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EFFECTS OF ANISOTROPY IN THE ULTRASONIC ATTENUATION 
OF TISSUE ON COMPUTED TOMOGRAPHY~ 

G. H. Brandenburg r293, J. R. Klepper2s4*5, 
J. B. Miller'*6, and D. L. Synder' 

Washington University 
St. Louis, MO 63130 

We examine the consequences of anisotropy in the ultrasonic attenua- 
tion on computed tomography. A phenomenological model for anisotropy in 
the ultrasonic attenuation of soft, inhomogeneous, tissue-like media is 
presented. 
tomography are investigated analytically and by computer simulation for 
simple geometries. Sources of apparent anisotropy in ultrasonic measure- 
ments made on intrinsically isotropic media are also discussed. Results 
of simulations are compared with tomograms of tissue studied in vitro. 
In particular, reconstruction of a simulated anisotropic heart showed good 
agreement with the reconstructLon of an actual heart. 

Based upon the model, the effects of anisotropy on transmission 

Introduction 

The values exhibited by ultrasonic parameters such as attenuation, 
speed of sound, and scattering may depend upon the direction of wave pro- 
pagation and polarization relative to intrinsic directions within the host 
material. If so, the host material is described as exhibiting anisotropy 
in the propagation of ultrasound. 
propagation has been well characterized in single crystals (relative to 
crystalline axes) and in polycrystalline metals (relative to the dominant 
grain orientation), anisotropic propagation in tissue is incompletely 
characterized. While reports of anisotropic attenuation date back more than 
30 years [l],. relatively few systematic studies have been reported [2-51. 
The report of Nassiri et al. [5] documents a 2.6 to 1 variation in the 
ultrasonic attenuation coefficient in skeletal muscle as the direction of 
progation of longitudinal waves is varied relative to the orientation of 
the muscle fibers. 
laboratory in the attenuation coefficient of dog heart [6]. Ultrasonic 
backscatter from muscle tissue exhibits significant anisotropy [2] and a 
smaller anisotropy of the velocity of sound in muscle has also been reported 
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[3] .  
imaging where more than one angle of view is used to generate the image. 

All of these anisotropies potentially affect any form of ultrasonic 

The purpose of the present study is to examine the consequences of 
anisotropy in ultrasonic attenuation on computed tomography. We present 
a phenomenological model for anisotropy of ultrasonic attenuation in soft, 
inhomogeneous, tissue-like media. The model provides a method for esti- 
mating the angular dependence of the ultrasonic attenuation in an irregularly 
shaped object. The effects of anisotropy on tomographic reconstructions 
obtained by the use of filtered back projection are examined with the aid 
of the model. 
Numerically generated data are used to demonstrate the consequences of 
anisotropy on tomographic reconstructions for more complex geometries. 
Predictions of the consequences of anisotropy are compared with experimen- 
tally obtained tomographic reconstructions of the ultrasonic attenuation 
coefficient of excised dog hearts. 

Analytical results are derived for simple object geometries. 

I. A Phenomenological Model of Anisotropy 

To investigate the effects of anisotropy on computed tomography, we 
consider two classes of geometry: linearly-directed anisotropy and tan- 
gentially-directed anisotropy. An elemental volume of an anisotropic 
material is modeled as exhibiting a single direction along which the maximum 
value of ultrasonic attenuation is measured. This direction is called 
the anisotropy axis as illustrated in figure la, in which anisotropy axes 
are shown as two-headed arrows to distinguish them from vectors. Anisotropic 
attenuation is modeled here as identical for propagation directions differing 
by 180'. A bar and an annulus both exhibiting linearly-directed anisotropy 
are illustrated in figures lb and lc, respectively. The linearly-directed 
anisotropic bar can be bent into various shapes to illustrate tangentially- 
directed anisotropy as in the horseshoe and annulus of figures Id and le. 
In general, more complicated geometries require specification of each dif- 
ferential anisotropic volume element (Fig. la) comprising the object. 
However, a restricted but useful class of object geometries can be modeled 
by superpositions of macroscopic regions of linearly and tangentially- 
directed anisotropies. 

To examine the effects of anisotropy on computed tomography, we restrict 
our discussion to the x,y plane. Both the spatial variation of the re- 
fractive index, and the magnitude of velocity anisotropy are taken to be 
small in this model. Consequently, the interrogating ultrasonic energy 
is assumed to follow the straight-line path from transmitter to receiver. 
We denote the ultrasonic parameter of interest, usually the ultrasonic 
attenuation coefficient or its frequency derivative, as a(x,y,J,). The 
anisotropic character of this parameter within an area element dxdy is 
modeled as 

where ao(x,y) is an intrinsic isotropic component, J, is the angle between 
the volume element's anisotropy axis and a fixed coordinate system, and 
C(x,y,J,) is the anisotropy angular dependence function, where C(x,y,J,), 0. 
Vector anisotropy, for which C(s,y,J,) may be positive or negative, is 
treated in the discussion section. 

An experimental determination of the values of the parameters in Eq. (1) 
exhibiting only a single anisotropy axis can be carried out if the specimen 
geometry is known. 
directed, anisotropy axis as in figure lc. 
propagated through the center of the annulus, measurements of the parameter 

A simple case is an annulus with a single, linearly- 
If the interrogating wave is 
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Fig. 1. Four basic geometries of planar anisotropy are 
illustrated: a) elemental anisotropic volume exhibiting 
a single linearly-directed axis; b) 
linearly-directed anisotropy; c) annulus possessing a 
single linearly-directed anisotropy; d) example of tan- 
gentially-directed anisotropy: the linearly-directed 
anisotropic bar bent into a half-circle; and e) annulus 
possessing tangentially-directed anisotropy. 

bar possessing a single 

(e.g., slope of the ultrasonic attenuation coefficient versus frequency) 
made as a function of angle as the disc is rotated yield the anisotropic 
angle dependence function C(x,y,$) directly. Objects not possessing 
circular symmetry about the rotation axis, such as the bar in figure lb, 
require additional knowledge of the object dimensions before the anisotropy 
can be inferred from simple transmission measurements. 

An alternative method for estimating the angular dependence of anisotropy 
is based on the projection measurements employed in reconstructive tomography. 
Consider the parallel ray transmission measurements often used in computed 
tomography. For each view angle, 8 ,  a series of transmission measurements 
is made over translation positions r, -a 5 r 5 a. 
p(r,e) is referred to as the projection line at angle 8, 

This set of measurements 
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Initially, let us restrict a(x,y) to be an isotropic parameter of.interest 
(e.g. slope of the ultrasonic attenuation coefficient as a function of 
frequency) evaluated along Sr,g the linear path from transmitter to receiver 
for view angle 8 at translation position r. 
to be zero outside a circular region R ,  bounded by IrlLa. 
moment of the projection is defined as 

We further restrict a(x,y) 
The zero-order 

Inserting the projection, Eq. (Z), into the moment integral, Eq. ( 3 ) ,  
we observe that the zero-order moment is the integral of the parameter 
over the entire area, 

a 

~ ~ ( 8 )  = J 1 a(x,y)dsdr = 

'r,g -a 

where dA is the differential area 
and 0 
8, the 

( 4 )  

and R is the scan region -a 5 r 5 a 
- < 9 2 II. Provided that a(x,y) is isotropic, at any view angle, 
integration of a(x,y) yields the same result. Thus M,, is constant 

for all view angles 8 and is a measure of the total attenuation over the 
entire object. This result for the parallel-ray geometry, well-known in 
the literature of computed tomography, applies only for the case of 
isotropic attenuation. 

