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Impact of Imperfect Channel Estimation on the
Performance of Amplify-and-Forward Relaying

Berna Gedik and Murat Uysal

Abstract—In this paper, we investigate the error rate per-
formance of amplify-and-forward (AF) relaying with imperfect
channel estimation. We consider a single-relay scenario with
orthogonal and non-orthogonal AF (OAF and NAF) cooperative
protocols. Two pilot-symbol-assisted receiver architectures are
studied: In the mismatched-coherent receiver, the complex fading
channel coefficients (i.e., both phase and amplitude) are estimated
based on a linear minimum-mean-squared-error estimation ap-
proach and fed to a coherent sub-optimal maximum likelihood
decoder as if the channels were perfectly known. In the partially-
coherent receiver, channel amplitude is ignored and phase is
estimated by a phase locked loop. For both receiver types, we
analyze the achievable diversity orders for cooperative protocols
under consideration and quantify the impact of channel estima-
tion through the derivation of pairwise error probability. Our
performance analysis reveals that a second order diversity order
is obtained for the considered single-relay scenario indicating that
full diversity is extracted. Our simulation results demonstrate
that the performance degradation due to channel estimation with
respect to the genie bound (i.e., perfect channel state information)
is as small as 1.1dB based on the employed detector. Performance
results further show that partially-coherent receiver presents a
similar performance to mismatched-receiver for sufficiently large
loop SNRs although channel amplitude is completely ignored.

Index Terms—Transmission technology, cooperative diversity,
space-time coding.

I. INTRODUCTION

COOPERATIVE diversity has been proposed as a pow-
erful means to enhance the performance of high-rate

communications over wireless fading channels [1]–[3]. It
realizes spatial diversity advantages in a distributed manner
where two or more nodes (each with single antenna) share
their antennas to mimic a virtual antenna array. Cooperative
diversity has garnered much attention in the past few years
with a flurry of papers (see e.g., the survey papers [4]–[6] and
the references therein) providing insights into capacity and
power savings realizable through cooperation. However, most
of the research efforts on this topic have been mainly limited to
some idealistic assumptions such as the availability of perfect
channel state information (CSI). Some research efforts on
differential and non-coherent detection should be noted [7]–
[11] in a related context. Under the assumption of coherent
detection, the fading channel coefficients need to be first

Manuscript received February 22, 2008; revised June 21, 2008; accepted
August 19, 2008. The associate editor coordinating the review of this paper
and approving it for publication was D. Dardari.

M. Uysal is with the Department of Electrical and Computer Engineering,
University of Waterloo, Canada. B. Gedik is currently affiliated with General
Electric Company (e-mail: {bgedik, muysal}@engmail.uwaterloo.ca).

The work of M. Uysal is supported in part by an NSERC Special
Opportunity Grant (SROPJ305821-05).

Digital Object Identifier 10.1109/TWC.2008.080252

estimated and then used in the detection process. In decode-
and-forward (DF) relaying, both relay and destination require a
reliable channel estimate. In amplify-and-forward (AF) relay-
ing, knowledge of CSI is required at the destination terminal
and may be required at the relay as well depending on the
adopted scaling factor [12]. The quality of channel estimates
inevitably affects the overall performance of relay-assisted
transmission and might become a performance limiting factor.
Channel estimation problem in the context of DF relaying
basically consists of individual estimation of source-to-relay
and relay-to-destination channels. On the other hand, in AF
relaying, a cascaded channel from source-to-destination needs
to be estimated. Although it can be possibly argued that this
could be disintegrated into individual channel estimations (i.e.,
separate estimations of source-to-relay and relay-to-destination
channels) through the injection of a “clean” pilot symbol
at relay, such an approach would require additional pilot
symbols, therefore reduce the bandwidth and power efficiency.
It would also require the forward-feedback of source-to-relay
channel estimate from the relay to destination terminal which
would be subject to further distortions during transmission.
Therefore, in this paper, we devote our attention to AF relaying
with channel estimation of the overall cascaded channel.

To the best of our knowledge, coherent detection with
imperfect channel estimation for AF relaying has been first
addressed by Mheidat and Uysal in [13] and independently
by Patel and Stuber in [14], [15]. The main focus in [13] and
its journal version [11] is actually the derivation of a non-
coherent detector based on a maximum likelihood sequence
estimator for distributed space-time block codes whereas the
performance of a mismatched-coherent receiver (i.e., coherent
detection with imperfect channel estimation) is studied as a
benchmark. On the other hand, [15] considers a multi-hop re-
lay scenario, derives a channel estimator tailored for cascaded
Rayleigh fading channel, and further presents an approximate
bit error rate performance analysis for a mismatched-coherent
receiver. Furthermore, in [37], Quek et al. propose power
allocation algorithms for coherent and non-coherent AF relay
networks taking into account imperfect channel knowledge.

In this paper, we investigate the effects of channel estima-
tion on the performance of both orthogonal AF (OAF) [16] and
non-orthogonal AF (NAF) relaying1 [17] which correspond to
distributed SIMO (single-input multiple-output) and MIMO
(multiple-input multiple-output) implementations, respectively
[3]. We consider mismatched-coherent and partially-coherent
receivers at the destination terminal. In mismatched-coherent

1Orthogonal and non-orthogonal AaF relaying are referred as Protocol II
and Protocol I, respectively in [3].
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receiver, the channel coefficients are first estimated through
pilot symbols based on a linear minimum-mean-squared-error
estimation (LMMSE) approach and then fed to a coherent
maximum likelihood (ML) decoder as if the channel was
perfectly known. In partially-coherent receiver, the estimates
of channel phase information are obtained through a phase
lock loop (PLL) while no effort is made for the estimation of
channel amplitudes. Considering these two receiver-types, we
quantify the impact of channel estimation on OAF and NAF
relaying through the derivations of pairwise error probability
(PEP) and a comprehensive Monte-Carlo simulation study.

The rest of the paper is organized as follows: In Section
II, we introduce the relay-assisted transmission and describe
the received signal models for OAF and NAF relaying. In
Section III, we describe pilot-symbol-assisted LMMSE chan-
nel estimation and PLL-aided phase estimation. In Section IV,
we provide PEP expressions for the two receiver types under
consideration. In Section V, we discuss the effect of relay
location on channel estimation. In Section VI, we present an
extensive Monte-Carlo simulation study to demonstrate the
error rate performance of OAF and NAF cooperation protocols
with mismatched-coherent and partially-coherent receivers.
The conclusions are given in Section VII. Finally, the details
of PEP derivations are provided in the appendixes.

Notation: (.)T, (.)∗, (.)Hdenote transpose, conjugate, and
Hermitian transpose operations, respectively. E (.) denotes
expectation. |.| denotes the absolute value, ‖.‖ denotes the
Frobenius norm and IN denotes the identity matrix of size
N . var (.) denotes the variance of a random variable. det (.),
diag (.), and trace (.) denote the determinant, diagonal, and
trace of a matrix, respectively. i denotes

√−1. Re(.) denotes
real part. Bold upper-case letters denote the matrices and bold
lower-case letters denote the vectors.

