Applying Method Data Dependence
to

Transactions in Object Bases!

Peter C.J. Graham and Michael E. Zapp and Ken Barker
Department of Computer Science
University of Manitoba
Winnipeg, Manitoba, Canada
Canada R3T 2N2
{pgraham,zapp,barker}@cs.umanitoba.ca
Technical Report: 92-07

June 1992

!This research was partially supported by the National Science and Engineering Research Council

(NSERC) of Canada under an operating grant (OGP-0105566).

Abstract

Concurrency control in object based systems is a new area of research that has only just
begun to be addressed. Recent work has proposed using object level locking but this may
be unnecessarily restrictive. Data level locking within an object increases concurrency but
also introduces substantial lock overhead that makes the approach impractical. This paper
proposes using a new approach applying method level dependence analysis techniques to object
bases using a nested transaction model. Three algorithms are proposed. The first algorithm
uses static analysis of methods invoked by user transactions only. The second performs runtime
analysis of the nested methods invoked by the methods invoked by user transactions. Finally,
a third algorithm proposes a hybrid technique that is compatible with both of these techniques
and determines if the acquisition of locks is necessary at runtime or if the method can be invoked
without the possibility of conflict. This algorithm is efficient, simple, and completely compatible
with two—phase locking. The complexity of each algorithm and other areas of application of
dependence analysis are also discussed.

Applying Method Data Dependence to Transactions in Object Bases 1

1 Introduction

This paper makes an initial examination of the definition and uses of dependence in object
bases with nested, atomic, method invocations. It adapts theory developed for optimizing
compilers for application in the domain of object bases and provides a cohesive description of
how that theory applies. Characteristics of the object base model are exploited to simplify the
dependence analysis.

The primary goals of dependence analysis in object bases are:

1. To provide a less costly means of concurrency control than is provided by conventional
schemes.

2. To provide less restrictive concurrency control.
3. To do this efficiently by using a combination of static and runtime analysis.

4. To gain insight into the semantics-related issues of dependences between concurrent
method executions in an object base.

This paper contributes by providing algorithms for calculating dependence information in
object bases and for scheduling user transactions using method-level dependence information.
Further, some consideration is given to other uses of dependence information in such systems
and a brief discussion of extension to other environments is provided. It does not directly
address the orthogonal issues of deadlock handling and serializability.

Users who are unfamiliar with the basic concepts of dataflow and dependence analysis
may wish to consult one or more of [ASU86, Ban88, Wol89, ZC90]. Information on object bases
is also widely available [BM91, GK88, Kim90, KGBW90]. Work related to the model is also in
the literature [AE92, HH91, RGN90, RE92] as is work on semantic issues [FO89, GMS83].

The paper is organized as follows. The next Section discusses the pertinent features
of our object base model and is followed in Section 3 by a discussion of the notation used.
Section 4 explains how dependence may be defined in object bases. Section 5 presents three
algorithms for scheduling transactions using dependence information, the last of which improves
on conventional locking schemes by decreasing lock overhead. Section 6 draws some conclusions
and discusses future work.

2 The Object Base Model

The following model of object bases and the transactions applied to them is used throughout
this paper. The model makes reasonable assumptions and is general enough to allow the results
obtained to be applied to other work in the area. A full description of the model is available in
Zapp and Barker [ZB92].

The object base consists of a collection of existing objects that interact with one another
by method invocations. It is assumed that objects are brought into existence offline using
techniques not addressed in this paper. Each object maintains its own persistent data and is
solely responsible for providing access to that data; through its methods interface. The set of
all object data represents the contents of the object base. Objects commonly invoke methods
in other objects to accomplish their work and this may be done in a directly or indirectly
recursive way. No real-life assumptions about method invocation are made except to note
that programming practice will tend to limit the method invocation patterns. The operations
performed by a given object may be conveniently divided into those which access an object’s

Applying Method Data Dependence to Transactions in Object Bases 2

local data and those operations which “access” non-local data via method invocations on other
objects.

Transactions applied against the object base consist of a collection of method invocations
and possibly a set of local variable definitions used to store the results of method invocations.
Invoked methods and the methods they may directly or indirectly invoke' are each executed
atomically as nested atomic transactions [Mos85]. The collection of invoked nested method
invocations from the first user initiated invocation to the final method invoked forms a call
tree.? It is assumed that all transactions are correctly formed and execute on a consistent object
base so a serial execution of the method invocations in a given transaction, in the absence of
other transactions, will always produce a new consistent object base. This does not mean that
a transaction’s method invocations must be executed serially in the order requested, nor does it
mean that only a single transaction may be processed at a time. The assumption is a standard
one in database research and also provides a known correct execution order which is required for
dependence analysis. A natural serial execution ordering also exists for the statements within
individual methods.

