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Abstract: Recent measurements of various types of network traffic have shown evidence consistent with long-range
dependence and self-similarity. However, an alternative explanation for these measurements is non-stationarity in the data.
Standard estimators of LRD parameters such as the Hurst parameter H assume stationarity and are susceptible to bias when
this assumption does not hold. Hence LRD may be indicated by these estimators when none is present, or alternatively LRD
taken to be non-stationarity. The recently developed Abry-Veitch (AV) joint estimator has much better properties when a
time-series is non-stationary. In particular the effect of polynomial trends in data may be intrinsically eliminated from the
estimates of LRD parameters. This paper investigates the behavior of the AV estimator when there are non-stationarities
in the form of a level shift in the mean and/or the variance of a process. We examine cases where the change occurs both
gradually or as a single jump discontinuity, and also examine the effect of the size of the shift. In particular we show
that although a jump discontinuity may cause bias in the estimates of the H, the bias is negligible except when the jump
is sharp, and large compared with the standard deviation of the process. We explain these effects and suggest how any
introduced errors might be minimized. We define a broad class of non-stationary LRD processes so that LRD remains well
defined under time varying mean and variance, and show how three subclasses correspond to meaningful models of traffic
rate under changing traffic conditions. The results are tested by applying the estimator to a real data set which contains a

clear non-stationary event falling within this class.

I. INTRODUCTION

In the last few years the discovery of the self-similar nature of many kinds of packet traffic [12], [16]
has inspired a small revolution in the way that high-speed traffic is viewed. Although no single model
i1s accepted as definitive, the Hurst parameter H, which describes the degree of self-similarity, holds a
central place in the description of such traffic. Its accurate measurement is therefore of considerable
importance for the provision of quality of service as well as for capacity planning.

The vast existing literature on traffic modeling, and indeed on tele-traffic performance analysis in
general, is overwhelmingly dominated by stationary models. However, there are good reasons to suppose
that traffic conditions do change; for example the concept of a busy hour is important both in voice and
data networks. Although the discovery of self-similarity in packet traffic has led to a much wider range
of traffic models, they have nonetheless remained in the stationary world.

In many traffic situations the changing conditions or non-stationarity can be safely ignored because,
over the time scales of interest, they have little effect — the process may be well approximated by a
stationary model. However scaling properties such as self-similarity and Long-Range Dependence (LRD)
are inherently defined over a range of scales, which may well encompass periods where stationarity is
a poor approximation. In this event, the question arises as to whether LRD 1s well defined, and if so,
how to estimate its parameters accurately. Standard approaches — for example the R/S plot and Whittle
estimators — may be inaccurate to the point of indicating LRD exists when in fact it does not [14], [19].
This failure of standard estimators has led some to question the extensive body of data demonstrating
LRD and self-similarity in data traffic. Furthermore the very nature of LRD processes can cause confusion
— the long term correlations cause apparent trends, encouraging the erroneous conclusion that the data
1s non-stationary.

The difficulties of distinguishing LRD and non-stationarity are not avoided by measuring other features
of the data. Even the perennial sample mean is far more variable for LRD processes, so a test for non-

stationarity based on observations of the sample mean under Short Range Dependent (SRD) assumptions



would give incorrect conclusions if the process is, in fact, LRD. However a test for stationarity of the mean
under LRD assumptions requires a reliable estimate of the parameters of LRD! Hence it is important to
be able to measure LRD meaningfully and accurately without a prior: knowledge of whether or not a
data set is non-stationary, or the exact form a non-stationary may take.

We present a set of tests of the Abry-Veitch (AV) joint estimator for the parameters of LRD [22], [20],
and demonstrate that it is robust to a broad class of non-stationary behavior; that is, the AV estimator
remains accurate even when the assumption of stationarity upon which it was originally based is invalid.
We explain the reasons for its robustness, and thence determine its limitations, and suggest methods for
mitigating any residual bias.

We take care to define, in Section II, a class of non-stationary processes where the LRD property is
well defined. For processes within this class the mean and/or variance are allowed to change in arbitrary
ways whilst the parameters of LRD, including the Hurst parameter, remain well defined and constant.
In previous papers the AV estimator has been shown to be robust to polynomial trends in the mean [4].
In this paper we focus on the case where the mean undergoes a level shift, one of the simplest ways
to produce a large bias in estimators of the Hurst parameter, and go further to consider level shifts in
variance also, and combinations of shifts in both mean and variance.

