
Using Metadata to Query Passive Data Sources

Patrick Martin, Wendy Powley and Andrew Weston
Department of Computing and Information Science, Queen’s University

Kingston, Ontario, Canada K7L 3N6
{martin, wendy, weston}@qucis.queensu.ca

Abstract*

In the not too distant past, the amount of online data
available to general users was relatively small . Most of
the online data was maintained in organizations’
database management systems and accessible only
through the interfaces provided by those systems. The
popularity of the Internet, in particular, has meant that
there is now an abundance of online data available to
users in the form of Web pages and files. This data,
however, is maintained in passive data sources, that is
sources which do not provide faciliti es to search or
query their data. The data must be queried and examined
using applications such as browsers and search engines.
In this paper we explore an approach to querying passive
data sources based on the extraction, and subsequent
exploitation, of metadata from the data sources. We
describe two situations in which this approach has been
used, evaluate the approach and draw some general
conclusions.

1. Introduction

Prior to the recent “ information explosion” brought on
by the Internet, the amount of online data available to
general users was relatively small and was composed
largely of data stored in organizations’ database systems.
We will refer to these database systems as active data
sources since their data is accessible only through the
interfaces provided by those systems.

The growth of the Internet has meant that there is now
an abundance of online data available to users in a
variety of forms such as Web pages, software, sounds,
images, postscript files, library catalogs, user directories,
and scientific data. This data, however, is maintained in
what we will call passive data sources, that is sources
which do not provide faciliti es to search or query their
data. The data must be retrieved using “third-party”
applications such as browsers and search engines. A key
problem currently being addressed by many researchers
is how to make effective use of the wealth of data

* This work is supported by IBM Canada Ltd. and the National Science

and Engineering Research Council of Canada.

available from these passive data sources. For example,
particular topics of interest with respect to the World
Wide Web (or simply the Web) include resource
discovery [4,20], data mining [7] and query tools [10,15].

One obstacle to making effective use of the data in
passive data sources is the lack of faciliti es to query the
data. Passive data sources do not provide languages, tools
or Application Programmer Interfaces (APIs) to support
sophisticated querying. A second obstacle is the data
itself. Data in passive sources has the following
characteristics [4]:

• it is unstructured, that is, there is no schema, or
machine-readable description of the structure,
available from the data source;

• it is heterogeneous, both across data sources and
within single sources;

• it is inconsistent because most data contained in
passive data sources is dynamic, for example
Web pages;

• it is incomplete because additional properties of
an object can often be obtained by combining
data from several sources.

In this paper we outline an approach to querying
passive data sources which is based on the extraction,
and subsequent exploitation, of metadata from the data
sources. We define metadata to be descriptions of the
properties of, and the relationships present in, the data
and the data sources. The approach has been used
successfull y in two different situations. Other examples
of approaches using metadata to query passive data
sources only consider a particular collection of passive
data sources, usually the Web. We examine the
characteristics of our two examples and propose a general
framework which can be used with any collection of
passive data sources.

The remainder of the paper is organized as follows.
Section 2 discusses related work. Section 3 presents our
metadata model and repository. Section 4 describes two
examples where our approach has been used. The first
example is a repository system for configuration

management of distributed applications and the second
example is a system for querying the World Wide Web.
Section 5 contains a discussion of our approach and
indicates how the approach used in the two examples can
be generalized. Section 6 presents our conclusions.

2. Related Work

As we stated earlier, the problem of effectively
exploiting the data available in passive data sources is
currently receiving a great deal of attention. The focus of
most of the attention is the collection of data sources on
the World Wide Web. There are currently a number of
well -known search engines available for the Web
including Lycos, AltaVista, InfoSeek, OpenText and
WebCrawler [11]. Most of these search engines are
keyword-based and operate by retrieving documents from
the Web, indexing them, and then storing them in a local
database.

There are a number of problems with popular Web
search engines which are being addressed by different
research efforts. For example, the Harvest system [5] is
addressing the problems of reducing the load search
engines place on Web servers and of duplication of effort
by current indexing systems. There are also several
projects, including WISE (World Wide Web Index and
Search Engine) [20], W3QS [10], WebSQL [15], the
Information Manifold [12] and our own work [19], which
overcome limitations in current search engines with more
powerful query languages which exploit Web document
structure as well as contents.

