
Applying Method Data DependencetoTransactions in Object Bases1Peter C.J. Graham and Michael E. Zapp and Ken BarkerDepartment of Computer ScienceUniversity of ManitobaWinnipeg, Manitoba, CanadaCanada R3T 2N2fpgraham,zapp,barkerg@cs.umanitoba.caTechnical Report: 92-07June 1992
1This research was partially supported by the National Science and Engineering Research Council(NSERC) of Canada under an operating grant (OGP-0105566).

AbstractConcurrency control in object based systems is a new area of research that has only justbegun to be addressed. Recent work has proposed using object level locking but this maybe unnecessarily restrictive. Data level locking within an object increases concurrency butalso introduces substantial lock overhead that makes the approach impractical. This paperproposes using a new approach applying method level dependence analysis techniques to objectbases using a nested transaction model. Three algorithms are proposed. The �rst algorithmuses static analysis of methods invoked by user transactions only. The second performs runtimeanalysis of the nested methods invoked by the methods invoked by user transactions. Finally,a third algorithm proposes a hybrid technique that is compatible with both of these techniquesand determines if the acquisition of locks is necessary at runtime or if the method can be invokedwithout the possibility of conict. This algorithm is e�cient, simple, and completely compatiblewith two{phase locking. The complexity of each algorithm and other areas of application ofdependence analysis are also discussed.

Applying Method Data Dependence to Transactions in Object Bases 11 IntroductionThis paper makes an initial examination of the de�nition and uses of dependence in objectbases with nested, atomic, method invocations. It adapts theory developed for optimizingcompilers for application in the domain of object bases and provides a cohesive description ofhow that theory applies. Characteristics of the object base model are exploited to simplify thedependence analysis.The primary goals of dependence analysis in object bases are:1. To provide a less costly means of concurrency control than is provided by conventionalschemes.2. To provide less restrictive concurrency control.3. To do this e�ciently by using a combination of static and runtime analysis.4. To gain insight into the semantics-related issues of dependences between concurrentmethod executions in an object base.This paper contributes by providing algorithms for calculating dependence information inobject bases and for scheduling user transactions using method-level dependence information.Further, some consideration is given to other uses of dependence information in such systemsand a brief discussion of extension to other environments is provided. It does not directlyaddress the orthogonal issues of deadlock handling and serializability.Users who are unfamiliar with the basic concepts of dataow and dependence analysismay wish to consult one or more of [ASU86, Ban88, Wol89, ZC90]. Information on object basesis also widely available [BM91, GK88, Kim90, KGBW90]. Work related to the model is also inthe literature [AE92, HH91, RGN90, RE92] as is work on semantic issues [FO89, GM83].The paper is organized as follows. The next Section discusses the pertinent featuresof our object base model and is followed in Section 3 by a discussion of the notation used.Section 4 explains how dependence may be de�ned in object bases. Section 5 presents threealgorithms for scheduling transactions using dependence information, the last of which improveson conventional locking schemes by decreasing lock overhead. Section 6 draws some conclusionsand discusses future work.2 The Object Base ModelThe following model of object bases and the transactions applied to them is used throughoutthis paper. The model makes reasonable assumptions and is general enough to allow the resultsobtained to be applied to other work in the area. A full description of the model is available inZapp and Barker [ZB92].The object base consists of a collection of existing objects that interact with one anotherby method invocations. It is assumed that objects are brought into existence o�ine usingtechniques not addressed in this paper. Each object maintains its own persistent data and issolely responsible for providing access to that data; through its methods interface. The set ofall object data represents the contents of the object base. Objects commonly invoke methodsin other objects to accomplish their work and this may be done in a directly or indirectlyrecursive way. No real-life assumptions about method invocation are made except to notethat programming practice will tend to limit the method invocation patterns. The operationsperformed by a given object may be conveniently divided into those which access an object's