We show the utility of the non-stationary class of LRD processes through three subclasses which
correspond to meaningful models of traffic rate under changing traffic conditions. In each model the
varying conditions can be thought of as a time varying number of stationary sources in a superposition
which contains at least one stationary LRD source. In Model I the traffic changes due to the introduction
of new constant bit rate (CBR) sources, in Model IT due to variable bit rate (VBR) sources uncorrelated
with but of the same type as the existing sources, and in Model TII again new VBR sources of the same
type are introduced, but ones which are strongly correlated with the existing traffic. In each model we
focus on level shift non-stationarities which can be thought of as a level shift in the number of sources,
which reduces to a combination of level shifts in mean and/or variance. In the context of these traffic
models, the measurement of the Hurst parameter corresponds to measuring the ‘stationary part’ of the
traffic under non-stationary conditions. The AV estimator allows this to be achieved robustly.

We describe the AV estimator in Section III; and in Sections IV its robustness is verified through
simulation and well substantiated arguments. The major result is that the AV estimator for H remains
unbiased except in the case of jumps in the mean which are both large and sharp, where small biases
(<~ 0.05) can be introduced. The sensitivity of the results to other parameters of the analysis such as
the wavelet basis, and sequence length, are also discussed.

In addition to simulations we examine a real Ethernet dataset in Section V which appears to contain
a non-stationarity well described by a mixture of Models I and II. We show that the robustness property
holds for this data set, simultaneously verifying the robustness of the AV estimator for real data, and the
conclusion that Ethernet traffic is consistent with a non-stationary LRD model.

The non-stationary LRD traffic models and robustness results presented here lend credence to recent
studies such as [8], [10], [9], [4], [22] and [17] which use the AV estimator to demonstrate LRD in data
traffic, and to the study of LRD in traffic in general. Furthermore, this study adds to the list of benefits
of using the AV estimator, which already includes a run time complexity of only O(n), negligible bias,
statistical efficiency [22], the ability to be performed in real time [17], joint estimation of LRD parameters
other than just the Hurst parameter [22], [3], [20], known confidence intervals for estimates [22], [4], [2],
and the possibility of performing a test of the constancy of H and other scaling exponents [21].

II. THE TRAFFIC MODELS

A. Preliminaries

In this paper we deal with second order traffic modeling, that is Gaussian models, where the auto-

covariance function and the mean specify the properties of the model completely. In general terms the



results of the paper are also valid for non-Gaussian processes, however in that case the second order
statistics, which we concentrate on here, are not sufficient to specify the processes fully. The models will
be defined in discrete time, corresponding to the discrete nature of time series obtained from real data.

We define the mean of a process X(¢) to be the expectation mx (t) = IE[X(¢)], and its variance as
oz (t) = E[(X(t) — mx(¢))?]. The autocovariance of the process is given by Rx(t,s) = IE[(X(¢) —
mx (1)) (X (s) — mx ()], and the autocorrelation is the normalized form T'x (¢,s) = Rx(t,s)/ox (t)ox (s).
If X is stationary then the mean and variance are constants denoted by mx and of respectively, and
the autocovariance and autocorrelation are functions of the lag k = |t — s| only, which for uniformity of
notation we denote by Rx (k) and I'x (k) = Rx(k)/o% respectively. In the stationary case the Fourier
Transform of Rx is known as the spectral density of X and we denote it by fx.

Long Range Dependence is commonly defined by the slow, power-law decrease in the autocovariance
function of a second order stationary process for large lags: Rx (k) ~ ¢, ||~ k — oo, a € (0,1),
or equivalently as the power-law divergence at the origin of its spectrum: fx(v) ~ ¢ |v|™%, |v| — 0,
([6], p-160). The power-law decay is such that the sum of all correlations downstream from any given
time instant is always appreciable, even if individually the correlations are small. The past therefore
exerts a long term influence on the future, exaggerating the impact of traffic variability and rendering
statistical estimation problematic. The main parameter of LRD is the dimensionless scaling exponent «.
It describes the qualitative nature of scaling — how behavior on different scales is related. The second
parameter, ¢, or ¢, is a quantitative parameter which gives a measure of the magnitude of LRD induced
effects. The time and frequency domain alternatives are related as ¢f = 2(27)~%¢,T'(a) sin((1 — o) 7/2),
where T is the Gamma function (note that this relation differs from that in [6], see [22] for details).

