
Parallelization of the two{dimensionalIsing Modelon a Cluster of IBM RISC System/6000Workstations
Peter Altevogtx, Andreas LinkeIBM Scienti�c CenterHeidelberg, Germany

IBM Scienti�c CenterVangerowstr. 18D{6900 HeidelbergGermanyPhone: 06221{59{3000
xaltevogt@dhdibm1.bitnet i



AbstractUsing the PVM programming environment for parallel applications,we have parallelized a simulation of the two{dimensional Ising Model ona cluster of IBM RISC System/60001 workstations connected by a TokenRing (16Mb/sec) and by Serial Optical Channels (220 Mb/sec) via a NSC2DX Router. The parallelization is done by dividing the lattice into sub-lattices, each sublattice being associated with one workstation. On eachsublattice, a Metropolis algorithm using Multispin Coding techniques isused to generate new con�gurations. We provide numerical results con-cerning the number of spin updates per second, speedups, and e�cienciesfor various numbers of processors and lattice sizes.Keywords. Statistical Physics; Ising Model; Workstation Cluster; Ge-ometric Parallelization.1 IntroductionThe goal of Theoretical Statistical Physics is a mathematical description of ther-modynamic properties (e.g. of magnetism or phase transitions) of macroscopicbodies, commercing with a description of the microscopic components of thesebodies (e.g. molecules, atoms and electrons) and their degrees of freedom [1].Because the number of degrees of freedom being very large (ca. 1023), an ap-proach similiar to the one used in Classical Mechanics (de�ne a Hamiltonian asa function of the degrees of freedom, specify the initial conditions and solve theequations of motion) is not appropriate. Instead, it is necessary to use statisticalmethods to derive the thermodynamic properties of macroscopic bodies.The approach taken in Statistical Physics may be divided in three steps:1. De�ne a Hamiltonian (a model) as a function of the microscopic compo-nents of the system.2. Determine the probability distribution of these microscopic componentsin thermal equilibrium.3. Compute macroscopic properties of the system using this probability dis-tribution.Ad 1.: De�ning the Hamiltonian as a function of all microscopic degrees of free-dom and their interactions would result in a complexity of the model, whichmakes the computation of macroscopic properties impossible. Therefore, one1IBM RISC System/6000 is a trademark of the International Business MachinesCorporation.2NSC is a trademark of the Network Systems Corporation.1



�rst identi�es the degrees of freedom relevant to the problem one is consideringand de�nes an e�ective Hamiltonian as a function of these degrees of freedom.These Hamiltonians may then depend on a few parameters, which can be �ttedfrom experiments or approximately computed in a microscopic way.The de�nition of such models is very di�cult: On one hand, the model shouldbe simple enough to facilitate explicit calculations of macroscopic properties, onthe other hand, it should be exible enough to reproduce the essential features ofthe system under investigation. These models (e.g. the Ising{, Heisenberg{andXY{Models) have played a crucial role in the development of Statistical Physics:They have been the interface between mathematical studies (e.g. about sym-metries, the general structure of interactions, etc.) and experimental data.Ad 2.: We assume our system to be in thermal equilibrium with a heat bath,i.e. we assume our equilibrium probability distribution P to be given by theBoltzmann formula: P (fsg) = e��HModel(fsg)Z ;with the normalization constant Z (the partition function)Z =Xfsg e��H(fsg):Here s denotes the microscopic degrees of freedom and we sum over all con-�gurations fsg. � is related to the absolute temperatur T via the Boltzmanncoe�cient k (k = 1:38 � 10�23 J/K):� = 1kT :Ad 3.: In spite of the above mentioned simpli�cations in building models, ex-act analytical solutions (e.g. the exact evaluation of the partition function) ingeneral exist only in a few special cases. Furthermore, approximation methodslike e.g. low{and high{temperature expansions, are often useful only within alimited domain of the parameters of the model. Therefore computer simulationsturn out to be an important tool to make contact with experimental data [2] [3][4] [5].For large simulations, e.g. for simulations performing very many sweeps on a biglattice, a multiprocessor system of the MIMD{type3 with distributed memoryseems to be the most appropriate computer system, because (ideally):3For an excellent overview on the various models of computation like SISD, SIMD, etc.,see Akl [6]. 2



