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Abstract
Multiple sites of phosphorylation on human estrogen receptor a (ERa) have been identified by a
variety of methodologies. Now with the emerging availability of phospho-site-specific antibodies to
ERa, the relevance of phosphorylation of ERa in human breast cancer in vivo is being explored.
Multiple phosphorylated sites in ERa can be detected in multiple breast tumor biopsy samples,
providing evidence of their relevance to human breast cancer in vivo. Published data suggest
that the detection in primary breast tumors of phosphorylation at some sites in ERa is associated
with a better clinical outcome while phosphorylation at other sites is associated with a poorer
clinical outcome most often in patients who have been treated with tamoxifen. This suggests
the hypothesis that phospho-profiling of ERa in human breast tumors to establish an ‘ERa
phosphorylation code’, may be amore accurate marker of prognosis and/or response to endocrine
therapy in human breast cancer.
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Introduction

Targeting the estrogen receptor (ER) signaling

pathway using the selective ER modulator (SERM),

tamoxifen, is efficacious in both treating and prevent-

ing breast cancer (Jensen & Jordan 2003, Jordan 2003).

Owing to the central role of ER in estrogen signaling,

the ER status of breast tumors has long been used to

successfully predict response to endocrine therapy

(Osborne et al. 1996). There are two known ERs, ERa
and ERb, but the ER status of breast tumors and its

clinical correlations are based on the measurement of

generally only ERa (Harvey et al. 1999) and current

clinical assays measure ERa immunohistochemically

(IHC) with specific antibodies. The impact of ERb
remains unclear although roles in human breast cancer

have been suggested (Leygue et al. 1998, Murphy &

Watson 2006, Skliris et al. 2006, Gruvberger-Saal

et al. 2007, Honma et al. 2008).

While ERa expression is the gold-standard bio-

marker for predicting response to endocrine therapy, it

is imperfect, predicting treatment response in w50% of

ERC tumors (Osborne 1998, Clarke et al. 2003).
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Therefore, many ERC tumors are de novo resistant to

tamoxifen without any prior exposure. Furthermore,

many of these tumors that initially respond to tamoxifen

can acquire resistance during and after tamoxifen

therapy. This so-called progression from hormone

dependence to independence is an important clinical

problem limiting the long-term usefulness of the rela-

tively nontoxic endocrine therapies as well as possibly

impacting the use of SERMs as preventative agents.

Most acquired tamoxifen resistance (70–80%)

occurs despite continued expression of ERa (Robertson

1996). Newer therapies targeting ER via different

mechanisms, such as aromatase inhibitors (AI;

Goss et al. 2003) and selective ER downregulators

(e.g. ICI182780; Robertson 2002), or potential new

therapies, such as electrophilic modulators of ER zinc

fingers (Wang et al. 2004), were all developed from

basic research into molecular mechanisms of ER action,

but development of therapy resistance is likely also

to be a problem clinically. Understanding molecular

mechanism(s) of ER action still holds promise for iden-

tifying complementary and/or alternative approaches

targeting other levels of ER signaling to treat ERC
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breast cancer. Such knowledge may also identify ways

to circumvent resistance, as well as offering new

biomarkers beyond ERa for the more precise prediction

of therapy responses. Current downstream markers of

ERa activity such as progesterone receptor (PR)

improve prediction (Bardou et al. 2003), but remain

imperfect, supporting the need for other biomarkers to

assist in the accurate prediction of treatment response.
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Figure 1 Multiple phosphorylated sites in ERa have been
identified by a variety of approaches as listed in Table 1. These
are shown schematically in the figure that depicts different
structural (A, B, C, D, E) and functional domains: activation
function 1 (AF1), DNA-binding domain (DBD), hinge region, and
ligand-binding domain (LBD) of human ERa.
Molecular mechanisms of estrogen action
and possible mechanisms of tamoxifen
resistance

Basic research has significantly increased the knowl-

edge of the molecular mechanisms of ER action (Hall

et al. 2001, Nawaz & O’Malley 2004). Multifaceted

mechanisms underlying estradiol (E2) action have been

identified. These include multiple ERs and variants

(Murphy et al. 2003); multiple subcellular localization

sites (Murphy et al. 2003); multiple transcription

coactivators and corepressors (McKenna et al. 1999);

multiple posttranslational modifications (PTMs;

Nawaz & O’Malley 2004); multiple levels of cross

talk with other signaling pathways (Murphy et al.

2003); and multiple levels of control of ER expression,

including proteasomal-mediated degradation (Reid

et al. 2003). Alterations at any one of these levels

could affect responsiveness to SERMs and/or AIs.

