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Abstract— There are many advantages of deploying an all-
optical network. Unfortunately, there are still few guidelines on
how to properly design the physical topology for such a network.
We propose an efficient physical topology design algorithm and
we use the asymptotic growth rate of the provisioned capacity
as a metric to compare various design alternatives. A higher
asymptotic growth rate translates directly into higher deployment
cost for large networks. Our study shows that taking fiber length
into consideration can lead to lower capacity requirement.We
also find that a sufficiently large fiber-to-node ratio is necessary
in order to minimize the asymptotic growth in the provisioned
capacity, increase capacity utilization and minimize the need for
wavelength conversion. We study a real network and find that
its fiber-to-node ratio is too low. As a result, large provisioned
capacity is required and less than 55% of the capacity is usable.
By increasing the ratio, we can reduce the provisioned capacity
and achieve close to 80% utilization.

I. I NTRODUCTION

Compared to the broadcast-based optical network architec-
tures [1][2][3][4][5], Wavelength Routed All-optical Network
(WRAN) utilizing the WDM technology promises to greatly
increase the transport capacity at much reduced cost. A
connection, also known as a lightpath [6], only occupies one
wavelength on each fiber link along the physical route used
to connect the two end nodes. Thus, the same wavelength on
other fiber links could be reused for other lightpaths to increase
the utilization of the provisioned wavelengths.

Besides the increased utilization, WRAN has many other
advantages. Since a lightpath is routed transparently through
the WRAN, that is, bypassing intermediate nodes without
packet processing or costly opto-electronic conversion, much
of the queuing delay and electronic equipment cost can be
eliminated. The cost savings in electronic equipment will be
significant [7], especially when the line speed is very high.
Furthermore, WRAN can be easily and cheaply upgraded
when the interface speed is increased. This is because optical
switching is agnostic to the underlying data rate of an optical
channel (up to a certain limit because the channel bandwidth
limits the maximum data rate), and thus, the intermediate
optical switches do not have to be upgraded when the line
speed increases.

Given the high cost of deploying a WRAN, it is important
to design the physical (fiber) topology to minimize the total
capital investment. The total cost of deploying a WRAN is
the sum of two cost components—the link cost and the node
cost. The link cost, i.e., the cost of laying down fibers to
interconnect nodes, is a function of the total fiber lengthL. The
node cost, i.e., the cost of the all-optical wavelength switch is a

function of the number of wavelengthsW that are provisioned
on each fiber link. In general, there is a tradeoff betweenL
andW—moreL will translate into lessW and vice versa.

One can design the physical topology to use the minimum
amount of fiber by connecting the nodes using a minimum
spanning tree. Even though the link (fiber) cost is at the
minimum, the node (wavelength) cost will be very high.
Alternatively, one can connect all node pairs using direct
fibers. The node (wavelength) cost is at its minimum since
W = 1. However, the link (fiber) cost will be very high. The
optimum design with the minimum total (link and node) cost
will be between these two extreme solutions.

To pick the best topology with the minimum total cost, one
has to solve the problem of designing a physical topology
to minimize the number of wavelengthsW required given a
budget onL. We will present a comprehensive treatment of
the design problem, including both a mathematical problem
formulation and an efficient heuristic algorithm. Using the
design algorithm we proposed, one can design the topology
with the minimum total (link and node) cost by repeatedly run
the algorithm for differentL, comparing the resulting solutions
based on the actual cost functions, and then picking the one
with the lowest total cost. In order to be independent of the
actual cost functions, we study the tradeoff betweenL andW .
In addition, we also derive design principles and guidelines,
which are unfortunately nonexistent as of now.

To evaluate the various design alternatives—some use more
fiber but fewer wavelengths and some use less fiber but more
wavelengths—we propose to use the provisioned capacity
C = LW (capacity for short in the following) as a metric.
C essentially is the bandwidth-distance product. It is used
to measure the amount of network resources that have to be
provided for a given set of lightpath demands. Since there
is a cost associated with providing the network resources,
naturally, it is desirable tominimizethe provisioned capacity.
Note that our use of the term “capacity” may be different
from the literature in other contexts, where some fixed network
resources are assumed given and the goal is tomaximizethe
capacity, i.e., the throughput.

C is a more fair metric compared to other metrics such
as MW , whereM is the number of fiber links. Consider a
sample network as shown in Fig. 1, where 6 nodes lie on a
straight line with an internodal distance of 1. Let us assume
that the traffic demands are uniform all-to-all, i.e., we need to
establish a lightpath between every pair of nodes. Two possible
physical topologies are depicted in the figure. Topology (a)is



a linear topology, and it requires 9 wavelengths. To see this,
we just need to consider link 3–4. Since there are three nodes
on either side of this link, there are a total of 9 lightpaths
crossing this link; hence, 9 wavelengths are needed. Topology
(b) requires 8 wavelengths. To see this, we can consider either
link 3–4 or 4–5. Since there are 4 and 2 nodes on either side of
these two links respectively, there are a total of 8 lightpaths
crossing these two links; hence, 8 wavelengths are needed.
Since both topologies have 5 edges, it may be tempting to
choose topology (b) because it requires fewer wavelengths.
However, the total fiber length in topology (b) is 7 units long,
and therefore, 56 units of capacity is required. In contrast,
topology (a) only uses 45 units of capacity. The reason for the
high capacity in topology (b) is because the demands between
nodes 1,2 and 1,3 are not routed along the direct line between
the two end nodes. In particular, both demands take a detour—
going to node 4 first and then to the destination nodes. Demand
1, 2 wastes 4 units of capacity and demand 1, 3 wastes 2 units
of capacity.
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(a)
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Fig. 1. 6 nodes lie in a line with an inter-nodal distance of 1.Physical
topology (a) requires 9 wavelengths and physical topology (b) requires 8
wavelengths.