We now consider the case in which the parameter a(x,y) is a function 
of the direction of wave propagation, i.e., a(x,y) is anisotropic. Under 
these conditions %(9) is no longer constant with respect to 9. 
trate this, we consider an object exhibiting a single, linearly-directed 
anisotropy. Under this restriction, C(x,y,$) = C($e) where the angle 
$g = (9-$) between the anisotropy axis and the direction of wave propaga- 
tion, 9, is constant within the projection for any angle. Therefore, 
Mo(e) is 

To illus- 

a a 

and using Eq. (1) 
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In this case, since C($,) is independent of (x,y), 

a 

or 

i where M 
hibiting a single linearly-directed anisgtropic axis exhibits a zero-order 
projection-moment which is directly related to the same anisotropic angular 
dependence function C($,) as the intrinsic parameter a(x,y,$,>. 
eralization of these results to three dimensions is considered in the 
Appendix. ) 

Intrinsic Versus Extrinsic Anisotropy 

is the isotropic component of M ( 0 ) .  Therefore, an object ex- 

(A gen- 

A measurement can display apparent anisotropy from sources other 
than the intrinsic anisotropy of the parameter measured. 
effects as extrinsic anisotropy. 
number of sources, some of which are considered here. 

We refer to these 
Extrinsic anisotropy can arise from a 

The geometry of an actual acoustic beam differs from that of the 
uniform collimated pencil beam implicit in the models presented here. 
Except for cases of unusually high symmetry such as a circularly sym- 
metric object located at the center of rotation of the measurement 
apparatus, most measurements should exhibit some extrinsic anisotropy 
related to beam-geometry and the location of the object. 

The effects of refraction and diffraction can give rise to path 
aberrations, refractive beam displacement at the receiver, and other 
perturbations which cause measurements on an isotropic object to exhibit 
an anisotropic angular dependence. 

The reflection loss at an acoustic impedance discontinuity is a 
strong function of angle, and can appear as a substantial component 
in apparent attenuation measurements [6-111. We note however, that 
measurements based on the slope of the attenuation coefficient as a 
function of frequency reduce reflection losses. 
based on the slope should exhibit reduced extrinsic anisotropy compared 
with projections based on attenuation measured at a single frequency. 

Therefore projections 

We first illustrate extrinsic anisotropy in the slope of the attenu- 
ation arising from refraction. 
exhibiting no intrinsic anisotropy was employed and reconstructions were 
based on the slope of the attenuation to reduce reflection losses. The 
results of this simulation are presented in figure 2. 
traced through an object exhibiting the same index of refraction as the 
surrounding medium. 
exhibiting a speed of sound 5 percent higher than that of the surrounding 
medium. 

A ray-tracing based simulation of an object 

Panel a shows beams 

Panel b shows the corresponding results for an object 

Panels c and d are the respective computed tomograms. The curve 
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Fig. 2.  Extrinsic anisotropy due to refraction is demonstrated by simulation 
of an intrinsically-isotropic but refracting object. Shown are: a) selected 
simulated beams transmitted through an object with unity refractive index; 
b) selected simulated beams exhibiting refraction due to 5 percent difference 
in the refractive index; c) tomographic reconstruction of the non-refracting 
simulated object; d)  tomographic reconstruction of the 5 percent refracting 
simulated object; e) plot of the zero-order moment versus view angle for the 
non-refracting object; and f) plot of the zero-order moment versus view 
angle for the refracting object. 
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M o ( e )  i s  p l o t t e d  i n  panel e f o r  t h e  non-refracting case, and i n  panel f 
f o r  t he  r e f r a c t i n g  case .  For purposes of i l l u s t r a t i o n ,  a l l  p l o t s  of 
M o ( B )  a r e  normalized t o  t h e  minimum value  of Mo(B) i n  each case.  
magnitude of t h e  e x t r i n s i c  an iso t ropy  exhib i ted  i n  t h i s  example of a re- 
f r a c t i n g ,  i s o t r o p i c  medium i s  less than  1.1 t o  1. 

The 

To i l l u s t r a t e  t h e  experimentally observed magnitude of e x t r i n s i c  
an iso t ropy  a r i s i n g  from a l l  sources encountered i n  a t y p i c a l  l abora tory  
s tudy ,  w e  obtained p ro jec t ions  of t h e  a t t e n u a t i o n  a t  each of e igh t  equal ly  
spaced f requencies  between 3 and 7 MHz f o r  two approximately c y l i n d r i c a l  
test objec ts :  
h i b i t i n g  a v e l o c i t y  approximately 3 percent  lower than t h a t  of t he  sur- 
rounding water ,  and i i )  
exh ib i t i ng  a v e l o c i t y  approximately 2 percent  h igher  than t h a t  of w a t e r .  
Each of t h e  o b j e c t s  was loca ted  away from t h e  r o t a t i o n a l  cen te r  of t h e  
scanning appara tus  t o  e l imina te  c i r c u l a r  symmetry wi th  respec t  t o  t h e  
t ransmi t ted  beam. A phase i n s e n s i t i v e  acous toe lec t r i c  r ece ive r  was used 
t o  e l imina te  phase cance l l a t ion  e f f e c t s  [6,7,12,13]. I n  f i g u r e  3, M 
based on t h e  s lope  of t he  a t t e n u a t i o n  is  p l o t t e d  as a func t ion  of angfe 8 
f o r  both i n t r i n s i c a l l y  i s o t r o p i c  test o b j e c t s  ( so l id  and dot ted  curves).  
The e x t r i n s i c  an iso t ropy  f o r  t h e  s lope  i s  l e s s  than 1.1 t o  1 f o r  both 
ob jec t s .  

To i l l u s t r a t e  t h e  e x t r i n s i c  an iso t ropy  due t o  r e f l e c t i o n  l o s s e s  a t  
acous t i c  impedance d i s c o n t i n u i t i e s ,  Mo(CI) based on s i n g l e  frequency pro- 
j e c t i o n s  of t h e  f inge rco t  f i l l e d  wi th  o l i v e  o i l  i s  a l s o  presented i n  f i g u r e  
3 (dashed curve).  These 3.5 MHz pro jec t ions  comprised p a r t  of the  8-frequency 
p ro jec t ion  d a t a  s e t  used t o  produce t h e  M ( 0 )  p l o t  f o r  t he  s lope  (dot ted  
curve).  The 1.4 t o  1 aniso t ropy  of t he  s i n g l e  frequency p ro jec t ions  i s  
considerably l a r g e r  than  t h e  1.1 t o  1 aniso t ropy  exhib i ted  by the  s lope ,  
presumably due t o  r e f l e c t i o n  l o s s  a t  impedance d i s c o n t i n u i t i e s .  This 
underscores the  u t i l i t y  of t h e  frequency dependence of a t t enua t ion  a s  a 
means f o r  s epa ra t ing  t h e  components of r e f l e c t i o n  l o s s  from a t t enua t ion  
measurements [6 ] .  Consequently, p ro j ec t ions  based on the  s lope  were em- 
ployed i n  t h e  remainder of t h i s  study t o  i n f e r  t h e  i n t r i n s i c  anisotropy 
of a t t enua t ion  i n  media such as t i s s u e  which e x h i b i t  an approximately 
l i n e a r  frequency dependence of a t t enua t ion .  
of s imula t ions  of r e f r a c t i n g  but  i n t r i n s i c a l l y  i s o t r o p i c  ob jec t s  (Fig. 
2) and experimental  measurements of phantoms made of r e f r a c t i n g ,  i s o t r o p i c  
media such as o l i v e  o i l  and g e l a t i n  (Fig. 3) suggest t h a t  the  e x t r i n s i c  
an iso t ropy  encountered i n  measurements on s o f t  t i s s u e  may be of t h e  order  
of 1.1 t o  1. The modest magnitude of e x t r i n s i c  anisotropy is i n  marked 
c o n t r a s t  t o  t h e  s u b s t a n t i a l  magnitude of i n t r i n s i c  anisotropy observed 
i n  t h e  s lope  of a t t e n u a t i o n  i n  some t i s s u e s  as discussed below. 