There is evidence that multiple mechanisms are

involved in altered SERM action during progression

from hormone dependence to independence in breast

cancer (Clarke et al. 2003, Murphy et al. 2003, Santen

et al. 2004). In particular, growth factor receptor

signaling pathways are frequently upregulated during

tumorigenesis and cancer progression. The resulting

increased cross talk with ER signaling is thought to be

a mechanism of endocrine therapy resistance (Osborne

et al. 2005). In part, this is due to kinases, activated by

growth factor signaling, being able to phosphorylate

and alter ERa activity in a ligand-independent manner

(Kato et al. 1995). Effects on ER coactivator activity

are also involved (Font de Mora & Brown 2000). It

should also be noted that phosphorylation may

influence ER protein levels through modulation of

targeting ER for proteasomal degradation. ER can be

lost during progression in 25–30% of ERC tumors and

it has been suggested that in some cases intra-tumoral

factors such as hypoxia, growth factor, and cytokine

signaling may act through phosphorylation of ER to

cause reversible depression of ERa (Cooper et al.

2004, Creighton et al. 2006, Lopez-Tarruella & Schiff

2007, West & Watson 2010).
R2
Phosphorylation sites identified in ERa

ERa can undergo multiple PTMs, for example,

phosphorylation, acetylation, ubiquitylation, and

sumoylation (Lannigan 2003, Weigel & Moore

2007). However, relatively little is known about the

function and regulation of any of the PTMs that ERa
can potentially undergo (Lannigan 2003, Ward &

Weigel 2009) and even less is known about their

relevance in vivo. As shown in Fig. 1, ERa can be

phosphorylated on multiple amino acid residues

throughout the whole protein and within all major

structural domains: the N-terminal A/B domain, i.e.

serine 46 (S46), serine 47 (S47), tyrosine 52 (Y52),

serine 102 (S102), serine 104 (S104), serine 106

(S106), serine 118 (S118), serine 154 (S154), and serine

167 (S167); the DNA-binding or C domain, tyrosine

219 (Y219), serine 236 (S236; Chen et al. 1999); the

hinge or D domain, serine 305 (S305; Michalides et al.

2004), and the ligand-binding domain or E domain,

threonine 311 (T311; Lee & Bai 2002) and tyrosine 537

(Y537; Arnold et al. 1995b). Recently, novel phos-

phorylation sites in ERa were identified (Britton et al.

2008, Williams et al. 2009). Table 1 lists the sites of

phosphorylation in ERa, which have been identified

experimentally, using different methodologies. Detec-

tion of phosphorylation at some but not all of these

sites has been confirmed in human breast tumor biopsy

samples (Table 1).
Some potential functions of
phosphorylation at different sites in ERa

The exact role of phosphorylation at individual or

multiple sites is underexplored although effects on

transcription, nuclear localization, dimerization, DNA

binding, coactivator recruitment, and ligand binding

(Weis et al. 1996, Chen et al. 1999, Endoh et al. 1999,

Likhite et al. 2006) have been demonstrated in cell

culture models (Murphy et al. 2006). More recently,
www.endocrinology-journals.org



Table 1 Phosphorylation sites identified experimentally in human estrogen receptor a

Site of

phosphorylation Domain

Method of

identification

Substrate

source References

Breast tumors

in vivo

Ser46/47 A/B 1 TT/COS1 Williams et al. (2009) ND

Tyr52 A/B 3 TT/HEK He et al. (2010) ND

Ser102 A/B 2 MCF7 Atsriku et al. (2009) ND

Ser104 A/B 2 MCF7 Atsriku et al. (2009) Y

Ser106 A/B 2 MCF7 Atsriku et al. (2009) Y

Ser118 A/B 2 MCF7 Atsriku et al. (2009) Y

Ser154 A/B 2 MCF7 Atsriku et al. (2009) ND

Ser167 A/B 2 MCF7 Atsriku et al. (2009) Y

Ser212 C 2 MCF7 Atsriku et al. (2009) ND

Tyr219 C 3 TT/HEK He et al. (2010) ND

Ser236 C 2 MCF7 Atsriku et al. (2009) ND

Ser282 D 1 TT/COS1 Williams et al. (2009) Y

Ser294 D 1, 2 MCF7 Atsriku et al. (2009) and

Williams et al. (2009)