As an example of the role and importance of each parameter, consider the statistical behavior of the
sample mean estimator of the mean of a stationary process X (¢) with data of length n. The classical
result is that asymptotically for large n the sample mean follows a normal distribution, with expectation

equal to myx, and variance ¢ /n. In the case where X is LRD the sample mean is also asymptotically

normally distributed with mean mx , however the variance is given by (2112;104 . % [6]. Note that both ¢,
and a appear in this expression, but the variance does not. Note also that the variance in the LRD case
shrinks at a slower rate with n than in the classical case, so that for large n the confidence intervals will
be far larger than classical theory would predict. A graphic example of this i1s given in Section V which
examines a real data set.

Although LRD is typically defined in relation to the autocovariance function, an entirely equivalent

definition could be made in terms of the autocorrelation function:
Oy (k) ~ ¢, k|~ k500 ae(0,1), (1)

where the dimensionless constant ¢, = ¢,/c# has replaced c¢,, which has the dimensions of variance.
We adopt this normalized way of defining LRD, as it is central to our generalization to non-stationary
LRD models. Note that both ¢

2o

order stationary processes which are not LRD are called Short Range Dependent (SRD), corresponding

and the frequency domain equivalent c;, take values in (0,1). Second

to a = 0.

It is common practice to describe LRD through the Hurst parameter H = (1 4 «)/2, though in fact H
1s the parameter of self-similarity and is properly used to describe only self-similar processes, which are
non-stationary. The connection to LRD is that if a process ¥ (with finite second moments) is self-similar
with parameter H € (0,1), then its increment process X(¢) =Y (s +t) — Y(s) is LRD with « = 2H — 1.
We follow this convention in the remainder of the paper of writing H instead of «.

For simulation purposes sample paths of Fractional Gaussian Noise (FGN) are generated using a
standard spectral technique. The FGN Z(t) is a well known canonical Gaussian LRD process which
is the increment process of the Fractional Brownian Motion, a H-self-similar process. The FGN has
autocorrelation function

Tz (k) = = (Jk + 12 — 2827 4 |k — 1]2H), (2)
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for k£ > 0. Note that if H = % then Tz (k) = 0 for all & > 1, corresponding to white noise, but when
L

Tz(k) ~ H2H — D)k*=2 |k — o, (3)
identifying ¢, as ¢, = H(2H — 1). The identity given above yields the following useful relation between

the variance of a FGN and its value of ¢:
¢ =03 2(2n) " H(2H — )I(2H — 1) sin(n(1 — H)), (4)

In this paper, in both theoretical and simulation contexts, by FGN we refer to FGN with oz = 1, the so
called standard FGN. The fact that I'; for the FGN is a parametric function of a single parameter H,
so that ¢, and ¢; are no longer independent variables, does not impair the generality of our conclusions.
Although the two parameters of LRD are rigidly linked for FGN, we will not use this fact but will estimate
them as if they were independent, just as for real data. Further details on the FGN process can be found

in [6], [18].

B. A Stationary Class of LRD Models

Stationary models dominate traffic modeling, and performance analysis in general. Even those studies
concentrating on transient behavior are typically defined in relation to a stationary regime toward which
the transient behavior tends. There are good reasons for this. A priori physical reasoning would indicate
that, over reasonable time scales and allowing for diurnal variation, that the demand for network resources
should be roughly constant, and therefore that the resulting traffic flow will be also. This idea of random
variations overlaying essentially constant conditions is formalized in the traditional choice of stationary
stochastic processes to model key quantities, such as the rate of incoming traffic. More formally, a
stochastic process X (¢) is stationary if, for each m, the m dimensional joint distribution of {X(¢; +
), X2+ 7),...,X(tm + 7)} is independent of 7 for any set of m times {¢1,¢2,...,¢n}. In other words,
stationarity i1s simply the time-origin invariance of the underlying probabilistic laws governing the process.