i )  a 2 cm diameter f inge rco t  f i l l e d  with o l i v e  o i l  ex- 

a 5.5 cm diameter cy l inde r  of labora tory  g e l a t i n  

0 

A comparison of t he  r e s u l t s  

I n  a previous pub l i ca t ion  we repor ted  r e s u l t s  i l l u s t r a t i n g  the  
an iso t ropy  exhib i ted  by a segment of excised dog h e a r t  [6] .  The s e c t i o n  
w a s  approximately rec tangular  i n  c ross -sec t ion ,  0.9 by 1.8 cm, and was 
c u t  from t h e  l e f t  v e n t r i c u l a r  w a l l  i n  t h e  reg ion  between the  two pap i l l a ry  
muscles. This  corresponds t o  t h e  same l o c a t i o n  as i n  an ex tens ive  s e r i e s  
of measurements repor ted  by O'Donnell e t  a l .  [14] on excised dog hea r t s .  
The s lope  of t h e  a t t enua t ion  w a s  computed from e i g h t  measurements ranging 
from 3 t o  6.5 MHz i n  500 kHz s t e p s ,  and w a s  compensated f o r  t h e  frequency 
dependence of t he  t ransmi t fed  beam width [6] .  The 0' and 180' p ro j ec t ion  
angles  corresponded t o  propagation along t h e  apparent muscle f i b e r  d i rec-  
t i on ;  t h e  90" and 270a views were perpendicular t o  the  apparent muscle 
f i b e r  d i r ec t ion .  An average of d a t a  from 30 sites measured perpendicular 
t o  t h e  muscle f i b e r  y ie lded  0.073 If: 0.017 cm-lMHz-l (mean 5 S.E.), i n  
agreement wi th  t h e  r e s u l t s  of previous measurements, 0.072 If: 0.001 cm-f:4Hz-1 
[14].  The va lue  measured p a r a l l e l  t o  t h e  muscle f i b e r  w a s  0.19 5 0.02 

ood 
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Fig. 3. Ex t r in s i c  anisotropy f o r  i n t r i n s i c a l l y  i so t rop ic  phantom objects  
i s  compared t o  the  i n t r i n s i c  anisotropy of myocardial t issue.  The zero- 
order moment is p lo t t ed  versus angle over 180' of view based on: 
of t he  at tenuat ion i n  a f ingercot  f i l l e d  with o l i v e  o i l ,  3 percent 
r e f r ac t ion  ( so l id  l i n e ) ;  b) slope of the at tenuat ion i n  a cylinder of 
laboratory g e l a t i n  with a small off-center hole,  2 percent r e f r ac t ion  
(dotted l i n e ) ;  c)  a t tenuat ion measured a t  3.5 MHz i n  t he  f ingercot  f i l l e d  
with o l i v e  o i l  (short  dashes); and d) s lope of the at tenuat ion i n  excised 
dog myocardium reported i n  reference [6 ]  (long dashes). The axes are 
scaled so t h a t  t he  smallest measurement i n  each graph corresponds t o  the 
value 1; the  maximum values a t t a ined  represent t he  anisotropy r a t i o s .  

a) slope 

and exceeded that measured perpendicular t o  t he  f i b e r s  by the f ac to r  of 
2.6 t o  1. 
sample exhibited 180' pe r iod ic i ty ,  and w a s  w e l l  approximated by an empirical  
function of t he  form A + B C O S ( ~ $ ~ )  [6] .  
f igu re  3 f o r  comparison with the Mo(B) p l o t s  f o r  the i n t r i n s i c a l l y  i so t rop ic  

The zero-order moment Mo(B) of the slope of a t tenuat ion i n  the 

This curve is i l l u s t r a t e d  i n  
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objects. The parameters A and B of the empirical anisotropy characterization 
were selected to yield the same minimum and maximum values of Mo(8), and 
result in the same anisotropy ratio (A + B)/(A - B) = 2.6. Because the 
muscle fibers in heart do not all lie in the plane in which the measurements 
were made [15,16], the 2.6 to 1 anisotropy may reflect a lower bound on 
the value which would be observed if all fibers were confined to the plane 
of measurement (see Appendix). The functional form of the anisotropy 
remains the same, however, provided that the projections of the fibers 
onto the plane are aligned in a single direction. 

Motivated by the measurements on myocardium we chose C($) in Eq. (l), 
the empirical model for intrinsic anisotropy, to be sinusoidal, periodic 
in MOO, and of magnitude 5, 

(9) 
2 C($& = B(1 + cos (2Qe))/2 = 8 cos 

For linearly-directed anisotropy and a wave traveling in the 8 direction, 

(10) 
2 

aa(x,y,lJJ8) = ao(x,y) [1 + B cos ($,)I 

where a (x,y> i s  the isotropic component of the parameter, and B is the 
magnitude of the anisotropy. Using this model, the anisotropy ratio 
is then (1 + B) to 1. 

11. Tomographic Reconstruction of Projections Exhibiting Anisotropy 

Images of tissue have been reconstructed from ultrasonic attenuation 
measurements using filtered back projection algorithms [6-8, 17-19] and 
iterative algebraic algorithms [20-221. We chose to investigate effects 
of anisotropy on tomographic reconstruction using filtered back projection 
because the filtered back projection algorithm can be expressed analytically, 
permitting the expression of anisotropic effects in closed analytical form 
for simple geometries. In this section, the projections for an annulus 
are derived analytically for both linearly-directed and tangentially- 
directed anisotropy geometries. The resulting filtered back projection 
reconstructions are then derived analytically for the linearly-directed 
case. The effects of anisotropy for more complicated geometries are dem- 
onstrated by computer reconstruction of computed projections. 
of the effects of anisotropy on computed tomography based upon models and 
simulations presented here are compared with results for reconstructions 
made from measurements on tissue. 

Predictions 

Projections and Reconstruction of a Disc and an Annulus Exhibiting Linearly 
Directed Anisotropy 

Within an isotropic, uniform medium, the linearized projection measure- 
ment is proportional to the path length within the object. 
ality constant is the parameter, a,, to be reconstructed. (Assumptions 
of a uniform collimated beam and the absence of refraction or reflection 
are implicit.) For a disc of radius a (see Fig. 4 )  the measurement at 
position r for any angle is: 

The proportion- 

where 
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Fig. 4 Measurement of the tomographic 
projection of a disc-shaped object is 
shown in this schematic representation. 
The geometry of the transmit-receiver axes 
and the projection corresponding to an 
isotropic, homogeneous disc are illustrated. 