Y

Ser305 D 3 TT/HeLa Wang et al. (2002) Y

Thr311 E 1, 3 TT/Ishikawa Lee & Bai (2002) Y

Tyr537 E 1 Sf9rER/MCF7 Arnold et al. (1995a) ND

Ser554 F 2 MCF7 Atsriku et al. (2009) ND

Ser559 F 1, 2 MCF7 Atsriku et al. (2009) and

Williams et al. (2009)

Y

1, [32P]H3PO4 labeling; Edman degradation; phosphoamino acid analysis; phosphopeptide mapping. 2, mass spectroscopy. 3, site-
directed mutagenesis; in vitro kinase assay; western blotting. ND, not determined; TT, transient transfection; Y, yes. Adapted from
Murphy et al. (2006) with permission.
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roles of ERa phosphorylation in RNA splicing

(Auboeuf et al. 2002, 2007, Masuhiro et al. 2005)

as well as in ER protein stability (Medunjanin et al.

2005, Grisouard et al. 2007) and regulation of other

types of PTMs (Cui et al. 2004) have been suggested.

A list of experimentally derived important functions

of phosphorylation at different sites in ERa is shown

in Table 2.

Interestingly, within the A/B domain of ERa often

only small effects on transcriptional function were

observed when any one site, e.g. S104, S106, and S118,

was mutated to eliminate phosphorylation. While the

effects of mutating all three sites appeared to be

additive (Le Goff et al. 1994), giving w50% reduction

in transcriptional activity. Importantly, lack of phos-

phorylation of all of these sites does not eliminate

estrogen-induced ERa transcriptional activity. Other

data were reported showing that combinations of

phosphorylation sites affected activity more than

individual sites alone (Joel et al. 1998, Medunjanin

et al. 2005). Furthermore, other data suggest that it is

the combination of phosphorylation sites within ERa
rather than any one individual site that may be

important for mediating effects of any individual

kinase (Rogatsky et al. 1999). The concept that

combinations of PTMs of ERa rather than individual

sites may be of primary importance in affecting

function and response to endocrine therapies is
www.endocrinology-journals.org
emerging (Barone et al. 2010, Skliris et al. 2010) and

supports the hypothesis of a PTM code for ERa, as

discussed below.

Phosphorylation, at least at S118, has been

suggested to be involved in protein turnover via a

proteosome-mediated mechanism (Valley et al. 2005,

Grisouard et al. 2007). How other sites of phosphoryl-

ation may also affect receptor turnover is not clear and

underexplored. However, proteosome-mediated turn-

over of steroid receptors has been shown to be essential

for the dynamic and cyclical nature of receptor

occupancy on target gene promoters, which is in turn

critically important for transcriptional activity (Reid

et al. 2003). Therefore, the further characterization of

how phosphorylation at other sites may also affect

receptor turnover and stability would be of interest.

An important hypothesis that has developed from

laboratory models is that ligand-independent phos-

phorylation of ERa may cause tamoxifen resistance

in vivo. For example, a well-studied p-ERa site

(Lannigan 2003) is S118 (Fig. 1). Both E2 and growth

factors, e.g. epidermal growth factor (EGF) or insulin-

like growth factor 1, stimulate phosphorylation of S118

(Joel et al. 1998, Chen et al. 2002, Lannigan 2003).

Mitogen activated protein kinase (MAPK) (ERK1/2),

an important enzyme activated by growth factor

receptor pathways, can phosphorylate S118 in a

ligand-independent manner in vitro (Kato et al. 1995)
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Table 2 Experimentally identified functional roles of site-specific phosphorylation in estrogen receptor a

Function P-site References

Ligand binding Y537; general phosphorylation Weis et al. (1996) and Arnold et al. (1997)

DNA binding S167; Y219; S236; S305; Y537;

general phosphorylation

Arnold et al. (1995a,b), Weis et al. (1996), Castana et al. (1997),

Chen et al. (1999), Yudt et al. (1999), Shah & Rowan (2005),

Tharakan et al. (2008) and He et al. (2010)

Dimerization Y219; S236; Y537 Arnold et al. (1995b), Chen et al. (1999), Yudt et al. (1999) and He

et al. (2010)

Transcription S46/47; Y52; S104/106; S118;

S167; Y219; S236; S282;

S294; S305; T311; Y537;

S559

Weis et al. (1996), Castana et al. (1997), Joel et al. (1998), Chen

et al. (1999), Endoh et al. (1999), Rogatsky et al. (1999), Lee &

Bai (2002), Tharakan et al. (2008), Williams et al. (2009) and He

et al. (2010)

Coactivator binding S104/106; S118; S305; T311;

Y537

Weis et al. (1996), Endoh et al. (1999), Lee & Bai (2002), Dutertre

& Smith (2003), Shah & Rowan (2005) and Tharakan et al.