As stated earlier, the mean, variance and autocorrelation of a Gaussian process are sufficient to com-
pletely describe it. Thus, completely generally, a stationary Gaussian model for the traffic rate X (¢) can
be expressed as two simple transformations of a stationary Gaussian process W (t) with zero mean and
unit variance. Namely the variance of the normalized W(t) may be changed by multiplication, and the

mean changed by addition, yielding
X(t;m, o, Tw)=m+ o W(t)

where m and o are positive constants. The above parametrisation separates out the location parameter
mx = m, and the scale parameter ox = ¢ of the process, from the shape parameter, which is the
role played by the entire, as yet unspecified, autocorrelation function I'x (k) = Tw (k) = Rw(k) =
IE[W (t + k)W (t)]. The autocovariance of X is just Rx (k) = ¢?Tw (k).

We now partially specify I'x by requiring that X be LRD, that is, we assume that it obeys (1). A four

parameter semi-parametric class of LRD traffic models can therefore be defined as

X(t;myo,H,c,) =m+oW(t H,c,) (5)
where
mxy = m
2 = g (6)
Rx(k) = o*Tw(k H,c,)
Ix(k) = Tw(k;H,c,)

This class is semi-parametric because only the asymptotic behavior of Rx (k) has been fixed, not the
entire function. The class is the foundation of the non-stationary models to be constructed in the next

section.



C. A Non-Stationary Class of LRD models

Despite the dominance of stationary modeling, it is well known that traffic conditions do change, and
not just over very large time scales. Stationary models, even fractal ones,; are not always adequate. It is
difficult however to move to non-stationary paradigms, as there are so many kinds of non-stationarity,
and which ones are most appropriate involves many unanswered empirical issues. For example which
properties of variable traffic can be classified as varying and which as constantl’ What is the meaning
of a parameter such as the mean, the expression of stationarity par excellence, when it is allowed to
vary, and what time varying forms does 1t takel' In this section we present a class of non-stationary
Long Range Dependent models (NS LRD), where long range dependent processes are generalized to allow
non-stationarities of certain well defined kinds. More specifically, we begin with a stationary LRD model,
and define a class of non-stationary variations by transforming it to induce a change in the mean and/or
variance, whilst the parameters measuring the LRD, including H, remain well defined and constant. In
this way some time-varying properties are allowed, and are well defined, but important features of the
original stationary model remain, and remain well defined also. After having defined a general class of
processes where the idea of non-stationary LRD makes sense, we then identify three sub-classes with
particular meaning as models for traffic.

A class of non-stationary LRD models for the traffic rate X (¢) is again given by transformation of the

mean zero, unit variance LRD W(t; H,c, ), resulting in
X(t;m, o, Hyc,)=m(t)+ o) W(t; H,c,) (7)

where m(t) and o(t) are positive functions of time. Comparing with equation (5), we see that the location
and scale parameters have become time varying, but the shape function Iy, and its associated parameters
(H,¢c,), do not change. In fact

mx (t) = m(l)

() = o)
Rx(t,s) = o(t)o(s)lw(t— s H,c,) (8)
Ix(t,s) = Tw(t—sH,c)=Twk H,c,).

Thus, although the autocovariance function is no longer a function of the lag only, the autocorrelation
function retains this property despite the non-stationarities in location and scale. Since we have used
a definition of LRD based on such an autocorrelation function, it remains well defined, and gives a
precise meaning to the notion of non-stationary LRD models, where the LRD parameters (I, c,) retain
their physical meanings, and remain constant. Thus, in this framework the estimation of (H,c,) has
the meaning of measuring (part of) the ‘stationary part’ of the non-stationary traffic model. In this
paper we concentrate on the robust estimation of H. Although the estimation of ¢, (via é;) in the
normal stationary context is well understood ([22], [20]), and that of ¢, is a straightforward extension,
the estimation of ¢, in the non-stationary context is more difficult and will be studied elsewhere.

The traffic model of equation (7) is a very general one. The empirical and modeling question of central
importance is, assuming that equation (7) holds, what are the forms of m(¢) and ¢()I' In order to
be useful, simple forms with physical meaning must be found. Before choosing specific forms for m(¢)
and o(t), we discuss three different canonical scenarios, each of which are expected to apply in different
simplified traffic situations. In each case, intuitively the function m(t) plays the role of a local mean,
and 1s to be understood as the time variation of the number of sources in the superposition. The models
differ in the way in which the local variance ¢?(t) is linked to the local mean m(t).
¢ Model I: Varying level of deterministic or CBR traffic.

XU () = m(t) + oW(1). (9)



The variation of m(t) can be understood as due to a time varying deterministic traffic component, for
instance from a varying number of CBR sources, superposed onto a (possibly aggregate) LRD source.
The variance therefore remains constant. Aggregated SRD sources could also be treated this way, as they
are close to deterministic compared to LRD sources.

