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Abstract — This paper addresses dynamic trajectory planning which is defined as trajectory
planning for a robot subject to dynamic constraints and moving in a dynamic workspace, i.e. with moving
obstacles.

To begin with, we propose the novel concept of state-time space as a tool to formulate dynamic
trajectory planning problems. The state-time space of a robot is its state space augmented of the time
dimension. [t permits to study the different aspects of dynamic trajectory planning in a unified way. Thus
the constraints imposed by both the moving obstacles and the dynamic constraints can be represented
by static forbidden regions of state-time space. Besides a trajectory maps to a curve in state-time space
hence dynamic trajectory planning simply consists in finding a curve in state-time space.

Then we apply this new concept in order to determine a time-optimal trajectory for a car-like robot
subject to dynamic constraints and moving along a given path on a dynamic planar workspace. We
present an approximate method which searches the solution trajectory over a restricted set of canonical
trajectories. These canonical trajectories are defined as having piecewise constant acceleration that can
only change its value at given times. Besides the acceleration is selected so as to be either minimum, null
or maximum. Under these assumptions, it is possible to transform the problem of finding the time-optimal
canonical trajectory to finding the shortest path in a directed graph embedded in the state-time space.
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Abstract — This paper addresses dynamic trajectory
planning which is defined as trajectory planning for a robot
subject to dynamic constraints and moving in a dynamic
workspace, i.e. with moving obstacles.

To begin with, we propose the novel concept of state-time
space as a tool to formulate dynamic trajectory planning prob-
lems. The state-time space of a robot is its state space aug-
mented of the time dimension. It permits to study the different
aspects of dynamic trajectory planning in a unified way. Thus
the constraints imposed by both the moving obstacles and the
dynamic constraints can be represented by static forbidden re-
gions of state-time space. Besides a trajectory maps to a curve
in state-time space hence dynamic trajectory planning simply
consists in finding a curve in state-time space.

Then we apply this new concept in order to determine a time-
optimal trajectory for a car-like robot subject to dynamic con-
straints and moving along a given path on a dynamic planar
workspace. We present an approximate method which searches
the solution trajectory over a restricted set of canonical tra-
jectories. These canonical trajectories are defined as having
piecewise constant acceleration that can only change its value
at given times. Besides the acceleration is selected so as to be
either minimum, null or maximum. Under these assumptions, it
is possible to transform the problem of finding the time-optimal
canonical trajectory to finding the shortest path in a directed
graph embedded in the state-time space.

1 Introduction
1.1

A robot is designed to perform actions in its workspace (mov-
ing around, grasping and mating parts, etc.). Any such action
usually implies that a motion is made by the robot. This ac-
counts for the importance of motion planning in Robotics. This
importance is naturally reflected in the number and the vari-
ety of research works dealing with motion planning (the reader
is referred to [Latombe, 1990] for a recent and quite complete
survey of this topic). These works can be classified according
to the type of motions which are planned. Thus it is possible
to differentiate between path planning which is characterized by
the search of a continuous sequence of configurations' between
the current configuration of the robot and its goal configura-
tion, and trajectory planning which is concerned with the time
history of such a sequence.

Dynamic Trajectory Planning

Path planning is restricted to the geometric aspects of motion
planning. The only constraints which can be taken into account

1 The configuration of a robot is a set of independent parameters
of minimal cardinality which uniquely defines the position and orien-
tation of every point of the robot.

are time-independent constraints such as stationary obstacles
and kinematic constraints, 1.e. constraints involving the configu-
ration parameters of the robot and their derivatives. Depending
on whether it is holonomic or not?, a kinematic constraint either
reduces the set of allowed configurations or restricts the geomet-
ric shape of feasible paths (see [Barraquand and Latombe, 1990]
for more details).

On the other hand, trajectory planning with its time dimen-
sion permits to take into account time-dependent constraints
such as moving obstacles and the the dynamic constraints of
the robot, i.e. the constraints imposed by the dynamics of the
robot and the capabilities of its actuators.