Finally, it is assumed that a single global scheduler is assigned the responsibility of over-
seeing the execution of each object method invocation requested as a part of a transaction.
This allows a single point of control where the derived dependence information for all transac-
tions may be applied in scheduling their component method invocations. This assumption is
reasonable since a global scheduler is also required for the management of the nested commits.

3 Notation

It must be possible to identify specific objects and methods and particular instances of methods
arising from their invocations. Furthermore, it must be possible to determine from which
transaction a given method was invoked. Therefore, some notation will prove useful.

The object base is assumed to consist of N objects {0;,0 < i < N —1}. A given object O;
consists of k; methods {M;,0 < j < k; — 1} each of which consists of a series of statements that
access the object’s variables and a possibly empty set of method invocations. The j** method
of the i object is denoted O;.M;.

User transactions are submitted against the object base and are denoted UT". Each user
transaction consists of a number of calls to methods within objects in the object base and may
also include its own local variables.?

A method invocation of method j within object ¢ from user transaction £ is denoted
OZ'.M;“. If necessary, a specific order for a set of method invocations may be specified using the
happens-before [Lam78] (‘—") relation. (e.g. O;.M! — O;.M™ — O;.M[")

This paper adopts the convention of indicating method invocation using a procedure call
syntax. Therefore, a method invocation (including those within a user transaction) may accept
several parameters and optionally return an explicit result. (e.g. R = Oi.M]k(argl, arg2,...))

When two entities ‘F;” and ‘F;’ are found to be dependent, the notation FE;0F; will
indicate dependence. In compiler theory, ¢ is a strictly ordered relation, but in this paper it
will be clear from context when it is ordered or unordered.

1We adopt the convention that, unless otherwise explicitly stated, all method invocations may be either direct
or indirect through an arbitrarily long sequence of other invocations.

2The tree induced by the pattern of method invocations resulting from one or more user transactions —
analogous to a transaction tree with nested transactions [Elm92].

?Local variables in user transactions are used to store the intermediate results of method invocations.

Applying Method Data Dependence to Transactions in Object Bases 3

4 The Notion of Dependence in Object Bases

Conservative assumptions must always be made with regard to dependences. If some entity is
referenced within a conditional section of code it must be assumed that it is always referenced
since it cannot be determined, prior to runtime, if that section of code will be executed. Simi-
larly, if some entity may be referenced at the same time by two transactions then, based only
on static dependence analysis, they must be serialized.

Dependence occurs at a variety of levels. In compiler construction dependence exists be-
tween operations, statements, basic blocks, and entire procedures. In object bases, dependence
exists between objects, the methods within them, and references to the data within a given
object.

Regardless of the level, dependence information is used primarily to determine a partial
(potentially parallel) order in which the corresponding “entities” may be scheduled which will
ensure results equivalent to the total (serial) order specified. Effectively, what is done is that
potential Read/Write, Write/Read, and Write/Write conflicts between entities are detected and
the partial order is constructed so these conflicts are avoided.*

There are at least two factors that make dependence analysis interesting in an object
base:

e There are natural, hierarchical decompositions to the dependences that arise when meth-
ods invoke methods in other objects. Thus, although two objects are distinct (and there-
fore access different local data), they may be “dependent” if they both invoke conflicting
methods within another object.

e Dependences within a single user transaction or object method may be judged according
to the specified serial execution order of the corresponding code. It is generally assumed
however that multiple user transactions may be scheduled in any serial order. This means
that at this level of abstraction, there is no single inherent serial order by which a partial
order for dependence analysis may be built. The transactions are unrelated by any partial
order. Unfortunately, this does not mean that they may all be executed in parallel since
some may invoke object methods which conflict with those others have invoked. This
results in what will be referred to as a method-level conflict.

Definition 4.1 Object-level dependence occurs between object invocations when either the two
invocations are to the same object (trivially) or the object methods in question both invoke
methods from a common object. [|

An object-level dependence-based scheduling algorithm would operate at the same gran-
ularity as object level locking which is too restrictive.

Definition 4.2 Method-level dependence occurs when two methods within an object either
access common object data or both invoke dependent methods from a common object. [|

Method-level dependence analysis provides information used in eliminating the situation
where two non-conflicting concurrent method invocations must wait unnecessarily.