II. SYSTEM MODEL

We consider a single-relay scenario where each of the half-
duplex nodes is equipped with a single pair of transmit and
receive antennas (Fig. 1). To incorporate the effect of relay
geometry in our model, we consider a channel model which
takes into account both long-term free-space path loss and
short-term Rayleigh fading. The path loss is proportional to
d−a where d is the propagation distance and a is the path loss
coefficient. In Fig. 1, dSD, dSR, and dRD denote the distances
of source-to-destination (S→D), source-to-relay (S→R), and
relay-to-destination (R→D) links, respectively, and θ is the
angle between lines S→R and R→D. Assuming the path loss
in S→D to be unity, the relative gain of S→R and R→D links
are defined as GSR = (dSD/dSR)a and GRD = (dSD/dRD)a

[18].
We consider two cooperation protocols: In OAF protocol

[16], the source terminal communicates with the relay and
destination terminals over the first signaling interval. In the
second signaling interval, only the relay terminal communi-
cates with the destination terminal. NAF protocol [3], [17]
differs from OAF version in the sense that the source continues
transmission over the second interval. It is apparent that signal
conveyed to the relay and destination terminals over the two
time slots is same for OAF relaying whereas NAF protocol can

R

S DSDd

SRd RDd

Fig. 1. Relay-assisted transmission model

potentially convey different signals to the relay and destination
terminals. This makes possible the deployment of various
conventional space-time codes (originally proposed for co-
located antennas) in a distributed scenario2.

A. NAF protocol

Although any conventional space-time code can, in princi-
ple, be used in conjunction with NAF protocol, we consider
Golden code of [19], which has been recently shown to achieve
optimum diversity-multiplexing tradeoff in the single relay
AF case [20]. Let x =

[
x1 x2 x3 x4

]T
denote M-

PSK (phase shift keying) modulation signals with normalized
energy, i.e., E[|xi|2] = 1. Before transmission, the modulation
signals are fed into a precoder given by [19]

P =

⎡
⎢⎢⎣

α αΘ 0 0
0 0 iᾱ iᾱΘ̄
0 0 α αΘ
ᾱ ᾱΘ̄ 0 0

⎤
⎥⎥⎦ (1)

where Θ = (1 +
√

5)
/
2, Θ̄ =

(
1 −√

5
)/

2, α =
(1 + i − iΘ)

/√
5, ᾱ =

(
1 + i − iΘ̄

)/√
5. The output of the

precoder is given by c = Px = [c1 c2 c3 c4]
T where c1 =

α (x1 + Θx2), c2 = iᾱ
(
x3 + Θ̄x4

)
, c3 = α (x3 + Θx4) ,

and c4 = ᾱ
(
x1 + Θ̄x2

)
. In the first signaling interval, the

codeword c1 is transmitted from the source with energy E.
Considering path-loss effects, the received signals at the relay
and destination are given as

rR1 =
√

GSREhSRc1 + nR1, (2)

rD1 =
√

EhSDc1 + nD1. (3)

The relay terminal normalizes the received signal by a fac-
tor of

√
E[|rR1|2] to have average unit energy and then re-

transmits the normalized signal within the second time slot.
The source terminal simultaneously transmits the codeword

2It should be noted that the use of space-time block codes (STBC) has
been proposed by Laneman et.al. in [2] for OAF protocol. Their proposed
use of STBC, however, implements coding across the relay nodes assuming
a scenario with more than one relay and differs from the distributed STBC
setup in [3] proposed for NAF protocol which involves the source terminal
in a single-relay scenario.
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c2. Therefore, the destination receives a superposition of the
signals transmitted by the relay and source transmission as

rD2 =

√
GRD

E

2
hRD

rR1√
E[|rR1|2]

+

√
E

2
hSDc2 + n (4)

where scaling by 1/
√

2 is included to ensure the total power
consumption limited by E in a particular time slot. In (2)-(4),
hSR, hSD, and hRD denote fading coefficients over S→R,
S→D, and R→D links respectively, and are modeled as zero-
mean complex Gaussian random variables with variance of 0.5
per dimension leading to a Rayleigh fading channel model.
nR, nD1, and n are the independent samples of zero-mean
complex Gaussian random variables with variance N0/2 per
dimension, which model the additive noise terms. Replacing√

E[|rR1|2] =
√

GSREκ + N0 with κ = |α|2 (1 + Θ2
)

in
(4), we obtain

rD2 =

√
0.5GSRGRDE2

GSREκ + N0
hSRhRDc1

+
√

0.5EhSDc2 + ñ1 (5)

where ñ1 =
√

0.5GRDE/(GSREκ + N0)hRDnR1 + n. Due
to the term involving hRDnR1, ñ1 is of Gaussian nature which
makes the analysis intractable. However, as in [15], [21], we
can treat it as Gaussian noise with the same average power.
Therefore, ñ1 is assumed to be complex Gaussian with statis-
tics ñ1∼CN

(
0, N0

(
1 + 0.5GRDEσ2

hRD

/
(GSREκ + N0)

))
.

The destination terminal normalizes rD2 by a factor of√
1 + (0.5GRDE)σ2

hRD

/
(GSREκ + N0) yielding

rD2 =
√

A1EhSRhRDc1 +
√

A2EhSDc2 + nD2 (6)

where nD2 is zero mean complex Gaussian random variable
with a variance of N0. In (6), A1 and A2 are defined as

A1 =
0.5GSRGRDE/N0

1 + GSRκE/N0 + 0.5σ2
hRD

GRDE/N0
, (7)

A2 =
0.5 (1 + GSRκE/N0)

1 + GSRκE/N0 + 0.5σ2
hRD

GRDE/N0
. (8)

The codewords c3 and c4 are transmitted from the source in
the third and fourth time slots, respectively. The corresponding
received signal models are obtained, similar to (3) and (6), as

rD3 =
√

EhSDc3 + nD3, (9)

rD4 =
√

A1EhSRhRDc3 +
√

A2EhSDc4 + nD4. (10)

Defining r = [rD1 rD2 rD3 rD4]
T, n =

[nD1 nD2 nD3 nD4]
T, and h = [hSRhRD hSD]T =

[hSRD hSD]T, the received signals over four time slots can
be rewritten in a compact matrix form as r = XDh + n
where XD is given by

XD =
[

0
√

A1Ec1√
Ec1

√
A2Ec2

0
√

A1Ec3√
Ec3

√
A2Ec4

]T
. (11)

B. OAF protocol

This protocol is a distributed SIMO structure and imple-
ments receive diversity in a distributed fashion. Let x be the
M-PSK signal transmitted from the source in the first time
slot. The received signals at relay and destination are given
by

rR =
√

GSREhSRx + nR, (12)

rD1 =
√

EhSDx + nD1. (13)

The relay terminal normalizes the received signal by a factor
of
√

E[|rR|2] =
√

GSRE + N0 to have average unit energy
and then re-transmits the normalized signal within the second
time slot. The received signal model at the destination in the
second time is given by

rD2 =

√
GSRGRDE2

GSRE + N0
hSRhRDx + ñ1 (14)

where ñ1 =
√

GRDE/(GSRE + N0)hRDnR + n. The
destination terminal normalizes rD2 by a factor of√