Path planning has been extensively studied in the past twenty
years. Whereas less attention has been paid to trajectory plan-
ning. And yet, when planning the motion of an actual robot,
it is important to take into account the various constraints
which restrict its motion capabilities and especially dynamic
constraints. It is also important to deal with moving obsta-
cles since an actual workspace will often be dynamic, i.e. with
moving obstacles.

These two points, moving obstacles and dynamic constraints,
have been addressed in the past, but, as far as we know, never
simultaneously? and it is our goal to try to do so. Thus, in
this paper, we address dynamic trajectory planning which
is defined as trajectory planning for a robot subject to dynamic
constraints and moving in a dynamic workspace.

1.2 Contribution of the Paper

The main contribution of this paper is the novel concept of
state-time space which is a tool to formulate dynamic tra-
jectory planning problems. In this respect, it is similar to the
concept of configuration space [Lozano-Perez and Wesley, 1979]
which is a tool to formulate path planning problems. State-time
space permits to study the different aspects of dynamic trajec-
tory planning, i.e. moving obstacles and dynamic constraints,
in a unified way. As we will see further down, it stems from two
concepts which have been used before in order to deal respec-
tively with moving obstacles and dynamic constraints, namely
the concepts of configuration-time space, 1.e. the configuration
space augmented of the time dimension, and state space, i.e.
the space of the configuration parameters and their derivatives.
Merging these two concepts leads naturally to state-time space,
i.e. the state space augmented of the time dimension. In this
framework, the constraints imposed by both the moving obsta-
cles and the dynamic constraints can be represented by static

2 A kinematic constraint is holonomic if it is integrable, i.e. if the
derivative of the configuration parameters can be eliminated.

3Except in [Fujimura and Samet, 1989] and [(’)’Dﬁnlaing7 1987]
but with far too simplifying assumptions.
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to a curve in state-time space hence dynamic trajectory plan-
ning simply consists in finding a curve in state-time space, 1.e. a
continuous sequence of state-times between the current state of
the robot and a goal state. Such a curve must obviously respect
additional constraints due to the fact that time is irreversible
and that velocity and acceleration constraints translate to ge-
ometric constraints on the slope and the curvature along the
time dimension. However it is possible to extend some basic
path planning methods in order to solve the problem at hand
(see [Latombe, 1990]).

For the sake of clarity, we have chosen to present the concept
of state-time space in the simple, yet rich enough, case of a
car-like robot .4 which moves along a given path S on a planar
workspace W cluttered up with stationary and moving obsta-
cles. It is assumed that & is collision-free with the stationary
obstacles of W and that it respects the kinematic constraints of
A*. The problem then is to compute a trajectory for A which
follows &, is collision-free with the moving obstacles of W and
satisfies the dynamic constraints which A is subjected to (en-
gine force bounds, sliding and velocity constraints). In this case,
it is possible to reduce a configuration of A to a single variable
s which represents the distance traveled along §. Accordingly
the state-time space of A is a ‘simple’ three-dimensional space
sxs$xt where t represents the time dimension. Depending on
the geometry of &, the dynamic constraints of .4 are trans-
formed into constraints on the velocity s and the acceleration
3. The constraints on $ translate into a velocity limit curve in
the sxs plane. On the other hand, the constraints imposed by
the moving obstacles yield forbidden regions of the sxt plane.
As we will see further down, both these constraints can be rep-
resented by static forbidden regions in the state-time space of
A and planning a trajectory for .4 simply consists in finding a
curve in state-time space which avoids these forbidden regions
and respects extra acceleration constraints.

An additional contribution of this paper is an approximate
method which determines a near-time-optimal trajectory for
A. The search for the solution trajectory is performed over
a restricted set of canonical trajectories hence the near-time-
optimality of the solution. These canonical trajectories are de-
fined as having piecewise constant acceleration that can only
change its value at given times.
selected so as to be either minimum, null or maximum. Un-

Besides the acceleration is

der these assumptions, it is possible to transform the problem
of finding the time-optimal canonical trajectory to finding the
shortest path in a directed graph embedded in the state-time
space.