Using the linearly-directed anisotropy model, Eq. (lo), the anisotropic 
disc projection measurement is 

(13) 
2 

pa(r,e) = pi (r) [1 + B cos ( + e l l .  

We summarize the sequence of steps followed in analytically applying 
conventional filtered-back projection reconstruction: 

Fourier transform p(r,e) in r, 

m 

Spatially filter p(r,8) by multiplying in the spatial frequency 
(f) domain, 

G(f,B) 5 P(f,B) If1 (15) 

where If1 is the well known filtered back-projection inverse filter 
[ 23,24 J . 

Inverse Fourier transform G(f,B) in f, 
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4 )  Back p ro jec t  g ( r ,9 )  t o  r econs t ruc t  i ( r , 9 ) ,  

Applying t h e  above a lgor i thm t o  t h e  i s o t r o p i c  p ro jec t ions  of Eq. (11) 
w e  ob ta in  t h e  expected i s o t r o p i c  d i s c ,  

I n  c o n t r a s t ,  app l i ca t ion  of t h e  above t o  p ro jec t ions  of t he  l i nea r ly -d i r ec t ed  
an i so t rop ic  d i s c ,  Eq. (13),  r e s u l t s  i n  t h e  double i n t e g r a l  

where P ( f , 9 ' )  is t h e  one-dimensional Four ie r  transform of t h e  an i so t rop ic  
component of t h e  p ro jec t ion ,  

L P( f ,9 ' )  = a. Ba cos (9 ')J1(2nfa)/f .  

Exchanging t h e  o rde r  of i n t e g r a t i o n  t o  perform t h e  9 i n t e g r a t i o n  f i r s t ,  
and us ing  a s e r i e s  expansion of cos[2af r cos(9-9')] i n  t e r m s  of Bessel 
func t ions  [25] we ob ta in  t h e  a n a l y t i c a l  r e s u l t  

1 / 2  r < a  

(1/2)-cos(29)/4 r = a 

(a2/r2)cos(2e> r > a  

A A 

a ( r , 9 )  = a i ( r ,9 )  + a 8 a 
(21) 

A r econs t ruc t ion  of a d i s c  exh ib i t i ng  l inear ly-d i rec ted  anisotropy 
is presented i n  f i g u r e  5a. 
t i o n  of t h e  an i so t rop ic  p ro jec t ions  of Eq. (13). 
by 2 t o  1 aniso t ropy ,  wi th  i s o t r o p i c  component a. = 1 and anisotropy 
magnitude 8 = 1. The r econs t ruc t ion  from t h e  p ro jec t ions  is i n  agreement 
wi th  t h e  a n a l y t i c a l  r e s u l t  of Eq. (21). 
p red ic ted  29 angular v a r i a t i o n  of t h e  l / r2  decaying e r r o r  ou t s ide  the  d i sc .  
Likewise, i n s i d e  t h e  d i s c ,  a cons t an t  ao(l + 8/2) is recons t ruc ted .  

The image w a s  obtained by computer reconstruc- 
The d i s c  i s  charac te r ized  

The r econs t ruc t ion  e x h i b i t s  t h e  

Resul t s  f o r  t h e  case  of a n  annulus exh ib i t i ng  l i nea r ly -d i r ec t ed  
an iso t ropy  can be  obtained from Eq. (21) by t h e  l i n e a r  superpos i t ion  of 
two concent r ic  d i s c s  of r a d i i  al and a2, respec t ive ly .  
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Fig. 5 .  The images shown were reconstructed from simulated projections 
of a linearly-directed anisotropic disc in panel a, and annulus in 
panel b. Both simulated objects possess an isotropic component a, = 1.0, 
and 2 to 1 anisotropy ( B  = 1). 
agreement with the analytical results of Eqs. (21) and (22) respectively. 

The reconstructed images are in 

cos (20)/r 

[ o  
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Figure 5 - Continued 

Figure  5b i l l u s t r a t e s  t h e  r e s u l t  of computer r econs t ruc t ion  of 
a n a l y t i c a l l y  derived p ro jec t ions  obtained from Eq. ,(13) f o r  the  l i nea r ly -  
d i r e c t e d  an i so t rop ic  annulus. The va lues  a = 1 and B = 1 f o r  t h e  annulus 
a r e  t h e  same as those  f o r  t h e  d i s c  i n  f i g u r e  5a. The computer reconstruc- 
t i o n  obtained from t h e  p ro jec t ions  e x h i b i t s  a l l  of t h e  f e a t u r e s  pred ic ted  
by t h e  a n a l y t i c a l  r e s u l t  i s  given i n  Eq. (22) .  
i n  Eq. (22), t h e  cen te r  of t h e  annulus r econs t ruc t s  without e r r o r  t o  0. 

Tangentially-Directed Anisotropy i n  t h e  Annulus 

I n  p a r t i c u l a r ,  as ind ica t ed  

We now cons ider  a second geometrical  c l a s s  of an iso t ropy  which occurs 
when t h e  l o c a l  an iso t ropy  axes are p a r a l l e l  t o  continuous curves i n  space. 
This t a n g e n t i a l  an iso t ropy  geometry i s  i l l u s t r a t e d  schemat ica l ly  i n  f i g u r e  
6. Because of t h e  c i r c u l a r  symmetry of t h e  d i s c  and its concent r ic  
an iso t ropy  axes,  tomographic p ro jec t ions  of t h e  d i s c  are independent of 
view angle  0 i n  s p i t e  of t h e  i n t r i n s i c  an iso t ropy  of t h e  ob jec t .  Every 
s t r a i g h t - l i n e  pa th  through t h e  d i s c  forms a n  angle  Qe(r , s )  wi th  r e spec t  
t o  an  an iso t ropy  a x i s  which continuously v a r i e s  wi th  pos i t i on  along t h e  
path. 
r ece ive r ,  then  a t  transmit-receive p o s i t i o n  r wi th in  t h e  d i s c  t h e  d i f f e r -  
e n t i a l  measurement a t  s is 

I f  we denote by s t h e  p o s i t i o n  along t h e  pa th  from t r ansmi t t e r  t o  
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Fig. 6. This schematic diagram i l l u s t r a t e s  key 
f e a t u r e s  i n  t h e  de r iva t ion  of t h e  p ro jec t ion  
of a d i s c  exh ib i t i ng  tangent ia l ly-d  i r e c  t ed 
anisotropy. The t r ansmi t t e r  and r ece ive r  
a r e  loca t ed  a t  p o s i t i o n  r. The tangent t o  t h e  
curved an iso t ropy  a x i s  a t  ( r , s )  represent ing  
t h e  d i r e c t i o n  of an iso t ropy  i s  shown. The 
angle  $ e ( r , s )  between t h e  anisotropy a x i s  
and t h e  d i r e c t i o n  of propagation a t  ( r , s )  
is given by cos ($e ( r , s ) )  = r / ( r  + s 13. 2 2 1  

where t h e  an iso t ropy  along d s  i s  modeled as t h e  l i nea r ly -d i r ec t ed  aniso- 
t r o p i c  d i f f e r e n t i a l  volume shown i n  f i g u r e  l a .  From geometry 

cos Q e ( r , s )  = r / ( s 2  + r 235 ) 

and hence, t h e  p ro jec t ion  i s  

where p ( r )  i s  t h e  p ro jec t ion  from t h e  i s o t r o p i c  d i sc .  Corresponding 
p ro jec t ions  f o r  a n  annulus a r e  derived from Eq. (26) using superpos i t ion .  