The capacity metric measures how efficiently the provi-
sioned network resources are utilized—higher capacity forthe
same set of lightpaths means that the provisioned capacity is
less efficiently utilized. Unfortunately, the capacity metric does
not directly reflect the cost of deploying a WRAN. A design
with a higher capacity may have lower cost than a design with
a lower capacity simply because of the differences in the cost
functions forL andW .

To derive design guidelines independent of the actual cost
functions, we focus on the asymptotic growth rate of the
capacity, which can be used to determine the lower-cost design
alternative whenN is large, whereN is the number of nodes in
the network. Consider two design alternatives. Design A uses
1 unit of fiber, and the resulting capacity can be expressed
as a1N

e1 . Design B uses 2 units of fiber, and the resulting
capacity can be expressed asa2N

e2 . Let us assumee1 > e2.
From the definition of capacity, we can see that Design A
uses a factor ofc = 2a1Ne1

a2Ne2
more wavelengths than Design

B. WhenN is small,c is small (slightly more than2a1

a2

). If the
cost of the fiber is a lot more than the cost of the wavelengths,
Design A will be the lower-cost solution. However, whenN is
large,c will be large because of the exponential term. At some
point, the cost of the wavelengths will dominate, and DesignB
becomes the lower-cost solution. As long ase1 is greater than
e2, even ife1 is only slightly larger thane2, Design B will be a
lower-cost solution when the network is large enough. Hence,

the exponent is an indicator of the actual cost for large-size
networks.

Throughout this paper, we will assume that all fiber links
will support the same number of wavelengths. This is a realis-
tic assumption because it is necessary to ensure the maximum
interoperability between neighboring nodes. Having different
W on each link may make sense currently because WDM
systems are used primarily as transmission systems and there
are many opto-electronic conversions at a node. However,
since there is no opto-electronic conversion in the WRAN,
having differentW not only will require unsymmetrical optical
cross connects, but also will limit the flexibility in routing
lightpaths.

A. Traffic model

We first consider WRANs that support full-mesh connec-
tivity, i.e., there areT lightpaths to establish between every
pair of nodes, whereT is a constant that is the same for all
node pairs. Our design algorithm could be easily generalized
to other lightpath connection patterns. We will present our
results on non-uniform lightpath connections at the end.

B. Prior work

The physical topology design problem has been studied
before in the literature. However, most of these works consider
only the case where the cost is proportional to the number
of fiber links regardless of their lengths[8] [9]. The work in
[2] considered only broadcast-based optical networks, andthe
topology is restricted to a tree. The work in [10] takes fiber
length into consideration. They considered a different problem
whereW is given and the goal is to minimize the total cost of
fiber. The algorithm proposed runs much slower. A problem
instance with 100 nodes requires 11 hours. This is not suitable
for a tradeoff study like ours, where hundreds of thousands of
problem instances have to be solved.

There have been several related studies on the wavelength
requirements in an optical network. The first work on wave-
length requirements to support full-mesh connectivity was
reported in [11]. The authors found that the ensemble average
number of wavelengths (W ) required is only dependent on
α, whereα = 2M

N(N−1) is the ratio between the number of
edges in the network and the number of edges required to
fully connect all node pairs. The result only applies when the
fiber links are picked randomly, i.e., when short fibers and
long fibers have an equal chance of being picked. If many
short fibers are picked, thenW could be much higher. Also,
the work in [11] did not answer the question of whatα one
should use in designing a network.

In [12], the authors gave an approximate equation for
the required number of wavelengthsW . Unfortunately, the
derivation of the equation was not shown. In section II, we
give an equivalent derivation for a more accurate result that is
a constant factor away from the one given in [12].

C. Organization of paper

The rest of the paper is organized as follows. In section II,
we first give a lower bound and an approximate equation for



C. In section III, we present our physical topology design
algorithm. In section IV, we evaluate our algorithm and show
the tradeoff betweenL andW . In section V, we consider one
real-life network and show how our design guideline could be
applied. Lastly, we conclude in section VI.