In addition to Web-based applications, metadata is
used in general collections of unstructured data where
semantic properties cannot be directly inferred from the
data. For example, database systems maintaining
multimedia data such as audio or video rely on metadata
to describe the digital data [9]. Metadata is also often
used to support integration of heterogeneous data
sources. For example, metadata is used in multidatabase
systems [2,14] and information resource management
systems [8] to describe the data present in the component
databases and the relationships that exist among that
data.

3. Metadata Model and Repository

Our approach to querying passive data sources is
based on the extraction, and subsequent exploitation, of
metadata from the data sources. We chose this approach
because it can apply to a variety of types of data sources.
We assume that the data in the data sources, while not
easil y queried by users, can be processed by customized
extraction tools. If the data is in a digital form that can

not be analyzed then the metadata must be provided
manually.

The metadata includes descriptions of the properties
of, and the relationships present in, the data. The
metadata is organized according to a metadata schema,
which is defined using a high-level metadata model. An
instance of a metaschema is called a metadatabase which
is stored in a repository. Once the schema is defined,
tools, which are based on the schema, are built to extract
the metadata from the data sources, store it in a
metadatabase, and then query the repository to facilit ate
access to the data sources. By querying the metadatabase
generated for a collection of passive data sources rather
than data sources themselves, users are able to
conveniently formulate queries which specify conditions
on the structure and the semantics of the data as well as
its content. This allows users to arrive at their desired
results in a more direct and effective manner.

3.1. Metadata Model

The main role of the metadata model is to represent
the different types of metadata concepts, and their
relationships, present in the particular application. We
use a structurall y object-oriented model, based on the
Telos language[16], to define the structures of our
metadata model. We chose an object-oriented model for
two main reasons:

1. the entities to be modeled may have complex
structures and relationships;

2. there will be a large number of similar entities which
may be grouped into classes.

We chose to base our model on Telos instead of an
object-oriented database system because Telos, as a
conceptual modeling language, is particularly convenient
for expressing complex relationships among the data. It
is also a high-level language and so is independent of any
programming language.

The metamodel uses the following constructs:

• attribute: An attribute is a particular property of an
object. Each attribute has a type which may be a
primiti ve type, such as string, integer or real, or a
user-defined class. In the latter case, the value for the
attribute is a reference to an instance of that class.
Attributes may be single-valued or multi-valued.

• object: An object is an identifiable collection of
attribute values which represents a metadata concept.
Every object has a unique object identifier or name.

• class: A class is a collection of objects that share
common properties. An object is related to a

particular class via the instance-of relationship.
Classes are related via the is-a relationship.

• metaclass: A metaclass is a collection of classes that
share common categories of attributes where a
category groups attributes related to a particular
aspect of an object.

3.2. Metadata Repository

The Metadata Repository (MDR) is shown in Figure
1. It is a basic client-server architecture. The MDR
Server has two components: the Telos Repository, which
provides the back-end database, and the MDR Server
Interface, which takes requests from MDR Clients and
translates them into requests to the Telos Repository.
The MDR Client also has two components: an
application that requires access to the MDR and the
MDR Client Library, which is an API to the MDR.

The Telos Repository used for the MDR prototype is
the University of Toronto implementation of the Telos
language [16]. This implementation uses ObjectStore1 as
the underlying storage mechanism. The MDR Server
Interface, which provides functions for connecting to the

• 1 ObjectStore is a trademark of Object Design, Inc.

repository, submitting and retrieving objects, and
querying the MDR, is implemented in C++ and runs on
an IBM RS/60002 computer on top of OSF DCE [18].
The back-end of the interface communicates with the
Telos Repository via the Telos message Bus (TMB) API.
Requests and results are passed along the TMB in the
form of s-expressions which are strings that are parsed
and understood by the Telos Repository.

Although theoreticall y MDR Clients could use the
TMB API directly to access the Telos Repository, we
decided to build an intermediate layer (the MDR Server
Interface) between the Telos Repository and the MDR
Clients for the following reasons:

• Database Independence - The MDR Server
Interface buffers the MDR clients from the
specifics of Telos. This will allow us to change
the underlying storage mechanism with minimal
modifications to the overall system. Only the
back-end of the MDR Server Interface would
need to be modified in order to accommodate
such a change. The MDR Client Interface
would remain stable, thus requiring no change
to the possibly numerous MDR Clients.