1. the number of processors may be increased without changing the principalbehaviour of the system (\scaling behaviour")2. the resources of the processors (including memory) add up.Furthermore, for many computer simulations a natural way of parallelizationexists by dividing the domain of the simulation in subdomains and mappingthese subdomains on the processors of the computer system (geometrical par-allelization) [5]. In this paper we will apply this method to the Ising Model.The paper is organized as follows: In section 2 we give an introduction to theIsing Model, its computer simulation using the Metropolis Algorithm [7] anddiscuss a few general aspects of its implementation on multiprocessor systemswith distributed memory. In section 3 we describe our hardware and systemsoftware, including the programming environment PVM. Section 4 contains thealgorithm of our simulation and in section 5 we present our results.2 The Ising ModelOne of the most important models of Statistical Physics is the Ising Model,introduced by E. Ising in 1925 [8]. It describes ferromagnetic (resp. antifer-romagnetic) materials with a very strong uniaxial anisotropy, so the spins cantake on only values along this axis. The Ising Model is de�ned by a Hamiltonianon a simple cubic lattice:HIsing(fsg) = �J X<i;j> sisj � hXi si;where < i; j > denotes the summation over all possible nearest neighbour4 pairsof the lattice, the spins si can take only the values �1 and h denotes an exter-nal magnetic �eld. If the exchange parameter J is positive, HIsing describes aferromagnetic system; if J is negative, the system is antiferromagnetic. We areconsidering a ferromagnetic system and �x the exchange parameter J to be +1.Expectation values of physical observables (e.g. the magnetization), correlationfunctions and the free energy can be derived from the partition function:ZIsing =Xfsg e��HIsing(fsg);where fsg denotes the sum over all spin con�gurations. E.g., the expectationvalue of the magnetization < M > is given by4In one dimension a lattice point has two neighbouring lattice points, in two dimensionsfour, in three dimensions six, etc.. 3



< M >= PfsgPi sie��HIsing(fsg)ZIsing ;the spin{spin correlation functions < sisj > are obtained as follows:< sisj >= Pfsg sisje��HIsing(fsg)ZIsing ;and for the free energy FIsing we have:FIsing = � 1� ln(ZIsing):Exact solutions of Ising Models (i.e. evaluation of the free energy and cal-culation of the correlation functions) exist only in one dimension and in twodimensions with the external magnetic �eld h being zero. Therefore in manycases computer simulations provide the only tool for the evaluation of physicalobservables (e.g. critical exponents) of Ising Models [11] [12].The computer simulation of the Ising Model consists of two parts:1. The Metropolis Algorithm [7] to generate a Markov chain of spin con�g-urations such that the probability P (fsg) for the spin con�gurations fsgtends to P (fsg) � e��HIsing(fsg) :- Initialize the spin con�guration (e.g. all spins \up" or a random spincon�guration)- For each spin si of the lattice5:- Generate a new spin con�guration by ipping the spin si.- Compare e���HIsing with a random number6 r, where�HIsing := HIsing(fsgnew)�HIsing(fsgold)denotes the energy di�erence between the new and the old spincon�guration and is evaluated by�HIsing = 2si(X<j> sj + h);where < j > stands for the summation over the next neighboursof si. The random numbers are uniformly distributed in (0; 1),5We have chosen to pass through the lattice in a typewriter like fashion, starting at the\upper left corner". Any other way of passing through the lattice and updating the spins isallowed, as long as only dynamically independent spins are updated in parallel.6Because of the use of random numbers, these simulations are frequently called MonteCarlo simulations. 4