Applying Method Data Dependence to Transactions in Object Bases 2local data and those operations which \access" non-local data via method invocations on otherobjects.Transactions applied against the object base consist of a collection of method invocationsand possibly a set of local variable de�nitions used to store the results of method invocations.Invoked methods and the methods they may directly or indirectly invoke1 are each executedatomically as nested atomic transactions [Mos85]. The collection of invoked nested methodinvocations from the �rst user initiated invocation to the �nal method invoked forms a calltree.2 It is assumed that all transactions are correctly formed and execute on a consistent objectbase so a serial execution of the method invocations in a given transaction, in the absence ofother transactions, will always produce a new consistent object base. This does not mean thata transaction's method invocations must be executed serially in the order requested, nor does itmean that only a single transaction may be processed at a time. The assumption is a standardone in database research and also provides a known correct execution order which is required fordependence analysis. A natural serial execution ordering also exists for the statements withinindividual methods.Finally, it is assumed that a single global scheduler is assigned the responsibility of over-seeing the execution of each object method invocation requested as a part of a transaction.This allows a single point of control where the derived dependence information for all transac-tions may be applied in scheduling their component method invocations. This assumption isreasonable since a global scheduler is also required for the management of the nested commits.3 NotationIt must be possible to identify speci�c objects and methods and particular instances of methodsarising from their invocations. Furthermore, it must be possible to determine from whichtransaction a given method was invoked. Therefore, some notation will prove useful.The object base is assumed to consist of N objects fOi; 0 � i � N�1g. A given object Oiconsists of ki methods fMj ; 0 � j � ki� 1g each of which consists of a series of statements thataccess the object's variables and a possibly empty set of method invocations. The jth methodof the ith object is denoted Oi:Mj .User transactions are submitted against the object base and are denoted UT i. Each usertransaction consists of a number of calls to methods within objects in the object base and mayalso include its own local variables.3A method invocation of method j within object i from user transaction k is denotedOi:Mkj . If necessary, a speci�c order for a set of method invocations may be speci�ed using thehappens-before [Lam78] (`!') relation. (e.g. Oi:M lr ! Oj :Mms ! Oj :Mnt)This paper adopts the convention of indicating method invocation using a procedure callsyntax. Therefore, a method invocation (including those within a user transaction) may acceptseveral parameters and optionally return an explicit result. (e.g. R = Oi:Mkj (arg1; arg2; : : :))When two entities `Ei' and `Ej ' are found to be dependent, the notation Ei�Ej willindicate dependence. In compiler theory, � is a strictly ordered relation, but in this paper itwill be clear from context when it is ordered or unordered.1We adopt the convention that, unless otherwise explicitly stated, all method invocations may be either director indirect through an arbitrarily long sequence of other invocations.2The tree induced by the pattern of method invocations resulting from one or more user transactions {analogous to a transaction tree with nested transactions [Elm92].3Local variables in user transactions are used to store the intermediate results of method invocations.

Applying Method Data Dependence to Transactions in Object Bases 34 The Notion of Dependence in Object BasesConservative assumptions must always be made with regard to dependences. If some entity isreferenced within a conditional section of code it must be assumed that it is always referencedsince it cannot be determined, prior to runtime, if that section of code will be executed. Simi-larly, if some entity may be referenced at the same time by two transactions then, based onlyon static dependence analysis, they must be serialized.Dependence occurs at a variety of levels. In compiler construction dependence exists be-tween operations, statements, basic blocks, and entire procedures. In object bases, dependenceexists between objects, the methods within them, and references to the data within a givenobject.Regardless of the level, dependence information is used primarily to determine a partial(potentially parallel) order in which the corresponding \entities" may be scheduled which willensure results equivalent to the total (serial) order speci�ed. E�ectively, what is done is thatpotential Read/Write, Write/Read, and Write/Write conicts between entities are detected andthe partial order is constructed so these conicts are avoided.4There are at least two factors that make dependence analysis interesting in an objectbase:� There are natural, hierarchical decompositions to the dependences that arise when meth-ods invoke methods in other objects. Thus, although two objects are distinct (and there-fore access di�erent local data), they may be \dependent" if they both invoke conictingmethods within another object.� Dependences within a single user transaction or object method may be judged accordingto the speci�ed serial execution order of the corresponding code. It is generally assumedhowever that multiple user transactions may be scheduled in any serial order. This meansthat at this level of abstraction, there is no single inherent serial order by which a partialorder for dependence analysis may be built. The transactions are unrelated by any partialorder. Unfortunately, this does not mean that they may all be executed in parallel sincesome may invoke object methods which conict with those others have invoked. Thisresults in what will be referred to as a method-level conict.De�nition 4.1 Object-level dependence occurs between object invocations when either the twoinvocations are to the same object (trivially) or the object methods in question both invokemethods from a common object.An object-level dependence-based scheduling algorithm would operate at the same gran-ularity as object level locking which is too restrictive.De�nition 4.2 Method-level dependence occurs when two methods within an object eitheraccess common object data or both invoke dependent methods from a common object.Method-level dependence analysis provides information used in eliminating the situationwhere two non-conicting concurrent method invocations must wait unnecessarily.De�nition 4.3 Data-level dependence occurs between individual data items within an object.. 4Conicting entities are related in the partial order and therefore will not be executed concurrently.