I n  f i g u r e  7a, w e  i l l u s t r a t e  r econs t ruc t ion  of a t angen t i a l ly  aniso- 

Numerical 
t r o p i c  d i s c  exh ib i t i ng  t h e  p ro jec t ion  given by Eq. (26). The i s o t r o p i c  
and an i so t rop ic  components a r e  a0 = 1 and B = 1 respec t ive ly .  
va lues  shown i n  f i g u r e  7a r ep resen t  l o c a l  averages. 

W e  now examine an  annulus exh ib i t i ng  t a n g e n t i a l  anisotropy. A s  an 
example of an  annular  ob jec t  t h a t  might e x h i b i t  t angen t i a l  anisotropy w e  
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Fig .  7. The images shown w e r e  r e c o n s t r u c t e d  from s imula ted  p r o j e c t i o n s  
of a t a n g e n t i a l l y - d i r e c t e d  a n i s o t r o p i c  d i s c  i n  pane l  a ,  and annulus  i n  
pane l  b .  
and 2 t o  1 a n i s o t r o p y  ( B  = 1) o r i e n t e d  as c o n c e n t r i c  r i n g s  about  t h e  cente  
The reg ions  o u t s i d e  t h e  o b j e c t s  r e c o n s t r u c t  t o  t h e  c o r r e c t  v a l u e  of zero .  
The empty r e g i o n  i n s i d e  t h e  annulus  r e c o n s t r u c t s  t o  a c o n s i s t e n t  -0.4 
i n s t e a d  of zero.  The annulus  r e c o n s t r u c t s  t o  v a l u e s  l a r g e r  than  t h e  
i s o t r o p i c  component, ao. 

Both s imula ted  o b j e c t s  possess  an  i s o t r o p i c  component a, = 1.0 
!r . 

cons ider  a crude  model of t h e  l e f t  v e n t r i c l e  of a h e a r t  c o n s i s t i n g  of 
l a y e r s  of muscle t i s s u e  wrapped c o n c e n t r i c a l l y  around a f l u i d  f i l l e d  chamber. 
[14,15] 
r e c o n s t r u c t e d  i n  f i g u r e  7b. A s  i n  t h e  case of t h e  d i s c ,  t h e  c o r r e c t  v a l u e  
of zero  is r e c o n s t r u c t e d  o u t s i d e  t h e  o b j e c t .  This  r e s u l t  f o r  t a n g e n t i a l l y  
d i r e c t e d  a n i s o t r o p y  is  i n  c o n t r a s t  w i t h  t h a t  ob ta ined  f o r  t h e  l i n e a r l y -  
d i r e c t e d  a n i s o t r o p i c  d i s c  and annulus  (Fig.  6 ) ,  o u t s i d e  of which c o n s i d e r a b l e  
e r r o r  occurs .  The annulus  r e c o n s t r u c t s  t o  i t s  l a r g e s t  v a l u e  (1.9) near  
t h e  o u t e r  edge and t h e  v a l u e s  decrease  toward t h e  i n n e r  edge w i t h  a decay 
s i m i l a r  t o  t h a t  w i t h i n  t h e  d i s c  i n  f i g u r e  7a. A uniform n e g a t i v e  v a l u e  

For  a. = 1 and B = 1, t h e  a n a l y t i c a l l y  der ived  p r o j e c t i o n s  are 
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-0.4 

Figure 7 - Continued 

(-0.4) is  recons t ruc ted  i n s i d e  t h e  annulus. The predic ted  negat ive  value 
i s  q u i t e  s i g n i f i c a n t ,  as d iscussed  i n  a subsequent s ec t ion .  

Simulations of E l l i p t i c a l l y  Shaped Regions 

I n  order  t o  estimate t h e  e f f e c t s  of an iso t ropy  on t h e  tomographic 
recons t ruc t ions  of o b j e c t s  such as t i s s u e  specimens, more complicated 
ob jec t  geometries were simulated.  E l l i p t i c a l l y  shaped regions,  each 
possessing p a r t i c u l a r  va lues  of i s o t r o p i c  a t t enua t ion ,  ao,  aniso t ropy  
magnitude B, and l inea r ly -d i r ec t ed  an iso t ropy  a x i s  o r i e n t a t i o n ,  were super- 
imposed t o  s imula te  complicated s t r u c t u r e s .  

To i l l u s t r a t e  t h e  p o t e n t i a l  e f f e c t s  of an  an i so t rop ic  region on neighbor- 
i ng  i s o t r o p i c  reg ions ,  a s i n g l e  a n i s o t r o p i c  e l l i p s e  of 2 t o  1 aniso t ropy  
magnitude (B = 1 )  is recons t ruc ted  i n  f i g u r e  8. The s u b s t a n t i a l  p o s i t i v e  
and negat ive  e r r o r s  surrounding t h e  e l l i p s e  are expressed as a percentage 
of t h e  va lue  recons t ruc ted  wi th in  t h e  e l l i p s e .  Objects ad jacent  t o  t h e  
long  s i d e s  of t h e  e l l i p s e  w i l l  r econs t ruc t  w i th  underestimated a t t enua t ion  
va lues  owing t o  t h e  nega t ive  va lues  on e i t h e r  s i d e  of t he  e l l i p s e .  
t he  ends of ' the  e l l i p s e ,  o b j e c t s  w i l l  r econs t ruc t  with overestimated a t t en -  

Near 
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Fig. 8. 
ellipse is demonstrated in this tomographic reconstruction. Reconstructed 
values outside the ellipse are expressed as a percentage of the value 
reconstructed in the ellipse; these values differ from the correct value 
of zero due to the anisotropy of the ellipse. 

The effect of 2 to 1 linearly-directed anisotropy in an isolated 

uation values. Qualitatively, errors of both signs occur because the 
reconstruction algorithm evenly weights each projection. Hence, the views 
with a larger attenuation (parallel to the anisotropy axis) back project 
with a larger magnitude than the views at other angles and incomplete 
cancellation outside the object yields positive errors. Similarly, lower 
attenuation views back project with a value which is more than cancelled 
by the other views yielding negative errors. 

In figure 9 we present a schematic diagram of one superimposed circle- 
and-ellipse geometry that was reconstructed to illustrate a more complicated 
geometry. All circles possess an isotropic attenuation a. = 0.5. 
ellipses are characterized by a linearly-directed anisotropy parallel to 
the lines shown. Each ellipse has an isotropic component of attenuation 

The two 
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Fig. 9. The collection of circular and elliptic - 
objects shown schematically here are used subse- 
quently to demonstrate the effects of anisotropic 
objects in a tomographic reconstruction. The 
circular objects are intrinsically isotropic 
(8 = O), with a. = 0.5. The ellipses exhibit 
2 to 1 anisotropy (6 = 1) with linearly-directed 
axes parallel to the lines shown, and an 
isotropic component a = 0.5. 