- Accept the new con�guration only if e���HIsing > r.2. The calculation of expectation values < O > of physical observables O:< O >= limn!1 1n nXi=1 O(fsgi);where O(fsgi) denotes the value of O for the spin con�guration fsgi7.The spins being binary variables, using bits for the representation of spins8 in-stead of integers or oating point numbers not only saves a lot of computermemory, but also allows various operations (e.g. addition, logical operations,etc.) to be performed simultaneously on all spins (bits) of one computer word.Therefore techniques based on this idea, Multispin Coding techniques [13] [14][15] [18], have become an important tool for simulating spin systems.For calculating the energy di�erence �HIsing between new and old spin con�g-urations, we have to add up all neighbouring spins of the spin under considera-tion. This results in a number between 0 and 4. Therefore, to apply MultispinCoding techniques in two{dimensional Ising Models, three bits are necessary torepresent one spin9. Using an integer variable on a IBM RISC System/6000consisting of 32 bits, this sum may be computed in parallel for ten spins.A remarkable feature of the Ising Model is its phase transition at the Curietemperature10 to the ferromagnetic phase, i.e. the Ising Model exhibits spon-tanous magnetization11.Because of their importance, a lot of work has been done on algorithms tosimulate Ising Models on various computer systems, like e.g. on single proces-sor computer systems (SISD{computers) [13] [14] [15] [16], on vector comput-ers (SIMD{computers) [17] [18] [19] and on multiprocessor systems (MIMD{computers) [20] [21].7Considering e�ects due to the �niteness of the lattice, it may be necessary to average overthe absolute value of O(fsgi), see [3]8We choose a 1-bit to represent \spin up" and a 0-bit to represent \spin down"9In models, where the interaction between neighbouring \spins" may be described by logicaloperations, e.g. Lattice Gases, one bit is su�cient.10Working in \natural units" (setting the Boltzmann constant k equal to one), the criticaltemperature of the two{dimensional Ising Model is TC = 2:269 for the exchange parameterJ = 1.11This phase transition, i.e. especially the formation of spin clusters near the Curie temper-ature, may be nicely visualized for the two dimensional case on a graphic workstation usinge.g. blue pixels for \spin up" and red pixels for \spin down".5



Because of their local interactions, Ising Models [9] [10] are well suited for aparallelization on MIMD{systems with distributed memory by dividing the lat-tice in sublattices and mapping these sublattices on the processors: Using localalgorithms, only the spin con�gurations on the surface of the sublattices have tobe communicated to neighbouring processors. Considering furthermore the verysmall surface (compared to the volume) of sublattices in two dimensions it isquite obvious, that the two{dimensional Ising Model allows for a parallelizationwith modest communication between the processors.Therefore a multiprocessor system with moderate bandwidth between the pro-cessors but high computational power, like a cluster of high{end workstationsconnected e.g. with a 16Mb/sec Token Ring, is an attractive hardware platformfor the implementation of a simulation of the two{dimensional Ising Model.3 Hardware und SystemsoftwareOur hardware platform consists of one RS/6000{560 and four RS/6000{550workstations, all equipped with 128MB main memory and connected by a To-ken Ring (16 Mb/sec) as well as with Serial Optical Channels (220 Mb/sec) viaa NSC DX Router. All machines use AIX Version 3.2 as the operating system.Although �rst prototypes of tools for automatic parallelization of programs fordistributed memory machines exist, these tools seem to be limited to �ne grainparallelizations, e.g. a parallelization of loops. Because of high latency times(� 1msec), this kind of �ne grain parallelism is not well suited for a workstationcluster. Therefore, a new design and implementation of a more coarse grainparallel algorithm, including the initiation, the communication and synchroni-sation of the various processes on the processors is necessary.Several interfaces exist to accomplish this task within Unix systems.The lowest level interface is provided by the driver interfaces of the networkadapters. Programming these interfaces, on the one hand one avoids a lotof overhead originating from various network protocols, e.g. from TCP/IP orUDP/IP, but on the other hand, the functionality of these interfaces is verypoor12 and highly hardware dependent.The standard interface for programming distributed applications in Unix Sys-tems is the sockets interface [24]. This interface is based on network protocolslike TCP/IP or UDP/IP and forms the basis for most distributed applications in12The standard Unix driver interface just consists of the routines open(), read(), write(),ioctl() and close(), see Bach [22] or Le�er et. al. [23].6