Definition 4.3 Data-level dependence occurs between individual data items within an object.

*Conflicting entities are related in the partial order and therefore will not be executed concurrently.

Applying Method Data Dependence to Transactions in Object Bases 4

Since data is isolated within an object, only methods within that object may contain code
which accesses that data. Dependences involving a given data item therefore only occur within
the corresponding object. Hence, the execution of methods from different objects may always
occur in parallel up until one or both call a method in another object. Since an object base
exports only its method interface, all that can be done with data level dependence information is
to improve the method level dependence information. This might include recognizing methods
that fail to conflict given certain parameter conditions. For example, if some parameter has
some value “r”, the corresponding method is known to access data in a read-only fashion. Such
a method invocation is guaranteed not to conflict with others that only read that data.’

These levels represent decreasing granularity and with it, increasing potential for concur-
rency but also greater overhead in dependence analysis.

5 Method-Level Dependence Analysis

As stated in the introduction, the primary goal of this paper is to examine method-level depen-
dence and its use in scheduling transactions using our object base model.

5.1 Method-Level Dependence Within a Single Object

We wish to be able to statically examine two methods in some object (0;.M,,, and O;.M,,,) and
determine if their concurrent execution could result in a conflict which would produce incorrect
results. A conflict can arise in two possible ways:

e The sets of object data referenced by the two methods may be non-disjoint.

e The sets of other methods invoked by the two methods may be non-disjoint. This may
result in a conflict since such methods may contain conflicting data accesses.

It is simple to construct these two sets to test for disjointness. We define the following:
DR(O;.M;) : the names of local data which method M; may access.

MR(0;.M;) : the names of methods which M; calls directly and those methods in the same
objects that conflict with those M; calls directly.

MR*(0;.M;) : the logical transitive closure of MR when it is viewed as a selection function
from the domain of all possible object methods.

The set DR specifies the direct data references made by a method while the set MR*
represents the indirect (method) references by enumerating all sub-methods invoked. The sets
DR and MR* are referred to as a method’s reference sets.

Using reference sets, the dependence (0;.M,,, 60;.M,,,) between two methods is detected
using the test:

and

MR (0. My,) N MR (0. M,,,) # ¢

5Such data-level dependence information can be used to permit the operations within objects to be performed
in parallel on a suitable parallel machine.

Applying Method Data Dependence to Transactions in Object Bases 5

It is generally unnecessary to synchronize read accesses to data. Testing for DR set intersection
is thus overly restrictive. It is simple to provide two sets, one specifying local data being read and
the other data being written so that intersections between read accesses can be avoided. For the
sake of simplicity, we will refer to only the single DR set. Any method with MR(O;.M;) = ¢
will be called a leaf method.

The dependency test can be efficiently implemented by mapping elements of each set to
positions in a bit string used to compactly represent that set. Presence of the element in a set
is indicated by a ‘1’ in the corresponding bit position in the string while a ‘0’ indicates absence
of the element. Set intersection is efficiently determined using a bitwise ‘AND’.

Since all of the data items within an object are enumerable, this mapping can be easily
done for the DR sets using well-known techniques used in conventional compiler dataflow anal-
ysis [ASU86]. Similarly, since all existing object methods in the object base can be enumerated,
(and these are all the object methods which may be referenced by an instantiated object) the
bitstring representing any MR* set may also be constructed.

To determine if two methods conflict, the one-way mappings from methods and data-
items to bit indices are sufficient. To derive the semantic information that a particular conflict
arises due to potentially concurrent accesses to a given data object, the inverse mappings are
required so that bit positions left with a ‘1’ after ANDing may be mapped to their corresponding
methods/data-items. All these computations on sets are done at object compile time and the
sets are inexpensively stored along with their associated compiled objects. This means that the
set computations introduce no added runtime overhead.

An example of the reference sets corresponding to the methods for the objects shown is
illustrated in Figure 1. Each object is depicted as a sectioned box whose first section lists the
object’s local data and whose subsequent sections contain abstractions of its methods. The arcs
in the diagram indicate method invocation paths and the DR and MR* sets for each method in
each object are shown. Thus, for example, the MR* set for Oy3.M; consists of O3.My which is
called directly and O5. M35 which is called indirectly through Os.M3 and also Os.M; and O5. My
since they have data conflicts with O3.M5 and O3.Mj3 respectively. The MR* set for O1.M;
is empty making it a leaf method. Finally, the DR sets for each method contain the set of
object-local data that those methods reference.