0 

cio = 0.5, equal to that of the surrounding discs. 
magnitude (8 = 1) causes the attenuation measured parallel to the lines 
shown to appear twice as large as that measured normal to the lines, 

The 2 to 1 anisotropy 

(27) 2 
a (x,y) = 0.5 (1 + cos a 

The effects of anisotropic regions on adjacent regions are illustrated 
in figure 10 for the collection of regions shown in figure 9. In figure 
10a, the object reconstructed had all regions isotropic, i.e. 8 = 0 in 
the ellipses. The reconstruction in figure 10b is the corresponding result 
for = 1 in the anisotropic ellipses. The grey scale imaging window for 
panels a and b was selected with the a, = 0.5 value at mid range so as 
to show both over- and under-estimations of the reconstructed attenuation. 
Numerical values represent local averages of the reconstructed attenuations. 

From the simulations presented in figures 8 and 10 and from other 
simulations, the following conclusions may be drawn: 

1) The attenuation (or slope of the attenuation) values reconstructed 
within isolated anisotropic regions lie in the range between a, and 
aO(l+@), and are functions of the object geometry. 
ellipse of figure 8 had a major-to-minor axis ratio of 5 to 1 and 
reconstructed to approximately a,(l+B). 
shown, a 5 to 3 ellipse geometry reconstructed to ao( l  + 0.68). 
Finally, the disc in figure 5 reconstructed to ao(l + 0.58). 
three examples of identical 2 to 1 anisotropy demonstrate the geometry 
dependence of the values reconstructed in the anisotropic region. 

Objects adjacent to anisotropic regions can suffer either over- or 
under-estimation, depending upon the anisotropy magnitude and geometry. 
The negative estimation errors affected not only the isotropic discs 
shown in figure 10, but also the neighboring anisotropic ellipse. 
The interaction of the anisotropic ellipses resulted in reconstructed 
values of 0.9 whereas the isolated ellipse in figure 8 reconstructed 
to 1.0. 

The isolated 

In another simulation, not 

These 

2) 
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Fig.  10. 
s t r u c t e d  here .  
p ro j ec t ions  i n  which a l l  o b j e c t s  were taken  t o  be  i n t r i n s i c a l l y  i s o t r o p i c  
( i . e . ,  8 = 0). 
wi th  t3 = 1. 
t o  s u f f e r  both over- and under-estimation. 

The c o l l e c t i o n  of s imula ted  o b j e c t s  i n  f i g u r e  9 are recon- 
Panel  a shows t h e  o b j e c t s  recons t ruc ted  from simulated 

I n  pane l  b t h e  e l l i p s e s  were taken t o  be  a n i s o t r o p i c  
The an iso t ropy  of t h e  e l l i p s e s  caused the  i s o t r o p i c  d i s c s  
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Fig. 11. A schematic representation of a hypothetical slice through 
a dog heart in panel a is to be compared with a photograph of an actual 
heart in panel b. 
corresponds to scar tissue from an experimentally induced infarct. 
The values shown in panel a represent values of the slope of attenuation 
from the literature [14,26,27]. Anisotropy axes in panel a represent 
the tangentially-directed anisotropy geometry values used in the simulations 
in figure 12. 

The white fibrous region of the heart in panel b 

3) Although the errors in the reconstructed values resulting from 
anisotropy can be substantial, the objects reconstruct to qualitatively 
correct geometries in the presence of modest anisotropy. Geometrical 
distortions result from both negative errors which can obliterate 
some regions and positive errors which can distort and extend edges. 
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Tomography of the Heart 

A recent tomographic study from our laboratory of dog hearts in vitro 
[6] demonstrated the capability of delineating regions of infarct in images 
based on attenuation and on time-of-flight measurements. 
the implications of anisotropy for attenuation images of the heart of this 
sort. 
served in myocardium and the model presented here. 
used in our investigations, presented schematically in figure lla, is a 
representation of a hypothetical slice through the ventricles of a dog 
heart. A photograph of an actual heart is presented in figure llb. The 
photograph reveals the right and left ventricular cavities, papillary 
muscles in the left ventricle, and a white fibrous region in the posterior 
left ventricle corresponding to scar from a myocardial infarct experimen- 
tally induced approximately 7 months prior to the study of the heart 
vitro. The plane of the image is oriented approximately perpendicular 
to the septum. Within the layers of the left ventricular myocardium, 
muscle fibers are known to be oriented in various directions parallel to 
or slanted slightly out of the plane of the image [15,16]. A s  a simpli- 
fication, we model the fibers as parallel to the plane of the image. 
The papillary muscle fibers are modeled as perpendicular to the plane [15]. 
Thus projection measurements of the slice in this plane will view aniso- 
tropic myocardium in the ventricles and septum. However, the interrogating 
wave propagates approximately normal to the papillary muscle fibers for 
all view angles, and therefore papillary muscle will appear isotropic. 

In light of the geometry dependence of anisotropy effects, we investi- 

We now address 

We carried out simulations based upon the 2.6 to 1 anisotropy ob- 
The simulated object 

gated the potential effects of anisotropy in tomographic reconstruction 
of the heart with a simulated model of the heart slice shown in figure 
lla. 
for the heart model with the intrinsic anisotropy set equal to zero (i.e., 
for B = 0). Slope values correspond to independent measurements [14,26,27] 
made in transmission at normal incidence to the muscle fibers and are 
summarized in figure lla. The effect of a 2.6 to 1 tangentially-directed 
anisotropy is illustrated in figures 12b and 12c. Because the anisotropy 
of scar resulting from infarct has not been well characterized, we simulate 
scar with 2 . 6  to 1 tangentially-directed anisotropy (6  = 1.6) in panel 
b and simulate isotropic ( B  = 0) scar in panel c. The isotropic components 
of.the slope of attenuation ( a  ) in all regions are equal to the normal- 
incidence slope values employe3 in the isotropic heart in panel a. 
tangentially-directed anisotropy model was employed with 2.6 to 1 anisotropy 
oriented along the circular axes shown in figure lla. 

In figure 12a, we present a reconstruction of the slope of attenuation 

The 

For comparison, a reconstructed image of actual tissue is given in 
figure 13a, based upon the slope of attenuation measured in the heart 
shown in figure llb. 
responding to the black line through the image in panel a. 
plots the slope for regions in the surrounding medium, normal left ventricle 
(left), papillary muscle, the fluid contained in the left ventricle cavity 
(center) , and scar (right). 

An image-raster-line is plotted in figure 13b cor- 
The raster-line 

To a first approximation, the left ventricular muscle is an elongated 

As a result, regions reconstructed adjacent to the muscle might 
strip of anisotropic material much like the anisotropic ellipses of figures 
8 and 10. 
be expected to suffer either over or underestimation due to anisotropy. 
Furthermore, the entire ventricle resembles the tangentially-directed 
anisotropic annulus which was demonstrated in figure 7b to exhibit sig- 
nificant negative error inside, but no error outside. Thus one would 
expect no significant errors outside the heart, but papillary muscles 
inside might be underestimated due to negative errors there. The anisotropic 
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a 

b 

Fig. 12. 
structed to form images: 
b) a tangentially-directed anisotropic heart with infarct modeled as 
anisotropic; and c )  a tangentially-directed anisotropic heart with infarct 
modeled as intrinsically-isotropic. A 2.6 to 1 anisotropy was employed 
with values of a 

Simulated projections of a hypothetical dog heart are recon- 
a) an intrinsically-isotropic model of a heart; 

equal to the slope values shown in figure lla. 

left ventricular muscle should reconstruct to an attenuation value lying 
between those along and those perpendicular to the muscle fibers. 