networks of Unix sytems, e.g. for RPC13 (Remote Procedure Call) and NCS14(Network Computing System). Using this interface, the programmer is still leftwith the administration of processes and addresses of the distributed applica-tion and therefore sockets do not provide a convenient interface for programmingparallel applications.For programming parallel applications on a workstation cluster, the use of aprogramming environment, e.g. PVM (Parallel Virtual Machine) [25] [26], EX-PRESS [27] [28] [29] or PARMACS [30], seems to be the most convenient (butnot necessarily the most performant) choice. These programming environmentsprovide as the basic functionality a library of routines to create processes on thecluster's workstations, to communicate between these processes, to synchronizethese processes, etc..In PVM, this functionality is provided with the help of demon processes, runningon each of the cluster's worktations. The processes of the parallel applicationcommunicate with each other via these demon processes.4 The AlgorithmOur simulation of the Ising Model consists of one client process and severalserver processes communicating with each other via the PVM system by ex-changing messages.The parallelism is achieved by dividing the two dimensional lattice into stripesassociated with one server process15. The server processes are mapped on thecluster's workstations such that there is a one{to{one corespondence of pro-cesses and processors16. Each stripe is augmented with auxiliary lattices on allsides to implement periodic boundary conditions as well as to store the part ofthe spin con�gurations communicated by the neighbouring processors which isnecessary to do the local updates.In the sequel we will describe the two kind of processes (client and server pro-cesses) and their implementation17.13RPC is a trademark of Sun Microsystems, Inc.14NCS is a trademark of the Apollo Systems Division of the Hewlett{Packard Company.15Because of the high latency times for message passing in a workstation cluster, it is moreperformant to communicate fewer but larger messages [32]. Therefore parallelizing only inone space direction is often appropriate.16Measurements with all �ve workstations of our cluster have been made with the clientprocess and one of the server processes running on the RS/6000-560. Because the client sleepsmost of the time, this should not a�ect signi�cantly the performance of the server process.17We have chosen C (instead of Fortran) to implement our algorithm, because the binaryoperations needed for the Multispin Coding technique are an integral part of C. Furthermore,7



The client process:The client process handles most of the administrational tasks (e.g. doing theI/O to obtain various parameters that specify the model and to store the con-�gurations) and carries out the calculations concerning the lattice as a whole,e.g. calculating physical observables like the magnetic densities from the resultsof the servers obtained for their sublattices:- Scans the commandline of the process for the parameters of the simulation(lattice size, number of server processes, number of sweeps, temperatureand the external magnetic �eld).- Introduces itself to the PVM programming environment.- Starts the server processes on the cluster's workstations.- Creates a lookup table for e���HIsing .- Broadcasts the following data to each server:- The lookup table for e���HIsing .- The external magnetic �eld.- The sizes of the stripe (sublattice) associated with the appropriateserver.- The virtual process numbers (initialized by PVM) of the neighbour(\upper" and \lower" servers of the appropriate server.- The number of sweeps.- If measurements (e.g of physical observables or time spent for communi-cation) were done, the client process waits for the results from the servers(e.g. the magnetic densities as calculated for the sublattices) and averagesover these results.- Stores the averaged results on disk.- Leaves the PVM programming environment.the dynamic allocation of memory is much easier in C than in Fortran and the interfaces tosystem software libraries (e.g. to libraries for visualisation) on Unix systems are often onlyprovided in C. 8



A server process:A server process executes the usual Metropolis algorithm (using a MultispinCoding technique [13] [14] [15] [18] ) for the simulation of the Ising Model atconstant temperature [4] [5] on its sublattice:- Introduces itself to the PVM programming environment.- Initializes a seed (unique for each server) for its random number generator.- Receives the data sent by the client.- Allocates storage for the spin con�guration on its sublattice, including theauxiliary lattices, and for physical observables, if necessary.- Initializes the con�guration (all spins \up")- Performs the speci�ed number of Metropolis sweeps on the sublattice byusing a Multispin Coding technique. The periodic boundary conditions areimplemented by updating the appropriate auxiliary lattices if necessary.In detail:- Allocates storage (an array) for random numbers (one for each spinof a line).- For each line, starting with the upper line:- Initializes the array with random numbers between 0 and 1. us-ing the surand() subroutine of the ESSL subroutine library [31]and- For all spins in a line, starting with the leftmost spin:- Calculates the sum of the neighbouring spins (this is done inparallel for ten spins with the help of the Multispin Codingtechnique).- For all spins in a word:- Uses the above sum as an index in the \look up table" fore���HIsing . Only if this number is bigger than the randomnumber, will the spin be reversed.- If the current line is the �rst line of the sublattice, the serversends the updated spin values of this line to the \upper" neigh-bour processor.- If the current line is the penultimate line of the sublattice, theserver receives the updated spin values from the �rst line of the\lower" neighbour processor and stores the received spin valuesin its auxiliary lattice. 9