1 + GRDEσ2
hRD

/
(GSRE + N0) resulting in

rD2 =
√

B1EhSRhRDx + nD2 (15)

where B1 is defined as

B1 =
GSRGRDE/N0

1 + GSRE/N0 + σ2
hRD

GRDE/N0
. (16)

Defining r =
[

rD1 rD2

]T
and n =

[
nD1 nD2

]T
, the

received signals can be rewritten in a matrix form as r =
XDh + n where XD is given by

XD =
[

0
√

E√
B1E 0

]
x. (17)

III. MISMATCHED-COHERENT AND

PARTIALLY-COHERENT RECEIVERS

In this section, we consider two different pilot-symbol-
assisted receiver architectures: In the first receiver, the com-
plex fading channel coefficients (i.e., both phase and ampli-
tude) are estimated based on an LMMSE approach and fed to
a coherent ML decoder. This results in so-called mismatched
receiver [22]. In the second receiver, channel amplitude is
ignored. Only phase information of the channels is estimated
by a PLL and these estimates are used in a partially-coherent
receiver [23]. We assume perfect synchronization throughout
the paper.

Let XlT , l = 1, 2, ...N , and XjD , j = 1, 2, ...M denote
the pilot and data matrices transmitted by the source terminal
at transmission blocks l and j. Here, N and M denote the
number of training and data transmission blocks, respectively.
The length of data transmission block is equal to the codeword
length which is 2 and 4 for OAF and NAF protocols, c.f., (11)
and (17). The received signal is therefore given by

XTot = [
X1T · · ·XNT︸ ︷︷ ︸

XT

X1D · · · XMD︸ ︷︷ ︸
XD

]T. (18)
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A. Mismatched-coherent detection with LMMSE estimator

The LMMSE estimate of the channel matrix can be obtained
as ĥ= BrT where rT = XTh + nT is the received signal
during the training period and B is a matrix obtained through
the minimization of E[‖BrT − h‖2]. This minimization yields
[24]

B = E
(
hrH

T

)
E
(
rT rH

T

)−1
. (19)

Using E
(
hhH

)
= I2, the channel estimate ĥ = h − e is

obtained as

ĥ =
[

ĥSRD ĥSD

]T
= XH

T

(
XTXH

T + N0I2

)−1
rT .

(20)
The covariance matrix of estimation errors e =[

eSRD eSD

]T
is given by

Ce = E
(
hhH

)
− BE

(
rT rH

T

)
BH

= N0

(
XH

T XT + N0I2

)−1
.

(21)

The channel estimate ĥ is then used to minimize the following
sub-optimal ML metric 3

arg min
ℵ

∥∥∥r−XDĥ
∥∥∥2

(22)

where ℵ = {x1, x2, x3, x4} for NAF protocol and ℵ = {x} for
OAF protocol. The exhaustive search required in (22) can be
avoided by using low complexity sphere decoding techniques
[34], [35].

B. Partially-coherent detection with PLL estimator

Let hSRD = |hSRD| eϕSRD and hSD = |hSD| eϕSD be
the polar coordinates representations of the complex fading
coefficients. ϕSRD and ϕSD are the phases introduced by
S→R→D and S→D channels. We assume a first order PLL
at the destination terminal. Upon receiving the signal rT

during the training phase, PLL first compares the phases of
the input signal and the locally generated oscillator output,
then generates a control signal that is a function of the phase
difference which is minimized to produce phase estimates
ϕ̂SD and ϕ̂SRD . The estimation errors are denoted as εSRD =
ϕSRD−ϕ̂SRD and εSD = ϕSD−ϕ̂SD for S→R→D and S→D
links, respectively. Their distribution can be well approximated
by Tikhonov probability density function [25]

pε (ε) =
exp (ρ cos ε)

2πI0(ρ)
, −π ≤ ε ≤ π (23)

where we drop the index S→R→D and S→D for notational
convenience. Here, I0(.) is the zeroth order modified Bessel
function of the first kind [26] and ρ is the loop signal-to-noise
ratio defined as [25]

ρ =
ξ

BLT
(24)

where T denotes the symbol duration, BL is the loop band-
width, and ξ is the instantaneous received signal-to-noise-ratio

3The optimal ML metric can be obtained by maximizing the probability
density function p(r, rT |XD ,XT ) [22]. This optimal metric makes use of
the received pilot symbols for the detection of transmitted data and would
include some terms to reflect the covariance of the effective noise. However,
its form is complicated and restricts its practical feasibility.

[33]. If PLL is assumed to be in lock position, ε is sufficiently
small; therefore, phase errors can be approximated as zero
mean Gaussian random variables with variance σ2

ε = 1/ρ.
These phase estimates are used in partially-coherent detection
to minimize the metric

arg min
ℵ

‖r−XDϕ̂‖2 (25)

where ϕ̂ =
[

ejϕ̂SRD ejϕ̂SD
]T

and channel amplitudes are
taken equal to one [23].

IV. DIVERSITY GAIN ANALYSIS

In this section, we investigate the achievable diversity order
for the cooperative schemes under consideration through the
derivation of PEP. PEP is the building block for the derivation
of union bounds to the error probability. It is widely used in
the literature to predict the attainable diversity order where the
closed-form error probability expressions are unavailable. Let
P
(
XD → X̂D

)
denote PEP where the transmitted codeword

vector and the erroneously-decoded codeword matrices are
given by XD and X̂D , respectively. Following the derivation
steps in Appendix A, PEP for NAF relaying with Golden code
and mismatched-coherent receiver can be given as

P
(
XD → X̂D

)
<

4SNR−2
eff

/(
λ2

minκ1κ2

)
(
1 − σ2

eSD

) (
1 − σ2

eSR

) (
1 − σ2

eRD

)
× exp

⎛
⎝ 2SNR−1

eff

/
(λminκ2)(

1 − σ2
eSR

) (
1 − σ2

eRD

)
⎞
⎠

× Γ

⎛
⎝0,

2SNR−1
eff

/
(λminκ2)(

1 − σ2
eSR

) (
1 − σ2

eRD

)
⎞
⎠(26)

where SNReff = E/2Λ. Here, Λ is trace of the covari-
ance matrix for effective noise which contains both additive
Gaussian channel noise and channel estimation error and is
given by (50) of Appendix A. In (26), κ1, κ2 are defined by
κ1 = κ + A2κ

′ and κ2 = A1κ where κ = |α|2 (1 + Θ2
)

and κ′ = |ᾱ|2 (1 + Θ̄2
)
. λmin denotes the minimum value

of λ1 + λ3 and λ2 + λ4 where λ1, λ2, λ3, and λ4 are the
eigenvalues of (x − x̂) (x − x̂)H. σ2

eSD
, σ2

eSR
, and σ2

eRD
de-

note variances of S→D, S→R, and R→D channel estimation
errors and are, respectively, given by