• Multiplexing - The TMB allows only a single
client to access the Telos Repository at a time.
The MDR Server uses threads to service and
coordinate multiple clients, sending one request
at a time to the Telos Repository.

• Extended Query Capabilities - The Telos
Repository provides very limited query
capabiliti es. The MDR Server Interface extends
these capabiliti es to include conjunctive queries
based on instance-of conditions, is-a relations
and queries by attribute value. The MDR Server
Interface generates a query which can be
processed by the Telos Repository, sends the
request to the repository, then filters the result to
return only the objects requested by the MDR
Client.

Clients, which consist of the Client Library and a
MDR application, communicate with the MDR Server
via DCE RPCs. The Client Library is implemented in
C++ and uses the C++ API provided by the MDR Server
Interface. It presents applications with a view of the
MDR which is consistent with metadata model and
provides functions to create a new metadatabase, connect
to an existing metadatabase, disconnect from an active

• 2 RS/6000 is a trademark of International Business Machines Corp.

Telos
Repository

TMB DCE

MDR
Server
Interface

MDR Server
MDR Clients

MDR Client
Library

Figure 1: Metadata Repository

metadatabase, modify the contents of the active
metadatabase, and query the active metadatabase.

4. Examples

We consider two example applications of our
approach. For each example we outline the particular
problem that was addressed, we provide a brief
description of the metadata schema developed for the
problem, and we discuss the tools built based on the
metadata schema.

4.1. Configuration Management of Distributed
Applications

The Problem

The management of large complex systems involves
the maintenance of a large number of components and
requires an understanding of the properties of these
components and of the relationships between them.
Configuration management, in particular, is responsible
for the collection and maintenance of descriptive and
location information about system components and
system structure.

The configuration information of a distributed
application is divided into the “runtime” information and
the “code-view” information [13]. The runtime
information is collected dynamically and describes the
state of an execution of the application. The code-view
information describes the static organization and
construction of the software that makes up the
application. This configuration information is metadata
that describes the various types of data (code files, data
files, execution states, etc.) associated with a distributed
application.

The code-view information, however, is not easil y
obtained since it is embedded in the various files that
make up the application and in the directory structure
holding the files. Currently, users have to rely largely on
operating system faciliti es to acquire the information. We
applied our metadata approach to the problem of
acquiring code-view information from the application
files. We consider the files as the passive data sources
and the code-view information as the metadata. Based on
this assumption we built tools to extract configuration
information from the application files and then to browse
and query the metadata which has been stored in the
MDR. These tools are in turn used by a systems
administrator to help manage the distributed application
[3].

The Metadata Schema

A portion of the metadata schema for this example is
shown in Figure 2. A complete description of the schema
is given in [13]. The nodes above the horizontal li ne are
metaclasses and the nodes below it are simple classes.
Simple classes are instances-of metaclasses. Classes at
the same level are related by the is-a, or speciali zation,
relationship. The metaclasses define the categories of
attributes present in the different groups of simple
classes.

The root metaclass RepositoryObjectClass defines
the categories of attributes found in all classes. The
metaclasses under RepositoryObjectClass introduce
attribute categories appropriate to the different
collections of objects represented by the simple classes,
that is hardware objects (HardwareObjectClass) such as
nodes and networks, runtime objects
(RuntimeObjectClass) such as processes and application
instances, and code-view objects
(CodeViewObjectClass) such as source files and
executables. The VersionedObjectClass metaclass
defines the categories of attributes related to the version
information that is required for some of the code-view
objects.

The code-view configuration information is
represented in the metadata schema mainly by a subtree
of classes with the class StoredObject at the root of the
subtree. StoredObject defines the set of attributes related
to the physical file that stores the object. The different
kinds of files associated with an application include
source files (BasicEngineeringObject), object files
(Cluster), executables (Capsule), interface definition

ManagedObject

HardwareMO
SoftwareMO

ApplInstance ProcessHost
Relay

Network

StoredObject

BasicEngineeringObject

Cluster Application

RepositoryObject

HardwareObjectClass

DataFile

RepositoryObjectClass

CodeViewObjectClass

Capsule

RuntimeViewObjectClass

Interface

is-a

instance-of

VersionedObjectClass

VersionedObject

Figure 2: Configuration Management Metadata
Schema

fil es (Interface), data files (DataFile) and makefiles and
startup scripts (Application).