(2008)

Protein stability Y52; S118; Y219 Valley et al. (2005), Murphy et al. (2006) and He et al. (2010)

Subcellular localization T311 Lee & Bai (2002)

RNA splicing S118 Masuhiro et al. (2005)

Interaction with other PTMs S305 Cui et al. (2004) and Rayala et al. (2006)

Cell growth/invasion Y52; S118; Y219; S305 Murphy et al. (2006), Tharakan et al. (2008) and He et al. (2010)
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and in vivo (Joel et al. 1998). Interestingly, estrogen

treatment is the most powerful stimulator of phos-

phorylation at S118 and it is independent of MAPK

(ERK1/2; Joel et al. 1998). However, which kinase is

responsible for estrogen-induced p-S118 is not clear.

CDK7, IKKa, and GSK3b are the possible candidates

(Chen et al. 2002, Medunjanin et al. 2005, Park et al.

2005). Since ligand-independent ERa activation may

underlie tamoxifen resistance, and EGFR/HER2

upregulation is associated with clinical resistance to

tamoxifen in breast cancer (Pietras et al. 1995, Dowsett

et al. 2001, Knowlden et al. 2003, Schiff et al. 2004),

a role of p-S118-ERa has been suggested. S167 is

another site of ERa phosphorylation. AKT (Campbell

et al. 2001) and pp90rsk (Joel et al. 1998) can

phosphorylate ERa at S167 and increased p-AKT has

been associated with poor clinical outcome in breast

cancer patients treated with tamoxifen (Kirkegaard

et al. 2005). Also, experimental data suggest that

ligand-independent phosphorylation of S305 may have

a role in tamoxifen resistance in breast cancer cells

as well (Michalides et al. 2004, Holm et al. 2009).

However, the relevance of p-ERa in breast cancer

in vivo is unclear (Lannigan 2003).
Regulation of ERa phosphorylation

Table 3 provides a list of several kinases that have been

shown experimentally to have a role in regulation of

ERa phosphorylation at various sites but the contri-

butions of specific kinases in vivo are not known.

Those studies providing evidence of a potentially
R4
direct role of an individual kinase in phosphorylating

ERa are also shown in Table 3.

Correlation of expression of kinases with individual

p-ERa expression in human breast tumor samples

(Murphy et al. 2004b, Sarwar et al. 2006, Jiang et al.

2007, Yamashita et al. 2008) is one approach to gain

insight into the kinases involved in regulation in vivo.

In this regard, even when p-S118 and/or p-S167 are

found associated with the parameters of an intact

estrogen-dependent signaling pathway and better

clinical outcome on tamoxifen, they are also found to

be positively associated with several activated kinases,

i.e. MAPK/ERK1/2, p90RSK, and/or AKT in primary

human breast tumor biopsy samples. This supports the

possibility that they may be involved in phosphoryl-

ation of ERa in breast tumors in vivo, and/or that an

intact estrogen-dependent signaling pathway is

involved in regulation of pathways involving acti-

vation of MAPK/ERK1/2, p90RSK, and/or AKT

(Cheskis et al. 2008, Santen et al. 2009). In addition,

when only PAK1-positive tumors, independent of

location, were considered, a positive correlation of

p-S305 with nuclear PAK1 expression was found

(Bostner et al. 2010), suggesting a role of PAK1 in

nuclear ERa phosphorylation at S305.

Interestingly, in primary human breast tumor

samples there is generally a lack of correlation of

overexpression of EGFR or HER2 with p-ERa
(Weitsman et al. 2006, Jiang et al. 2007, Murphy

et al. 2009). Although some studies found a weak

positive association of HER2 expression and p-S118

(Jiang et al. 2007, Yamashita et al. 2008, Zoubir et al.