+ Model II: Varying numbers of uncorrelated LRD (modeling VBR) sources.

X () = m(t) + o/ m(t) W(t). (10)

Here we imagine that a time varying number of independent, identically distributed VBR sources are
superposed. At a fixed time ¢, the marginal distributions of the traffic has mean and variance proportional
to the number of sources which are active.

+ Model III: Varying numbers of correlated LRD (modeling VBR) sources.

X @) = m(t) + om(t) W(t). (11)

Again we imagine that a time varying number of identically distributed sources are involved in the
superposition, but now we assume perfect correlation between them, leading to a variance proportional
to the square of the number of sources.

Clearly additional models could be defined to take into account more heterogeneous mixtures of CBR
and VBR sources, both correlated and un-correlated. An example is given later of an Ethernet trace

which convincingly follows a mixture of Models I and II.

D. Level Shift Non-Stationarities

For the remainder of the paper we work within the context of a particular form of m(¢) and o(t),
namely that of level shifts. By this we mean a monotone transition from one constant level to another,
with a smoothness parameter specifying the abruptness of the transition. The motivation for this is
two-fold. First, by studying such changes of level, we consider a conceptually simple yet quite extreme
form of non-stationarity which is also physically meaningful. Second, as discussed in more detail below,
it has already been shown [4] how polynomial trends and trends well approximated by polynomials
are eliminated using a wavelet based estimator. Discontinuous changes on the other hand are poorly
approximated by polynomials and require a separate treatment.

The level shifts are defined using the following family of transition functions:

T, J,S, L) =1+ %—I— %arctan (%) , (12)
where J € IR is the size of the level shift, S > 0 is a smoothness parameter, and L € IR is a location
parameter. The transition is made from a level of 1 to 1 + J. In Figure I four members of the family
are illustrated with smoothness values S = {0,40,300,1200}, each with J = 1 and L = 8192. The
same smoothness values are used in simulations, although for space reasons typically only results for
S = {0,300} will be shown. The case S = 0 corresponds to the limit of the above function as S — 0
from above, namely a step function. The smoothness parameter has the dimensions of time and gives
a measure of the duration of the ‘transition region’. A dimensionless measure of the rapidity of change
across the region, a shape-like parameter, is given by J/S. Two jump sizes are considered here, J = 20
and J = 40, where o is the constant appearing in the definitions of Models I-111. For simplicity we set
o = 1in what follows. Data sequences are typically of length n = 2'* = 16384, with a level shift occurring
in the middle, so that L = n/2 as in Figure 1.

Summarizing, we consider Models I-TIT with the process W(t) being a standard FGN, and set m(?) =
T(t;J,5,n/2), with J € {2,4}, S = {0,40,300,1200}, and n = 2'*. Sample paths of these NS FGN
models are obtained by first generating a sample of standard FGN with a selected H (c; is then given
by 4), multiplying by ¢(t) and then adding m(¢). Figure 2 shows examples with J = 4 for Models T and
I, with H = 0.8 (implying c; ~ 0.28).
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show one standard deviation about the mean. The left (right) figure shows NS FGN’s constructed according to Model I
(resp. II).

III. THE ABRY-VEITCH JOINT ESTIMATOR

In [22], [20] a semi-parametric joint estimator of LRD in the frequency domain, i.e. of (H,¢), is
described based on the Discrete Wavelet Transform (DWT). We now summarize this approach and the

properties of the estimator.

A. Wavelets and the Dyadic Grid

The Wavelet transform can be understood as a more flexible form of a Fourier transform, where X (¢)

is transformed, not into a frequency domain, but into a time-scale wavelet domain (a,t), a € R, t € IR.