II. L OWER BOUND AND APPROXIMATE EQUATION

A. Lower bound

The most capacity-efficient way to establish a lightpath
between two nodesi and j is to lay down a direct fiber
between the two nodes and using one wavelength on that fiber
for the connection. The capacity used for this connection is
dij ·1 = dij , wheredij is the physical distance between the two
nodes. Another way to establish the lightpath is by hopping
through one or more other nodes and use one wavelength on
each fiber link along the way. Hopping through other nodes
will take strictly more capacity unless the intermediate nodes
lie on the direct (straight) line between nodei and j. In the
following, we say a lightpath uses direct-line routing if the
lightpath only hops through zero or more nodes along the
direct line. We say the lightpath uses non-direct-line routing
if otherwise.

Summing up the minimum capacity required for each
lightpath, we can derive the lower bound on the provisioned
capacity for full-mesh connectivity as follows:

CLB = T
N

∑

i=1

N
∑

j=1

dij (1)

Note that this lower bound holds regardless of the relative
positions of the nodes (e.g., not necessarily uniformly placed).
It also holds even ifdij is not the Cartesian distance between
the nodes. For example, there may be a physical constraint
that forces a fiber link not to be laid along the direct line
(e.g., mountains, rivers). In such cases,dij denotes the actual
length of the fiber that has to be laid down.

This lower bound cannot be achieved unless many fiber
links are laid down. If only a few fiber links are available, some
lightpaths will not be able to use direct-line routing, either
because there is no fiber link on the direct line or because
there is no wavelength left on the fiber links on the direct
line.

B. Approximate equation

In [12], an approximate equation forW was given. Unfor-
tunately, the derivation of the equation was not shown and the
steps cannot be easily reproduced. In this section, we give an
equivalent derivation for a result that is only a constant factor
away from that in [12].

To be consistent with the rest of the paper, we assume that
theN nodes of a network are uniformly distributed in a square
area, as opposed to a circular disk area used in [12], with unit
size as shown in Fig. 2. We note that the choice of a square
area is arbitrary, and any bounding area could be chosen. We
also assume that the fiber links are uniformly distributed. The
assumptions on uniform node placement and link placement

are made in order to derive an equation that approximates the
average of that of a large ensemble of random networks.

Cut
One row

Fig. 2. N nodes uniformly distributed in a square.

Our goal is to compute the number of lightpaths that will
cross the cut in the middle of the square and also the number
of fiber links that will cross the cut. The minimum number
of wavelengths required will simply be a ratio of these two
numbers.

Since we are considering the cut right in the middle of the
square, there are exactlyN/2 nodes on either side of the cut.
Therefore, it is easy to see that there are(N/2)2T lightpaths
crossing the cut.

To compute the number of fibers crossing the cut, we first
compute the number of nodesn in the row right above the
cut. Since the area of the square is 1, each side of the square
is exactly 1 unit long. Each node will take up a square area of
roughly1/N with each side of it being1/

√
N long. Dividing

the length of the row, the number of nodes in the row is then
n = 1/(1/

√
N) =

√
N .

If the average node degree isd, there arend edges originat-
ing from thesen nodes in the row. Among them,nh edges go
to nodes in the same row, and the restn(d−h) go to nodes in
the neighboring rows. Because of the uniform link placement
assumption, the number of edges staying in the same row
should be proportional to the number of nodes in the row,
i.e., h/d = n/N . Since the number of edges going to the row
below (across the cut) is half the number of edges leaving the
row, it can be expressed as:

1

2
n(d − h) =

1

2
nd(N − n)/N =

1

2
d(
√

N − 1)

If the average fiber lengthLf is more than the average node
distanceLn, some fiber links originating from rows above
could also cross the cut. Adding these fiber links, the number
of edges crossing the cut will increase by a factor ofLf/Ln.

Dividing the number of lightpaths crossing the cut by
the number of fiber links crossing the cut, we will get the
minimum required number of wavelengthsW as follows:

W =
N2T/4

1
2d(

√
N − 1)Lf/Ln

=
1

2 − 2/
√

N

N3/2TLn

dLf

= B
N3/2TLn

dLf
(2)



whereB = 1
2−2/

√
N

is almost a constant, especially whenN

is large.
Since the total fiber length isL = NdLf/2, we can

rearrange the terms in equation (2) to get the expression for
the provisioned capacity.

C = WNdLf/2 =
B

2
N5/2TLn (3)

If a circular disk area is assumed, the same derivation
will yield a result that differs from the one in [12] by a
constant of

√
π

2 . We believe our result is more accurate because
our result matches the lower bound for the same network
(nodes uniformly distributed in a square) almost perfectly. The
matching is not surprising because, in the derivation of the
approximate equation, we have implicitly assumed that each
lightpath will be routed along the direct line, just like we did
in deriving the lower bound.

Equation (3) shows that the capacity will scale asN2.5

even though the number of lightpaths will only scale asN2.
From the derivation, we can see that the extra 0.5 factor in
the exponent comes from the fact that the number of fiber
links crossing the cut is on the order of

√
N , but the number

of lightpaths crossing the same cut is on the order ofN2.
Alternatively, this extra 0.5 factor can be also viewed as
coming from the fact that the diameter of the network is on
the order of

√
N . Since some lightpaths will have to cross the

network to reach their destinations, they will require an order
of

√
N more capacity. This is true whether the lightpaths cross

the network using few long fiber links or many short fiber
links because only the fiber length comes in the definition of
the capacity, not the number of fiber links.