5.2 Scheduling Using Static Dependence Information

The natural application of dependence information is in scheduling transactions so that those
which are not dependent (i.e. do not conflict) may proceed in parallel. Here we consider an
algorithm for scheduling non-conflicting method invocations for parallel execution using only
the statically derived dependence information.

5.2.1 Single Transaction Scheduling

We first consider the problem of scheduling the object method invocations in a single user
transaction using the statically derived dependences. The definition of dependence is extended
to consider the interactions between methods from different objects. For convenience, those
method invocations made directly from a user transaction are referred to as user method invo-
cations (UMIs).

Given a pair of UMIs in a user transaction, they are first checked to see if they share a
dependence within the user transaction itself (as in the following example where the result of

Applying Method Data Dependence to Transactions in Object Bases

023

ST
M1: DR[023.M
cal(03.M2);| MR*[O23.
M2: ref(S,T); DR[O23.M
call(02.M3);| MR*[023.

M]l]—{OZ M1,02.M3,03.M1,03.M2}

M]Z]—{Oé M1,02.M3}

AB,C
Ml?ef(A,B,C); EA%[*C[)%QA M] =]{=$’B’C}
: ref(B);
e GO | DOSHAEL, L o
M3: ref(A); EAFEQ[*?(S)%A M]3_] ={O1.M1,01LM2}
cal(0LM2);
X,Y
) DR[OLM1]={X}
e 00: MR*]OL. M]1]
M2; DR[OLM2]={X,Y}
ref(X,Y): | MR*[OLM2]®
X,Y,Z
) DR[O2.M1]={X}
leef(x); MR*[O2. Mﬂ]
M2:
ref(Y); IE)/I%[*?%SA M]Z]{ o)
Wz | RRGBNIHGD

Figure 1: Construction of Reference Sets

Applying Method Data Dependence to Transactions in Object Bases 7

one method call is used as an argument to the other).
UT'={VAR R;...; R=0;.M,, ();Op.M}, (R);..}

If they do not share a dependency at this level then their MR* sets are checked to see if they
are disjoint.

MR(0;.M;,)N MR*(Or.M,,,) = ¢

If they are not, then the method invocations are serialized since they both invoke at least one
method which may conflict with a method invoked by the other. If the METHOD_SETS are
disjoint, then the user invoked methods are checked to see if they belong to the same object
(i.e. j = k). If they do, then the DR sets must also be checked since both of these methods
could be accessing the same object-local data.

DR(0;. M},)N DR(Ox.M;,,) = ¢

If the DR sets are found to be disjoint then the method invocations may be executed in
parallel since they are neither directly nor indirectly dependent. Otherwise, the invocations are
dependent and must be serialized.

It is not necessary to analyze the entire set of UMIs before scheduling any of them.® We
can precompute the partial order defined by the definition-use patterns strictly within the user
transaction itself (i.e. arising due to operations on transaction local data) and then consider
scheduling sets of those UMIs which have no such inter-dependences. Using such a greedy
approach the UMIs are initiated as early as possible.

The first UMI may be submitted for execution immediately. The reference sets of each
scheduled UMI are recorded by the scheduler. By checking the reference sets of the next UMI
to be scheduled against those of the active ones, the scheduler can decide if a conflict is possible
and therefore if unrestricted execution of the new UMI is possible. When a conflict is detected,
the scheduler can queue the new UMI for execution after the conflicting one has completed its
execution. This can be implemented by associating the new UMI with conflicting ones using
dependence arcs from the running to the waiting UMIs.

Conflicts may also exist between queued UMIs. This must be accounted for by comparing
the next UMI with not just the executing but also the waiting ones adding dependence arcs
as necessary. When considering two conflicting UMIs the one which first appears in the user
transaction must be scheduled first. (This is required to ensure execution results that are
equivalent to the sequential execution defined by the user transaction.) When a UMI completes,
its reference sets are removed from the scheduler’s tables so it no longer blocks subsequent UMIs.
At the same time, any UMIs known to be waiting solely upon the completion of that UMI (i.e.
those pointed to by a single dependence link from the finished UMI) may be initiated.

Benefits may be realized by not using a greedy scheduling algorithm. If the scheduler does
examine each UMI before scheduling it, greater potential concurrency may be achieved at the
expense of delayed invocation. This approach is more applicable to the multiple transaction
case where the invocation delay can be tolerated since work on behalf of other transactions will
likely be available to be done.