σ2
eSD

= (E/N0)
−1
/(

N (2κ + κ′) + (E/N0)
−1
)
, (27)

σ2
eSR

= (E/N0)
−1
/(

2NGSRκ + (E/N0)
−1
)
, (28)

σ2
eRD

= (E/N0)
−1
/(

NGRDκ + (E/N0)
−1
)
. (29)

For large SNReff values, exponential term in (26) goes to
zero and we can use the approximation lim

t→0
Γ (0, t) ≈ − log (t)

for the gamma term [28]. Then, P
(
XD → X̂D

)
reduces to

P
(
XD → X̂D

)
<

4SNR−2
eff

λ2
minκ1κ2

(
1 − σ2

eSD

) (
1 − σ2

eSR

) (
1 − σ2

eRD

)
× log

(
SNReff λminκ2

(
1 − σ2

eSR

) (
1 − σ2

eRD

)
2

)
(30)
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Under high SNReff assumption, log (SNReff ) term can be
ignored with respect to the dominating term SNR−2

eff
. Thus,

asymptotically, second order diversity is achieved, extracting
the full diversity for the considered scenario with single relay.
We observe that the presence of channel estimation errors
does not affect the diversity order. The PEP expression for the
perfect CSI case can be simply obtained when the estimation
error variances become zero. Let Pgenie

(
XD → X̂D

)
denote

the PEP for perfect CSI, then the performance degradation due
to channel estimation is given by

Ξ =
P(XD→X̂D)

Pgenie(XD→X̂D)

= (Λ/N0)
2

(1−σ2
eSD

)(1−σ2
eSR

)(1−σ2
eRD

)

× log
(

Eλminκ2
4

[
(1−σ2

eSR
)(1−σ2

eRD
)

Λ − 1
N0

])
.

(31)

By increasing pilot symbol power, estimation error variances
approach zero (i.e., σ2

eSRD
, σ2

eSD
→ 0 ) leading to log Ξ =

log 1 = 0.
PEP for OAF relaying with mismatched coherent receiver

is given as (see Appendix B for details of the derivation)

P
(
XD → X̂D

)
≤

4SNR−2
eff

/(
λ2B1

)
(
1 − σ2

eSD

) (
1 − σ2

eSR

) (
1 − σ2

eRD

)
× exp

⎛
⎝ 2SNR−1

eff

/
(λB1)(

1 − σ2
eSR

) (
1 − σ2

eRD

)
⎞
⎠

× Γ

⎛
⎝0,

2SNR−1
eff

/
(λB1)(

1 − σ2
eSR

) (
1 − σ2

eRD

)
⎞
⎠ (32)

where λ = |x − x̂|2 and SNReff = E/2Λ. Λ contains both
channel estimation error and additive noise variances and
is given by (63) of Appendix B. In (32), σ2

eSD
, σ2

eSR
, and

σ2
eRD

denote variances of S→D, S→R, and R→D channel
estimation errors and are, respectively, given by

σ2
eSD

= (E/N0)
−1
/

(N + (E/N0)
−1), (33)

σ2
eSR

= (E/N0)
−1
/

(NGSR + (E/N0)
−1), (34)

σ2
eRD

= (E/N0)
−1
/

(NGRD + (E/N0)
−1). (35)

For large SNReff values, (32) reduces to

P
(
XD → X̂D

)
≤

4SNR−2
eff

/(
λ2B1

)
(
1 − σ2

eSD

) (
1 − σ2

eSR

) (
1 − σ2

eRD

)
× log

(
SNReffλB1

(
1 − σ2

eSR

) (
1 − σ2

eRD

)
2

)
(36)

Ξ =
(Λ/N0)

2(
1 − σ2

eSD

) (
1 − σ2

eSR

) (
1 − σ2

eRD

)
× log

(
EλB1

4

[(
1 − σ2

eSR

) (
1 − σ2

eRD

)
Λ

− 1
N0

])
(37)

As σ2
eSRD

, σ2
eSD

→ 0 , (36) reduces to perfect CSI case
reported in [29] and log Ξ becomes 0.

Finally, for OAF relaying with partially-coherent receiver,
we obtain the PEP as, (see Appendix C for details of the
derivation)

P
(
XD → X̂D

)
<

SNR−2
eff

B2
1Δ2

1

√
(Δ2BLT/(2Δ1 + 2B1Δ1))

2

Δ2
1 + SNR−1

eff

× exp

(
Δ2BLT

2
+

SNR−1
eff

B2
1Δ2

1

)
Γ

(
0,

SNR−1
eff

B2
1Δ2

1

)

× K1

⎛
⎝
√(

Δ2BLT

2 + 2B1

)2

+
(Δ2BLT/(2 + 2B1))

2 SNR−1
eff

Δ2
1

⎞
⎠ (38)

where SNReff = E/[2N0 (1 − cos(θΔ)) (1 + B1)],
Δ1 = (1 − cos(θΔ)), Δ2 = (1 − cos(θΔ) − 2 sin(θΔ)), and
cos(θΔ) = Re {xx̂∗}. For large values of SNReff , we use the
approximation Kv(z) ≈ 0.5Γ(v) (2/z)v , z < 1 [28] reducing
(38) to

P
(
XD → X̂D

)
<

SNR−2
eff

B2
1Δ4

1

exp
(

Δ2BLT

2

)

× log
(
SNReffB2

1Δ2
1

)
(39)

indicating a second order diversity. Performance degradation
with respect to partially-coherent receiver having perfect chan-
nel phase knowledge is given by

Ξ = exp
(

Δ2BLT

2

)
. (40)

As the loop signal-to-noise ratio (which is inversely propor-
tional to BLT ) increases, estimation of the channel phases
in PLL become error free and therefore the term in (40)
approaches one.

V. EFFECT OF RELAY LOCATION ON THE QUALITY OF

CHANNEL ESTIMATES

In this section, we investigate the effect of relay location
on the quality of channel estimates. Let ΣSRD denote mean
squared error (MSE) of S→R→D channel estimate. To min-
imize MSE with respect to relay location, we need to solve
the following constrained optimization problem

minimize
GSR,GRD

ΣSRD (41)

s.t. G
−2/a
SR + G

−2/a
RD − 2G

−1/a
SR G

−1/a
RD cos θ = 1

where the constraint equation is obtained through
law of cosines between relative gains GSR and GRD

considering the relay geometry (c.f., Fig. 1). For Golden
coded pilot symbols p1i and p3i, replacing XT =
[
√

A1Ep11

√
A1Ep31 .....

√
A1Ep1N

√
A1Ep3N ]T in

N0

(
XH

T XT + N0

)−1
, we can obtain ΣSRD of NAF protocol

as

ΣSRD =
(E/N0)

−1

2A1Nκ + (E/N0)
−1 (42)

where A1 is a function of GSR and GRD , c.f. (7). Assume a
scenario with path loss coefficient a = 2 and θ = π. Then, we
have GRD =

(
1 + 1

/√
η
)2

and GSR = η
(
1 + 1

/√
η
)2

with
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η = GSR/GRD . Taking the derivative of (42) with respect to
η and equating to zero, we have

∂ΣSRD

∂η =
(ENκ/N0)

2v3(−2/√η+v/η+υχ1/m1)/(ηm1)

((ENκ/N0)
2υ4/(ηm1)+1)2

= 0
(43)

where υ =
√

η+1, m1 = 1+υ2E (κ + 1/2η)
/
N0, and χ1 =

υE
(
κ + 1/2η − υ/2η

√
η
)/(√

ηN0

)
. The numeric solutions

of (43) for various E/N0 are provided in Table I.