- The server sends the updated spin values of its last line to the \lower"neighbour processor.- The server receives the updated spin values for its �rst line from thelast line of the \upper" neighbour processor and stores the receivedspin values in its auxiliary lattice.- If measurements were done, the results are send to the client process.- Leaves the PVM programming environment.The receive subroutines of the PVM system being blocking, the receive callswithin the client and server processes constitute the synchronization points ofthe processes of the simulation. The send subroutines of the PVM system arenonblocking: they return as soon as possible, i.e. when the local PVM demonprocess believes it can deliver the message [33].This behaviour of the receive subroutines ensures that every processor uses thesame unique18 spin values assigned to each lattice site for updating the spinson the boundaries of its own sublattice. E.g., a processor is allowed to calculatethe updates of the spins of its last line only after receiving the updated spinvalues from the �rst line of its \lower" neighbour processor.5 ResultsTo check the correctness of our algorithm, we have measured e.g. the magneti-zation of the two{dimensional Ising Model as a function of the temperature forvarious lattice sizes, see �gure 119.We have measured the spin updates per second (ips) and the speedup (ef-�ciency) as a function of the lattice size and the number of processors. Agraphical representation of our results can be found in �gures 2 to 7.The speedup Sp and the e�ciency Ep for p processors are de�ned by [34]:Sp = T �Tp ;Ep = Spp :18This uniqness of the spin values is essential for the Hamiltonian of the system to be wellde�ned.19Due to �nite size e�ects, the critical temperature is shifted to higher values for smalllattice sizes. 10



Here T � denotes the time for the optimal serial algorithm to solve the problemand Tp the time a parallel algorithm using p processors needs.It is well known [35] that the measurement of the speedups (e�ciencies) maybe quite misleading for several reasons:- In general the optimal serial algorithm is unknown and therefore thespeedup depends on the serial algorithm chosen instead, e.g. one de�nesT � as the time required by a single processor to execute the particularparallel algorithm being analyzed (as we do). Therefore with this choiceof T �, the speedup (e�ciency) provides no information about the abso-lut quality of the algorithm, but only indicates how well this particularalgorithm has been parallelized.- Ideal values for speedup Sp = p and e�ciency Ep = 1 can easily besurpassed on virtual memory systems due to paging e�ects: In the \worst"case, the measured speedup converges to the di�erence in the access timesbetween disk and memory.Bearing these warnings in mind, we take a look at our results. As the indepen-dent variable of our measurements we take either the number of processors orthe lattice size. While the parallelization turns out to be rather destructive forlattices smaller than a \critical lattice size" (approximateley 300�300), for lat-tices bigger than 1000� 1000 lattice points20, the speedups and e�ciencies arevery satisfactory. A similiar behaviour is true for the spin updates per second(Flips resp. MFlips).The results presented in �gures 2{6 have been measured by using the SerialOptical Channels and the NSC DX Router, the results presented in �gure 7contain also data obtained by using the Token Ring21. As can be seen (especiallyfrom the e�ciencies shown in Figure 7), the results are qualitatively identicalin both cases with clear advantages for the Serial Optical Channels for smalland medium sized lattices (< 1000 � 1000). The communication costs beingnegligible for large lattice sizes (> 10000 � 10000), the measured values tendto the same asymptotic values for the Serial Optical Channels and the TokenRing.20If the lattices' sizes cannot be divided by the number of processors, we round the latticesizes up to the next appropriate value.21We used the virtual circuit routines vsnd() and vrcv() of PVM 2.4 for the communica-tion between the processors. All measurements have been done on a dedicated cluster afterrebooting all workstations.
11



00.10.20.3
0.40.50.60.7
0.80.91

1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

Magnetization

Temperature

20x20 33 3 3 3 3 3 3 3 3 3 3 3 33 3 3 3 3 3
100x100 ++ + + + + + + +

+ + + + + + + + + + + +
200x200 22 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2
1000x1000 �� � � � � � � �

� � � � � � � � � � � �Figure 1: The magnetization as a function of the temperature for variouslattice sizes.

123
45

1 2 3 4 5Number of processors

Speedup 10000x10000 3
3 3 3 3 31000x1000 +
+ + + + +100x100 2
2 2 2 2 2

10x10 �
� � � � �

12



Figure 2: Speedup as a function of the number of processors for variouslattice sizes using the Serial Optical Channels.

0.20.40.6
0.81

1 2 3 4 5Number of processors

E�ciency 10000x10000 33 3 3 3 31000x1000 ++ + + + +100x100 22 2 2 2 2
10x10 ��
� � � �Figure 3: E�ciency as a function of the number of processors for variouslattice sizes using the Serial Optical Channels.