The use of dependence arcs is illustrated in Figure 2 where arcs reflecting the dependencies
between UMIs are shown using dashed lines. A greedy scheduling algorithm is assumed in this
example, where UM I is started first, UM I3 is then queued because of its dependence with
UMI, UMI;5 is started, etc.

Tn other words, it is unnecessary to pre-compute the dependence relationships for all pairs of UMIs.

Applying Method Data Dependence to Transactions in Object Bases 8

UT'={UM] , UM , UMI ,UMI ,UMI ,UMI UM | .}

Scheduler \\ / / Assumed Dependencies
UMI, 8 UM,

UMI, 5 UM,
UMIs & UM,
UMIs 5 UMIs

Running Queue:\UML\ UM,

\‘| \“ \\‘ Legend
" : : —=Scheduling Operation
iy BTN y
Waiting Queue: umMmI _ uMmi UMI
Y 2 M - - --=Dependence

Figure 2: Dependency Links between UMIs

5.2.2 Extension to Multiple Transaction Scheduling

Scheduling multiple user transactions concurrently is a simple extension of the single transaction
case if centralized scheduling is used. The same information kept for single transactions must be
kept for all user transactions submitted. The scheduler tests to see if UMIs from different user
transactions conflict by constructing appropriate dependence arcs and scheduling in a manner
similar to that for the single transaction case. A correct execution ordering will therefore be
obtained.

The only required change in the scheduling algorithm involves waiting UMIs and in-
troduces bidirectional dependence arcs in addition to unidirectional ones. Within a single
transaction, a serial execution order for the method invocations is defined. Between multiple
transactions however, no such ordering exists. Therefore waiting UMIs from different, conflict-
ing transactions may be scheduled in either order (presumably depending on the order in which
they become “ready” to run). This lack of explicit order is what requires the introduction of
bidirectional dependence arcs.

If the next UMI to be scheduled conflicts with only waiting UMIs from other transactions,
it may proceed and unidirectional dependence arcs are added from the set of queued, conflicting
UMIs. If it conflicts with both waiting and running UMIs then it is queued and unidirectional
dependence arcs from the running UMIs and bidirectional dependence arcs to the other waiting
UMIs are added. The unidirectional dependence arcs reflect cases where execution ordering
is required while the bidirectional ones indicate potential conflicts but do not require specific
orderings.” A queued UMI may be scheduled once all its unidirectional dependence arcs are
satisfied. At this time, any outstanding bidirectional arcs are converted to unidirectional arcs

"This introduces potential serialization problems if two pairs of conflicting UMIs from the same two transac-
tions are scheduled in different orders. (e.g. O1.M{ — 01.M2J and OQ.Mi] — O2. M3 where O1.M1601.M> and
02.M160;.M>.)

Applying Method Data Dependence to Transactions in Object Bases 9

UT ={ UM ,UMI ,UMI }UT ={UN ,UM }

Scheduler \\ / \ Assuméd Depe_ndencmﬁ
UMI, & UML

1 unidirectionl

Ul\/II1 0 UMI2 unidirectional

UMI, & UMI, bidirectiona

: i j
Running Queue) U!\/Ill UMI,

Legend
'L i ——=Scheduling Operation
Waiting Queue: UMI, UML, UM,
AN A - ---=Dependence

Figure 3: Dependency Links between UMIs in Different Transactions

from the newly scheduled transaction to those still waiting. An example of the use of dependence
arcs in the multiple transaction case is illustrated in Figure 3. In this example, a particular
(unstated) scheduling order is assumed. Since U M I is scheduled after U M I} has been queued,
it is queued and a bidirectional dependence arc between the two is created.

5.2.3 Performance and Algorithm Analysis

This algorithm is superior to an equivalent object-based dependency algorithm because con-
current accesses to non-conflicting methods are permitted. (Dependence is based on sets of
conflicting methods within objects rather than on the objects themselves.) Since the granular-
ity of the dependence analysis is decreased, the opportunity for concurrency is increased.

This suggests that the algorithm should perform better than object-based locking. How-
ever, despite having more knowledge concerning dependence patterns than simple object lock-
ing, this algorithm may perform worse when the MR" sets are non-disjoint but, because of the
timing of the most likely execution sequences, conflicts will not normally occur.® If potential
conflicts are common but actual conflicts are rare, this algorithm will perform worse than object
locking if the cost of locking is relatively low.

Since there may be a large number of concurrent user transactions, it is likely that ac-
tual conflicts will occur. Nevertheless, the overhead associated with serializing object method
invocations occurring near the root of the call tree resulting from conflicts near the leaves is
very high. This is illustrated in Figure 4 where an unfortunate user transaction invokes two
methods O;. M}, and O,,.M,, that must be executed serially due to MR* conflicts arising from
leaf level calls to O,.M, and O,.M,, respectively.