The Tools

Several configuration management tools which use
metadata stored in the MDR have been built . Here we
describe the MDR Browser which allows a user to
examine the contents of the MDR and the Code View
Data Extractor (CVDE) which automaticall y populates
the MDR with metadata describing the code-view of a
distributed application.

The metadata associated with the code-view of a
distributed application is maintained in a collection of
passive data sources, namely the code files associated
with the distributed application which may include many
source files, executables and interfaces. Therefore, the
metadata to describe the code-view of a distributed
application is li kely to be extensive. To manually
populate the MDR with the metadata would be tedious.
The CVDE automates the extraction of the code-view
metadata from the various files comprising a distributed
application.

The CDVE prompts the user for general information
about the distributed application such as the application
name, the top-level directory of the application code files,
the type of middleware used (we currently handle DCE
[18] and Corba [17] applications) and information about
each executable associated with the distributed
application. It uses this information to extract the
metadata from the application files and generates
instances of Application, Cluster, Capsule,
BasicEngineeringObject, and Interface objects.

The MDR Browser presents a graphical view of the
contents of the MDR allowing users to browse metadata
schema and query the metadata stored in the MDR.
Figure 3 shows the MDR browser interface. Users can
employ the graphical display to browse the
metaclass/class hierarchy. Selected class or metaclass
descriptions are shown in the text window to the right.
The class description shows the attributes and their types
as well as the instance-of and is-a relationships of the
class.

Classes which have associated data objects (that is,
instances of the class) are indicated by the instances icon
(as seen to the right of the BasicEngineeringObject
object in Figure 3). Selecting the icon produces a text box
containing the information for all the data objects
associated with the class. In Figure 3, the Capsule
instances icon has been selected and one of the data
objects is shown. The user may cycle through the li st of

data objects, one at a time, by using the "Next" and
"Previous" buttons.

In addition to browsing the MDR, the browser
provides faciliti es to query the contents of the MDR via a
graphical user interface. The user may formulate
conjunctive queries based on instance-of conditions, is-a
relations and queries based on attribute value.

4.2. Querying the World Wide Web

The Problem

As we discussed above, the Web is the largest example
of a collection of passive data sources. The existing
search engines for the Web are mostly keyword-based
and operate by retrieving documents from the Web,
indexing them, and then storing them in a local database.
This local database is then used to answer user queries.

There are a number of shortcomings with existing
search engines. The work described in this example,
which is described in detail i n [19], addresses
shortcomings in the query capabiliti es of the search
engines. Existing search engines use either keyword or
full -text indexing techniques. Neither of these techniques
capture the internal structure of the Web documents,
defined by their HyperText Markup Language (HTML)
tags, or the external structure of the portion of the Web
containing the documents which is defined by the
hypertext links connecting the documents. We have used
our metadata approach to provide a tool which handles

Figure 3: MDR Browser

queries involving both the content and the structure of
the Web documents.

The Metadata Schema

The metadata schema for this example is shown in
Figure 4. WebObjectClass defines the category
descriptions which can be found in all simple classes
since WebObjectClass is the root of the class hierarchy.
The metaclass AuthorObjectClass defines the categories
of attributes used to describe the authors of Web
documents and the metaclass ComponentObjectClass
groups together the different classes of objects used as
components of the primary metadata objects - documents
and hypertext objects.

The different types of documents are grouped under
the metaclass DocumentObjectClass. The types of
documents handled by the prototype system are postscript
(class PSFile), text (class TextFile) and HTML (class
HyperTextFile). These three classes of documents are all
a speciali zation of the general class Document which
defines the attributes common to all documents, such as
URL, date, author and subject.