TABLE I
RELAY LOCATIONS THAT MINIMIZE MSE (N = 1)

η = GSR/GRD [dB] θ = π θ = 3π/4 θ = 2π/3

E/N0 = 10 dB −6.210 dB −7.55 dB −9.32 dB

E/N0 = 25 dB −6.021 dB −7.20 dB −8.74 dB

E/N0 = 35 dB −6.021 dB −7.19 dB −8.73 dB

E/N0 = 100 dB −6.020 dB −7.19 dB −8.73 dB

Note that ΣSRD is a convex function of relay location η
(see Fig. 3). Therefore, the results in Table I are, in fact,
global minimums of the optimization problem. We observe
from the table that relay location which minimizes MSE
remains nearly constant for a wide range of SNR values.
Negative values of η = GSR/GRD (in dB) indicate that
quality of channel estimation improves when relay is closer
to the destination. Similar observations can be made for other
values of θ presented in Table I. As θ decreases, optimum
relay location comes even closer to destination.

For OAF protocol, replacing XT =
[
√

B1Ep1 ......
√

B1EpN ]T in N0

(
XH

T XT + N0

)−1
,

ΣSRD can be obtained as

ΣSRD =
(E/N0)

−1

B1N + (E/N0)
−1 (44)

where B1 is a function of GSR and GRD, c.f. (16). Taking the
derivative of (44) with respect to η = GSR/GRD , we have

∂ΣSRD

∂η =
(EN/N0)

2υ3(−2/√η+υ/η+υχ2/m2)/(ηm2)

((EN/N0)
2υ4/(ηm2)+1)2

= 0
(45)

where m2 = 1 + υ2E (1 + 1/η)
/
N0 and χ2 =

υE
(
1 + 1/η − υ/η

√
η
)/(√

ηN0

)
. Solving (45), we have η =

0dB independent of E/N0 value. Hence, minimum MSE is
obtained when relay is in the mid-point between source and
destination.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, we present an extensive Monte-Carlo simu-
lation study to demonstrate the performance of OAF and NAF
relaying with mismatched-coherent and partially-coherent re-
ceivers. In our simulations, we consider NAF protocol with
Golden code assuming 4-PSK modulation. This code achieves
a throughput of 4 bits/sec/Hz in a non-cooperative 2x2 MIMO
system and a throughput of 2 bits/sec/Hz in a single-relay
cooperative communication system [19], [20]. To make a fair
comparison, we consider OAF relaying and non-cooperative
direct transmission with 16-PSK and 4-PSK, respectively.

0 5 10 15 20 25 30
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0

SNR

B
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R

Golden code  (mismatched )

Golden code  (genie)

Alamouti code  (mismatched)

Alamouti code (genie)

Non−cooperative (mismatched)

Non−cooperative (genie)

Fig. 2. BER performance of Golden-coded and Alamouti-coded NAF
protocol with mismatched-coherent and genie receivers (GSR/GRD = 0).

In Fig. 2, we present the bit error rate (BER) performance
of Golden-coded NAF protocol with a mismatched-coherent
receiver for a scenario in which the relay is located in the
midway of source-to-destination link, i.e., GSR/GRD = 0dB.
We assume a = 2 and θ = π. The performance of genie-aided
receiver (i.e., perfect CSI), non-cooperative direct transmission
(i.e., no relaying), and NAF protocol with Alamouti code are
further included as benchmarks. Assuming 16-PSK modula-
tion, Alamouti code achieves a throughput of 4 bits/sec/Hz
in non-cooperative 2x1 MIMO system and a throughput of 2
bits/sec/Hz in single-relay cooperative communication system.
It is observed that Golden-coded NAF protocol with both per-
fect and imperfect channel estimation yields a diversity order
of two confirming our PEP analysis. The mismatched-coherent
detection results in a performance loss of approximately 1.5
dB at BER = 5.10−3 with respect to the genie bound.
Although Alamouti-coded NAF protocol extracts a diversity
order of two as well, it is significantly outperformed by its
Golden-coded counterpart. Specifically, at BER = 5.10−3,
we observe a performance difference of 4 dB between two
codes. Our results further demonstrate that Golden code has
a slightly better robustness than Alamouti in the presence of
imperfect channel estimation.

In Fig. 3, we demonstrate MSE and BER performance of
NAF protocol as a function of relay location at SNR values
of 10dB and 28dB. From Fig. 3.a and 3.b, we observe that
the relay location which minimizes the estimation error is
independent of SNR value and takes place approximately at
GSR/GRD = −6dB. This confirms our earlier analytical
derivations in Section V (c.f. Table I). For low SNR val-
ues (e.g., SNR=10dB), we observe from Fig. 3.c that error
rate performance of Golden code improves slightly as relay
continues to move away from the destination. However for
high SNRs, a better error rate performance is obtained when
the relay is close to the destination (i.e., farther than −6dB
location). For such large negative values, relay is close to
the destination and in such a scenario, cooperative scheme
mimics the behavior of a receive diversity scheme with two
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Fig. 3. MSE and BER performance of NAF protocol with respect to relay
location E/N0 = 10 and 28dB.

co-located antennas. This demonstrates that nature of the
cooperation protocol dominates the BER performance rather
than the channel estimation quality.

In Fig. 4, we present BER performance of OAF relaying
with mismatched-coherent and partially-coherent receivers for
GSR/GRD = 0dB along with the genie bound. For partially-
coherent detection with PLL-aided phase estimation, we con-
sider two different BLT values. For BLT = 0.03 and 0.3,
performance degradations with respect to genie bound are,
respectively, 1.1 dB and 4dB at BER = 5.10−3. This is an
expected result as large BLT values result in inefficient phase
estimation; whereas for small BLT values the estimation error
variance tends to zero. It is interesting to note that partially-
coherent detector with BLT = 0.03 is able to slightly out-
perform the mismatched-coherent receiver although no effort
is made for channel amplitude estimation. This points out
that a reliable channel phase information is more essential
in the detection process than the channel amplitude. Further
comparison of Figs. 2 and 4 reveal that NAF protocol with
Alamouti code provides an identical performance to that of
OAF protocol. This observation has been earlier reported in
[29] for perfect CSI case. Since Golden-coded NAF has a
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Fig. 4. BER performance of OAF protocol with mismatched-coherent and
partially-coherent receivers (GSR/GRD = 0).

much superior performance over both OAF and Alamouti-
coded NAF, it becomes the obvious choice for distributed
implementation.