The sinusoidal functions of Fourier theory are replaced by wavelet basis functions 1, ;(u) = 1/)0(“;t)/\/5
generated by simple translations and dilations of the mother wavelet 1y, a band pass function with
limited spread in both time and frequency. The wavelet transform can thus be thought of as a method
of simultaneously observing a time series at a full range of different scales a, whilst retaining the time
dimension of the original data. Multiresolution analysis theory [7], [1] shows that no information is lost
if we sample the continuous wavelet coefficients at a sparse set of points in the time-scale plane known
as the dyadic grid, defined by (a,t) = (27,27k), j k € IN, leading to the Discrete Wavelet Transform
with discrete coefficients dx (j, k) known as details. By using the DWT very significant computational
advantages are gained, as the details can be computed by a fast pyramidal algorithm with complexity of
only O(n). In fact the computational load and memory requirements are so low that on-line, real-time
implementations are possible with inexpensive hardware [17]. Henceforth we deal exclusively with the
details of the DWT. The octave j is simply the base 2 logarithm of scale « = 27, and k plays the role
of time (although a time whose rate varies with j). For finite data of length n, j will vary from j = 1,

the finest scale in the data, up to some ja & log,(n). The number of coefficients available at octave j is



denoted by n;, and approximately halves with each increase of j.

B. The Logscale Diagram

The main feature of the wavelet approach which makes it so effective for the statistical analysis of
scaling phenomenon, such as LRD, is the fact that the dilation operations underlying the construction
of the wavelet basis themselves possess a scaling property, and therefore generate a matched ‘co-ordinate
system’ naturally suited to the study of such phenomena. The main practical outcome is that the LRD
in the time domain representation is reduced to residual short range correlation in the wavelet coefficient
plane {j, k}, thus removing entirely the special estimation difficulties. In fact for each fixed j, the detail
series dx(j,-) can be regarded as a stationary process with weak short range dependence, and across
scales the different series can be regarded as uncorrelated. To exploit these properties, averages are taken

across time at fixed j, to form
1 & ,
pi=— > ldx(j, k)" (13)
k=

The random variable u; is a non-parametric, unbiased estimator of the variance of the process dx(j, )
(the means of the details are zero), and can be thought of as a near-optimal way of concentrating the
gross second order behavior of X at octave j. Furthermore, the y; are themselves only weakly dependent,
so the analysis of each scale is largely decoupled from that at other scales. To analyze the second order
dependence of X (t) on scale therefore, we are naturally lead to study p; as a function of j. Since we
consider LRD to be essentially a power-law behavior of second order moments, this is naturally done in
a log-log plot, called the Logscale Diagram, examples of which appear throughout the paper, for example
in figure 4. Note that the vertical confidence intervals about each of the y; = log,(u;) increase with
J since, as already noted, n;11 = n;/2. (Note that in forming y; small corrective terms are in fact
subtracted from log,(u;) to account for the fact that IElog(-) # log(IE-).) Prior to any estimation long
range dependence must first be detected by observing, if present, regions of alignment in the Logscale
Diagram from some lower scale j; up to the largest scale in the data. For example in figure 4, taking the
confidence intervals into account, alignment is clearly present and j; is chosen to be 2. The alignment
is observed to continue to the largest scale present, j» = 9, consistent with the known LRD nature of
the synthesized data. Further discussion on the use of the Logscale Diagram and detailed issues which
cannot be entered into here can be found in [4], [22], [5], [3].

C. The Estimator

Assuming that a valid alignment has been detected between octaves j; and js, the Abry-Veitch joint
estimator of the LRD parameters (o, ¢ ) can then be used by performing a weighted linear regression over
the scales j € [j1,J2]. Exact expressions for the weights are available in terms of special functions [22],
however for moderate to large n; they are very well approximated by 2(log, €)?/n; at octave j. The slope
of the regression is simply the exponent «, and H is estimated as H= (14 @&)/2. The estimator é of ¢ is
related to the intercept of the regression: ¢ = p2% where @ is the intercept and p a known bias correction
factor (see [22] for details). The normalized form can be estimated using ¢; = ¢;/S* where 5? is the
unbiased sample variance estimator of the variance of X. It can be shown that this joint estimator, under
some additional technical hypotheses [22], [3], is unbiased and has very close to minimal variance, and
minimal variance in an asymptotic regime. It performs well under deviations from the said hypotheses,
and 1s close to unbiased in practice even for small length data, provided that j; and j; are appropriately
chosen. Note that the multiplication of X (¢) by a factor ¢ induces corresponding factors of o2 in ¢ and
¢, but does not affect H or ¢, nor their estimates. Further details of the wavelet based estimation of
H, and related issues concerning the wavelet based estimation of scaling exponents, can be found in [4],
22, 5, 2], [3].