A comparison of the reconstruction of actual heart and the simulated 
heart yield the following observations (a summary is given in table I). 
Reconstructed values are local averages given in terms of the mean 
standard deviation; values corresponding to independent measurements are 
quoted as the mean 5 standard error of the mean. 

a) The slope of attenuation in the left ventricle between the papillary 
muscles reconstructed to 0.15 
approximately twice the value 0.072 

0.02 cm-lMHz-l in the actual heart, 
0.001 cm-lMHz-l reported for 
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Fig. 13. Projections of the slope of attenuation 
in the heart studied in vitro shown in figure 13b 
are reconstructed to form the image shown. A 
plot of the image-raster line corresponding to 
the line through the image shows representative 
reconstructed values. From left-to-right one 
observes surrounding medium (approximately 
lossless), normal left ventricular muscle 
(overestimated), papillary muscle (underestimated), 
fluid (approximately lossless but reconstructs to 
a negative slope), and left ventricular muscle 
and scar tissue (overestimated). 
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Normal 
left ventricular 
myocardium 

Anatomical 
site 

0.072 2 O.O0lc 
(N = 245) 

Table I. Comparison of errors in tomography of 
dog heart with errors predicted by simulation of anisotropy 

Independent 
measurement 
(cm-hz-1) 

a 

I 

Estimate from 
tomographic 
reconstruction 
of experimental 
datab (Cm-lMHz-l) 

I 0.15 2 0.02 

Left ventricular 0.158 5 O.OIOd 
infarct 

Left ventricular 
papillary muscle (N = 21) 0.03 2 0.01 

Fluid in left 
ventricular 
cavity -0.0 1 -0.03 2 0.02 

Estimate from 
tomographic 
reconstruction 
of simulated data 
(cm-lmz-1) 

b 

0.18 2 0.01 

0.31 2 0.01 

0.03 2 0.01 

-0.07 2 0.01 

aMeasurements (mean 5 standard error of the mean) of muscle were made in trans- 
mission, normal to the predominant fiber orientation. Measurements of infarct 
were made in transmission, normal to the epicardial surface. 
bLocal averages (mean 2 standard deviation). 
[26]. eSee ref. [ 2 7 ] .  

CSee ref. [14]. dSee ref. 

transmission at normal incidence to the muscle fibers [14]. In the 
corresponding region of the simulated heart, the value of the slope 
was 0.18 2 0.01 cm-lMI3z-l. 

b) Isotropic regions such as the papillary muscles and fluid within the 
cavity of the left ventricle are surrounded by approximately 
tangentially-directed anisotropic media, and reconstruct to severely 
underestimated or negative slope values. In actual heart, the papil- 
lary muscles reconstructed to 0.03 2 0.01 cm-lMHz-l and simulation 
yielded 0.03 5 0.01 cm-~MHz-l. 
mission) measurements of papillary muscle at this location indicate 
0.079 2 0.002 Crn-lMHz-l [27]. 
within the ventricle are approximately lossless for the path lengths 
and frequencies used. In the heart reconstruction, the slope in the 
left ventricular cavity wa 
heart and -0.07 5 0.01 cm 

Scar in the left ventricle following seven months of ischemia exhibited 
a slope of attenuation measured non-tomographically in the range 
0.158 2 cm-lMHz-l 1261 for normal incidence to the epicardial surface. 
Nearly twice this value, 0.27 5 0.05 Crn-lMHz-l, was reconstructed 
in the actual heart. Simulation of scar, based upon an isotropic 
model with a slope of 0.15 cm-lMHz-l, yields a reconstructed value 
of 0.16 5 0.01 cm-lI4Hz-l. In contrast the same scar modeled with 
an isotropic component of slope of 0.15 cm-lMHz-1 and tangentially- 
directed anisotropy yields 0.31 5 0.01 Cm-lMHz-l. 

Independent (non-tomographic, trans- 

The surrounding medium and fluid 

-0 03 + 0.02 cm-lMHz-l in the actual -f I1 - MHz in the simulated heart. 

c) 
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Thus, although the precise character and geometrical orientations 
of anisotropy in the various regions of the heart are not known with 
certainty, these simulations do suggest that much of the artifact in recon- 
structions of the slope of attenuation in dog hearts is due to anisotropy. 
Specifically, the negative reconstruction values in the left ventricular 
cavity, underestimation of the slope of attenuation of the papillary muscles, 
and overestimation of,the slope in normal left ventricular myocardium and 
infarct appear to be consequences of the anisotropy of the ultrasonic 
attenuation within the walls of the ventricle. 

111. Discussion 

Methods for ultrasonic imaging frequently include an implicit assump- 
tion that the medium is isotropic. To achieve quantitative ultrasonic 
images in the presence of anisotropy one would have to isolate a component 
of the parameter to be imaged, such as ao,  8, or J I ,  for each point in the 
region to be imaged. Methods to accomplish this have not been developed. 
The effects of anisotropy upon tomography have been addressed for the case 
of vector anisotropy present in time-of-flight measurements in a moving 
fluid [28] and in zeugmatography [29]. Although successful reconstructions 
were demonstrated in both cases for special geometries, general methods 
for reconstructions in the presence of vector anisotropy apparently are 
not available. Furthermore, vector anisotropy appears to differ fundamen- 
tally from that exhibited by ultrasonic attenuation and scattering. 
vector-anisotropic measurement consists of an isotropic component, and 
an anisotropic component which is either positive or negative depending 
upon the relationship between the wave vector and the anisotropy vector. 
In terms of the model described here, this amounts to relaxing the con- 
straint C(0) 2 0, with the result that the anisotropic components along 
some paths can cancel. The intrinsic anisotropy modeled here is strictly 
positive and additive, and no comparable cancellation is possible. 

The 

The problem of separating the isotropic and anisotropic components 
for tomographic imaging is quite challenging. 
represents an accumulation of isotropic quantities viewed systematically 
in angle and anisotropic quantities viewed over a mixture of angles relative 
to the anisotropy axes. Thus the collection of projection measurements 
doqs not appear to contain enough information to resolve anisotropy without 
a priori information. For example, the projections of the annulus with 
tangentially directed anisotropy are indistinguishable from those of the 
equivalent isotropic object to which they reconstruct. 
accounting for anisotropy may require additional independent measurements 
beyond the usual tomographic projections. 

Each projection measurement 

A general solution 

Additional features of the issue of anisotropy in reconstructive 
tomography emerge when considerations are generalized to three dimensions. 
Anisotropy axes can be expected to lie in a variety of directions, not 
necessarily parallel to the plane being imaged. As discussed in the 
Appendix, the anisotropy magnitude 8 is scaled by sin2 Q where Q is the 
angle between the normal to the image plane and the anisotropy axis. One 
might speculate whether projections carried out in three-dimensions might 
contain more information which is useful in resolving anisotropy-related 
ambiguity than projections confined to a plane in two dimensions. 