In the derivation, we have assumed that allN nodes are
uniformly distributed in the area in order to approximate the
average case. However, nodes in real networks are almost
never distributed evenly inside the bounding area. But a change
in this assumption will only affect the constant term. As long
as the physical topology is two-dimensional, the diameter of
the network will be on the order of

√
N , and some lightpaths

will have to use
√

N more capacity. We will look at a
real network in section V, where nodes are not uniformly
distributed. We will see that our observation still applies.

In addition to the non-uniform distribution of nodes, the
bounding area of a real network is also seldomly square. If
we assume a different bounding area (such as a circle), the
same derivation will give a result that differs again only in
the constant term. Even for irregular-shaped bounding area,
the exponential term remains the same as long as it is a two-
dimensional area (as opposed to a line). Since we are more
interested in the asymptotic growth rate of the capacity, we
will assume a square area throughout this paper without loss
of generality.

The average node distanceLn in equation (3) can be thought
of as a scaling factor. Consider a topology, if we double the
length of each fiber link (and thus push the nodes further
apart), the topology still remains the same. The only thing
changed is thatLn is doubled. For an arbitrary network,Ln

can be determined as follows. We take the areaA of the
bounding box of the topology and divide it by the number of
nodesN , we will get the average area of each node to beA/N .
To derive the average node distance, we assume these nodes
are uniformly located and each node will take up a square
area with each side being

√

A/N long, and then the distance
between two neighboring nodes will beLn =

√

A/N . If the
fiber distancedij is not the Cartesian distance (e.g., physical
constraint forces some fiber to be laid along non-direct lines),
Ln can be adjusted proportionally according to the actual fiber
distance. Again, using a different value ofLn will only change
the constant term, not the exponential term. For simplicityof
discussion, we letLn = 1 without loss of generality for the
rest of this paper.

Equation (3) predicts two things. First of all, it predicts
that the capacity will scale linearly withT . We observe in
simulations that this is indeed true. Therefore, this paperwill
not focus on the scaling as a function ofT . In the following,
we assumeT = 1.

The second predication this equation presents is that the
asymptotic growth rate of the capacity will remain the same
no matter howW and L scale. In other words,W can be
traded off withL equally.

Even though the scaling as a function ofT (the first predic-
tion) matches very well with our observations in simulation,
given the simplicity of the analysis, there are few reasons
to believe that the second prediction is true. There are two
factors that are not modeled by either the lower bound or the
approximate equation. For the first factor (factor F1), we have
assumed that each lightpath will be routed along the direct
line between the two end nodes. This is rarely the case even
if each lightpath goes through the minimum number of fiber
links. The reason is because there simply may not be fiber links
on the direct line. The second factor (factor F2) not modeled
is the utilization of the provisioned capacity. In general,it is
not possible to even out the load on each fiber link such that
the same number of wavelengths is used on every link, i.e.,
some wavelengths cannot be utilized because of topological
constraints.

III. PHYSICAL TOPOLOGY DESIGN

The problem of designing a physical topology to minimize
W is clearly an NP-complete problem because even if the
topology is known, the problem of determining how many
wavelengths are needed (the Routing and Wavelength Assign-
ment Problem) is known to be NP-complete.

In this section, we first formulate the physical topology
design problem as an Integer Linear Programming (ILP)
problem and then propose a practical heuristic algorithm. The
optimization problem takes the budget on fiber (in the form
of a fixed fiber-to-node ratiof = L/N ) as a constraint and
designs a topology to minimize the number of wavelengthsW
required.

We consider the topology design problem both with and
without the Wavelength Continuity Constraint (WCC), which
requires each lightpath to be assigned a unique wavelength on



each fiber link it traverses. The WCC constraint could limit
the amount of usable capacity. If a wavelength is used on a
link, any other connections that must pass through this link
cannot use the same wavelength again.

A. ILP problem formulation

For brevity, we only show the formulation which relaxes
the wavelength continuity constraint (WCC). The formulation
can be easily modified if the WCC constraint is enforced. We
will use the following notations in the formulation:

• zml: This is the fiber link variable.zml = 1 if nodem is
connected to nodel via a fiber link.zml = 0 if there is
no fiber link between nodem and l.

• zij
ml: This is the lightpath routing variable.zij

ml = 1 if the
lightpath between nodei and j goes through the fiber
link between nodem and l.

• dml: This is a constant that specifies the fiber distance
between nodem and l, which could be longer than the
Cartesian distance (e.g., when physical constraints force
a fiber link not to be laid along the direct line).

First, we need to make sure that all demands (lightpaths)
are routed. This is the same as a flow conservation constraint.

∑

l

zij
ml −

∑

l

zij
lm =







1 if m = i
−1 if m = j
0 otherwise

∀m, ij (4)

Second, we make sure we only useW wavelengths on each
link.