An important flexibility inherent in the wavelet based analysis is the ability to freely choose a property

of the mother wavelet, the number N of vanishing moments [7]. This property has important implications



with respect to robustness to smooth additive trends [4]. More precisely, if p(¢) is a polynomial of order
s with s < N, then the details of X(t) = p(t) + W(t) will be the same as those of W(t), as wavelets
with N > s are ‘blind’ to such polynomials. The polluting polynomial does not have to be small in
magnitude, 1t can in fact be far larger than the random signal itself. In practice, estimation bias due
to the presence of deterministic ‘trends’ which are smooth, though not polynomial, can also be largely
eliminated [4], [3]. Such trends include sinusoidal, power-law decreasing, and even power-law increasing
functions (provided their exponent does not exceed that of the stochastic component). Discontinuous
‘trends’ however cannot be eliminated in this way, motivating us to study them here under Model 1.

Robustness under time varying variances has not yet been studied at all, motivating Models II and III.

IV. RoBUSTNESS TESTS

In this section we first investigate level changes in mean and variance separately — achieved by additive
and multiplicative transformations respectively — to determine the effect of each in isolation. We then
study each of the three traffic models proposed in Section II-C. As they are simply particular combinations
of level changes in mean and variance, they can be naturally understood by combining the individual
effects of the mean and variance transformations in the appropriate way. Other models not considered
here could also be understood using this approach, for examples mixed versions of Models I, IT and III,

such as that invoked in the analysis of the Ethernet data described later.

A. Robustness to Mean Level Changes

We begin by investigating the robust estimation of (H,¢) of a standard FGN to which a transition

function has been added, corresponding to an increase in mean with constant variance:
X (%) :T(t;J,S,n/Q)—I—W(t;H,gf). (14)

The results can be directly applied to Model I, and will be combined with the results of the next section
to study Models II and III. Note that for this model ¢; remains well defined, as the variance is constant.
We therefore include estimates for ¢; using the joint AV estimator [22], though the focus will remain on
H.

Apart from the work mentioned above where use is made of the vanishing moments of the wavelets,
previous work on the efficient detection of LRD and measurement of H in the presence of deterministic
non-stationarities in the mean includes that of Taqqu and Teverovsky [19]. In [19] modifications to
estimators of Whittle type allow LRD and two kinds of non-stationarities in the mean: levels changes
and decreasing power-law trends, to be distinguished. The wavelet-based approach outlined here 1s more
powerful as 1t allows for robust estimation without the need for a preliminary analysis to check for and to
determine the type of non-stationarity, and a wider range of non-stationarities are allowed. It also leads

to estimates where the bias due to the non-stationarities is lower.

A.1 Observations

We perform the AV estimation procedure as presented in Section 3 both on realizations of standard
FGN, and on those same realizations after transformation, and compare the two. As noted in [22],
although FGN has an almost ‘pure’ power-law spectrum, not all scales can be used due mainly to the
presence of initialization errors in the wavelet decomposition. The lower cutoff scale used in the estimation
is therefore set to j; = 2.

The estimates of H and ¢; presented in Tuble I are averages of AV estimates over 30 realizations,
and can be thought of as estimates of the expectation of the respective estimators. The 95% confidence
intervals noted in the table — measured in the NS case and known in the stationary case — indicate the
variance of the average estimates, and can therefore be used to compare the stationary and non-stationary
results. It 1s important to understand that, since the transformations are deterministic, in Table I we

are not so much interested in the statistical performance of the estimators, but rather the systematic
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change in the estimates induced by the nonlinear transformation of the data. Indeed the performance
before the transformation is already known for both H and ¢; and we have no need to study it here.
If we can understand the average effect of the transformation, then the statistical performance in the

non-stationary case will be able to be inferred from the known stationary results.

Stationary FGN Estimates NS FGN: Mean Shift

g |s |7 |u ér H ¢t
0.50 | 0 4.0 || 0.498 + 0.0032 | 0.9792 0.555 £ 0.0029 | 0.7743
2.0 0.521 £ 0.0029 | 0.8907
40 4.0 0.515 £ 0.0029 | 0.9096
2.0 0.505 £ 0.0028 | 0.9515
300 | 4.0 0.498 £ 0.0029 | 0.9782
2.0 0.498 £ 0.0029 | 0.9790
1200 | 4.0 0.498 £ 0.0029 | 0.9793
2.0 0.498 £ 0.0029 | 0.9793
0.80 | 0 4.0 || 0.799 + 0.0032 | 0.2716 0.811 £ 0.0035 | 0.2581
2.0 0.802 £ 0.0036 | 0.2679
40 4.0 0.801 £ 0.0036 | 0.2689
2.0 0.799 £ 0.0036 | 0.2710
300 | 4.0 0.799 £ 0.0036 | 0.2715
2.0 0.799 £ 0.0036 | 0.2716
1200 | 4.0 0.799 £ 0.0036 | 0.2716
2.0 0.799 £ 0.0036 | 0.2716

