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Abstract. For a commutative semigroup S with 0, the zero-divisor graph

of S denoted by Γ(S) is the graph whose vertices are nonzero zero-divisor

of S, and two vertices x, y are adjacent in case xy = 0 in S. In this paper

we study the case where the graph Γ(S) is complete r-partite for a positive

integer r. Also we study the commutative semigroups which are finitely

colorable.

1. Introduction

In [6] Beck introduced the concept of a zero-divisor graph G(R) of a commu-
tative ring R. However, he lets all elements of R be vertices of the graph and
his work was mostly concerned with coloring of rings. Later, D. F. Anderson
and Livingston in [4] studied the subgraph Γ(R) of G(R) whose vertices are the
nonzero zero-divisors of R. The zero-divisor graph of a commutative ring has
been studied extensively by several authors, e.g. [1], [5], [8], [12], and etc.

This notion has also been extended to (commutative) semigroups with zero,
e.g. [9], [10], [13], and [14]. Throughout S denotes a commutative semigroup
with 0. According to [10], the zero-divisor graph, Γ(S), is an undirected graph
with vertices Z(S)∗ = Z(S) \ {0}, the set of nonzero zero-divisors of S, where for
distinct x, y ∈ Z(S)∗, the vertices x and y are adjacent if and only if xy = 0. In
this paper we compare the algebraic structure of commutative semigroup S with
the graphical structure of Γ(S).
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For the sake of completeness, we state some definitions and notions used
throughout to keep this paper as self contained as possible.

For a graph G, the set of vertices of G is denoted by V(G). The degree of a
vertex v in G is the number of edges of G incident with v. An r-partite graph is a
graph whose vertex set can be partitioned into r subsets so that no edge has both
ends in any one subset. A complete r-partite graph is one in which each vertex
is joined to every vertex that is not in the same subset as the given vertex. The
complete bipartite (i.e., complete 2-partite) graph is denoted by Km,n where the
set of partition has sizes m and n. We define a coloring of a graph G to be an
assignment of colors (elements of some set) to the vertices of G, one color to each
vertex, so that adjacent vertices are assigned distinct colors. If n colors are used,
then the coloring is referred to as an n-coloring. If there exists an n-coloring of
a graph G, then G is called n-colorable. The minimum n for which a graph G

is n-colorable is called the chromatic number of G, and is denoted by χ(G). A
clique of a graph is a maximal complete subgraph and the number of vertices in
the largest clique of graph G, denoted by ω(G), is called the clique number of G.
Obviously χ(G) ≥ ω(G) for general graph G (see [7, page 289]).

A non-empty subset I of S is called ideal if xS ⊆ I for any x ∈ I. An ideal
p of a commutative semigroup is called a prime ideal of S if for any two element
x, y ∈ S, xy ∈ p implies x ∈ p or y ∈ p. Let Z(S) be its set of zero-divisors of S.
In order that Γ(S) be non empty, we usually assume S always contains at least
one nonzero zero divisor. In [10] DeMeyer, McKenzie, and Schneider show that
the number of minimal ideals of S gives a lower bound to the clique number of
S. In [15] Zue and Wu studied a graph Γ(S) where the vertex set of this graph is
Z(S)∗ = Z(S) \ {0} and for distinct elements x, y ∈ Z(S)∗, if xSy = 0, then there
is an edge connecting x and y. Note that Γ(S) is a subgraph of Γ(S). Recently,
F. DeMeyer and L. DeMeyer studied further the graph Γ(S) and its extension to
a simplicial complex, cf. [9]. Clearly for any prime ideal p if x and y are adjacent
in Γ(S), then x ∈ p or y ∈ p. So for every prime ideal p and every edge e, one of
the end points of e belongs to p.

One may address three major problems in this area: characterization of the re-
sulting graphs, characterization of the commutative semigroups with isomorphic
graphs, and realization of the connections between the structures of a commuta-
tive semigroup and the corresponding graph. In this paper we focus on the third
problem.

The organization of this paper is as follows:
In Section 2, we study the commutative semigroups whose zero divisor graphs

are complete r-partite. It is shown that for a reduced commutative semigroup S
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if Γ(S) is a complete r-partite graph, with parts V1, V2, ..., Vr, then Vt ∪ {0} is an
ideal and pt = Z(S) \ Vt is a prime ideal for any 1 ≤ t ≤ r.