∑

ij

(zij
ml + zij

lm) ≤ Wzml ∀ml (5)

Note that we assume all lightpaths are bidirectional. Since
link ml and lm are considered as separate links mathemati-
cally, we need to add the lightpaths crossing both links on the
left-hand side. If we makeW a variable, then this constraint is
no longer linear. We could do a linear search for the rightW ,
makingW a constant in each iteration. Alternatively, to make
the constraint linear, we can use the following two constraints
instead.

∑

ij

(zij
ml + zij

lm) ≤ W ∀ml (6)

∑

ij

(zij
ml + zij

lm) ≤ Zzml ∀ml (7)

Z is a large constant. The first constraint makes sure that the
number of wavelengths on each link is fewer thanW and the
second constraint makes sure that no lightpath passes through
a fiber link if that fiber link is not installed.

Since the fiber-to-node ratiof is given, we can only use
L = fNLn = fN (since we assumeLn = 1) amount of fiber.
Whenf = 1, roughly onlyN fiber links of lengthLn can be
added to connect all nodes. Therefore,f = 1 is the minimum
required to guarantee a connected topology. If only short fiber

links are used,f roughly corresponds tok, the average edge-
to-node ratio. The following constraint limits the total fiber
length that can be used.

∑

ml

zmldml < L = fN (8)

The objective is to minimize the number of wavelengths.

Objective: min W (9)

B. Heuristic algorithm

The ILP formulations given above can only be used to solve
small problems exactly, e.g., for networks with less than 10
nodes. For larger problems, we propose an efficient heuristic
algorithm. We compared our algorithm with the ILP for several
problem instances, and found it produces near-optimal results.
We also compared our algorithm with that in [10] and found
that our algorithm not only produces comparable results, but
also runs several orders of magnitude faster. For example, for
a network with 100 nodes, our algorithm takes less than 0.05
seconds on a Sun Blade 1000 workstation, compared to 11
hours for the algorithm reported in [10]. We call the algorithm
TOPOF to denote that this is a topology design algorithm with
the total fiber length as a constraint.

To understand what determines the number of wavelengths
needed, consider a set of nodesS and the remaining nodes
S. Let C(S, S) denote the number of fiber links that cross
between the two sets of nodes. Since we want to establish a
full-mesh connectivity, there are|S| × |S| lightpaths that will
cross between the two sets of nodes. Therefore, we can derive
a lower bound onW as follows:

WLB = max
S

|S| × |S|
C(S, S)

Such a lower bound was observed in [12][13], and it is
also called the flux of a graph in [13]. Note thatWLB is the
maximum value among all possible sets of nodes. So if only a
few fiber links cross between two sets of nodes,WLB will be
very high as the denominator is small. To design a topology
that needs less capacity, we need to make sure that the number
of fiber links crossing any two sets of nodes is sufficiently
large. This observation motivates us to propose the following
physical topology design algorithm.

The TOPOF algorithm proceeds in four steps.

• In the first step, a minimum spanning tree is established.
This ensures that the topology is connected.

• The second step tries to find the cut that achieves the
lower boundWLB, i.e., find the cut such that|S| ×
|S|/C(S, S) is the largest. To do so, we pick a starting
nodes and initialize the setS to contain only the starting
node (S = {s}). Then we add one neighbor node into set
S at a time until all nodes are in the set. When adding a
node, we pick the neighbor node such that the cutC(S, S)
is the smallest. The reason we do so is because the
smallest cutC(S, S) will give the biggestWLB, which
is what we are looking for. When we have a newS (after



adding a node), we compute|S| × |S|/C(S, S). If it is
larger than what we have seen before, we record it. To do
a more exhaustive search, we try each node as the starting
node in turn and repeat the above process. If there is a tie
in the cut, we pick the cut for which we can add a fiber
link to bridge the cut and this fiber link is the shortest
among all cuts in the tie.

• At the end of the second step, we have identified aSmax

such that|Smax|×|Smax|/C(Smax, Smax) is the largest.
Then, in the third step, we pick the shortest fiber link
that can bridge the cut (one end of the fiber link inSmax

and the other end inSmax). If adding the fiber link will
exceed the total fiber length budget, we proceed to step
four. Otherwise, we add the fiber link, then return back
to step two to find a new limiting cut. Note that we could
have added a parallel fiber in this step, even if a fiber link
has already been added between the two end nodes.

• In the last step, we check each remaining node pair in
turn in increasing order of distance. If adding a fiber
link between the node pair will not violate the total fiber
length budget, the fiber link will be added to the topology.

The TOPOF algorithm tends to use short fiber links so
that more fiber links could be added. Because the topologies
generated by the TOPOF algorithm have many short fiber
links, we call these topologies the short-fiber topologies.

IV. N UMERICAL RESULTS

Using the physical topology design algorithm, we can
now study the tradeoff betweenL and W and see how the
provisioned capacity scales as a function ofN .

We consider networks of practical sizes with up to a few
hundred nodes. The backbone topologies of most Internet
Service Providers (ISP) in the US have fewer than 100 nodes.
Networks with more than a few hundred nodes are less likely
to be practical because of the difficulty involved in design
and management. A hierarchical network architecture might
then be more appropriate. Note that, unlike some recent work
on understanding the Internet topologies [14] [15], we are
focusing on the backbone fiber (physical) topology of a single
ISP. The backbone network is much smaller compared to the
Internet, and it does not necessarily follow the characteristics
of the Internet, such as a power-law distribution.