In Fig. 5, we provide MSE and BER performance of OAF
relaying as a function of relay location. Both mismatched-
coherent and partially-coherent receivers are considered. We
observe from Fig. 5.a and Fig. 5.b that OAF protocol experi-
ences the minimum estimation error when the relay is in the
mid-point confirming our derivations in Section V. Our results
in Fig. 5.c and Fig. 5.d demonstrate that error rate performance
improves as relay moves closer to the destination. This is
similar to our earlier observations for Fig. 3. Specifically, for
GSR/GRD = −30dB and SNR = 28dB, the performance
degradations with respect to genie bound are, respectively,
1.5×10−4, 1.6×10−4, 5.6×10−4 dB for mismatched-coherent
receiver, partially-coherent receivers with BLT = 0.03 and
BLT = 0.3. For GSR/GRD = 30dB, the performance
degradations are 4.2 × 10−4, 1.2 × 10−4 and 5.4 × 10−4

respectively.
In Fig. 6, we illustrate BER performance of OAF relaying

with mismatched-coherent receiver as a function of number
of pilot symbols N . It is observed that BER improves as
the number of pilot symbols increase. As the performance
degradation caused by estimation errors becomes sufficiently
small, a saturation point is reached where further increase in
pilot symbol number will not result in a significant change,
but rather reduce the data throughput [30].

VII. CONCLUSION

In this paper, we have investigated the impact of channel
estimation on the performance of amplify-and-forward relay-
ing considering mismatched-coherent and partially-coherent
receivers at the destination terminal. Our performance anal-
ysis, through the derivation of PEP expressions, reveals that
a second-order diversity order is obtained for the single-
relay scenario in all considered combinations of protocols and
receiver types. It has been observed that Golden-coded NAF
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Fig. 5. MSE and BER performance of OAF protocol with respect to relay
location (E/N0 = 10 and 28dB).

protocol is always superior to OAF protocol and Alamouti-
coded NAF protocol even if the channel knowledge at the
receiver is imperfect. Specifically, it is observed that Golden-
coded NAF protocol with a mismatched-coherent receiver
operates within 1.5 dB (at a target of BER = 5.10−3) of the
genie bound and outperforms Alamouti-coded NAF scheme
by 4dB. Performance results of OAF protocol reveal that
partially-coherent detection has performance degradation as
small as 1.1 dB for sufficiently large loop SNRs and can
even outperform mismatched-receiver although the channel
amplitudes are completely ignored.

We have also investigated relay locations which minimize
MSE of the channel estimates. These locations are determined
as GSR/GRD = 0dB (i.e., when relay is midway between
source and destination) for OAF protocol and GSR/GRD =
−6dB for Golden-coded NAF protocol (i.e., when relay is
closer to destination). Our simulation results further reveal
that these locations do have a minimal impact on BER
performance as error rate performance is mainly governed
by the location of relay imposed by nature of the protocols.
Specifically, error rate performance gets better when relay
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Fig. 6. BER performance of OAF protocol with respect to number of pilots.

moves close to the destination for both protocols which, for
very large negative values of GSR/GRD , mimic a virtual
receive diversity scheme.

APPENDIX A

In this appendix, we present the derivation of PEP for
Golden coded NAF protocol with mismatched-coherent de-
tector. Replacing the channel estimate ĥ = h − e in the
received signal vector r = XDh + n, we have r = XDĥ + n̄
where we define the effective noise term n̄ = XDe + n.
Under the assumption of Gaussian channel estimation errors,
an upper PEP bound for transmitted codeword matrix XD and
erroneously decoded codeword matrix X̂D is given by 4 [11],
[36]

P
(
XD → X̂D

∣∣∣ ĥ) ≤ exp
(
−‖(XD−X̂D)ĥ‖2

4trace{E(n̄n̄H)}

)
(46)

where XD is defined earlier by (11). For simplifying the
ensuing derivation, we rewrite r = XDĥ + XDe + n as
r = Ĥx + n̄ where n̄ = δx + n. Ĥ and δ are, respectively,
given by (47) and (48) (both can be found at the top of the
next page). Replacing (47) and (48) in (46), we have

P
(
x → x̂| Ĥ

)
≤ exp

(
−‖Ĥ(x−x̂)‖2

4Λ

)
= exp

(
− 1

4Λtrace
{
ĤAĤ

H
}) (49)

where we define A = (x − x̂) (x − x̂)H and

Λ = trace
{
E
(
n̄n̄H

)}
= 4N0 + 2σ2

eSD
κ1E + 2σ2

eSRD
κ2E. (50)

Here, σ2
eSD

and σ2
eSRD

denote the variances of S → D and
S → R → D link estimation errors, and are given by

σ2
eSD

= (E/N0)
−1
/(

N (2κ + κ′) + (E/N0)
−1
)
, (51)

4Note that the components of the effective noise term n̄ do not have
identical variance. To simplify the analysis, we replace them with independent
virtual noise components with their variance given as trace

{
E
(
n̄n̄H

)}
=

Σ4
k=1var(n̄k).
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Ĥ =

⎡
⎢⎢⎣

α
√

EĥSD

α
√

A1EĥSRD

0
ᾱ
√

A2EĥSD

αΘ
√

EĥSD

αΘ
√

A1EĥSRD

0
ᾱΘ̄

√
A2EĥSD

0
iᾱ
√

A2EĥSD

α
√

EĥSD

α
√

A1EĥSRD

0
iᾱΘ̄

√
A2EĥSD

αΘ
√

EĥSD

αΘ
√

A1EĥSRD

⎤
⎥⎥⎦ (47)

δ =

⎡
⎢⎢⎣

α
√

EeSD

α
√

A1EeSRD

0
ᾱ
√

A2EeSD

αΘ
√

EeSD

αΘ
√

A1EeSRD

0
ᾱΘ̄

√
A2EeSD

0
iᾱ
√

A2EeSD

α
√

EeSD

α
√

A1EeSRD

0
iᾱΘ̄

√
A2EeSD

αΘ
√

EeSD

αΘ
√

A1EeSRD

⎤
⎥⎥⎦ (48)

σ2
eSRD

= (E/N0)
−1
/(

2Nκ2 + (E/N0)
−1
)
. (52)

Since A in (49) is Hermitian and non-negative definite, it can
be decomposed into A = UDUH where U is unitary matrix
and D = diag {λ1, λ2, λ3, λ4} is a diagonal matrix having
real-valued eigenvalues of A. Replacing A with UDUH, (49)
becomes

P
(
x → x̂| Ĥ

)
≤ exp

⎛
⎝− 1

4Λ
trace

⎧⎨
⎩ĤU︸︷︷︸

Ĥ′

DUHĤH︸ ︷︷ ︸
Ĥ ′H

⎫⎬
⎭
⎞
⎠ .