1.3 Content of the Paper

The works related to dynamic trajectory planning are reviewed
in §2. Then §3, 4 and 5 describe the different features of the
problem, i.e. the path &, the robot .A and the moving obstacles.
Afterwards §6 gives a formal statement of the state-time space
of A and the problem which is to be solved. Finally §7 presents
the algorithm developed in order to solve the problem at hand
along with experimental results.

2 Related Works

To our knowledge, [Fujimura and
Samet, 1989] and [O’Dinlaing, 1987] are the only references
which address dynamic trajectory planning. However they do

“How & is obtained is beyond the scope of this paper. & may be
given a priori or result from a preliminary path planning step.
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there is a large body of works which are of a particular interest
to our problem, namely the works which address either moving
obstacles or dynamic constraints. They are reviewed in the next

two sections.

2.1

A general approach which deals with moving obstacles is the
configuration-time space approach which consists in adding
the time dimension to the robot’s configuration space. The
robot maps in this configuration-time space to a point mov-
ing among stationary obstacles. Accordingly the different
approaches developed in order to solve the path planning
problem in the configuration space can be adapted in order
to deal with the specificity of the time dimension and used
(see [Latombe, 1990]). Among the existing works, we can distin-
guish those based upon extensions of the visibility graph [Erd-
mann and Lozano-Perez, 1986; Fujimura and Samet, 1990;
Kant and Zucker, 1986; Reif and Sharir, 1985] from those
based upon cell decomposition [Fujimura and Samet, 1989;
Shih et al., 1990].

Moving Obstacles

2.2 Dynamic Constraints

There are several results for time-optimal trajectory plan-
ning for Cartesian robots subject to bounds on their velocity
and acceleration [Canny et al., 1990; O’Dl’mlaing, 1987]. Be-
sides optimal control theory provides some exact results in
the case of robots with full dynamics and moving along a
given path [Bobrow et al., 1985; Shiller and Dubowsky, 1985;
Shiller and Lu, 1990]. Using these results, some authors have
described methods which computes a local time-optimal trajec-
tory [Shiller and Dubowsky, 1989; Shiller and Chen, 1990]. The
key idea of these works is to formulate the problem as a two-
stage optimization process: optimal motion time along a given
path is used as a cost function for a local path optimization
(hence local time-optimality).

However the difficulty of the general problem and the need
for practical algorithms led some authors to develop approx-
imate methods. Their basic principle is to define a grid
which is searched in order to find a near-time-optimal solu-
tion. Such grids are defined either in the workspace [Shiller and
Dubowsky, 1988], the configuration space [Sahar and Holler-
bach, 1985], or the state space of the robot [Canny et al., 1988;
Donald and Xavier, 1990; Jacobs et al., 1989].

3 The Path &

As mentioned earlier, the robot .4 moves along a given path S
which is collision-free with the stationary obstacles of W and
respects the kinematic constraints of .4. In this section, we
start by briefly presenting the kinematic model of a car-like
robot so as to derive the kinematic constraints which are taken
into account in the definition of S.

3.1 The Kinematic Model of A

Let A be a car-like robot.
directional front wheels. It is assumed that .4 moves on the
plane IR?*. A configuration of A is uniquely defined by the
triple (=, y,8) € IR*x[0, 27 where (z,y) are the coordinates of
the rear axle midpoint R and 6 the orientation of A (Fig. 1).

It has two rear wheels and two

A body moving on the plane has only one centre of rotation.
Let G be A’s center of rotation. Assuming pure rolling condi-
tion, a wheel can only move in a direction which is normal to
its axle. Therefore, when .4 is moving, the axles of its wheels
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Figure 1: a car-like robot.

intersect at (G. The orientation of the rear wheels being fixed,
G is located on the rear wheels axle (possibly at an infinite dis-
tance) and R moves in a direction which is normal to this axle.
In other words, the following constraint holds :

tanf = g/% (1)

Besides, due to the fact that the front wheels orientation is
mechanically limited, the distance p between R and G, i.e. the
curvature radius at point R, is lower bounded:

£ 2 Pmin (2)

Relations (1) and (2) are non-holonomic [Barraquand and
Latombe, 1989]. As we will see further down, they restrict the
geometric shape of feasible paths for A.