We consider a practical range of fiber-to-node ratiof , from
1 up to 4, to include networks that are currently deployed or to
be deployed in the near future. The fiber-to-node ratio of the
current fiber networks of most ISPs is belowf = 2. Note that
the fiber-to-node ratio is roughly the same as the edge-to-node
ratio k if short fibers are used, and the edge-to-node ratio is
half of the average node degree, i.e.,k = d/2.

For a network withN nodes, we assume theseN nodes
are uniform-randomly distributed within a square of areaN
(
√

N on each side) to ensureLn = 1. To generate a network,
we randomly place each one of theN nodes at a point in the
square with equal probability. Once the network is generated,
we then apply the topology design algorithm.

To determineW after the physical topology is designed, we
use a Routing and Wavelength Assignment (RWA) algorithm
to fit all lightpaths into as few wavelengths as possible. Several
heuristic RWA algorithms have been proposed in the literature
[16] [17]. The algorithms we use are reported in a technical
report [18], one with the Wavelength Continuity Constraint
(WCC) and one without. Since this paper focuses on physical
topology design and capacity scaling, we will not discuss the
details of the RWA algorithms here.

In order for the experiments to be statistically significant,
we repeat the above procedure 100 times and then take the
average before reporting the data. In other words, for eachN ,
we randomly generate 100 separate networks and then take
the average result from the 100 separate networks.

A. Heuristic algorithm and design approach evaluation

The results from the TOPOF algorithm (along with the
RWA algorithms) are very close to that from solving the
ILP formulation directly for small-size networks (<5 nodes).
Unfortunately, because of the high computation time, we
are not able to evaluate our heuristic algorithm against the
optimal for larger-sized networks. Instead, we will evaluate
its performance against the lower bound.

In Fig. 3, we plot the average capacity of short-fiber
topologies (from the TOPOF algorithm) assumingf = 4,
and the average lower bound (equation 1) from the same
set of networks. For comparison purpose, we also plot the
average and minimum capacity from 1000 random topologies
with an edge-to-node ratiok = 4. These random topologies
are generated by randomly picking a pair of nodes and then
placing an edge across them until the desired number of edges
are generated. Since edges are picked without regard to their
lengths, many long fiber links are used.
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Fig. 3. Comparison of the results between the heuristic algorithm, the lower
bound and the average and minimum of many random topologies.With WCC.

As shown in the figure, our topology design algorithm can
achieve capacity that is less than twice of the lower bound.
Considering that the lower bound is not achievable unless all
lightpaths use direct-line routing, we suspect that our algorithm
is not too far away from the optimal. Our physical topology
design algorithm can greatly reduce the required capacity,
not only compared to the average but also compared to the
minimum of the 1000 random topologies.



Compared to random topologies, short-fiber topologies with
f = k use much less fiber at the cost of more wavelengths.
In Fig. 4, we show the wavelength requirement in random
topologies withk = 4. For short-fiber topologies, we show
two results. One is the wavelength requirement if we setf =
k = 4; the other is the wavelength requirement if we setf to
a value such that it will use the same amount of fiber as in the
random topologies. We can see that the short-fiber topologies
require much fewer wavelengths if the same amount of fiber
is used. This is because the TOPOF algorithm is conscious
about the fiber usage and, therefore, it is able to establish
more fiber links with the limited budget. This result suggests
that taking fiber length into consideration can lead to better
designs.
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Fig. 4. Wavelength requirement comparisons between randomtopologies
and short-fiber topologies. With WCC.

B. Capacity scaling

In Fig. 5, we show the tradeoff betweenL andW . Clearly,
W decreases as we increaseL. Although hard to see in this
figure, W increases by a larger proportion asN gets larger
whenf is small compared to the case whenf is large. This
trend can be captured by the growth rate inW (or C). It is
higher whenf is small compared to the case whenf is large.

In Fig. 6, we showW as a function ofN (with the WCC
constraint) in the short-fiber topologies. Note that the graph is
on a log-log scale. Indeed, whenf is small, W grows very
quickly, as evident from the steeper slope, and close to 20000
wavelengths are needed whenN = 500 and f = 1. This
growth drops quickly asf is increased, resulting in a large
reduction inW . Since the fiber-to-node ratio is fixed, the fiber
length is a linear function ofN , so the capacity will follow
the same trend as the wavelengths.

The data in Fig. 6 appears to fall on a straight line,
suggesting thatW is a power function ofN . If we assume
thatC, L andW are all power functions ofN in the form of
aNe, then we can use the least square method to estimate the
parametersa and e on a log-log plot. The results for short-
fiber topologies are shown in Table I. All curve fittings have
a correlation coefficient of more than 0.99, confirming that a
power function is a good fit.

e(L), the exponent inL, is simply 1 because we have fixed
the fiber-to-node ratio.e(W ), the exponent inW , ande(C),
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Fig. 5. The tradeoff betweenL andW . With WCC.
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the exponent inC, again drop quickly asf increases. When
f = 1, e(C) is more than 2.75. Asf increases beyond 2.5,
e(C) quickly drops and it is between 2.6 and 2.64. Whenf is
small, the topology is barely connected. Many lightpaths are
forced to be routed through long detours. Whenf is large,
there is a better chance for a lightpath to be routed close
to the direct line.e(C) is smaller than that of the random
topologies that we studied, which is around 2.8, suggesting
that our physical topology design algorithm is effective at
reducing the capacity requirement.