In Section 3, we study the commutative semigroups of finite chromatic num-
ber. We show that for a commutative semigroup S the following conditions are
equivalent: (1) χ(S) <∞, (2) ω(S) <∞, and (3) the zero ideal is a finite inter-
section of prime ideals, where χ(S) = χ(Γ(S)) and ω(S) = ω(Γ(S)), see Theorem
3.3. As a corollary we show that χ(S) = ω(S) = n if S is a reduced commutative
semigroup and 0 = ∩n

i=1pi is a minimal prime decomposition of 0 (i.e. for any
i 6= j, pi 6= pj and for any 1 ≤ t ≤ n, 0 6= ∩i6=tpi). In addition, it is shown that
for n ≤ 2, χ(S) = n if and only if ω(S) = n. It is shown that this result is not
valid for n = 3. We give a finite commutative semigroup S with χ(S) = 4 and
ω(S) = 3.

We follow standard notation and terminology from graph theory [7] and semi-
group theory [11].

2. Complete r-partite graph

Let R be an infinite ring and let the zero-divisor graph of R, Γ(R), be a
complete r-partite with parts V1, V2, · · · , Vr and r ≥ 3. In [1, Theorem 3.5] it is
shown that for any integer 1 ≤ t ≤ r and for any x ∈ Vt, Rx ⊆ Vt ∪ {0}, and
∪i 6=tVi ∪ {0} is a prime ideal. In the following we give a commutative semigroup
version of this result.

Theorem 2.1. Let S be a commutative and reduced semigroup and let Γ(S) be
a complete r-partite graph with parts V1, V2, ..., Vr. Then Vt ∪ {0} is an ideal and
pt = Z(S) \ Vt is a prime ideal for any 1 ≤ t ≤ r.

Proof. For an arbitrary integer 1 ≤ t ≤ r choose x ∈ Vt and r ∈ S such that
rx 6= 0. For any i 6= t, there exists xi ∈ Vi with xix = 0. Then xi(rx) = 0. Since
S is reduced we have xi 6= rx for all i 6= t and hence rx ∈ Vt. Therefore Vt ∪ {0}
is an ideal. By the same argument pt is an ideal. Now suppose that xy ∈ pt, and
s1 ∈ Vt. Then xs1y ∈ pt, and so xs1y = 0. If xs1 6= 0, then xs1—y and y /∈ Vt;
otherwise x—s1 and x /∈ Vt. Therefore x ∈ pt or s1y = 0. That implies x ∈ pt or
y ∈ pt. Thus pt is a prime ideal. �

Remark. (a) It is easy to see that we can replace the condition “reduced” with
the condition “for every x ∈ S \ 0, x2 6= 0” in the Theorem 2.1.

(b) In Theorem 2.1 if Γ(S) is bipartite (i.e. r = 2), then Γ(S) is guaranteed to
be a complete bipartite graph.
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The following examples show that the condition “reduced” is not redundant in
the Theorem 2.1.

Example 2.2. Let S = {0, a, b, c, d} with b2 = ab = bc = cd = 0, ac = c2 = a2 =
c, d2 = d, ad = bd = b. Then Γ(S) is a bipartite graph as shown in the following
diagram:

a—b—c—d,
where the two parts of Γ(S) are V1 = {a, c} and V2 = {b, d}. It is easy to see that
{a, c, 0} is not an ideal.

Example 2.3. Let S = {0, x, y, z} with z2 = yz = xz = 0, yx = x, x2 = x,
y2 = y. Then Γ(S) is a bipartite graph. In this case {0, x, y} is an ideal but it is
not a prime ideal.

The condition “reduced” in the statement of Theorem 2.1 may be replaced by
the condition “|Vi| > 1 for all i” as we outline below.

Theorem 2.4. Suppose that Γ(S) is complete r-partite graph with parts
V1, V2, · · · , Vr such that for any i, |Vi| > 1. Then S is reduced.

Proof. Let x ∈ Vi and r ∈ S such that rx 6= 0. Since for any i 6= t |Vi| > 1,
there exists xi ∈ Vi such that rx 6= xi but rxxi = 0. Thus rx ∈ Vt. By the same
argument as Theorem2.1 it is easy to show that pi = Z(S) \ Vi is a prime ideal.
Now suppose that x ∈ Vi and xn = 0 and xn−1 6= 0. Since Vi

⋃
{0} is an ideal of S

we have that xn−1 ∈ Vi. But xn = xn−1x = 0 and so x2 = 0. We show that each
part Vi contains at most one nilpotent element. Let x 6= y ∈ Vi are two nilpotent
elements. Then xy 6= 0, y2 = x2 = 0. Therefore xy is adjacent to x, which is a
contradiction (note that xy ∈ Vi). Now the assertion holds. Let 0 6= x ∈ S be a
nilpotent element. By part (b), x2 = 0. There exists 1 ≤ t ≤ r such that x ∈ Vt

and so 0 = x2 ∈ pt. Since pt is a prime ideal we have that x ∈ pt and so x = 0.
This is a contradiction. �

In [1, Theorem 3.5], it is shown that for an infinite ring R, if Γ(R) is a complete
r-partite graph with r ≥ 3 then r is a power of a prime integer. The following
example shows that this is not true for commutative semigroups. First we recall
a notion that we use in this example. Let S1, S2, · · · be commutative semigroups
with a zero element and Si ∩ Sj = {0} whenever i 6= j, the 0-orthogonal union of
S1, S2, · · · is the commutative semigroup S = S1 ∪ S2 ∪ · · · in which every Si is
a subsemigroup and SiSj = 0 whenever i 6= j.