3.2 Defining S

A path for A is a continuous sequence of configurations, i.e. a
curve in the zy#-space, which must verify the non-holonomic
constraints (1) and (2). However (1) implies that the zy-curve
followed by R, say YT, completely defines a path for A. As a
consequence of (1), T must be piecewise of class C* (a curve is
of class C™ if it is differentiable n times and if its n'" derivative
is continuous). Besides (2) implies that the curvature of T
(wherever it is defined) must be upper-bounded by 1/ppi, and
that the cusp points of Y should correspond to inversion of
A’s direction of motion (back-up manceuvres). A path which
respects these three constraints is feasible but, it is important
to note that .4 has to stop at each cusp point (so as to change
its direction of motion) and whenever a curvature discontinuity
occurs (so as to change its front wheels’ orientation).

Our main concern being in planning ‘high’ speed and for-
ward motions only, S is defined as a planar curve of class C?
whose curvature is upper-bounded by 1/pmin. The C? property
insures that the path is manceuvre-free and that .A could fol-
low it without having to stop (no cusp points and no curvature
discontinuity).

Assuming that .A moves along S, it is possible to reduce a
configuration of A to the single variable s which represents the
distance traveled along S.

A LLC AUV UL Y

In this section, we start by presenting the dynamic model of A
that is used®. Then we describe the dynamic constraints that
are taken into account.

4.1 The Dynamic Model of A

A is modelled as a rigid body supported by four wheels with
rigid suspensions. For the sake of simplicity, the effect of steer-
ing is ignored. Although simple, this model is rich enough in the
sense that the constraints associated are truly dynamic (they
lead to state-dependence of the set of allowable accelerations).

’,,

Figure 2: the frame attached to A.

Without loss of generality, it is assumed that the i axis of
the frame attached to A coincides with the unit vector tangent
to the path & at point R (Fig. 2). The b axis points in the
positive direction normal to the plane. The % axis is chosen so
that (t_: i, g) is right-handed. Note that the line of the radius
of curvature at point R coincides with 7.

The motion of A along S obeys Newtonian dynamics. The
external forces acting on .4 are the gravity force G and the
ground reaction R which can be decomposed into their perpen-
dicular components:

é:

-

R =

—mgg (3)
Ret+ R, i+ Ry b (4)

where m is the mass of A and g the gravity constant. The equa-
tion of motion of A can be expressed in terms of the tangential
velocity s and the tangential acceleration §, namely:

G’—l—ﬁ:mét_’—l—mmfﬁ

where k. is the signed curvature of the path at position s (KS
is positive if the radial direction coincides with @ and negative
otherwise, —1/ppin < k¢ <1/pmin). Using (3) and (4), this
equation can be rewritten in the following set of equations:

R, = mksé (6)
Ry = myg (7)

5This model is the two-dimensional instance of the model pre-
sented in [Shiller and Chen, 1990].



LYqudtiolls 191 L0 L) Tepleselll tile 101ces Teqgulicd 1O 1lallitalll
the velocity $ and the acceleration § of A at a given position s
along the path.

4.2 The Dynamic Constraints of A

Three dynamic constraints are taken into account (engine force,
sliding and velocity constraints). They are presented in the next
three sections. Afterwards they are transformed into constraints
on the tangential velocity s and the tangential acceleration s.

4.2.1 Engine Force Constraint

When the robot is moving, the torque applied by the engine
on the wheels translates into a planar force F' whose direction
is ¥ and whose modulus is m3. This force is bounded by the
maximum (resp. minimum) equivalent engine force:

FminSFSFmax (8)

These bounds are assumed to be constant and independent of
the velocity.

4.2.2 Sliding Constraint

The component of R in the plane 7 x i@ represents the friction
that is applied from the ground to the wheels. This friction is
constrained by the following relation:

VR4 R, < uRy (9)

where p is the friction coefficient between the wheels and the
ground. If this constraint is violated then .A will slide off the
path.

4.2.3 Velocity Constraint

Our main constraint being in planning forward motions, the
velocity s is constrained by the following relation:

0 <5 < $max

(10)
where $max is the highest velocity allowed.