The constanta(L) of L is simplyf , the fiber-to-node ratio.
a(C), the constant inC, is almost the same regardless of the
parameterf . In other words, an increase inf (and therefore
a(L)) would result in a corresponding decrease ina(W ), the
constant inW . This result is consistent with our theoretical
analysis (equation 3).

The results in Table I are generated from networks with up
to 500 nodes, large enough to cover networks to be deployed
in the near future.

C. Effects of the WCC constraint

In Fig. 7, we plot the wavelength requirement as a function
of N for short-fiber topologies, for both the case of with WCC
constraint and without. Whenf is small (f = 1) andN is large
(N ≥ 100), the differences are noticeable. The differences are
up to 9% forf = 1, and they are up to 7% forf = 2. In
all other cases (f > 2), the differences are very small, less
than 5%. This suggests that the WCC constraint makes little



TABLE I

CONSTANT PARAMETERS FROM LEAST SQUARE CURVE FITTING FOR

SHORT-FIBER TOPOLOGIES. WITH WCC.

f a e

W L C W L C

1 0.27 1 0.27 1.76 1 2.76

1.5 0.15 1.5 0.23 1.73 1 2.73

2 0.12 2 0.23 1.69 1 2.69

2.5 0.10 2.5 0.24 1.66 1 2.66

3 0.09 3 0.26 1.64 1 2.64

3.5 0.08 3.5 0.28 1.61 1 2.61

4 0.07 4 0.28 1.60 1 2.60

difference especially when the fiber-to-node ratiof is high
enough. Therefore, the costly wavelength converters couldbe
avoided by simply increasingf . This observation is consistent
with that in [11], where they found that WCC has little effect
on two-connected topologies.
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Fig. 7. Number of wavelengths with or without the WCC constraint.

D. Capacity utilization

In this section, we look at the effects of factor F2: the
utilization of the provisioned capacity. Letfi denote the
number of wavelengths that are used on fiber linki, then the

capacity utilization ratio can be defined as
∑

i
fi

WM , i.e., the ratio
between the sum of the number of used wavelengths on each
fiber link and the product of the number of wavelengths (W )
and the number of fiber links (M ). The capacity utilization
ratio for short-fiber topologies (with the WCC constraint) is
shown as a function ofN in Fig. 8. Whenf is small, the
utilization ratio is very low. For example, whenf = 1, at most
70% utilization can be achieved and it is as low as 40% when
N is large. The situation quickly improves asf gets bigger.
Roughly 70% or 80% utilization is possible whenf > 2.5.
The utilization ratio decreases for largeN . This is because
the average hop count of lightpaths increases asN increases,
making it less likely to fully utilize the provisioned capacity.
The decrease in the utilization ratio partly contributes tothe
higher asymptotic growth rate (the other contributor is factor

F1, non-direct-line routing of lightpaths). We see similartrend
on the utilization ratio when the WCC constraint is relaxed.

In the figure, there is an anomaly. The utilization ratio is
low when f is large andN is small. This is because of the
“rounding effect:” whenW is small, adding one additional
wavelength adds a large percentage of capacity, which in turn
greatly reduces the utilization ratio.
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Fig. 8. Utilization ratio as a function ofN for short-fiber topologies. With
WCC.

As mentioned in the beginning, we notice thatC scales
almost perfectly linearly asT in our simulation study, as
suggested by equation (3). It suggests that the increased
number of connection requests (lightpaths) cannot improvethe
capacity utilization. The low capacity utilization ratio seems
to be a fundamental limit of the topology. The only way to
improve the utilization ratio seems to be redesigning a better
topology using a higherf .

Recall thatfi denotes the number of wavelengths that is
used on fiber linki. Let hij denote the shortest path (in number
of physical hops) between nodei and j in a given topology.
Then we can defineload as

∑

i fi, i.e., the total number of
wavelengths that are utilized. We can also define theshortest
path loadas

∑

ij hij , i.e., the load if all lightpaths are routed
using the shortest path. The difference betweenload and
shortest path loadrepresents the extra number of wavelengths
needed to route lightpaths along non-shortest paths in order
to fully utilize the provisioned capacity. In Fig. 9, we plotthe
exponente from least square data fitting to a power function
(aNe) for C, the load and the shortest path load as a function
of f .

As shown in the figure, the gap betweenC and the load
is decreasing asf increases. This suggests that the capacity
utilization keeps on improving asf increases. In addition, the
gap between the load and the shortest path load is increasing.
This suggests that asf gets bigger, it becomes increasingly
easier to find alternative paths to route a lightpath if the
shortest path is congested. Therefore, there is greater chance
to even out the routing of lightpaths onto all fiber links and
thus reduce the required number of wavelengthsW .