2008), overall most studies suggest that overexpression
www.endocrinology-journals.org



Table 3 Candidate kinases involved in site-specific estrogen receptor a phosphorylation

Site of phos-

phorylation Domain

Kinase

(putative)

Direct

or indirect References

Kinase expressed

in vivo

Ser46/47 A/B PKC ? Williams et al. (2009) Y (Lahn et al. 2004,

Assender et al. 2007)

Tyr52 A/B cABL Direct He et al. (2010) Y (Zhao et al. 2010)

Ser102 A/B GSK3b ? Atsriku et al. (2009) Y (Plotnikov et al. 2008)

Ser104 A/B Cyclin A/CDK2 Direct Rogatsky et al. (1999) Y (Wakasugi et al. 1997)

ERK1/2 ? Thomas et al. (2008) Y (Adeyinka et al. 2002)

GSK3b ? Atsriku et al. (2009) Y (Plotnikov et al. 2008)

Ser106 A/B Cyclin A/CDK2 Direct Rogatsky et al. (1999) Y (Wakasugi et al. 1997)

ERK1/2 ? Thomas et al. (2008) Y (Adeyinka et al. 2002)

GSK3b ? Atsriku et al. (2009) Y (Plotnikov et al. 2008)

Ser118 A/B CDK7 ? Chen et al. (2002)

ERK1/2 Direct/

indirect

Park et al. (2005) Y (Adeyinka et al. 2002)

IKKa Direct Park et al. (2005)

GSK3b Direct Medunjanin et al. (2005)

ILK ? Acconcia et al. (2006) Y (Plotnikov et al. 2008)

EGFR Indirect Santen et al. (2009) Y (Morena et al. 2004)

IGF1R Indirect Santen et al. (2009) Y (Gee et al. 2005)

DNA-PK Direct Medunjanin et al. (2010) Y (Gee et al. 2005)

RET Indirect Plaza-Menacho et al. (2010) Y (Someya et al. 2007)

Ser154 A/B AKT ? Britton et al. (2008) Y (Kirkegaard et al. 2005)

Ser167 A/B p90 RSK1 Direct Joel et al. (1998) Y (Jiang et al. 2007)

S6 K1 Direct Yamnik et al. (2009) Y (Barlund et al. 2000)

AKT Direct ? Campbell et al. (2001)

IKK3 Direct Guo et al. (2010) Y (Kirkegaard et al. 2005)

CK2 Direct Arnold et al. (1994)

RET Indirect Plaza-Menacho et al. (2010) Y (Landesman-Bollag et al. 2001)

Ser212 C ? ? Atsriku et al. (2009) ?

Tyr219 C cABL Direct He et al. (2010) Y (Zhao et al. 2010)

Ser236 C PKA Direct Chen et al. (1999) Y (Miller et al. 1993)

Ser282 D CK2 ? Williams et al. (2009) Y (Landesman-Bollag et al. 2001)

Ser294 D Proline-directed

kinase

? Atsriku et al. (2009) ?

Ser305 D PAK1 Direct Wang et al. (2002) Y (Bostner et al. 2010)

PKA ? Michalides et al. (2004) Y (Kok et al. 2010)

Thr311 E p38 SAPK Indirect Lee & Bai (2002) Y (Gutierrez et al. 2005)

Tyr537 E c-SRC Direct Arnold et al. (1995a) Y (Elsberger et al. 2009)

Ser554 F ? ? Atsriku et al. (2009) ?

Ser559 F CK2 ? Williams et al. (2009) Y (Landesman-Bollag et al. 2001)
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of EGFR and HER2 signaling pathways, at least in

primary breast tumors, is unlikely to be involved

in estrogen independence and tamoxifen resistance

de novo.
Studies of p-ERa in human breast cancer
biopsy samples

Over the past 5 years or so antibodies to specific

phosphorylated sites in ERa have become available,

enabling the determination of the relevance of these

PTMs in human breast tissues in vivo. Validation of

such antibodies for IHC is extremely important and

has been reported in some cases (Holm et al. 2009).

There are also some reports concerning the effect of
www.endocrinology-journals.org
breast biopsy collection and processing times on

phospho-epitope detection (Skliris et al. 2009),

however, such studies are limited in scope (Barnes

et al. 2008).

Published studies to date in which phospho-specific

sites in ERa have been determined using IHC in human

breast tumor biopsy samples are listed in Table 4. The

majority of these studies have focused on p-S118,

p-S167, and p-S305 although more recently other

novel sites have been determined as antibodies become

available or have been custom generated (Skliris et al.