Noting that multiplication by a unitary matrix does not change
the statistics of Ĥ, we get (53) (which can be found at the
next page) where λ̄1 = λ1 + λ3 and λ̄2 = λ2 + λ4. Defining
λmin = min

{
λ̄1, λ̄2

}
, the unconditional PEP can be found

as

P (x → x̂) < Ψ|ĥSD|2
(
−Eκ1λmin

4Λ

)

× Ψ|ĥSRD|2
(
−Eκ2λmin

4Λ

)
(54)

where Ψ|ĥSD|2 and Ψ|ĥSRD|2 are the moment generating func-

tions (MGFs) of
∣∣∣ĥSD

∣∣∣2and
∣∣∣ĥSRD

∣∣∣2 respectively.
∣∣∣ĥSD

∣∣∣2 is
central chi-squared distributed with second degree of freedom.
Hence its MGF can be readily found as [23]

Ψ|ĥSD|2 (−s) = 1/
(
1 + sσ2

ĥSD

)
(55)

where the variance of S →D channel estimate is σ2
ĥSD

=

1−σ2
eSD

. For the S→R→D channel, ĥSRD is the estimate of
the product of two Gaussian terms, i.e., hSRD = hSRhRD.
Unfortunately, the exact distribution function of ĥSRD is
unknown. Here, we follow a similar approach to [15] where
the estimate of cascaded channels is modeled as the product
of estimates of individual channels: Assume S→R and R→D
channels are estimated individually as hSR = ĥSR + eSR and
hRD = ĥRD+eRD where the estimation errors are modeled as
zero-mean complex Gaussian random variables with variances
given as

σ2
eSR

= (E/N0)
−1
/(

2NGSRκ + (E/N0)
−1
)
, (56)

σ2
eRD

= (E/N0)
−1
/(

NGRDκ + (E/N0)
−1
)
. (57)

The variance of ĥSRĥRD (i.e., the product of individual
estimates) is then found as

var(ĥSRĥRD) =
(
1 − σ2

eSR

) (
1 − σ2

eRD

)
= 1 − σ2

eSR
− σ2

eRD
+ σ2

eSR
σ2

eRD
.

(58)

On the other hand, the variance of ĥSRD (i.e., estimate of the
cascaded channel) is given by

var(ĥSRD) = 1 − σ2
eSRD

= 2Nκ2

/(
2Nκ2 + (E/N0)

−1
)
.

Asymptotic relative efficiency of two estimates is defined as
[27]

var(ĥSRĥRD)
var(ĥSRD)

=
1 − σ2

eSR
− σ2

eRD
+ σ2

eSR
σ2

eRD

1 − σ2
eSRD

. (59)

For high SNR and sufficiently large pilot numbers, the relative
efficiencies of two estimators become the same, i.e.,

lim
E/N0→∞

N→∞

var(ĥSRĥRD)

var(ĥSRD)
= 1 (60)

indicating that the statistics of two estimates converge to
each other and, ultimately, two estimators perform equiva-
lently5. Under this assumption, we have Ψ|ĥSRD|2 (−s) ≈
Ψ|ĥSRĥRD|2 (−s) which is given by

Ψ|ĥSRĥRD|2 (−s) =
1

sσ2
ĥSR

σ2
ĥRD

exp

(
1

sσ2
ĥSR

σ2
ĥRD

)

× Γ

(
0,

1
sσ2

ĥSR
σ2

ĥRD

)
. (61)

Replacing Ψ|ĥSD|2 and Ψ|ĥSRĥRD|2 in (54), we obtain

P (x → x̂) <
4SNR−2

eff

/(
λ2

minκ1κ2

)
(
1 − σ2

eSD

) (
1 − σ2

eSR

) (
1 − σ2

eRD

)
× exp

⎛
⎝ 2SNR−1

eff

/
(λminκ2)(

1 − σ2
eSR

) (
1 − σ2

eRD

)
⎞
⎠

× Γ

⎛
⎝0,

2SNR−1
eff

/
(λminκ2)(

1 − σ2
eSR

) (
1 − σ2

eRD

)
⎞
⎠ (62)

which yields (26).

5Their equivalent performance has been further confirmed through simu-
lated BER performance of mismatched receiver.
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P
(
x → x̂| ĥ

)
≤ exp

⎛
⎜⎝−E

|α|2 (λ̄1 + Θ2λ̄2

) ∣∣∣ĥSD

∣∣∣2 + |ᾱ|2 A2

(
λ̄1 + Θ̄2λ̄2

) ∣∣∣ĥSD

∣∣∣2 + |α|2 A1

(
λ̄1 + Θ2λ̄2

) ∣∣∣ĥSRD

∣∣∣2
4Λ

⎞
⎟⎠ (53)

P (XD → X̂D |ϕ̂, |h| ) = P

(
||r||2 − 2Re

{
rH(XDϕ̂)

}
+ ||XDϕ̂||2 > ||r||2 − 2Re

{
rH(X̂Dϕ̂)

}
+
∣∣∣∣∣∣X̂Dϕ̂

∣∣∣∣∣∣2) (67)

P (XD → X̂D |ε, |h| )
= P

(
2Re

{(|hSD|Ee−jεSD + |hSRD|B1Ee−jεSRD
)
x∗(x̂ − x)

}
+ n′ > 0

)
= P (n′ > 2 |hSD|E (cos(εSD) − cos(εSD + θΔ)) + 2 |hSRD|B1E (cos(εSRD) − cos(εSRD + θΔ))) (71)

= Q

(
2 |hSD|E (cos(εSD) − cos(εSD + θΔ)) + 2 |hSRD|B1E (cos(εSRD) − cos(εSRD + θΔ))√

var(n′)

)
(72)

APPENDIX B

In this appendix, we present the derivation of PEP for OAF
protocol with mismatched-coherent detector. The Chernoff
bound on the PEP is given by (46) where XD is defined by
(17) and the effective noise term n̄ = n + XDe is assumed
to be Gaussian with

Λ = trace
(
E
{
n̄n̄H

})
= 2N0 + B1σ

2
eSRD

E + σ2
eSD

E.
(63)

The unconditional PEP can be found as

P (x → x̂) ≤ Ψ|ĥSD|2
(−Eλ

4Λ

)
Ψ|ĥSRD|2

(−B1Eλ

4Λ

)
(64)

where λ = |x − x̂|2. Ψ|ĥSD|2 and Ψ|ĥSRD|2 are already given

by (55) and (61) respectively. Replacing them in (64), we have

P (x → x̂) ≤
4SNR−2

eff

/(
λ2B1

)
(
1 − σ2

eSD

) (
1 − σ2

eSR

) (
1 − σ2

eRD

)
× exp

⎛
⎝ 2SNR−1

eff

/
(λB1)(

1 − σ2
eSR

) (
1 − σ2

eRD

)
⎞
⎠

× Γ

⎛
⎝0,

2SNR−1
eff

/
(λB1)(

1 − σ2
eSR

) (
1 − σ2

eRD

)
⎞
⎠ (65)

which yields (32).

APPENDIX C

In this appendix, we present the derivation of PEP for OAF
protocol with partially-coherent detector. For this case, PEP is
given by

P (XD → X̂D |ϕ̂, |h| ) =

P

(
‖r − XDϕ̂‖2

>
∥∥∥r − X̂Dϕ̂

∥∥∥2
)

(66)

which can be expanded as (67) (which can be found at the top
of this page).