The classes of hypertext objects are grouped under the
metaclass HyperTextObjectClass and are used to
represent the metadata describing the structure of the
Web documents. The objects that we consider are

headings (class Heading), which define the structure of
an HTML document by encompassing text with the tags
<H1>...</H1> to <H6>...</H6>; hyperlinks (class
HyperLink) which are denoted by the href tag, and
multimedia objects (class GraphicLink) which include
in-line images, such as GIF files, and video or audio
files. The third subclass of the UrlLink class,
DocumentLink, is used for hyperlinks that are not
HyperLink or GraphicLink objects.

The Tools

The structure of the Web query system is shown in
Figure 5. The metadata collection tool is a robot which is
a combined Web crawler and document indexer. The
robot’s execution is broken down into units called runs.
For each run, the robot is given an initial URL and the
total number of documents to be processed in the run.
The robot starts a run by retrieving the document at the
initial URL. As a document is processed the URLs of all
hyperlinks are stored and, once all metadata for that
document is collected, the hyperlinks are processed in a
breadth-first manner.

When a document is downloaded from the Web the
robot parses the documents based on the HTML tags that
identify data corresponding to the classes in the metadata
schema. The data associated with the tags is transformed
into attribute values for a new metadata object. When the
object’s description is complete, the robot uses functions
provided by the MDR Client Library to insert the object
into a metadatabase.

WebObjectClass

DocumentObjectClass HyperTextObjectClass ComponentObjectClass AuthorObjectClass

Document Heading UrlLink Name
Person

PsFile

TextFile

DocumentLink

GraphicLink

HyperLink

Address

Date

HyperTextFile

is-a

instance-of

Figure 4: Web Document Metadata Schema

World Wide Web

Query
Interface

Metadata
Collection
Robot

Web Search
Engine

MDR Client
Library

MDR Server

Figure 5: Web Query System Structure

The metadata query tool is composed of a Web-based
query interface and a query engine which interacts with
the MDR. The interface component consists of an HTML
form and a cgi-bin script. An example of the HTML
interface is shown in Figure 6. The user can specify
conditions on the structure of a document or on
relationships with other documents or locations such as
keywords in particular parts of the document, locations
for the document and type of document. The user then
submits the query to the query engine.

The query engine transforms the information from the
query interface into a query to the appropriate
metadatabase in the MDR. The query conditions map to
conditions on metadata objects in the metadatabase.
References to metadata objects that match the conditions
are collected from the MDR and references to the
corresponding documents passed back to the user in the
form of an HTML document. At this point the user can
chose to view particular documents or to refine the query.

5. Discussion

The two examples demonstrate the usefulness of our
metadata-based approach to querying passive data
sources. In both cases we were able to successfull y build
tools which extracted metadata from the collection of
passive data sources and then used that metadata to
enhance the users’ abilities to query the data sources.

The approach is, we believe, applicable to any type of
passive data source. Text data sources are the best
candidates since it is more li kely that we can build
automated, or at least semi-automated, metadata
extraction tools for text data. The approach will work for
general digital data but the metadata may have to be
manually constructed. The approach is also useful for
situations in which data about an object may be in
multiple data sources. For example, configuration
management about a Capsule object, that is an executable
file, may be found in multiple files. Our approach is able
to recognize this fact and to allow the integration of the
metadata from the multiple sources into a single
metadata object. The metadata makes the relationship
between the multiple data sources explicit.

We also feel that the metadata-based approach can be
cost-effective. Using metadata we are better able to
understand the structure and the semantics of the
available data and hence make better use of that data. It
is also true that metadata changes much less frequently
than its associated data. This means that it can be cost-
effective to put effort into extracting metadata since it has
a relatively long lifetime.

The most important part of the approach is the design
of the metadata schema since it must capture the
important properties and relationships of the data and it
is used as the basis for the extraction and query tools. We
believe that an object-oriented model is preferable for two
reasons. First, the concepts of object and class are
applicable to a wide variety of data sources, that is they
are able to represent the metadata for these data sources.
Second, the schema is scaleable in the sense that we can
easily introduce more types of data sources into a schema
by extending the class hierarchy with the is-a
relationship.

While the extraction tools for the two examples were
built specificall y to process their respective types of data
sources there are similarities. In particular, both tools
base the data processing on the metadata schema for the
example. Thus it should be possible to construct a
general tool that can be customized for each situation.
We see this general tool consisting of a parser component
for processing the data from the passive data sources, and
a library of routines, based on the MDR Client Library,

Figure 6: Web Query Interface

for placing the metadata into the MDR. The parser would
have to change for different types of data sources but the
library of access routines would be the same for all
instances of the tool. The robot architecture of the Web
metadata collection tool discussed in Section 4.2 could be
used for any collection of data sources on the Web.