8 Any approach that uses only static analysis, must serialize method invocations under worst-case assumptions.

Oj

Applying Method Data Dependence to Transactions in Object Bases 10

utT |..cal(0j.MK) ... cal (Om.Mn) ...

0 m Q
Q 3
O
Mk METHOD_REFS[0j.Mk]= Mn:_, 0 METHOD_REFS[Om.Mn]=
cal() {...OX.My,0x.Mz ...} = {...Ox.My,0x.Mz ...}
O
0O
O

Many levels of completely
independent method invocations

; DATA_REFS[Ox.My]={ X
¥ef(X); _REFS[@x.My]={ X}
; DATA_REFS[OX.Mz]={ X
%ef(X); _REFS] Z]={X}
O
Q
O

Figure 4: Call Tree with Leaf Conflict

Applying Method Data Dependence to Transactions in Object Bases 11

Finally, this algorithm does not address the problem of potential deadlocks or, more
importantly, the question of the serializability of multiple user transactions. It should be noted
that due to the atomicity of nested transactions recovering from deadlocks is simplified.

In terms of overhead, the scheduler must compare every UMI’s reference sets against
those of all the outstanding (scheduled or queued) UMIs. The cost of this depends on both
the number of outstanding UMIs and the total number of objects in the object base (which
determines the complexity of performing each comparison). Thus, assuming that the average
number of outstanding UMIs is ‘k” and that the number of objects is ‘n’, the average case
complexity is O(k - n) bit operations. The space required by the algorithm is of the same
complexity — but the unit of measure is bits not operations on bits.

5.3 An Improved Algorithm

The performance of the algorithm just described suffers because it makes scheduling decisions
about nested method invocations before they are actually invoked. This means that execution
time knowledge of other concurrent activity cannot be used in scheduling. A scheduler could
apply the statically obtained information when every method invocation is scheduled rather
than just when UMIs are scheduled. Knowing which methods within an object may conflict
with one another, the scheduler could then allow only one invocation of a conflicting method to
be executing at a time. If the overhead of this additional checking is less than that of obtaining
locks, the net performance will increase.

5.3.1 Single Transaction Scheduling

If a method invocation O;.M; is scheduled, the scheduler checks to see if it will conflict with
any currently executing method invocation. The DR set associated with O;.M; is compared
to those of the currently executing methods. Only currently running methods from the same
object (O;) may conflict since data is local to each object and invocations of other methods are
handled when they are scheduled. Thus, O;.M; must not be executed if there exists an active
invocation of a method O;.Mj, such that:

This guarantees that no data access conflicts arise. Later, when O;.M; invokes another method,
the process will be repeated for the nested method being invoked. Hence, the scheduler deals
with every method invocation when it is occurs and thereby can use information about what is
currently executing.

5.3.2 Extension to Multiple Transaction Scheduling

The multiple transaction case is handled in the same way as the single transaction case. The
only difference is that the set of running method invocations is larger since there may be many
transactions making invocations concurrently. A test for the intersection of DR sets from
different user transactions must be performed:

Applying Method Data Dependence to Transactions in Object Bases 12

5.3.3 Performance and Algorithm Analysis

This algorithm decreases the likelihood of method invocations being queued unnecessarily. Un-
fortunately, while this algorithm does decrease unnecessary waiting it does not improve per-
formance significantly under all possible conditions. This is due to the increase in overhead
agsociated with checking the DR sets for every method invocation. If this checking is inexpen-
sive, performance will be good. Normally, objects should be reasonably well structured and
therefore the set of global data shared by their methods should be small. This means that the
DR sets should also be small and hence, in most cases, they will be tested inexpensively.

In terms of overhead, this algorithm must compare the reference sets of every method
invocation against those of all outstanding (scheduled or queued) method invocations. The cost
of this depends on both the number of outstanding method invocations and the total number
of objects in the object base. Thus, assuming that the average number of outstanding method
invocations is ‘I’ and that the number of objects is ‘n’, the average case complexity is O(l - n).
In general, I > k so the overhead of this algorithm is much higher than that of the first. Once
again, the space complexity of the algorithm is the same as the time complexity.

5.4 Hybrid Scheduling with Locks

We now develop a hybrid algorithm which employs static dependence data to improve the
performance of dynamically obtained locks by minimizing the overhead of their use.