2009). However, more effort is required to generate

reliable, high-quality antibodies suitable for IHC,

western blotting, immunoprecipitation, and chromatin

immunoprecipitation not only for phospho-specific
R5



Table 4 Published studies of the determination of p-estrogen receptor a (ERa) expression in human breast cancer biopsy samples

p-ERa Number of cases References Biomarker association

p-S104/106 301 Skliris et al. (2009) Positive with PR

p-S118 45 Murphy et al. (2004b) Negative with grade

p-S118 113 Murphy et al. (2004a) Positive with PR

p-S118 ? Gee et al. (2005) Positive with PR

p-S118 75 Yamashita et al. (2005) Positive with PRA

p-S118 370 Skliris et al. (2009) Positive with PR

p-S118 301 Sarwar et al. (2006) Negative with grade

p-S118 279 Bergqvist et al. (2006) Positive with PR

p-S118 290 Jiang et al. (2007) Negative with grade

p-S118 16 Yamashita et al. (2009) Decreased expression with neoadjuvant

AI treatment (P!0.0001)

p-S118 80 Zoubir et al. (2008) Decreased expression with neoadjuvant

Tam and AI treatment (PZ0.0001)

p-S167 290 Jiang et al. (2007) Negative with size

p-S167 75 Yamashita et al. (2005) Positive with PRA

p-S167 16 Yamashita et al. (2009) Decreased expression with neoadjuvant

AI treatment (PZ0.0005)

p-S305 377 Holm et al. (2009) Positive with grade

Positive with MI

p-S305 841 Bostner et al. (2010) Positive with small tumor size

p-T311 406 Skliris et al. (2009) Positive with PR

PR, progesterone receptor (ligand binding or IHC); MI, mitotic index; AI, aromatase inhibitor. Adapted from Murphy et al. (2009a)
with permission.
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sites but also for other posttranslationally modified

sites in ERa.

In some of these studies, associations with known

histopathological markers were found and these are

listed in Table 4. Although contradictory results are

sometimes found, possibly due to small numbers of

cases and different patient characteristics in the study

cohorts, differences in scoring and quantification

methods, as well as different definitions of positivity

and negativity, common themes have emerged. First,

in contrast to what was expected, either p-S118 or

p-S167 was found associated with the parameters of

less aggressive and more differentiated tumors as well

as an intact estrogen-responsive signaling pathway

(Murphy et al. 2004b, Jiang et al. 2007).

In addition, recently p-S305 has been a focus;

however, in contrast to p-S118 and p-S167, detection

of p-S305 is more likely to be associated with features

of more aggressive tumors (Holm et al. 2009; Table 4).

In apparent contrast to this latter finding, p-S305 has

also been found to be associated with smaller size

(Bostner et al. 2010). One study also compared the level

of p-S118 and p-S167 expression in primary breast

tumors compared to secondary tumors from 10 patients

after relapse (Yamashita et al. 2005) and found that

there was increased levels of both p-S118 and p-S167 in

the secondary versus the primary tumors, although this

was statistically significant only for p-S118. These
R6
observations suggest the possibility that p-ERa may be

a useful biomarker in metastatic breast cancer as well.

From the above studies it seems that some

phosphorylation sites in ERa such as p-S118 may be

associated with better clinical outcome and others such

as p-S305 may be associated with poor clinical

outcome. Published studies reporting relationships of

p-ERa with clinical outcome in breast cancer are listed

in Table 5.
Association of p-ERa with clinical outcome in

breast cancer

Several studies have now been published where p-ERa
expression has been explored with respect to clinical

outcome in breast cancer patients, most often focusing

on patients treated with tamoxifen. In contrast to what

would have been expected from laboratory model

systems, higher expression of either p-S167 and/or

p-S118 is most often but not always associated with a

better clinical outcome in patients on tamoxifen

therapy (Table 5; Murphy et al. 2004a, Yamashita

et al. 2005, 2008, Jiang et al. 2007). Most recently, the

predictive and prognostic value of p-S118 was assessed

in a randomized controlled trial of no systemic

treatment versus 2 years of adjuvant tamoxifen therapy

(Kok et al. 2009). Improved recurrence-free survival

was found in those patients whose tumors expressed

high levels of p-S118. This study is consistent with our
www.endocrinology-journals.org



Table 5 Clinical outcome studies of p-estrogen receptor a (ERa) expression in human breast cancer

p-ERa

Number

of cases References

Type of

hormonal

therapy Outcome Significance

p-S118 113 Murphy et al. (2004a) Tamoxifen Positive longer RFS PZ0.0018 univariate

p-S118 ? Gee et al. (2005) Tamoxifen Positive longer TTP P!0.009 univariate

p-S118 75 Yamashita et al. (2005) Tamoxifen No effect

p-S118 301 Sarwar et al. (2006) Tamoxifen No effect

p-S118 108/279 Bergqvist et al. (2006) Tamoxifen No effect

p-S118 290 Jiang et al. (2007) Tamoxifen No effect

p-S118 278 Yamashita et al. (2008) Low longer RFS PZ0.0003 multivariate

p-S118 114 Generali et al. (2009) Letrozole Positive better

clinical response

PZ0.004

Neoadjuvant

6 months

p-S118a 239 Kok et al. (2009) Tamoxifen Positive better RFS PZ0.037 multivariate

p-S118 80 Zoubir et al. (2008) AI and Tam

neoadjuvant

Larger decreased

expression

associated with

better outcome

PZ0.017

p-S167 290 Jiang et al. (2007) Tamoxifen Positive longer RFS PZ0.006 univariate

Positive longer OS PZ0.023 multivariate

p-S167 75 Yamashita et al. (2005) Tamoxifen Positive longer RFS PZ0.033 univariate