Recall that XD and X̂D consist of M-PSK modulated trans-
mitted symbols with unit energy6. Thus, we have ||XDϕ̂||2 =∣∣∣∣∣∣X̂Dϕ̂

∣∣∣∣∣∣2 which lets us rewrite (67) as

P (XD → X̂D |ϕ̂, |h| )
= P

(
2Re

{
rH(X̂Dϕ̂ − XDϕ̂)

}
> 0

)
(68)

= P
(
2Re

{
hHXH

D(X̂D − XD)ϕ̂ + nH(X̂D − XD)ϕ̂
}

> 0
)

(69)

where (69) is simply obtained from (68) replacing r = XDh+
n. Defining the phase difference between the transmitted
symbol and incorrect decision as θΔ = θx − θx̂, the variance
of the effective noise n′ = 2Re

{
nH(X̂D − XD)ϕ̂

}
can be

obtained as [31]

var (n′) = 2N0E (1 + B1) |x̂ − x|2
= 4N0E (1 − cos(θΔ)) (1 + B1)

(70)

where |x̂ − x|2 = |x|2 + |x̂|2−2Re {x̂∗x} = 2 (1 − cos(θΔ)).
Using εSRD = ϕSRD−ϕ̂SRD and εSD = ϕSD−ϕ̂SD, (69)
can be rewritten as in (71) and (72) (both of which can be
found at the top of this page).

Unconditional PEP can be found by averaging (72) with
respect to |h| and ε. However, this averaging can be much
complicated due to cross terms [23]. In order to simplify
proceeding derivation steps, we further upper bound (72)
as in (73) (which can be found at the top of the next
page) ignoring the cross terms resulting from squaring the
numerator of the Q function in (72). Under the assumption
that phase estimate errors are sufficiently small for high
PLL loop gain, the expectation of (73) with respect to ε
can be approximated by replacing the terms cos(εSD) −
cos(εSD + θΔ) and cos(εSRD) − cos(εSRD + θΔ) with their
expected values [32], i.e., cos(εSD) − cos(εSD + θΔ) ≈
(1 − cos(θΔ)) E {cos(εSD)} + sin(θΔ)E {sin(εSD)} where

E {sin (εSD)} ∼= E {εSD} = 1/ρSD, (74)

E {cos(εSD)} =
∫ π

−π
cos(ε′SD) eρSD cos(ε′SD)

2πI0(ρSD) dε′SD

= I1(ρSD)/I0(ρSD).
(75)

6Since the amplitude information is essential for QAM signals, the deriva-
tion in this Appendix applies only to M-PSK signals.
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P (x → x̂ |ε, |h| ) < Q

⎛
⎝
√

|hSD|2 E (cos(εSD) − cos(εSD + θΔ))2 + |hSRD|2 B2
1E (cos(εSRD) − cos(εSRD + θΔ))2

N0 (1 − cos(θΔ)) (1 + B1)

⎞
⎠ (73)

P (x → x̂) < E|hSD|2

{
exp

(
−E |hSD|2 (Δ1 − (1 − cos(θΔ) − 2 sin(θΔ))/2ρSD)2

Ω

)}
︸ ︷︷ ︸

E1

× E|hSRhRD|2

{
exp

(
−E |hSRD|2 B2

1 (Δ1 − (1 − cos(θΔ) − 2 sin(θΔ))/2ρSRD)2

Ω

)}
︸ ︷︷ ︸

E2

(78)

Here, I1(.) and I0(.) are the first and zero order mod-
ified Bessel functions of the first kind and ρSD =
|hSD|2 E

/
N0BLT . Similarly, for S→R→D link phase

error, we obtain cos(εSRD) − cos(εSRD + θΔ) ≈
(1 − cos(θΔ)) I1(ρSRD)/I0(ρSRD) + sin(θΔ)/ρSRD where

ρSRD = |hSR|2 |hRD|2 B1E
/

N0BLT . Replacing these ap-
proximations in (73) and applying the Chernoff bound, we
have,

P (x→x̂||h| ) < exp

(
−|hSD|2E(Δ1I1(ρSD)/I0(ρSD)+sin(θΔ)/ρSD)2

Ω

)

× exp

(
−|hSRD |2B2

1E(Δ1I1(ρSRD)/I0(ρSRD)+sin(θΔ)/ρSRD)2

Ω

)
(76)

where Δ1 = 1 − cos(θΔ) and Ω = 2N0Δ1 (1 + B1). To find
the unconditional PEP, we still need to take an expectation
with respect to |h|. For high loop SNRs, the ratio of two
Bessel functions in (76) can be approximated as [28]

I1(ρSD)/I0(ρSD) ≈ 1 − 1/2ρ
SD

,

I1(ρSRD)/I0(ρSRD) ≈ 1 − 1/2ρ
SRD

.
(77)

Then, (76) simplifies to (78) (which can be found at the top of
this page). Noting |hSD|2 is central chi-squared distributed
with second degree of freedom, E1 can be calculated as
E1 = exp

(
Δ1Δ2

Ω/N0BLT

)

×
∞∫
0

exp

(
−α

(
Δ2

1E

Ω
+ 1

)
− 1

4α

(
Δ2

2 (N0BLT )2

EΩ

))
dα (79)

where Δ2 = 1 − cos(θΔ) − 2 sin(θΔ). Using the integral
result

∫∞
0 exp(−β/4x − tx)dx =

√
β/tK1(

√
βt) [26], (79)

yields

E1 = exp

(
Δ1Δ2

Ω/N0BLT

)√
Δ2

2 (N0BLT/E)2

Δ2
1 + Ω/E

× K1

⎛
⎝
√√√√Δ2

2

(
Δ2

1

(
N0BLT

Ω

)2

+
(N0BLT )2

EΩ

)⎞⎠ (80)

where K1 is the first order modified Bessel function of second
kind. Noting |hSR|2 and |hRD|2 are chi-squared distributed,
we have E2 as in (81) (which can be found at the top of the
next page). There is, unfortunately, no closed form solution of
the integral given in (81). However, using the approximation
Kv(z) ≈ 0.5Γ(v) (2/z)v, z < 1 [28] which gives satisfactory
results for small BLT values, we can readily solve (81) as

E2 =
Ω

B2
1EΔ2

1

exp

(
B1Δ1Δ2

Ω/N0BLT
+

Ω

B2
1EΔ2

1

)
Γ

(
0,

Ω

B2
1EΔ2

1

)
(82)

Replacing (80) and (82) in (78), we obtain

P (x → x̂) <
SNR−2

eff

B2
1Δ2

1

√
(Δ2BLT/(2Δ1 + 2B1Δ1))

2

Δ2
1 + SNR−1

eff

× exp

(
Δ2BLT

2
+

SNR−1
eff

B2
1Δ2

1

)
Γ

(
0,

SNR−1
eff

B2
1Δ2

1

)

× K1

⎛
⎝
√(

Δ2BLT

2 + 2B1

)2

+
(Δ2BLT/(2 + 2B1))

2 SNR−1
eff

Δ2
1

⎞
⎠ (83)
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