13



12
34
5

1 10 100 1000 10000Lattice size

Speedup 5 processors 3
3 3 3333 3 3333 3 33334 processors +
+ + ++++ + ++++ + ++++3 processors 2
2 2 2 222 2 2 222 2 2 2222 processors �
� � ���� � ���� � ����

Figure 4: Speedup as a function of the lattice size for various numbers ofprocessors using the Serial Optical Channels.

1234
5678
9

1 2 3 4 5Number of processors

MFlips 10000x10000 3
3 3 3 3 31000x1000 +
+ + + + +100x100 2
2 2 2 2 2

10x10 �
� � � � �14



Figure 5: Spin updates (MFlips) as a function of the number of processorsfor various lattice sizes using the Serial Optical Channels.

02
46
8

1 10 100 1000 10000Lattice size

MFlips 5 processors 3

3 3 3333 3 3333
3 33334 processors +

+ + ++++ + ++++ + ++++3 processors 2
2 2 2 222 2 2 222 2 2 2222 processors �
� � ���� � ���� � ����1 processor 4
4 4 4444 4 4444 4 4444

Figure 6: Spin updates (MFlips) as a function of the lattice size for variousnumbers of processors using the Serial Optical Channels.

15



00.2
0.40.6
0.81

1 10 100 1000 10000Lattice size

E�ciencySerial Optical Channel 3
3 3 3333 3 3333 3 3333Token Ring +
+ + ++++ + ++++ + ++++

Figure 7: E�ciency as a function of the lattice size for 5 processorsusing the Serial Optical Channels (220 Mb/sec)and the Token Ring (16 Mb/sec).
6 ConclusionsWe have shown in this paper that for the simulation of the two{dimensionalIsing Model de�ned on \large" lattices (> 1000 � 1000), the geometric paral-lelization of the Metropolis algorithms on a cluster of high{end workstationsturns out to be very successful. This indicates, that a workstation cluster is anappropriate multiprocessor system for the simulation of a large class of modelsfrom Statistical Physics of a structure similiar to the one of the Ising Model.Implementing such a synchronous parallel algorithm on a heterogeneous clusterof workstations, a loadbalancing between the processors of the system (takinginto account the actual resources being available on each node of the system)16



turns out to be very helpful, because the processor with the least resources de-termines the speed of the complete algorithm.The heterogenity of the MIMD system may not only result because of heteroge-neous hardware resources, but also due to a heterogeneous use of homogeneoushardware resources (e.g. on a workstation cluster, there may exist several se-rial tasks running on some of the workstations of the cluster for some time inaddition to the parallel application; this results in a temporary heterogenity ofthe cluster, even if the workstations of the cluster are identical). This kind ofheterogenity can in general only be detected during the runtime of the parallelalgorithm.Therefore, our approach of geometric parallelization to parallelize algorithmsby a static decomposition of a domain into subdomains and associating eachsubdomain with a processor of the MIMD system seems to be appropriate onlyfor a homogeneous MIMD system. On a heterogeneous system this geometricparallelization should be done dynamically [36].

17



References[1] G.Parisi, Statistical Field Theory (Addison{Wesley Pub. Comp., Inc.1988).[2] K. Binder (ed.), Monte Carlo Methods in Statistical Physics, Topics inCurrent Physics, Vol. 7, 2nd edition (Springer{Verlag, Berlin, Heidelberg1986).[3] K. Binder, D.W.Heermann, Monte Carlo Simulation in Statistical Physics:An Introduction, Springer Series in Solid{State Sciences, Vol. 80 (Springer{Verlag, Berlin, Heidelberg 1988).[4] D.W.Heermann, Computer Simulation Methods in Theoretical Physics,2nd edition (Springer{Verlag, Berlin, Heidelberg 1990).[5] D.W. Heermann and A.N. Burkitt, Parallel Algorithms in ComputationalScience, Springer Series in Information Sciences (Springer{Verlag, Berlin,Heidelberg 1991).[6] S.G. Akl, The Design and Analysis of Parallel Algorithms, Prentice{HallInternational Editions (Prentice{Hall, Inc. 1989).[7] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller,J. Chem. Phys. 21, 1087 (1953).[8] E. Ising, Z. Physik 31, 253 (1925).[9] Kadano� et. al., Rev. Mod. Phys. 39, 395 (1967).[10] B.M. McCoy and T.T. Wu, The Two{Dimensional Ising Model (HarvardUniv. Press, Cambridge, MA 1978).[11] G.S. Pawley, R.H. Swendsen, D.J. Wallace and K.G. Wilson: Monte Carlorenormalization{group calculations of critical behavior in the simple{cubicIsing model, Phys. Rev. B 29, 4030 (1984).[12] A.M. Ferrenberg and D.P. Landau: Critical behavior of the three{dimensional Ising model: A high resolution Monte Carlo study, Phys. Rev.B 44, 5081 (1991).[13] L. Jacobs and C. Rebbi, Multi{spin Coding: A very e�cient Technique forMonte Carlo Simulations of Spin Systems, J. Comp. Phys. 41, 203 (1981).[14] G.O. Williams and M.H. Kalos, A new Multispin coding Algorithm forMonte Carlo Simulation of the Ising Model, J. Stat. Phys. 57, 283 (1984).[15] R. Zorn, H.J. Herrmann and C. Rebbi, Tests of the Multi{Spin{CodingTechnique in Monte Carlo Simulations of Statistical Systems, Comp. Phys.Commun. 23, 337 (1981). 18