5.4.1 Single Transaction Scheduling

In a manner similar to the last algorithm, the statically derived DR sets may be used to detect
data dependence between methods in a given object. Applying this information statically, the
methods in each object can be subdivided into groups of conflicting methods. Each such group
of methods is assigned a single lock which must be obtained before invocation (when necessary —
see below).19 The scheduler can make use of its information about which methods are currently
active and what their MR™ sets are to indicate whether or not a lock must be obtained. In this
way the overhead associated with unnecessary lock allocation and deallocation may be avoided.

By examining the MR* sets, the scheduler can tell if there may be concurrent execution
of conflicting UMIs. If the scheduler detects there will not be any such conflicts, then it can
invoke those UMIs in such a way that they do not need to obtain their locks. In this case, the
dependence information has allowed UMIs to execute without unnecessary lock overhead. If
the scheduler detects that there may be conflicts, it can still permit concurrent execution but
must require that each method obtains its lock(s). In this case, lock overhead is still incurred
but if the potentially conflicting method invocations do not actually conflict, the amount of
concurrency is not reduced as it would be using the previous algorithms.

5.4.2 Extension to Multiple Transaction Scheduling

As with the previous algorithms, dealing with multiple transactions does not significantly affect
the scheduling algorithm. It does increase the number of potentially concurrent method invo-
cations and with them the likelihood of potential conflicts. If the number of concurrent user
transactions is very large then decreased savings in lock overhead will be realized since the use
of locking is pessimistically required.

?Dependency analysis is combined with locking.
19These locks and the operations upon them may be created automatically when the code is compiled.

Applying Method Data Dependence to Transactions in Object Bases 13

5.4.3 Performance and Algorithm Analysis

The use of static dependence information to refine dynamic locking behaviour is clearly a good
solution to the scheduling problem. Since the cost of obtaining locks is high [Moh90] this
algorithm offers significant overhead reductions. Furthermore, using this algorithm allows the
serializability of user transactions using two-phase locking [BG81]. In this environment, two
phase locking synchronizes method-invocations by explicitly detecting and avoiding conflicts
between those methods. Using this hybrid algorithm, locking is not performed when it will not
be necessary. That is, two methods which cannot conflict, need not perform locking. Also, since
the hybrid algorithm only checks for dependence between UMIs rather than between all method
invocations, its runtime overhead is significantly lower than that of the improved algorithm
suggested. Finally, the hybrid algorithm supports mutually recursive method-invocations if
friendly [Tan92] locks are provided. As with two-phase locking, there is nothing inherent in
the scheduling algorithm which prevents the use of friendly locks. In fact, once a lock has been
acquired by a method-invocation it is possible to have it inform the scheduler that it will be
friendly to other invocations of the same method. Thus, not only is the recursion permitted,
but it is efficiently implemented since locks will not have to be repeatedly obtained.

The time and space complexity of this algorithm is the same as the first, but a significant
amount of lock overhead has been saved. Alternatively, the algorithm could also be applied as
every method invocation is processed as was done in the second algorithm. This increases the
complexity (as it did in that algorithm) but also improves performance by further reducing the
number of times locks must be obtained.

6 Conclusions and Future Work

This paper has introduced the new concept of dependence analysis in object bases and discussed
how it may be implemented and used to perform effective method-level transaction scheduling.
Three scheduling algorithms were developed, the last of which is clearly a practical algorithm.
This hybrid algorithm uses statically calculated dependence information to decrease the over-
head associated with conventional locking schemes, including two phase locking. Since the
algorithm is compatible with two-phase locking, the issue of serialization is also addressed !
and since our object base model assumes nested atomic method invocations, the problem of
deadlock arising due to uncontrolled waiting may be addressed using conventional techniques.

The compile-time overhead of dependence analysis is negligible since most of the work
will be done by any good optimizing compiler and the run-time overhead will be reduced
significantly compared to existing locking methods. Thus, the suggested technique is both
practically and theoretically interesting. It should be noted that these techniques are similar
to providing partial predeclaration of read and write sets as might be done in a conventional
database system [BHGS87].

Future work requires a technique to devise analytic methods which compare dependence-
based and other scheduling algorithms. This will provide answers to questions such as the
level and frequency at which dependence analysis should be performed so that decisions as to
how to apply dependence information to the scheduling problem can be made. This will allow
quantitative results to be reported in the future. Aside from developing analytical methods,
research continues in several other directions:

1Other methods for assuring serializability in nested object-oriented databases is an open area of research
which we are currently investigating.