Applying Method Data Dependence to Transactions in Object Bases 4Since data is isolated within an object, only methods within that object may contain codewhich accesses that data. Dependences involving a given data item therefore only occur withinthe corresponding object. Hence, the execution of methods from di�erent objects may alwaysoccur in parallel up until one or both call a method in another object. Since an object baseexports only its method interface, all that can be done with data level dependence information isto improve the method level dependence information. This might include recognizing methodsthat fail to conict given certain parameter conditions. For example, if some parameter hassome value \r", the corresponding method is known to access data in a read-only fashion. Sucha method invocation is guaranteed not to conict with others that only read that data.5These levels represent decreasing granularity and with it, increasing potential for concur-rency but also greater overhead in dependence analysis.5 Method-Level Dependence AnalysisAs stated in the introduction, the primary goal of this paper is to examine method-level depen-dence and its use in scheduling transactions using our object base model.5.1 Method-Level Dependence Within a Single ObjectWe wish to be able to statically examine two methods in some object (Oi:Mm1 and Oi:Mm2) anddetermine if their concurrent execution could result in a conict which would produce incorrectresults. A conict can arise in two possible ways:� The sets of object data referenced by the two methods may be non-disjoint.� The sets of other methods invoked by the two methods may be non-disjoint. This mayresult in a conict since such methods may contain conicting data accesses.It is simple to construct these two sets to test for disjointness. We de�ne the following:DR(Oi:Mj) : the names of local data which method Mj may access.MR(Oi:Mj) : the names of methods which Mj calls directly and those methods in the sameobjects that conict with those Mj calls directly.MR�(Oi:Mj) : the logical transitive closure of MR when it is viewed as a selection functionfrom the domain of all possible object methods.The set DR speci�es the direct data references made by a method while the set MR�represents the indirect (method) references by enumerating all sub-methods invoked. The setsDR and MR� are referred to as a method's reference sets.Using reference sets, the dependence (Oi:Mm1�Oi:Mm2) between two methods is detectedusing the test:DR(Oi:Mm1) \ DR(Oi:Mm2) 6= �and MR�(Oi:Mm1) \MR�(Oi:Mm2) 6= �5Such data-level dependence information can be used to permit the operations within objects to be performedin parallel on a suitable parallel machine.

Applying Method Data Dependence to Transactions in Object Bases 5It is generally unnecessary to synchronize read accesses to data. Testing for DR set intersectionis thus overly restrictive. It is simple to provide two sets, one specifying local data being read andthe other data being written so that intersections between read accesses can be avoided. For thesake of simplicity, we will refer to only the single DR set. Any method with MR(Oi:Mj) = �will be called a leaf method .The dependency test can be e�ciently implemented by mapping elements of each set topositions in a bit string used to compactly represent that set. Presence of the element in a setis indicated by a `1' in the corresponding bit position in the string while a `0' indicates absenceof the element. Set intersection is e�ciently determined using a bitwise `AND'.Since all of the data items within an object are enumerable, this mapping can be easilydone for the DR sets using well-known techniques used in conventional compiler dataow anal-ysis [ASU86]. Similarly, since all existing object methods in the object base can be enumerated,(and these are all the object methods which may be referenced by an instantiated object) thebitstring representing any MR� set may also be constructed.To determine if two methods conict, the one-way mappings from methods and data-items to bit indices are su�cient. To derive the semantic information that a particular conictarises due to potentially concurrent accesses to a given data object, the inverse mappings arerequired so that bit positions left with a `1' after ANDing may be mapped to their correspondingmethods/data-items. All these computations on sets are done at object compile time and thesets are inexpensively stored along with their associated compiled objects. This means that theset computations introduce no added runtime overhead.An example of the reference sets corresponding to the methods for the objects shown isillustrated in Figure 1. Each object is depicted as a sectioned box whose �rst section lists theobject's local data and whose subsequent sections contain abstractions of its methods. The arcsin the diagram indicate method invocation paths and the DR andMR� sets for each method ineach object are shown. Thus, for example, theMR� set for O23:M1 consists of O3:M2 which iscalled directly and O2:M3 which is called indirectly through O3:M2 and also O3:M1 and O2:M1since they have data conicts with O3:M2 and O2:M3 respectively. The MR� set for O1:M1is empty making it a leaf method. Finally, the DR sets for each method contain the set ofobject-local data that those methods reference.5.2 Scheduling Using Static Dependence InformationThe natural application of dependence information is in scheduling transactions so that thosewhich are not dependent (i.e. do not conict) may proceed in parallel. Here we consider analgorithm for scheduling non-conicting method invocations for parallel execution using onlythe statically derived dependence information.5.2.1 Single Transaction SchedulingWe �rst consider the problem of scheduling the object method invocations in a single usertransaction using the statically derived dependences. The de�nition of dependence is extendedto consider the interactions between methods from di�erent objects. For convenience, thosemethod invocations made directly from a user transaction are referred to as user method invo-cations (UMIs).Given a pair of UMIs in a user transaction, they are �rst checked to see if they share adependence within the user transaction itself (as in the following example where the result of