The processing performed by each component of the
general extraction tool is guided by the metadata schema
developed for the collection of data sources. The schema,
therefore, would be the main input to the tool creation
process. We believe that tool creation could be automated
to a large degree by adapting techniques used in parser
generation, for example the structural transformation
language TXL [6]. We have had success in using
structural transformation to perform schema translation
[1] and believe that this would be a reasonable approach.
Using a language li ke TXL for this purpose would
require us to specify the syntax for both the metadata
schema and the data. Generali zing our approach would
also require that we standardize class definitions to some
degree.

The query tools are more general than the metadata
extraction tools since they interact with the MDR and not
with the data sources. The MDR Browser discussed in
Section 4.1 is already a very general tool. It will support
browsing and querying with any metadata schema. The
Web query tool discussed in Section 4.2 is more
speciali zed than the browser because it has an interface
customized to the Web application. The query engine,
however, is general and would work with any schema.
Thus the Web query tool can be customized to particular
collections of data sources on the Web by tailoring the
query interface to the particular metadata schema.

6. Conclusions

The growth of the Internet has meant that there is now
an abundance of information available in passive data
sources, that is data sources which must be searched and
accessed by “ third-party” techniques and tools. A key
problem being addressed by a number of researchers is
how to make effective use of this data.

In this paper we outlined an approach to the problem
of querying passive data sources which is based on the
extraction, and subsequent exploitation, of metadata from
the data sources. The main task in the approach is the
design of a metadata schema which captures the high-
level structure and relationships present in the data. The
schema is then used as input to the construction of tools
to extract metadata from the data sources and store it in a
repository, and to query the metadata once in the
repository. Users can conveniently query the metadata in

order to locate data of interest within the collection of
passive data sources.

Our metadata-based approach has several advantages.
First, the approach is applicable to any type of passive
data source. It is particularly useful for text data sources
since we can build automated, or at least semi-automated,
metadata extraction tools. Second, the approach is able to
integrate the metadata for a single concept in the data
where data about that concept may be in multiple data
sources. Third, the approach is cost-effective. Using
metadata we are better able to understand the structure
and the semantics of the available data and hence make
better use of that data. It is also true that metadata
changes much less frequently than its associated data so
the cost of extracting metadata can be amortized over a
relatively long li fetime. Fourth the approach is scaleable
in the sense that more data sources may be easil y added
as long as they conform to the existing schema.

We described a metadata model which is used to
develop the metadata schema. The model is structurall y
object-oriented and supports powerful abstraction
mechanisms li ke generali zation and classification. The
model has two main advantages. First, it can capture the
metadata descriptions for a variety of data sources.
Second, the schemas produced with the model are
scaleable in the sense that we can easil y introduce more
types of data sources into a schema by extending the class
hierarchy with the is-a relationship. However, adding
new classes to a schema will force changes to the
associated data extraction tool since it must recognize the
new classes. We also describe a prototype metadata
repository which was built to support the research.

We presented two example applications in which the
approach was used. The first example uses metadata
about application files to support configuration
management of distributed applications. The second
example uses metadata to support querying documents on
the World Wide Web. In both examples, a metadata
schema was developed to represent the metadata and
tools were developed to extract the metadata from the
data sources and to query the metadata once it was placed
in the MDR.

Based on our experiences we conclude that our
approach can be generali zed to handle other types of
passive data sources. The metadata model, as we
discussed above, is capable of representing other
situations. We also believe that the tools we have built
are either general enough now or can be made more
general. The MDR Browser is a general tool that can be
used with any metadata schema. The Web query tool can
be adapted by replacing the query interface to match a
new schema. We suggest that data extraction tools can be

derived from a general tool consisting of a parser
component for processing the data from the passive data
sources, and a library of routines for placing the metadata
into the MDR. The parser would have to change for
different types of data sources but the library of access
routines would be the same for all i nstances of the tool.
The parser component for a particular situation could be
created with a parser generator such as TXL.