Example 2.5. Let S be the 0-orthogonal union of S1, S2, · · · . Let |Si| > 2 for
all i = 1, 2, · · · , r. Then Γ(S) is a complete r-partite graph if and only if Z(S)
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is a 0-orthogonal union of commutative semigroups without nonzero zero-divisors
(namely, the commutative semigroups Si = Vi ∪ {0}).

Remark. Note that in Example 2.7 the condition |Si| > 2 is necessary. For
example consider S = {0, a, b, c} with ab = ac = a2 = 0, bc = c2 = b2 = a. In
this case Γ(S) is complete bipartite and S is not a 0-orthogonal union of non-zero
commutative semigroups.

3. Commutative semigroups of finite chromatic number

In this section, we begin to characterize the commutative semigroups of finite
chromatic number. Note that Beck in [6] and D. D. Anderson and Naseer in
[3] let all elements of R be vertices of the graph Γ(R)) but we just consider the
nonzero zero-divisors. This is the reason why the chromatic number (resp. clique
number) of Γ(R), in this paper, is one less than the chromatic number (resp.
clique number) of Γ(R) in [6] and [3].

A commutative semigroup is called reduced if for any x ∈ S, xn = 0 implies
x = 0. The annihilator of x ∈ S is denoted by Ann (x) and it is defined as

Ann (x) = {a ∈ S|ax = 0}.

In the following we bring a necessarily condition for a commutative and reduced
semigroup to satisfying the a.c.c on annihilators.

Proposition 3.1. Let S be a commutative and reduced semigroup in which Γ(S)
does not contain an infinite clique. Then S satisfies the a.c.c on annihilators.

Proof. Suppose that Annx1 < Annx2 < · · · be an increasing chain of ideals.
For each i ≥ 2, choose ai ∈ Annxi \ Annxi−1. Then each yn = xn−1an is
nonzero, for n = 2, 3, · · · . Also yiyj = 0 for any i 6= j. Since S is a commutative
and reduced semigroup, we have yi 6= yj when i 6= j. Therefore we have an infinite
clique in S. This is a contradiction and so the assertion holds. �

Lemma 3.2. Let S be a commutative semigroup and let Ann a be a maximal
element of {Annx : 0 6= x ∈ S}. Then Ann a is a prime ideal.

Proof. Let xy ∈ Ann a, and x, y /∈ Ann a. Then xxy ∈ Ann a, and so x2ya = 0.
Since ya 6= 0 and Ann a ⊂ Ann ya, we have Ann a = Ann ya. Thus x2 ∈ Ann a
and hence x ∈ Annxa = Ann a. This is a contradiction. �

Given an ideal I of S we define the radical of I to be
√
I = {s ∈ S|sn ∈

I for some positive integer n}. Clearly
√
I is an ideal containing I. An ideal

is said to be a radical ideal if
√
I = I. It is known that if I is an ideal of a
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commutative semigroup S, then
√
I is the intersection of the prime ideals minimal

over I, cf. [2, Theorem 3.3].
Now let S be a commutative reduced semigroup. Then the zero ideal {0},

which is a radical ideal, is the intersection of the prime ideals minimal over {0}.
In the following we give a graph-theoretical characterization of the case where the
zero ideal is a finite intersection of prime ideals.

Theorem 3.3. For a commutative and reduced semigroup S the following are
equivalent:

(1) χ(S) is finite.
(2) ω(S) is finite (i.e. Γ(S) does not contain an infinite clique).
(3) The zero ideal in S is a finite intersection of prime ideals.

Proof. Since clique (S) ≤ χ(S), the implications (1)⇒(2) and is evident.
Now we prove (3)⇒(1). Let 0 = p1 ∩ p2 ∩ · · · ∩ pk where for any i, pi is a prime

ideal. For any 0 6= x ∈ Z(S), there exists minimum j, such that x /∈ pj . Color x
with j. Now suppose that x, y are colored to color j. If xy = 0, then xy ∈ pj .
Since pj is a prime ideal, then x ∈ pj or y ∈ pj , which is contradiction. So we
have a k-coloring. Thus χ(S) ≤ k.