Applying Method Data Dependence to Transactions in Object Bases 6
O23 S,T

M1:

M2: ref(S,T);
call(O3.M2);

call(O2.M3);

M1:

M2: ref(B);

M3: ref(A);

ref(A,B,C);

call(O2.M3);

call(O1.M2);

A,B,CO3

O1 X,Y

M1:
ref(X);

M2:
ref(X,Y);

O2 X,Y,Z

M1:
ref(X);

M2:
ref(Y);

M3:
ref(X,Z);

MR*[O23.M1]={O2.M1,O2.M3,O3.M1,O3.M2}

MR*[O23.M2]={O2.M1,O2.M3}

MR*[O3.M2]={O2.M1,O2.M3}

MR*[O3.M3]={O1.M1,O1.M2}

MR*[O2.M3]=
DR[O2.M3]={X,Z}

MR*[O2.M2]=
DR[O2.M2]={Y}

MR*[O2.M1]=
DR[O2.M1]={X}

MR*[O1.M2]=
DR[O1.M2]={X,Y}

MR*[O1.M1]=
DR[O1.M1]={X}

DR[O3.M3]={A}

DR[O3.M2]={B}

MR*[O1.M1]=
DR[O3.M1]={A,B,C}

DR[O23.M2]={S,T}

DR[O23.M1]=

φ

φ

φ

φ

φ

φ

φ

Figure 1: Construction of Reference Sets

Applying Method Data Dependence to Transactions in Object Bases 7one method call is used as an argument to the other).UT i = fV AR R; : : : ;R = Oj :M imj();Ok:M imk(R); : : :gIf they do not share a dependency at this level then their MR� sets are checked to see if theyare disjoint.MR�(Oj:M imj)\MR�(Ok:M imk) = �If they are not, then the method invocations are serialized since they both invoke at least onemethod which may conict with a method invoked by the other. If the METHOD SETS aredisjoint, then the user invoked methods are checked to see if they belong to the same object(i.e. j = k). If they do, then the DR sets must also be checked since both of these methodscould be accessing the same object-local data.DR(Oj:M imj)\ DR(Ok:M imk) = �If the DR sets are found to be disjoint then the method invocations may be executed inparallel since they are neither directly nor indirectly dependent. Otherwise, the invocations aredependent and must be serialized.It is not necessary to analyze the entire set of UMIs before scheduling any of them.6 Wecan precompute the partial order de�ned by the de�nition-use patterns strictly within the usertransaction itself (i.e. arising due to operations on transaction local data) and then considerscheduling sets of those UMIs which have no such inter-dependences. Using such a greedyapproach the UMIs are initiated as early as possible.The �rst UMI may be submitted for execution immediately. The reference sets of eachscheduled UMI are recorded by the scheduler. By checking the reference sets of the next UMIto be scheduled against those of the active ones, the scheduler can decide if a conict is possibleand therefore if unrestricted execution of the new UMI is possible. When a conict is detected,the scheduler can queue the new UMI for execution after the conicting one has completed itsexecution. This can be implemented by associating the new UMI with conicting ones usingdependence arcs from the running to the waiting UMIs.Conicts may also exist between queued UMIs. This must be accounted for by comparingthe next UMI with not just the executing but also the waiting ones adding dependence arcsas necessary. When considering two conicting UMIs the one which �rst appears in the usertransaction must be scheduled �rst. (This is required to ensure execution results that areequivalent to the sequential execution de�ned by the user transaction.) When a UMI completes,its reference sets are removed from the scheduler's tables so it no longer blocks subsequent UMIs.At the same time, any UMIs known to be waiting solely upon the completion of that UMI (i.e.those pointed to by a single dependence link from the �nished UMI) may be initiated.Bene�ts may be realized by not using a greedy scheduling algorithm. If the scheduler doesexamine each UMI before scheduling it, greater potential concurrency may be achieved at theexpense of delayed invocation. This approach is more applicable to the multiple transactioncase where the invocation delay can be tolerated since work on behalf of other transactions willlikely be available to be done.The use of dependence arcs is illustrated in Figure 2 where arcs reecting the dependenciesbetween UMIs are shown using dashed lines. A greedy scheduling algorithm is assumed in thisexample, where UMI1 is started �rst, UMI2 is then queued because of its dependence withUMI1, UMI3 is started, etc.6In other words, it is unnecessary to pre-compute the dependence relationships for all pairs of UMIs.