References
[1] R. Abu-Hamdeh, J. Cordy and P. Martin, “Schema

Translation Using Structural Transformation” , Proc. of
CASCON' 94: IBM Centre for Advanced Studies
Conference, Toronto ON, November 1996, pp. 202-215.

[2] G. Attaluri, D. Bradshaw, N. Coburn, P.-A. Larson, P.
Martin, A. Silbershatz, J. Slonim and Q. Zhu, “The
CORDS Multidatabase Project” , IBM Systems Journal
34(1), 1995, pp. 39 - 62.

[3] M. Bauer, R. Bunt, A. Rayess, P. Finnigan, T. Kunz, H.
Lutfiyya, A. Marshall , P. Martin, G. Oster, W. Powley, J.
Rolia, D. Taylor and M. Woodside, “Services Supporting
Management of Distributed Appli cations and Systems” ,
To appear in IBM Systems Journal.

[4] C. M. Bowman, P.B. Danzig, U. Manber and M.F.
Schwartz, “Scaleable Internet Resource Discovery:
Research Problems and Approaches” , Comm. of the ACM
37(8), August 1994, pp. 98 - 107.

[5] C. M. Bowman, P.B. Danzig, U. Manber and M.F.
Schwartz, “The Harvest Information Discovery and Access
System”, Proceedings of the 2nd World Wide Web
Conference, 1994, pp. 763 - 771.

[6] J. Cordy, C. Halpern-Hamu and E. Promislow, “TXL: A
Rapid Prototyping System for Programming Language
Dialects”, Computer Languages 16(1), 1991, pp. 97-107.

[7] O. Etzioni, “The World Wide Web: Quagmire or Gold
Mine?” , Comm. of the ACM 39(11), November 1996, pp.
65- 68.

[8] C. Hsu, M. Bouziane, L. Rattner and L. Yee, “ Information
Resources Management in Heterogeneous, Distributed
Environments: A Metadatabase Approach” , IEEE
Transactions on Software Engineering 17(6), June 1991,
pp. 604 - 625.

[9] W. Klas and A. Sheth (Editors), “Special Issue: Metadata
for Digital Data”, SIGMOD Record 23(4), December
1994.

[10] D. Konopnicki and O. Shmueli , “W3QS: A Query System
for the World Wide Web” , Proceedings of the 21st VLDB
Conference, 1995, pp. 54 - 65,.

[11] M. Koster, The Web Robots Database 1997. From
http://info.webcrawler.com/mak/projects/robots/active.htm
l, downloaded March 1997.

[12] A. Levy, A. Rajaraman and J. Ordill e, “Querying
Heterogeneous Information Sources Using Source
Descriptions” , Proceedings of the 22nd VLDB Conference,
Mumbai India, 1996

[13] P. Martin and W. Powley, “An Information Model for
Distributed Appli cations Management” , Proc. of
CASCON' 96: IBM Centre for Advanced Studies
Conference, Toronto ON, November 1996, pp. 54 - 63,.

[14] P. Martin and W. Powley, “Catalog Management in
Multidatabase System using an X.500 Directory System”,
accepted for publi cation in Distributed Systems
Engineering Journal, May 1997.

[15] A. Mendelzon, G. Mihaila and T. Milo, “Querying the
World Wide Web” , Proceedings of PDIS’96, Miami FL,
1996.

[16] J. Mylopoulos, A. Borgida, M. Jarke and K. Koubarakis,
Telos: A Language for Representing Knowledge about
Information Systems (revised), Technical Report KRR-TR-
89-1, Department of Computer Science, University of
Toronto, August 1990.

[17] OMG, ”Common Object Request Broker Architecture:
Architecture and Specification” , OMG Document No.
91.12.1, 1991.

[18] OSF, The OSF Distributed Computing Environment
Rationale, Open Software Foundation, Cambridge MA,
1991.

[19] A. Weston, Using a Data Model to Search and Query the
World Wide Web, Master’ s thesis, Department of
Computing and Information Science, Queen’s University,
1997.

[20] B. Yuwono and D.L. Lee, “WISE: A World Wide Web
Resource Database System”, IEEE Transactions on
Knowledge and Data Engineering 8(4), August 1996, pp.
548 - 554.