4.2.4 Tangential Acceleration Constraints

The engine force constraint (8) yield the following feasible ac-
celeration range:
Fin <§< Fmax (11)
m m
Besides substituting (5), (6) and (7) in (9) and solving it
for § yields the following relation which expresses the feasible
acceleration range due to the sliding constraint:

_‘/U292_K5254§§§‘/H292_Ks254 (12)

The final feasible acceleration range is therefore given by the
intersection of (11) and (12):

Flni ;
5 > max(ﬂ,— u2g2—ns2s4)
m
. . Fmax 2.2 224
and § < min | —,\/p2g% — K25 (13)
m

4.2.5 Tangential Velocity Constraints
Velocity $ must respect (10). Besides the argument under the

square roots in (12) should be positive. Accordingly $ must
respect the following constraint:

IR
] =7 = Tws

(14)
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tersection of (10) and (14):
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The latter constraint can be expressed as a set of forbidden
states, 1.e. points of the sx s plane. Let 7V be this set of states,

it is defined as:

9

)}
5 The Moving Obstacles
A moves in a workspace W = IR? which is cluttered up with
stationary and moving obstacles. The path & being collision-
free with the stationary obstacles, only the moving obstacles
have to be considered when it comes to planning .A’s trajectory.

Let Bi,i € [1,m], be the set of moving obstacles. Let B;(t)

denotes the region of W occupied by B; at time ¢ and A(s) the
region of W occupied by A at position s along S. If, at time
t, A is at position s and if there is an obstacle B; such that
B;(t) intersects A(s) then a collision occurs between 4 and B;.
Accordingly the constraints imposed by the moving obstacles
on A’s motion can be represented by a set of forbidden points
of the sxt plane. Let 7B be this set of forbidden points, it is
defined as:

(15)

0 < s <min (émax,

TV = {(s,é) | 0 > 5> min (émax,

TB ={(s,t) | I € [1,m], A(s) N Bi(t) # 0}

6 The State-Time Space of A

As mentioned earlier, the configuration of A is reduced to
the single variable s which represents the distance traveled
along S. A state of A is therefore represented by a pair
(s,8) €0, smax]x[0, $max]| where smax is the arc-length of S.

A state-time of A is defined by adding the time di-
mension to a state hence it is represented by a triple
(s,8,t) € [0, smax]x[0, $max] x[0,00). The set of every state-
time is the state-time space of A, it is denoted by S7.

A state-time is admissible if it does not violate the no-collision
and velocity constraints presented earlier. Before defining an
admissible state-time formally, let us define 7B’, the set of state-
times which entail a collision between .A and a moving obstacle.

TB’ is simply derived from 7B:
TB' = {(s,4,1) | Ji € {1, m}, A(s) N B;(t) # 0}

Similarly we define 7)’, the set of state-times which violate
the velocity constraint (15). 7V’ is simply derived from 7V:

)

Accordingly a state-time ¢ is admissible if and only if:

TV = {(s, 5,t) | 0> § > min (émax,

q € ST\(TB'UTV)

where E\ F' denotes the complement of F'in E. The set of every
admissible state-time is the admissible state-time space of
A, it is denoted by AS7T and defined as:

AST = ST\ (T8 u TV

Figure 3 depicts the state-time space of A in a simple case
where there is only one moving obstacle which crosses S.
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Figure 3: 87, the state-time space of A.

In this framework, a trajectory I' for .4 between an initial
state (s, $;) and a final state (sy, $5) can be represented by a
curve of 87, i.e. a continuous sequence of state-times between
the initial state-time (s;, $;, 0) and a final state-time (s, $y,
tg). ty is simply the time of the trajectory I'. The acceleration
profile of T' is a continuous map §: [0,{;]—IR. 3(¢) represents
the acceleration which is applied to .4 at time ¢. Note that the
velocity $ and position s of A along S are respectively defined
as the first and second integral of § subject to an initial position
and velocity. In order to be feasible, I' has to verify the different
constraints presented in the previous sections, i.e. it must be
collision-free with the moving obstacles and respect (13) and
(15). Figure 4 depicts an example of trajectory between (s;, $;)
and (sy, $¢).