E. Non-uniform lightpath demands

We have so far only considered the full-mesh connectivity
because it makes the analysis easier. However, the observation
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TABLE II

ASYMPTOTIC GROWTH RATE OF THE CAPACITY FOR ONE PARTICULAR SET

OF LIGHTPATH DEMANDS IN SHORT-FIBER TOPOLOGIES

f 1 1.5 2 2.5 3 3.5 4

e(C) 1.78 1.74 1.65 1.64 1.62 1.58 1.59

is not strongly dependent on the set of lightpaths to support.
Let us consider a different set of lightpaths which is generated
as follows. From each node, we randomly pickm other nodes
and establish lightpaths to them. The number of lightpaths
generated ismN , i.e., the number of lightpaths is on the order
of N instead ofN2 as in the full mesh. We pickm = 4 in our
experiment so that the resultingW is large enough to avoid
the rounding effect.

We use the TOPOF algorithm to design the topology and
use curve fitting to determine the asymptotic growth rate of
the capacity. The results are shown in Table II.

e(C) should be 1.5 theoretically. But in simulation, it ranges
from 1.58 to 1.78.e(C) again decreases quickly asf increases,
which is consistent with our observation under the full-mesh
connectivity.

V. REAL-LIFE NETWORKS

We have seen that increasing the fiber-to-node ratiof can
reduce the capacity growth, increase the capacity utilization
and avoid the use of wavelength converters. Therefore, as a
design guideline, it seems to be a good idea to have a high
enoughf . In this section, we examine real-life networks and
see how this design guideline can be applied. We studied
several real-life networks. Even though the bounding areas
are not regular and the node placements are not uniform, the
observations we derive are very similar, therefore, we only
report our study on one real-life network here.

We consider the backbone network from Level 3 (an Internet
Service Provider). According to the Rocketfuel project [19],
which maps ISP topologies as seen by the electronic routers
(the logical topology), Level 3 attempts to establish a full-mesh
connectivity, i.e., a lightpath between every pair of nodes.

Even though the logical topology is a full mesh, the un-
derlying physical fiber topology is far from a full mesh, as

shown in Fig. 10. This fiber map could be downloaded from
their website directly[20].

Fig. 10. Level3’s backbone network

This network has 56 nodes and 63 edges. The edge-to-
node ratio is onlyk = 1.125. Only short fiber links that
connect neighboring nodes are used, so it is a short-fiber
topology. In fact, in most of the topologies we studied, long
transcontinental fibers are almost never used.

Using our RWA algorithms, we determine that 374 wave-
lengths are needed to support the full-mesh connectivity with
the WCC constraint. The capacity utilization ratio is only 55%.

We manually measure the distance between every node pair
and assume a direct fiber of that length could be laid down to
connect the node pair. We then apply the TOPOF topology
design algorithm and RWA algorithms. Using the same total
fiber length, the TOPOF algorithm designed a new topology
with 73 edges and the RWA algorithm found that only 363
wavelengths are needed to support the full-mesh connectivity.
Our topology design algorithm is able to design a topology
that requires less capacity than that of the manually designed
topology. This is a confirmation that our algorithm performs
well.

We also applied the TOPOF and RWA algorithms for
different values off . The results are shown in Fig. 11.
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With WCC.

We can see thatC rapidly decreases asf increases. The
slope of decrease flattens out whenf is at least 2 or 3. At
the same time, the utilization ratio quickly improves. When



f is small, the utilization ratio is only 50%, and it quickly
improves to nearly 80%. This result suggests that the current
fiber-to-node ratio in Level 3’s network is too low. It should
be increased in order to lower the capacity requirement and
increase the utilization ratio.

VI. CONCLUSION

We proposed an efficient algorithm to design the fiber topol-
ogy with the goal of minimizing the number of wavelengths
under the constraint of a fixed fiber-to-node ratio. Using the
algorithm, we studied the tradeoff between fiber (link cost)and
wavelengths (node cost). Understanding this tradeoff allows
network designers to design cost effective transport networks.

We evaluated and compared designs under different fiber-
to-node ratios using the provisioned capacity as a metric,
which is an indicator of how efficient the provisioned resources
are utilized. The asymptotic growth rate of the capacity not
only captures the tradeoff between fiber and wavelengths
independent of the network size, but it also indirectly translates
into the deployment cost regardless of the actual cost functions
for fiber and wavelengths.

We showed that, compared to random topologies and the
lower bound, our physical topology design algorithm is very
effective not only at reducing the capacity requirement but
also at reducing the asymptotic growth rate of the capacity.We
found that taking fiber length into consideration can reducethe
capacity requirement. We showed that having a large fiber-to-
node ratio can greatly reduce the asymptotic growth rate and
can lead to lower cost whenN is large.

On studying several real-life topologies, we find that most
of them have too low a fiber-to-node ratio. By increasing it,
we can greatly reduce the capacity requirement and increase
the capacity utilization.
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