p-S167 278 Yamashita et al. (2008) High longer RFS PZ0.0002 multivariate

p-S305 377 Holm et al. (2009) Tamoxifen Negative longer RFS PZ0.01 multivariate

p-S305 334 Kok et al. (2010) Tamoxifen No effect aloneb

p-S305 841 Bostner et al. (2010) Tamoxifen No effect aloneb

RFS, relapse free survival; TTP, time to progression; OS, overall survival.
aClinical trial material.
bSignificant when interactions with PKA and/or PAK1 expression considered.
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previously published retrospective analysis (Murphy

et al. 2004a), which we have also recently confirmed in

a larger cohort of patients representing over 300 cases

(Skliris et al. 2010). In addition, there are data to

support the view that combinations of p-S118 with

known biologically relevant biomarkers such as PR

may further improve the prediction of prognosis and

response to endocrine therapy (Murphy et al. 2004a).

Such data support the combined use of biologically

relevant markers for the improved prediction of

therapy response.

Interestingly, the results published by Jiang et al.

(2007) and Yamashita et al. (2008) show that high

levels of p-S167 expression are the better predictor of

benefit from tamoxifen and also suggest that both of

these phosphorylation sites either alone or in com-

bination in primary breast tumors may be useful

biomarkers of endocrine therapy response.

These data strongly support undertaking further

studies, potentially using the tissue microarrays

generated from the collected tissue samples of large

endocrine therapy clinical trials, such as Arimidex,

Tamoxifen, Alone or in Combination (ATAC) trial

(Forbes et al. 2008), to determine the value of

measuring p-S118 and/or p-S167 as more precise
www.endocrinology-journals.org
biomarkers of endocrine therapy response in human

breast cancer. However, standardization of antibodies

and methodologies for such analyses should be decided

upon and used such that the protocols can be more

easily transferred and reproduced in a clinical

laboratory environment. Furthermore, there may be

other novel sites of phosphorylation in ERa that may

be more tightly associated with prognosis and clinical

benefit from endocrine therapies. Supporting such

speculation are recently published data focusing on

some novel phosphorylation sites (Murphy et al.

2009a, Williams et al. 2009, Skliris et al. 2010).

Since the majority of studies so far reported have

only determined p-ERa in primary breast tumors and

therefore only address associations with de novo/

intrinsic endocrine resistance, an important gap in our

knowledge is the relationships of phosphorylated

forms of ERa with acquired resistance in vivo.
Multiple phosphorylated forms of ERa

Detection in any one tumor of multiple phosphorylated

forms of ERa is another emerging theme (Jiang et al.

2007, Yamashita et al. 2008, Skliris et al. 2009, 2010).

In some cases, one p-ERa isoform was positively
R7
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correlated with one or more other p-ERa isoforms

(Yamashita et al. 2005, 2008, Jiang et al. 2007, Skliris

et al. 2009). Furthermore, mass spectroscopy data

(Atsriku et al. 2009) and co-immunoprecipitation data

(Murphy et al. 2009) support the idea that there is a

population of ERa molecules phosphorylated at

multiple sites at least in MCF7 human breast cancer

cells, which endogenously express ERa.

Since estrogen treatment has been shown to increase

phosphorylation at several sites in ERa it is possible

that all of these sites similarly represent a functional

ligand-dependent pathway in human breast tumors

(Lannigan 2003, Murphy et al. 2006, Weitsman et al.

2006, Williams et al. 2007, 2009). Further support for

this conclusion is the observation that both p-S118 and

p-S167 are decreased by neoadjuvant treatment with

AIs (Zoubir et al. 2008, Yamashita et al. 2009) and that

several p-ERa are correlated with the PR status

(Murphy et al. 2004a, Yamashita et al. 2005, Bergqvist

et al. 2006, Sarwar et al. 2006). Another possibility is

that phosphorylation or other PTMs (Cui et al. 2004) at

one site increases the possibility of phosphorylation at

another site (Yang et al. 2007).