Up to this point, we have limited our discussions to transmission 
imaging. 
out using reflected ultrasound. If random non-uniformities and anisotropy 
of the acoustic velocity are sufficiently small, reflection measurements 
may aid in the separation of isotropic and anisotropic components. Con- 

We now consider briefly the issue of anisotropy in imaging carried 
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sider the highly idealized case in which the amplitude of the received 
signal at any particular instant in time is determined primarily by the 
ultrasonic parameter of interest at a specific spatial position. Since 
the direction of wave propagation at that spatial position is known, com- 
paring the measurements from that point in space for the various angles 
of view yields a measure of the angular dependence of the parameter, at 
least over the range of view angle available. 
features complicate this simplistic analysis of reflection imaging in 
anisotropic media. The attenuation of intervening tissue and its anisotropy 
introduce a complication which is analogous to the projection measurements 
of tomography. Random variations in acoustic velocity result in unknown 
path and beam distortions. The three-dimensional orientation of the in- 
trinsic anisotropy axes further complicates the issue. Nevertheless, 
reflection measurements may permit at least a partial reduction in the 
limitations imposed upon quantitative imaging by anisotropy. 

In actual measurements many 

Methods of imaging in anisotropic media could make use of multiple 
images to display the separate components of anisotropic parameters, pro- 
vided they are separable. For example, one image could be based on the 
spatial variation of the isotropic component of the index (a,). 
image could be made from spatial variation of the anisotropy magnitude 
( 8 ) .  
for ultrasonic tissue characterization if it can be related to specific 
pathologies. Anisotropy-related indices might also play a useful role 
in imaging for non-destructive evaluation of materials. Thus efforts to 
characterize systematically the angular dependence of the various ultra- 
sonic parameters would be a valuable component in the ongoing task of tissue 
and materials characterization. 

Another 

Indeed, the anisotropy magnitude might prove to be a useful parameter 

In summary, the effects of anisotropy on transmission tomographic 
reconstruction were demonstrated analytically and by simulation. 
studies of excised dog hearts [6] significant differences were observed 
between values of the slope of attenuation reconstructed tomographically 
and values obtained from independent measurements [14,26,27]. In contrast, 
in the present study reconstructions of a simulated anisotropic heart show 
good agreement with reconstructions of actual heart. Thus, the differences 
between tomographic and independent measurements of the slope appear to 
result from anisotropy. Furthermore, these differences appear to be sub- 
stantially larger than those due to refraction alone. 
sonic scattering, reflection coefficients, speed-of-sound, and attenuation 
appears to have the potential for corrupting the results of quantitative 
imaging in reflection as well as transmission measurements. Although 
anisotropy represents a challenge to the design of quantitative imaging 
systems, it may also offer the potential for novel methods of tissue and 
materials characterization. 

In previous 

Anisotropy in ultra- 

Appendix 

Anisotropic Ensemble Confined to a Plane 

A specimen of tissue, such as myocardium, may be comprised of a series 
of layers with the fibers of each layer oriented in a particular direction 
[15,16]. 
anisotropic media. 
and suppose all axes are parallel to a plane in space with orientation 
angles $ai i = 1,2,...,N in that plane. 
coordinate system where the common plane is situated at angle 8,, and 
the $ai are angles with respect to the Z axis (refer to Fig. Al). 
the directions of propagation be confined parallel to the x-y plane. 

We model an isolated region of specimen as a superposition of 
Assume the region contains multiple anisotropy axes, 

We express this in a spherical 

Let 
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Anisotropy axes 
parallel to the 
constant e _  /1 

Interrogating w 
wave in the 
X-Y plane 

Fig. A l .  This diagram i l l u s t r a t e s  t h e  geometry of an  ensemble of 
an i so t rop ic  media l y i n g  p a r a l l e l  t o  a plane,  and the  in t e r roga t ing  
acous t i c  wave. 

I f  Q corresponds t o  t h e  propagation vec to r ,  then Q 
desc r ibe  t h e  d i r e c t i o n s  of propagation. 

= 1112, and Bpi P P 

The u n i t  vec to r s  p a r a l l e l  t o  t he  an iso t ropy  axes are 

+ 
r = i cos ea s i n  + 3 s i n  ea s i n  Q + it cos 

i i i i a a 

where w e  no te  t h a t  8, i s  cons tan t  f o r  a l l  an iso t ropy  axes.  
vec to r  p a r a l l e l  t o  t h e  wave propagation d i r e c t i o n  i s  

The u n i t  

-+ 
r = i cos e s i n  Q + 3 s i n  e s i n  Q + i; cos Q 
'j p j  

P P 'j P 

= 1112 f o r  a l l  waves considered here.  
and an iso t ropy  a x i s  i is 

Then t h e  angle  between wave 

+ -+ 
- r  

i a (A3 

cos ed = s i n  cos(ea - e ) . (A4 ) 
i p j  

The s inuso ida l  an i so t rop ic  dependence C(Bd) i s  pe r iod ic  i n  11, p o s i t i v e ,  
and is  def ined  as 

2 c (ed)  = B cos ed. (A5 
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We no te  a l s o  t h a t  

2 2 
= 2 s i n  $ cos (Oa - 8 ) -1 

i 'j 
a 

hence , 

c(ed)  = B s i n  $a cos[?(ea - e ) I  + s i n  
" i  p j  

1 + c0s[2(ea - e 11 
'j 

When wave j propagates  through an  o b j e c t  w i th  equal  s i n u s o i d a l  an i so t rop ie s  
a t  o r i e n t a t i o n s  i = l , Z ~ . . . , N ,  each wi th  i s o t r o p i c  component a / N  and 
an iso t ropy  magnitude 8, t h e  measurement f o r  t h e  wave j is 

N 
a = C (a/N) ( 1  + c (ed  1) 
a j  i=l i 

N 
= (a/N) 1 + B(l  + cos 2 8 )/2 

di i-1 

where the  an iso t ropy  magnitude apparent  i n  t h e  p lane  of measurement i s  

N 2  
8'  = B ( ~ / N )  C s i n  0, i=l i 

and t h e  i s o t r o p i c  component of t h e  measurement, a, is cons tan t  r ega rd le s s  
of t h e  $ai o r i e n t a t i o n s .  

From t h i s  b r i e f  a n a l y s i s  f o r  measurements i n  a plane,  we  conclude: 
a )  
can be  modeled as a supe rpos i t i on  of a n i s o t r o p i c  media whose an iso t ropy  
axes are p a r a l l e l  t o  a p lane  i n  space,  then  t h e  ensemble w i l l  e x h i b i t  

I f  an  o b j e c t ,  such as t h e  s e c t i o n  of l e f t  v e n t r i c l e  d i scussed  above, 
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an anisotropic angular variation whose functional dependence is identical 
to that of the constituent media, but whose anisotropy magnitude B' is 
bounded by o 5 8'5 $ where 8 is the anisotropy magnitude exhibited by the 
individual components of the media. 

b) 
will yield the correct angular dependence function but with an anisotropy 
magnitude B '  which serves as a lower bound for the actual anisotropy 
exhibited by the individual components of the media in three dimensions. 
Thus in the case of the rectangular sample of left ventricle, the Mo(9) 
measurement of 2.6 to 1 cited in the text may only be a lower bound because 
the muscle fibers are not strictly parallel to the plane imaged [15,16]. 

Application of the Mo(9) zero-order moment to the object modeled above 
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