Applying Method Data Dependence to Transactions in Object Bases 8
={UMI , UMI , UMI , UMI , UMI , UMI , UMI , ...}UT

i

1 2 3 4 5 6 7

δ
δ
δ
δ

Scheduler

Running Queue:

Waiting Queue:

Assumed Dependencies

Legend

Dependence

Scheduling Operation

UMI UMI1

2

3

4 5
UMI UMI UMI

1

2 5

3 4

3 5

UMI
UMI
UMI
UMI

UMI
UMI
UMI
UMI

2

Figure 2: Dependency Links between UMIs5.2.2 Extension to Multiple Transaction SchedulingScheduling multiple user transactions concurrently is a simple extension of the single transactioncase if centralized scheduling is used. The same information kept for single transactions must bekept for all user transactions submitted. The scheduler tests to see if UMIs from di�erent usertransactions conict by constructing appropriate dependence arcs and scheduling in a mannersimilar to that for the single transaction case. A correct execution ordering will therefore beobtained.The only required change in the scheduling algorithm involves waiting UMIs and in-troduces bidirectional dependence arcs in addition to unidirectional ones. Within a singletransaction, a serial execution order for the method invocations is de�ned. Between multipletransactions however, no such ordering exists. Therefore waiting UMIs from di�erent , conict-ing transactions may be scheduled in either order (presumably depending on the order in whichthey become \ready" to run). This lack of explicit order is what requires the introduction ofbidirectional dependence arcs.If the next UMI to be scheduled conicts with only waiting UMIs from other transactions,it may proceed and unidirectional dependence arcs are added from the set of queued, conictingUMIs. If it conicts with both waiting and running UMIs then it is queued and unidirectionaldependence arcs from the running UMIs and bidirectional dependence arcs to the other waitingUMIs are added. The unidirectional dependence arcs reect cases where execution orderingis required while the bidirectional ones indicate potential conicts but do not require speci�corderings.7 A queued UMI may be scheduled once all its unidirectional dependence arcs aresatis�ed. At this time, any outstanding bidirectional arcs are converted to unidirectional arcs7This introduces potential serialization problems if two pairs of conicting UMIs from the same two transac-tions are scheduled in di�erent orders. (e.g. O1:M i1 ! O1:M j2 and O2:M j1 ! O2:M i2 where O1:M1�O1:M2 andO2:M1�O2:M2.)

Applying Method Data Dependence to Transactions in Object Bases 9
Legend

Dependence

Scheduling Operation

Assumed Dependencies

UMI

UMIUMI

UMI UMI

UMI
i j

i i

i i

δ

δ

δ

1 1

1 2

2 3

unidirectionl

unidirectional

bidirectional

ji
UT = { UM , UM }UT = { UMI , UMI , UMI }

Scheduler

Waiting Queue:

Running Queue: UMI

UMIUMI

UMI

UMI

i

i
i

j

j

1

1

2

32

1 2 3

i ii j j

1 2

Figure 3: Dependency Links between UMIs in Di�erent Transactionsfrom the newly scheduled transaction to those still waiting. An example of the use of dependencearcs in the multiple transaction case is illustrated in Figure 3. In this example, a particular(unstated) scheduling order is assumed. Since UMI i3 is scheduled after UMI i2 has been queued,it is queued and a bidirectional dependence arc between the two is created.5.2.3 Performance and Algorithm AnalysisThis algorithm is superior to an equivalent object-based dependency algorithm because con-current accesses to non-conicting methods are permitted. (Dependence is based on sets ofconicting methods within objects rather than on the objects themselves.) Since the granular-ity of the dependence analysis is decreased, the opportunity for concurrency is increased.This suggests that the algorithm should perform better than object-based locking. How-ever, despite having more knowledge concerning dependence patterns than simple object lock-ing, this algorithm may perform worse when theMR� sets are non-disjoint but, because of thetiming of the most likely execution sequences, conicts will not normally occur.8 If potentialconicts are common but actual conicts are rare, this algorithm will perform worse than objectlocking if the cost of locking is relatively low.Since there may be a large number of concurrent user transactions, it is likely that ac-tual conicts will occur. Nevertheless, the overhead associated with serializing object methodinvocations occurring near the root of the call tree resulting from conicts near the leaves isvery high. This is illustrated in Figure 4 where an unfortunate user transaction invokes twomethods Oj :Mk and Om:Mn that must be executed serially due toMR� conicts arising fromleaf level calls to Ox:My and Ox:Mz , respectively.8Any approach that uses only static analysis, must serialize method invocations under worst-case assumptions.