Finally, we can formally state the problem which is to be
solved. Let (s;, $;) be the start state of A and (sy, $5) its goal
state. A trajectory I' : [0,1]— 87 is a solution to the problem
at hand if and only if:

1. T(0) = (si, $:,0) and T'(1) = (sy, ¢, 15).
2. I' C AST.
3. I's acceleration profile respects (13).

Naturally, we are interested in finding a time-optimal trajec-
tory, i.e. a trajectory such that ¢; should be minimal.

7 A Solution Algorithm

7.1 The General Idea

The method that we have developed in order to solve the prob-
lem at hand, i.e. to find a curve I' of the state-time space
87 which respect the various constraints presented in the pre-
vious section, was initially motivated by the work described
in [Canny et al., 1988]. For reasons which will be discussed
later in §7.6, we follow the paradigm of near-time-optimization,
i.e. instead of trying to find out the exact time-optimal trajec-
tory between an initial and a final state, we compute an ap-
proximate time-optimal solution by performing the search over

(Sf’ Sf)

(54, $i)

Figure 4: a trajectory between (s;, s;) and (sf, $f).

a restricted set of canonical trajectories. These canonical tra-
jectories are defined as having piecewise constant acceleration
§ that can only change its value at given times kr where 7 is
a time-step and k some positive integer. Besides § is selected
so as to be either minimum, null or maximum. Under these as-
sumptions, it is possible to transform the problem of finding the
time-optimal canonical trajectory to finding the shortest path
in a directed graph G embedded in S7. The vertices G form
a regular grid embedded in §7 while the edges corresponds
to canonical trajectory segments that each takes time 7. The
next sections respectively present the canonical trajectories, the
graph G, the search algorithm and experimental results. Finally
we discuss the interest of such an approach.

7.2 The Canonical Trajectories

The definition of the canonical trajectories depends on discretiz-
ing time — a time-step 7 is chosen — and selecting an accel-
eration § which is either minimum, null or maximum. From a
practical point of view, the set of accelerations is discretized —
an acceleration-step 4 is chosen — and the acceleration applied
to A at each time-step, i.e. the minimum, null or maximum one,
is selected from this discrete set. As we will see further down,
this discretization yields a regular grid in $7.

First let us determine A, the discrete set of accelerations.
The minimum (resp. maximum) acceleration &i, (resp. $max)

which can be applied to .A when it traverses S can be derived
from (13):

. _ Fmin 2 o
Smin = Mmax T’ —VHrg
. . Frnax 2 2
Smax = min m \/U

The interval [Smin, Smax] is the maximum range of acceler-
ations allowed along &. Given the acceleration step §, A is
defined in the following way:

A:{z’6|iEJN,6[5m%] gz’g&Lsm%J}
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Smax] its acceleration profile. T is a canonical trajectory if

and only if:

e § only changes its value at times k7 where
keI, 0<k<| /7).
o Tet 35T (vesp. 557..) be the minimum (resp. maximum)

acceleration allowed w.r.t. the state of A at time kr. §(k1)
is chosen from A so as to be either null or as close as

possible of sfnc and 557, Thus we have:

(hr) € (o[ mn, o, (Tmax))

Such a trajectory is very similar to the so-called ‘bang-bang’
trajectory of the control literature except that, in our case, the
acceleration switches occur at regular time intervals.

7.3 The State-Time Graph G

Let ¢ be a state-time, i.e. a point of ST. It is a triple (s, $, ¢).
It can equivalently be represented by ¢(t) = (s(t),5(¢)). Let
q(k7) = (s(k7), $(k7)) be a state-time of A and ¢((k+1)7) one
of the state-times that .4 can reach by a canonical trajectory of
duration 7. ¢((k 4 1)7) is obtained by applying an acceleration
5 € A to A for the duration 7. Accordingly we have:

S((k+1)7) =
(k4 D7) =

s(kt) + s(kT)T + %57’2
s(kT) + 87

By analogy with [Canny et al., 1988], the trajectory between
q(k7) and ¢((k + 1)7) is called a (8, 7)-bang. The state-time
¢((k +1)7) is reachable from ¢(k7). Obviously a canonical tra-
jectory is made up of a sequence of (§, 7)-bangs.