Applying Method Data Dependence to Transactions in Object Bases 14

¢ Data-Level Dependence — Once method-level dependence is defined, it is relatively
straightforward to extend our model to include dependence at the data item level. This has
the benefit of increased potential parallelism but will incur higher analysis costs and, in the
case of the hybrid algorithm, higher locking costs. It will be interesting to see if applying data
dependence information gathered by the object code compiler can speed transaction processing
further than the method-level techniques discussed.

¢ Other Uses of Dependence Information — The availability of dependence information
is of use in areas besides scheduling. For example, by applying statically-determined knowl-
edge of method reference patterns, it may be possible to predict when deadlocks may occur.
This information could be used to tune deadlock handling methods for improved performance.
Other possible uses include verification of appropriate concurrent behaviour within and between
transactions, detection of hot-spots in object code, and debugging concurrent transactions.

¢ Operation in a Distributed Environment — In a distributed environment the ability
to apply dependence analysis to decrease locking would be a great advantage. Since the hybrid
scheduling algorithm is compatible with centralized two-phase locking it is likely extendable to
any distributed environment where two phase locking is applicable.

References

[AE92] D. Agrawal and A. El Abbadi. A Non-Restrictive Concurrency Control for Object
Oriented Databases. In Proceedings of the International Conference on Fxtending
Database Technology, pages 469-482, 1992.

[ASUSR6] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison Wesley, 1986.

[Ban88| U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publish-
ers, 1988.

[BG81] P.A. Bernstein and N. Goodman. Concurrency Control in Distributed Database
Systems. ACM Computing Surveys, 13(2):185-221, 1981.

[BHG87] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recov-
ery in Database Systems. Addison Wesley, 1987.

[BM91] E. Bertino and L. Martino. Object-Oriented Database Management Systems: Con-
cepts and Issues. IEEE Computer, 24(4):33-47, 1991.

Elm92 A K. Elmagarmid. Database Transaction Models for Advanced Applications. Mor-
g
gan Kaufmann, 1992.

[FO&9] A.A. Farrag and M.T. Ozsu. Using Semantic Knowledge of Transactions to Increase
Concurrency. ACM Transactions on Database Systems, 14(4):503-525, 1989.

[GK88] J.F. Garza and W. Kim. Transaction Management in an Object-Oriented Database
System. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pages 37-45. ACM, 1988.

Applying Method Data Dependence to Transactions in Object Bases 15

[GMS3]

[HHO1]

[KGBWOO]

[Kim90]

[Lam78]

[Moh90]

[Mos85]

[RE92]

[RGNYO]

[Tan92]
[Wols9]
[7ZB92]

[2.C90]

H. Garcia-Molina. Using Semantic Knowledge for Transaction Processing in a Dis-
tributed Database. ACM Transactions on Database Systems, 8(2):186-213, 1983.

T. Hadzilacos and V. Hadzilacos. Transaction Synchronisation in Object Bases.
Journal of Computer and System Sciences, 43(1):2-24, 1991.

W. Kim, J.F. Garza, N. Ballou, and D. Woelk. Architecture of the ORION Next-
Generation Database System. IFEF Transactions on Knowledge and Data Engi-
neering, 2(1):109-124, 1990.

W. Kim. Object-Oriented Databases: Definition and Research Directions. [FEFE
Transactions on Knowledge and Data Engineering, 2(3):327-341, 1990.

L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7):558-565, 1978.

C. Mohan. Commit_LSN: A Novel and Simple Method for Reducing Locking and
Latching in Transaction Processing Systems. In Proceedings of the 16th VLDB
Conference, pages 1-14, 1990.

J.E.B. Moss. Nested Transactions — An Approach to Reliable Distributed Comput-
ing. The MIT Press, 1985.

R.F. Resende and A. El Abbadi. A Graph Testing Concurrency Control Protocol
for Object Bases. In Proceedings of the International Conference on Computers
and Information, pages 289-292, 1992.

T.C. Rakow, J. Gu, and E.J. Neuhold. Serializability in Object-Oriented Database
Systems. In Proceedings of the International Conference on Data FEngineering,
pages 112-120. IEEE, 1990.

A.S. Tanenbaum. Modern Operating Systems. Prentice-Hall, 1992.
M. Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, 1989.

M.E. Zapp and K. Barker. An Architecture and Model for Transactions in Object
Bases. Technical report, University of Manitoba, Dept. of Computer Science, TR
92-8, July, 1992.

H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers.

Addison Wesley, 1990.