Applying Method Data Dependence to Transactions in Object Bases 10

Ox

ref(X);

X,Y,Z

My:

Mz:
ref(X);

DATA_REFS[Ox.My]={X}

DATA_REFS[OX.Mz]={X}

Many levels of completely
independent method invocations

{... Ox.My,Ox.Mz ...}{... Ox.My,Ox.Mz ...}

METHOD_REFS[Om.Mn]=

... call(Oj.Mk) ... call (Om.Mn) ...UT
i

Mn:

Om

call()
call()

Mk:

Oj

METHOD_REFS[Oj.Mk]=

Figure 4: Call Tree with Leaf Conict

Applying Method Data Dependence to Transactions in Object Bases 11Finally, this algorithm does not address the problem of potential deadlocks or, moreimportantly, the question of the serializability of multiple user transactions. It should be notedthat due to the atomicity of nested transactions recovering from deadlocks is simpli�ed.In terms of overhead, the scheduler must compare every UMI's reference sets againstthose of all the outstanding (scheduled or queued) UMIs. The cost of this depends on boththe number of outstanding UMIs and the total number of objects in the object base (whichdetermines the complexity of performing each comparison). Thus, assuming that the averagenumber of outstanding UMIs is `k' and that the number of objects is `n', the average casecomplexity is O(k � n) bit operations. The space required by the algorithm is of the samecomplexity { but the unit of measure is bits not operations on bits.5.3 An Improved AlgorithmThe performance of the algorithm just described su�ers because it makes scheduling decisionsabout nested method invocations before they are actually invoked. This means that executiontime knowledge of other concurrent activity cannot be used in scheduling. A scheduler couldapply the statically obtained information when every method invocation is scheduled ratherthan just when UMIs are scheduled. Knowing which methods within an object may conictwith one another, the scheduler could then allow only one invocation of a conicting method tobe executing at a time. If the overhead of this additional checking is less than that of obtaininglocks, the net performance will increase.5.3.1 Single Transaction SchedulingIf a method invocation Oi:Mj is scheduled, the scheduler checks to see if it will conict withany currently executing method invocation. The DR set associated with Oi:Mj is comparedto those of the currently executing methods. Only currently running methods from the sameobject (Oi) may conict since data is local to each object and invocations of other methods arehandled when they are scheduled. Thus, Oi:Mj must not be executed if there exists an activeinvocation of a method Oi:Mk such that:DR(Oi:Mj) \ DR(Oi:Mk) 6= �This guarantees that no data access conicts arise. Later, when Oi:Mj invokes another method,the process will be repeated for the nested method being invoked. Hence, the scheduler dealswith every method invocation when it is occurs and thereby can use information about what iscurrently executing.5.3.2 Extension to Multiple Transaction SchedulingThe multiple transaction case is handled in the same way as the single transaction case. Theonly di�erence is that the set of running method invocations is larger since there may be manytransactions making invocations concurrently. A test for the intersection of DR sets fromdi�erent user transactions must be performed:DR(Oi:Mpj)\ DR(Oi:M qk) 6= �

Applying Method Data Dependence to Transactions in Object Bases 125.3.3 Performance and Algorithm AnalysisThis algorithm decreases the likelihood of method invocations being queued unnecessarily. Un-fortunately, while this algorithm does decrease unnecessary waiting it does not improve per-formance signi�cantly under all possible conditions. This is due to the increase in overheadassociated with checking the DR sets for every method invocation. If this checking is inexpen-sive, performance will be good. Normally, objects should be reasonably well structured andtherefore the set of global data shared by their methods should be small. This means that theDR sets should also be small and hence, in most cases, they will be tested inexpensively.In terms of overhead, this algorithm must compare the reference sets of every methodinvocation against those of all outstanding (scheduled or queued) method invocations. The costof this depends on both the number of outstanding method invocations and the total numberof objects in the object base. Thus, assuming that the average number of outstanding methodinvocations is `l' and that the number of objects is `n', the average case complexity is O(l � n).In general, l� k so the overhead of this algorithm is much higher than that of the �rst. Onceagain, the space complexity of the algorithm is the same as the time complexity.5.4 Hybrid Scheduling with LocksWe now develop a hybrid 9 algorithm which employs static dependence data to improve theperformance of dynamically obtained locks by minimizing the overhead of their use.5.4.1 Single Transaction SchedulingIn a manner similar to the last algorithm, the statically derived DR sets may be used to detectdata dependence between methods in a given object. Applying this information statically, themethods in each object can be subdivided into groups of conicting methods. Each such groupof methods is assigned a single lock which must be obtained before invocation (when necessary {see below).10 The scheduler can make use of its information about which methods are currentlyactive and what theirMR� sets are to indicate whether or not a lock must be obtained. In thisway the overhead associated with unnecessary lock allocation and deallocation may be avoided.By examining the MR� sets, the scheduler can tell if there may be concurrent executionof conicting UMIs. If the scheduler detects there will not be any such conicts, then it caninvoke those UMIs in such a way that they do not need to obtain their locks. In this case, thedependence information has allowed UMIs to execute without unnecessary lock overhead. Ifthe scheduler detects that there may be conicts, it can still permit concurrent execution butmust require that each method obtains its lock(s). In this case, lock overhead is still incurredbut if the potentially conicting method invocations do not actually conict, the amount ofconcurrency is not reduced as it would be using the previous algorithms.5.4.2 Extension to Multiple Transaction SchedulingAs with the previous algorithms, dealing with multiple transactions does not signi�cantly a�ectthe scheduling algorithm. It does increase the number of potentially concurrent method invo-cations and with them the likelihood of potential conicts. If the number of concurrent usertransactions is very large then decreased savings in lock overhead will be realized since the useof locking is pessimistically required.9Dependency analysis is combined with locking.10These locks and the operations upon them may be created automatically when the code is compiled.

Applying Method Data Dependence to Transactions in Object Bases 135.4.3 Performance and Algorithm AnalysisThe use of static dependence information to re�ne dynamic locking behaviour is clearly a goodsolution to the scheduling problem. Since the cost of obtaining locks is high [Moh90] thisalgorithm o�ers signi�cant overhead reductions. Furthermore, using this algorithm allows theserializability of user transactions using two-phase locking [BG81]. In this environment, twophase locking synchronizes method-invocations by explicitly detecting and avoiding conictsbetween those methods. Using this hybrid algorithm, locking is not performed when it will notbe necessary. That is, two methods which cannot conict, need not perform locking. Also, sincethe hybrid algorithm only checks for dependence between UMIs rather than between all methodinvocations, its runtime overhead is signi�cantly lower than that of the improved algorithmsuggested. Finally, the hybrid algorithm supports mutually recursive method-invocations iffriendly [Tan92] locks are provided. As with two-phase locking, there is nothing inherent inthe scheduling algorithm which prevents the use of friendly locks. In fact, once a lock has beenacquired by a method-invocation it is possible to have it inform the scheduler that it will befriendly to other invocations of the same method. Thus, not only is the recursion permitted,but it is e�ciently implemented since locks will not have to be repeatedly obtained.The time and space complexity of this algorithm is the same as the �rst, but a signi�cantamount of lock overhead has been saved. Alternatively, the algorithm could also be applied asevery method invocation is processed as was done in the second algorithm. This increases thecomplexity (as it did in that algorithm) but also improves performance by further reducing thenumber of times locks must be obtained.6 Conclusions and Future WorkThis paper has introduced the new concept of dependence analysis in object bases and discussedhow it may be implemented and used to perform e�ective method-level transaction scheduling.Three scheduling algorithms were developed, the last of which is clearly a practical algorithm.This hybrid algorithm uses statically calculated dependence information to decrease the over-head associated with conventional locking schemes, including two phase locking. Since thealgorithm is compatible with two-phase locking, the issue of serialization is also addressed 11and since our object base model assumes nested atomic method invocations, the problem ofdeadlock arising due to uncontrolled waiting may be addressed using conventional techniques.The compile-time overhead of dependence analysis is negligible since most of the workwill be done by any good optimizing compiler and the run-time overhead will be reducedsigni�cantly compared to existing locking methods. Thus, the suggested technique is bothpractically and theoretically interesting. It should be noted that these techniques are similarto providing partial predeclaration of read and write sets as might be done in a conventionaldatabase system [BHG87].Future work requires a technique to devise analytic methods which compare dependence-based and other scheduling algorithms. This will provide answers to questions such as thelevel and frequency at which dependence analysis should be performed so that decisions as tohow to apply dependence information to the scheduling problem can be made. This will allowquantitative results to be reported in the future. Aside from developing analytical methods,research continues in several other directions:11Other methods for assuring serializability in nested object-oriented databases is an open area of researchwhich we are currently investigating.