It is interesting that the phospho-epitopes predicting

for good clinical outcome are clustered in the

N-terminus of ERa and that the one p-ERa consist-

ently associated with a poor clinical outcome in vivo,

p-S305, is more C-terminal. Our recent studies have

identified two other sites, p-T311 and p-S559 (Murphy

et al. 2009a), that seem to be associated with a poorer

clinical outcome (Skliris et al. 2010), interestingly,

however, T311 and S559 are also located more

C-terminally in the ERa protein. The significance of

this is unclear at the moment, however, taking into

consideration these latter data together with the

p-S305 published data, it would seem that not all

types of p-ERa necessarily predict good prognosis or

outcome to endocrine therapies.

The presence of multiple phosphorylation sites in

ERa (Britton et al. 2008, Murphy et al. 2009a) that

may have differential effects on activity suggests that it

may be necessary to consider the balance of multiple

phosphorylation sites in vivo in terms of predicting

clinical outcome with respect to endocrine treatment

responsiveness. Recently, data have been published

where up to seven different phosphorylation sites in

ERa in any individual tumor were taken into account

by developing a mathematical model that balances the

presence of phosphorylation sites associated with good

clinical benefit and those associated with poor clinical

benefit. The resulting score generated from this

analysis (called the P7-score) was found using multi-

variate analysis to be independently associated with
R8
overall survival and relapse-free survival in patients

treated with tamoxifen (Skliris et al. 2010), raising the

possibility that phospho-profiling of ERa may provide

more precise prediction of prognosis and potentially

treatment response to endocrine therapies. These

interesting results require replication in other cohorts.

Furthermore, since large clinical sample numbers are

required to achieve the statistical power needed when

multiple sites of phosphorylation are to be determined,

the development and use of tissue microarray methods

will facilitate this process.

Most recently the detection of ERb phosphorylated

on S105 in human breast tumor samples was reported

(Hamilton-Burke et al. 2010), and high levels of

nuclear staining for p-S105-ERb were found associ-

ated with good prognosis in breast cancer patients.

Similar to ERa, there are likely to be more sites in

ERb which can be phosphorylated (Sanchez et al.

2010) and can affect function. These data establish the

relevance of p-ERb in breast cancer in vivo and lead to

the speculation that a phosphorylation and/or PTM

code for ERb in breast cancer exists. Therefore,

phosphorylation profiling of both ERs may be more

informative than either alone (Murphy & Watson

2006). This possibility remains to be explored when

more tools, e.g. phospho-site-specific antibodies,

become more widely available.

The concept of PTM codes or profiles is best studied

and functionally relevant for histones (Sims &

Reinberg 2008). But recently, the relevance of a

PTM code for nonhistone proteins, of significance to

steroid receptors, has been underscored using a

knockin allele of an SRC3/AIB1/NCOA3 gene mutated

in four conserved phosphorylation sites that resulted in

marked changes in systemic function, which were

distinct from overexpressing or knocking out the whole

gene (York et al. 2010).
Summary and speculation

Retrospective clinical outcome studies and, more

recently, a randomized clinical trial (Kok et al. 2009)

strongly support a positive association of p-S118 and/

or p-S167-ERa with better clinical outcome to

tamoxifen. Therefore, these two phosphorylation sites,

in contrast to what was predicted from laboratory-

based models, are unlikely to be a mechanism of de

novo resistance to tamoxifen. Furthermore, data have

been published suggesting that p-S118 may also

predict response to AIs (Generali et al. 2009). Their

role in acquired resistance remains to be determined.

In contrast, the results, where p-S305 has been

determined in human breast cancer biopsy samples,
www.endocrinology-journals.org
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support its association with lack of benefit from

tamoxifen treatment. These data, together with the

detection of multiple different phosphorylation sites in

any one human breast tumor, support the hypothesis

that phospho-profiling of ERa in human breast tumors,

to establish an ERa phosphorylation code, may be a

more accurate biomarker of prognosis and/or response

to endocrine therapy.

Furthermore, since other PTMs such as acetylation,

can occur in ERa (Faus & Haendler 2006) by analogy

with the ‘histone code’ (Fischle et al. 2003), an ERa
PTM code may exist, which more accurately reflects

the balance of ligand-mediated and cross talk signal

transduction (ligand-independent) pathways affecting

the breast tumor cells. ERa is pivotal in breast cancer

biology, and it is likely to be an important site, where

integration of diverse signals occurs, to regulate breast

cancer cell growth and survival. This, we suggest, will

be reflected in a PTM code.
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