[16] C. Kalle and V. Winkelmann, Monte Carlo Technique for very large IsingModels, J. Stat. Phys. 28, 639 (1982).[17] G. Bhanot, D. Duke and R. Salvador, A fast Algorithm for the Cyber 205to simulate the 3D Ising Model, J. Stat. Phys. 44, 985 (1986).[18] S. Wansleben, J.G. Zabolitzky and C. Kalle, Monte Carlo Simulation ofIsing Models by Multispin Coding on a Vector Computer, J. Stat. Phys.37, 271 (1984).[19] A.Desalvo, G.Erbacci and R.Rosa, Vectorized code for the three{dimensional spin{exchange kinetic Ising model on cubic and diamond lat-tices, Comp. Phys. Commun. 60, 305 (1990).[20] G. Bhanot and S. Sastry, Solving the Ising Model exactly on a 5 � 5 � 4Lattice using the Connection Machine, J. Stat. Phys. 60, 333 (1990).[21] D.W. Heermann and R.C. Desai, Ising Model, Transputer and dynamicalCorrelations using a Microcanonical Ensemble, Comp. Phys. Commun. 50,297 (1988).[22] M.J. Bach, The Design of the UNIX Operating System (Englewood Cli�s,NJ: Prentice Hall, 1987).[23] S.J. Le�er, M.K. McKusick, M.J. Karels, and J.S. Quarterman, The De-sign and Implementation of the 4.3BSD UNIX Operating System (AddisonWesley, Reading, 1989).[24] W.R. Stevens, Unix Network Programming (Prentice Hall Inc., SoftwareSeries 1990).[25] A. Beguelin, J.J. Dongarra, G.A. Geist, R.Manchek and V.S. Sun-deram, A user's guide to PVM parallel virtual machine. Technical ReportORNL/TM-11826, Oak Ridge National Laboratory, July 1991.[26] V.S. Sunderam, PVM: A Framework for Parallel Distributed Computing,Concurrency: Practice&Experience Vol.2 No.4, Dec. 1990.[27] Express 3.2, Introductory Guide (Workstations), ParaSoft Corporation,1988, 1989, 1990, 1991.[28] Express C, Users Guide (Version 3.0), ParaSoft Corporation, 1988, 1989,1990.[29] Express C, Reference Guide (Version 3.0), ParaSoft Corporation, 1988,1989, 1990. 19



[30] L. Bomans, R. Hempel and D. Roose: The Argonne/GMD macros in FOR-TRAN for portable parallel programming and their implementation on theIntel iPSC/2, Parallel Comp. 15, 119 (1990).[31] Engineering and Scienti�c Subroutine Library (Version 2), Guide and Ref-erence, IBM Corporation (1992).[32] P. Altevogt et. al.: To be published.[33] The PVM Programmer's Manual.[34] D. P. Bertsekas and J. N. Tsitsiklis: Parallel and Distributed Computation(Prentice Hall Inc., Englewood Cli�s, NJ 1989).[35] R.Hockney: Performance parameters and benchmarking of supercomput-ers, Parallel Computing 17 (1991) 1111-1130.[36] P. Altevogt, A. Linke: To be published.

20