Applying Method Data Dependence to Transactions in Object Bases 14� Data-Level Dependence { Once method-level dependence is de�ned, it is relativelystraightforward to extend our model to include dependence at the data item level. This hasthe bene�t of increased potential parallelism but will incur higher analysis costs and, in thecase of the hybrid algorithm, higher locking costs. It will be interesting to see if applying datadependence information gathered by the object code compiler can speed transaction processingfurther than the method-level techniques discussed.� Other Uses of Dependence Information { The availability of dependence informationis of use in areas besides scheduling. For example, by applying statically-determined knowl-edge of method reference patterns, it may be possible to predict when deadlocks may occur.This information could be used to tune deadlock handling methods for improved performance.Other possible uses include veri�cation of appropriate concurrent behaviour within and betweentransactions, detection of hot-spots in object code, and debugging concurrent transactions.� Operation in a Distributed Environment { In a distributed environment the abilityto apply dependence analysis to decrease locking would be a great advantage. Since the hybridscheduling algorithm is compatible with centralized two-phase locking it is likely extendable toany distributed environment where two phase locking is applicable.References[AE92] D. Agrawal and A. El Abbadi. A Non-Restrictive Concurrency Control for ObjectOriented Databases. In Proceedings of the International Conference on ExtendingDatabase Technology, pages 469{482, 1992.[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, andTools. Addison Wesley, 1986.[Ban88] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publish-ers, 1988.[BG81] P.A. Bernstein and N. Goodman. Concurrency Control in Distributed DatabaseSystems. ACM Computing Surveys, 13(2):185{221, 1981.[BHG87] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recov-ery in Database Systems. Addison Wesley, 1987.[BM91] E. Bertino and L. Martino. Object-Oriented Database Management Systems: Con-cepts and Issues. IEEE Computer, 24(4):33{47, 1991.[Elm92] A.K. Elmagarmid. Database Transaction Models for Advanced Applications. Mor-gan Kaufmann, 1992.[FO89] A.A. Farrag and M.T. �Ozsu. Using Semantic Knowledge of Transactions to IncreaseConcurrency. ACM Transactions on Database Systems, 14(4):503{525, 1989.[GK88] J.F. Garza and W. Kim. Transaction Management in an Object-Oriented DatabaseSystem. In Proceedings of the ACM SIGMOD International Conference on Man-agement of Data, pages 37{45. ACM, 1988.

Applying Method Data Dependence to Transactions in Object Bases 15[GM83] H. Garcia-Molina. Using Semantic Knowledge for Transaction Processing in a Dis-tributed Database. ACM Transactions on Database Systems, 8(2):186{213, 1983.[HH91] T. Hadzilacos and V. Hadzilacos. Transaction Synchronisation in Object Bases.Journal of Computer and System Sciences, 43(1):2{24, 1991.[KGBW90] W. Kim, J.F. Garza, N. Ballou, and D. Woelk. Architecture of the ORION Next-Generation Database System. IEEE Transactions on Knowledge and Data Engi-neering, 2(1):109{124, 1990.[Kim90] W. Kim. Object-Oriented Databases: De�nition and Research Directions. IEEETransactions on Knowledge and Data Engineering, 2(3):327{341, 1990.[Lam78] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.Communications of the ACM, 21(7):558{565, 1978.[Moh90] C. Mohan. Commit LSN: A Novel and Simple Method for Reducing Locking andLatching in Transaction Processing Systems. In Proceedings of the 16th VLDBConference, pages 1{14, 1990.[Mos85] J.E.B. Moss. Nested Transactions { An Approach to Reliable Distributed Comput-ing. The MIT Press, 1985.[RE92] R.F. Resende and A. El Abbadi. A Graph Testing Concurrency Control Protocolfor Object Bases. In Proceedings of the International Conference on Computersand Information, pages 289{292, 1992.[RGN90] T.C. Rakow, J. Gu, and E.J. Neuhold. Serializability in Object-Oriented DatabaseSystems. In Proceedings of the International Conference on Data Engineering,pages 112{120. IEEE, 1990.[Tan92] A.S. Tanenbaum. Modern Operating Systems. Prentice-Hall, 1992.[Wol89] M. Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, 1989.[ZB92] M.E. Zapp and K. Barker. An Architecture and Model for Transactions in ObjectBases. Technical report, University of Manitoba, Dept. of Computer Science, TR92-8, July, 1992.[ZC90] H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers.Addison Wesley, 1990.

