I. Two examples of trajectory planning are de-picted in Fig. 6 and 7. In each case, there are two windows:a trace window showing the part of the graph which has beenexplored and a result window displaying the �nal trajectory.Any such window represents the s�t plane (the position axis ishorizontal while the time axis is vertical; the frame origin is atthe upper-left corner). The thick black segments represent thetrails left by the moving obstacles and the little dots are pointsof the underlying grid. Note that the vertical spacing of thedots corresponds to the time-step � . In these experiments, theobstacles are are assumed to keep a constant velocity. In bothexamples, A starts from position 0 (upper-left corner) with anull velocity, it is to reach position smax (right border) with anull velocity.
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BiG Figure 6: experimental results.7.6 Discussion on the Proposed SolutionThe running time of the search algorithm depends on the sizeof the graph G which is to be explored. In turn this size isdirectly related to the value of the time-step � | the smaller� , the higher the number of vertices in G. On the other hand,we intuitively7 feel that the quality of the approximation isalso related to the value of � | the smaller � , the better the7This intuition is con�rmed in [Canny et al., 1988] where it isshown that, for a correct choice of �, any safe trajectory can beapproximated to a tolerance � by a safe canonical trajectory.

Figure 7: experimental results.approximation. Thus it is possible to trade o� the computationspeed against the quality of the solution.This property is very important and we would like to advo-cate this type of approach when dealing with an actual dynamicworkspace. In such a workspace, it is usually impossible to havea full a priori knowledge of the motion of the moving obstacles.It is more likely that the knowledge that we have of their mo-tions be restricted to a certain time interval, i.e. a time horizon.This time horizon may represent the duration over which an es-timation of the motions of the moving obstacles is sound. Themain consequence of this assumption is to set an upper boundon the time available to plan the motion of our robot (in ahighly dynamic workspace, this upper bound may be very low).In this case, an approach such as the one we have presented ismost interesting because its average running time can be tunedw.r.t. the time horizon considered.8 ConclusionIn this paper, we addressed dynamic trajectory planningwhich is de�ned as trajectory planning for a robot subject todynamic constraints and moving in a dynamic workspace, i.e.with moving obstacles.To begin with, we proposed the novel concept of state-timespace as a tool to formulate dynamic trajectory planning prob-lems. The state-time space of a robot is its state space aug-mented of the time dimension. It permits to study the di�erentaspects of dynamic trajectory planning in a uni�ed way. Thusthe constraints imposed by both the moving obstacles and thedynamic constraints can be represented by static forbidden re-gions of state-time space. Besides a trajectory maps to a curvein state-time space hence dynamic trajectory planning simplyconsists in �nding a curve in state-time space, i.e. a continu-ous sequence of state-times between the current state of therobot and a goal state. Such a curve must obviously respectadditional constraints due to the fact that time is irreversibleand that velocity and acceleration constraints translate to ge-ometric constraints on the slope and the curvature along thetime dimension. However it is possible to extend some basicpath planning methods in order to solve the problem at hand(see [Latombe, 1990]).Then we presented an approximate method which uses theconcept of state-time space in order to determine a near-time-optimal trajectory for a robot subject to dynamic constraintsand moving along a given path on a dynamic planar workspace.The search for the solution trajectory is performed over a re-stricted set of canonical trajectorieswhich are de�ned as havingpiecewise constant acceleration that can only change its valueat given times. Besides the acceleration is selected so as to be7
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