It is now sufficient to show (2)⇒(3). By Proposition 3.1, S satisfies the a.c.c.
on annihilators. Let T = {Annxi|i ∈ I} be the set of maximal members of the
family {Ann a|a 6= 0}. By Lemma 3.2 every element of T is a prime ideal. we
show that T is a finite set. Let p = Annx, q = Ann y be two distinct elements
of T . We can assume that there exists r ∈ p \ q. Then 0 = rx ∈ q. Since q is a
prime ideal we have that x ∈ q and hence xy = 0. Now let L = {xi|Annxi ∈ T}.
By the above argument L is a clique of Γ(S). Since ω(S) is finite, we have that
L is finite and hence T is a finite set. Consider 0 6= x ∈ S. Then Annx ⊆ Annxi

for some i ∈ I. If xxi = 0, then xi ∈ Annx ⊆ Annxi, and so x2
i = 0. Since S

is a commutative and reduced semigroup, then xi = 0, which is a contradiction.
Therefore xxi 6= 0, and then x /∈ Annxi. Thus ∩i∈IAnnxi = 0. �

It is known that χ(G) ≥ ω(G) for general graph G (see [7, page 289]). Beck
showed that if R is a finite direct product of reduced coloring and principal ideal
rings then χ(Γ(R)) = ω(Γ(R)). In the following result the equality χ(S) = ω(S)
is shown for some special case.

Corollary 3.4. Suppose S be a commutative and reduced semigroup. Suppose
0 = ∩n

i=1pi is a minimal prime decomposition of 0 (i.e. for any i 6= j, pi 6= pj

and for any 1 ≤ t ≤ n, 0 6= ∩i 6=tpi). Then χ(S) = ω(S) = n.
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Proof. By the proof of Theorem 3.3, we have χ(S) ≤ n. Let xi ∈ ∩i 6=tpi \ pt.
Then x1, x2, · · · , xn is a clique and so ω(S) ≥ n. Now we have n ≤ ω(S) ≤
χ(S) ≤ n, and hence ω(S) = χ(S) = n. �

Example 3.5. Let X be a n-set. We know that (P(X),∩) is a commutative
and reduced semigroup, where P(X) is the power set of X. For any x ∈ X,
set Bx = X − {x}. Clearly, for any x ∈ X, (P(Bx),∩) is a prime ideal, and
∩x∈XP(Bx) = {∅}. Thus χ(P(X)) = ω(P(X)) = n.

Beck showed that for n ≤ 3, χ(Γ(R)) = n if and only if ω(Γ(R)) = n. Now we
are ready to show that for n ≤ 2, χ(Γ(S)) = n if and only if ω(Γ(S) = n.

Theorem 3.6. Let S be a commutative semigroup. Then for n ≤ 2, χ(Γ(S)) = n

if and only if ω(Γ(S) = n.

Proof. The case n = 1 is clear. If χ(S) = 2, then Γ(S) has at least two vertices
and so ω(S) ≥ 2. On the other hand ω(S) ≤ χ(S) = 2. Thus ω(S) = 2.

Conversely, let ω(S) = 2. If χ(S) > 2, then Γ(S) is not bipartite and so has a
cycle of odd length. Let C be the odd cycle of minimal length. Since ω(S) = 2,
the length of C is at least five (otherwise, the length of C is 3 and so ω(S) = 3
that is a contradiction). Set

C: x1—x2—· · ·—xn—x1,

where n ≥ 5 is an odd integer. If x1x3 = 0, then Γ(S) has a cycle of length 3,
which is a contradiction. Thus x1x3 6= 0. Since all vertices in the cycle C has
degree 2 and x1x3 has degree 3, we have x1x3 6= xi for any 1 ≤ i ≤ n. Now
consider the following cycle:

C ′: x1x3—x4—x5—· · ·—xn−1—xn—x1x3.

It is easy to see that the length of C ′ is n − 2, which is a contradiction. Thus
Γ(S) has no odd cycle. Therefore Γ(S) is bipartite and so χ(S) = 2. �

Beck conjectured that χ(Γ(R)) = ω(Γ(R)) in general. In [3], D. D. Anderson
and Naseer have given an example of a finite local ring with χ(Γ(R)) = 5 and
ω(Γ(R)) = 4 thus giving a counterexample to Beck’s conjecture. For n = 1 or 2,
χ(S) = n if and only if ω(S) = n. Now by giving an example we show that this
result is not true for n = 3.

Example 3.7. Let S = {0, a, b, c, d, e, f} with fx = x2 = 0 for all x ∈ S. Also
ab = bc = cd = de = ae = 0, and ac = ad = bd = be = ce = f . Then χ(S) = 4
and ω(S) = 3
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