Let ¢(mt), m > k, be a state-time reachable from g¢(k7).
Assuming that $(k7) is a multiple of 67, it can be shown that
the following relations hold for some integers a1 and ao:

w
N
3
3
.y
|

s(kT) + a1 %57’2
$(kT) + azér

w
PN
3
3
.y
|

Thus all state-times reachable from one given state-time by a
canonical trajectory lie on a regular grid embedded in §7. This
grid has spacings of §7°/2 in position, of 67 in velocity and of
T in time.

Consequently it becomes possible to define a directed graph
G embedded in §7. The nodes of G are the grid-points while
the edges of G are (é,r)—bangs between pairs of nodes. @G is
called the state-time graph, Let  be a node in G, the state-
times reachable from 5 by a (§, 7)-bang lie on the grid, they are
nodes of G (Fig. 5). An edge between 5 and one of its neigh-
bours represents the corresponding (&, 7)-bang. A sequence of
edges between two nodes defines a canonical trajectory. The
time of such a canonical trajectory is trivially equal to 7 times
the number of edges in the trajectory. Therefore the shortest
path between two nodes is the time-optimal canonical trajec-
tory between these nodes.

Let s = (sy, $;) be the initial state of A and ¢ = (sy, $5) be its
goal state. Without loss of generality it is assumed that the cor-
responding initial state-time s* = (s;, $;, 0) and the correspond-
ing set of goal state-times G* = {(sy, §f, k7) with k& > 0} are
grid-points. Accordingly searching for a time-optimal canonical
trajectory between s and g is equivalent to searching a shortest
path in G between the node s* and a node in G*.

&+ 1)r

kr R

Is :

Figure 5: G, the graph embedded in §7.

|

From a practical point of view, the state-time graph G is
embedded in a compact region of S7. More precisely, the time
component of the grid-points is upper bounded by a certain
value tmax which can be viewed as a time-out. The number
of grid-points is therefore finite and so is G. Accordingly the
search for the time-optimal canonical trajectory can be done in

a finite amount of time.

7.4 Searching the State-Time Graph
7.4.1 The Algorithm

We use an A* algorithm to search G [Nilsson, 1980]. Starting
with s* as the current node, we expand this current node, i.e.
we determine all its neighbours, then we select the neighbour
which is the best according to a given criterion (a cost function)
and it becomes the current node. This process is repeated until
the goal 1s reached or until the whole graph has been explored.
The time-optimal path is returned using back-pointers. In the
next two sections, we detail two key-points of the algorithm,
namely the cost function assigned to each node and the node
expansion.

7.4.2 The Cost Function

A* assigns a cost f(5) to every node 5 in G. Since we are
looking for a time-optimal path, we have chosen f(7) as being
the estimate of the time-optimal path in G connecting s* to G*
and passing through 5. f(n) is classically defined as the sum of
two components g(n) and h(n):

o g(n) is the time of the path between s* and 7, i.e. the time
component of 7.

e h(n) is the estimate of the time-optimal path between 7
and an element of G*, i.e. the amount of time it would take
A to reach g from its current state with a ‘bang-coast-bang’
acceleration profile® in an obstacle-free workspace. When
such an acceleration profile does not exist, h(n) is set to

—+o0.

The heuristic function h(n) is trivially admissible, thus A*
is guaranteed to generate the time-optimal path whenever it
exists [Nilsson, 1980]. Besides the fact that f(n) is locally con-
sistent improves the efficiency of the algorithm.

6].e. maximum acceleration, null acceleration and minimum
acceleration.
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The neighbours of a given node n = (s, $, kr) are the nodes
which can be reached from 5 by a (8, r)-bang. As mentioned
carlier, § € {387 46, 0, [&hlax — 81}, &7 and 35l
have to be computed so as to ensure that the acceleration con-
straint (13) is respected along the corresponding (&, 7)-bang.
This computation is done in a conservative way. First the far-
thest position, say sT, that A could reach from its current state
is determined. It is the position reached after a (émax, T)—bang.
Then the maximum curvature between s and s is determined
and substituted into (13) so as to yield the desired accelera-
tion bounds sfncn and $f7T.. Finally it remains to check that
the (8, 7)-bang associated with each of the candidate neighbours
does not violate the velocity and collision avoidance constraints,

i.e. that the (8, 7)-bang is included in AST.

7.5 Implementation and Experiments

The algorithm presented earlier has been implemented in C on
a Sun SPARC I. Two examples of trajectory planning are de-
picted in Fig. 6 and 7. In each case, there are two windows:
a trace window showing the part of the graph which has been
explored and a result window displaying the final trajectory.
Any such window represents the sxt plane (the position axis is
horizontal while the time axis is vertical; the frame origin is at
the upper-left corner). The thick black segments represent the
trails left by the moving obstacles and the little dots are points
of the underlying grid. Note that the vertical spacing of the
dots corresponds to the time-step 7. In these experiments, the
obstacles are are assumed to keep a constant velocity. In both
examples, A starts from position 0 (upper-left corner) with a
null velocity, it is to reach position smax (right border) with a
null velocity.

[] lane 0 {trace window)

Lt r

Figure 6: experimental results.

7.6 Discussion on the Proposed Solution

The running time of the search algorithm depends on the size
of the graph G which is to be explored. In turn this size is
directly related to the value of the time-step 7 — the smaller
7, the higher the number of vertices in G. On the other hand,
we intuitively” feel that the quality of the approximation is
also related to the value of 7 — the smaller 7, the better the

"This intuition is confirmed in [Canny et al, 1988] where it is
shown that, for a correct choice of 7, any safe trajectory can be
approximated to a tolerance ¢ by a safe canonical trajectory.

%] adie U LUl Winiulny § o W

Figure 7: experimental results.

approximation. Thus it is possible to trade off the computation
speed against the quality of the solution.

This property is very important and we would like to advo-
cate this type of approach when dealing with an actual dynamic
workspace. In such a workspace, 1t is usually impossible to have
a full a priori knowledge of the motion of the moving obstacles.
It is more likely that the knowledge that we have of their mo-
tions be restricted to a certain time interval, i.e. a time horizon.
This time horizon may represent the duration over which an es-
timation of the motions of the moving obstacles is sound. The
main consequence of this assumption is to set an upper bound
on the time available to plan the motion of our robot (in a
highly dynamic workspace, this upper bound may be very low).
In this case, an approach such as the one we have presented is
most interesting because its average running time can be tuned
w.r.t. the time horizon considered.

8 Conclusion

In this paper, we addressed dynamic trajectory planning
which is defined as trajectory planning for a robot subject to
dynamic constraints and moving in a dynamic workspace, i.e.
with moving obstacles.

To begin with, we proposed the novel concept of state-time
space as a tool to formulate dynamic trajectory planning prob-
lems. The state-time space of a robot is its state space aug-
mented of the time dimension. It permits to study the different
aspects of dynamic trajectory planning in a unified way. Thus
the constraints imposed by both the moving obstacles and the
dynamic constraints can be represented by static forbidden re-
gions of state-time space. Besides a trajectory maps to a curve
in state-time space hence dynamic trajectory planning simply
consists in finding a curve in state-time space, i.e. a continu-
ous sequence of state-times between the current state of the
robot and a goal state. Such a curve must obviously respect
additional constraints due to the fact that time is irreversible
and that velocity and acceleration constraints translate to ge-
ometric constraints on the slope and the curvature along the
time dimension. However it is possible to extend some basic
path planning methods in order to solve the problem at hand
(see [Latombe, 1990]).

Then we presented an approximate method which uses the
concept of state-time space in order to determine a near-time-
optimal trajectory for a robot subject to dynamic constraints
and moving along a given path on a dynamic planar workspace.
The search for the solution trajectory is performed over a re-
stricted set of canonical trajectories which are defined as having
piecewise constant acceleration that can only change its value
at given times. Besides the acceleration is selected so as to be
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we transformed the problem of finding the time-optimal canon-
ical trajectory to finding the shortest path in a directed graph
embedded in the state-time space.
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