TABLE I

HURST PARAMETER ESTIMATES WITH j; = 2 BEFORE AND AFTER A MEAN CHANGE. EACH OF THE RESULTS H AND 6f ARE
THE AVERAGE OF 30 TESTS. IN ADDITION FOR H THE 95% CONFIDENCE INTERVALS ARE SHOWN, BASED ON THE KNOWN

PERFORMANCE OF THE ESTIMATOR FOR THE STATIONARY FGN AND THE VARIANCE OF THE 30 TESTS IN THE NS FGN caAsEs.

The first two result columns show the estimates of (H, ¢t) obtained for the original stationary FGN, to
be used as a control. The second column shows the NS FGN estimates after the mean level shift transfor-
mation. It is seen that, except in 5 cases, the NS estimates of H fall within the control confidence intervals
based on the stationary FGN. The exceptions: (H,S,J) = (0.5,0,2), (0.5,0,4), (0.5,40,2), (0.5,40,4), (0.8,0,4),
occur when the transition is sharp and the level shift large, and are more severe for low H. The changes
in the estimates for ¢; are also only notable for sharp, large shifts. Moreover, even in the most extreme
case the bias is ~ 10% — hence it is very unlikely that apparent strong evidence for LRD, such as a
measurement I/ > 0.6, is in fact due to non-stationarity in the mean. Furthermore, any non-stationarity
large and sharp enough to cause a 10% bias is easy to detect as the jump size is of the order of four times
the standard deviation of the process.

For a deeper understanding of these results we must examine the Logscale Diagrams of the data. The
deterministic changes caused by the addition of the transition function can be observed by superposing
in the same Logscale Diagram the results before and after the transformation, as shown in Figures 3 and
4 for two values of H. Again, averages of 30 realizations are given to show the systematic changes due to
the transformation. These average y; values can be taken to be valid estimates of the expectation of the
respective y;’s. The vertical 95% confidence intervals shown about the average NS y;’s correspond to a
single observation, and were calculated based on the 30 measurements of the NS y;’s.

We can see in Figure 3, where H = 0.8, that in most cases there 1s very little change between the mean
y;’s for the NS FGN and the stationary FGN. Hence the accuracy of the estimates of (H,¢). When

there is a large, sharp jump (for instance J = 4,5 = 0) there is a noticeable deviation at higher scales



11

from the values of y; for the stationary control. This leads to bias in the estimates, though it is limited
because the regression used to estimate (H, ¢f) from the y; is weighted, giving less weight to higher scales.
This corruption of the higher scale y;’s is more evident when the Hurst parameter is smaller. It is most
evident when H = 0.5 such as in figure Figure 4. In the following sub-section we explain the origin of

these effects.

T

T

T

T

T

6r *NS FGN: Mean Shift, J=2.0,S=0 1 6r *NS FGN: Mean Shift, J=4.0,S=0 1
0FGN: H = 0.80, 0° = 1.00 0FGN: H = 0.80, 0° = 1.00
4t ]
o
2r ]
or ]
0 10
Octave j Octave j
6 *NS FGN: Mean Shift, J =2.0, S =300 1 6F *NS FGN: Mean Shift, J =4.0, S = 300 1
0FGN: H = 0.80, 0° = 1.00 0FGN: H = 0.80, 0° = 1.00
4t ]
o
2r ]
or ]
0 2 4 6 8 10 0 2 4 6 8 10
Octave j Octave j
Fig. 3. Logscale Diagrams for a shift in the mean, H = 0.8. The (*) show the sample mean of the y; for 30 NS FGN, and
the squares show the sample mean for the original FGN realizations. The vertical lines show the one standard deviation
of the NS FGN results. The smoothness and jump size parameters are shown in the figures.
6r *NS FGN: Mean Shift, J=2.0,S=0 1 6r *NS FGN: Mean Shift, J=4.0,S=0 1
0FGN: H = 0.50, 0° = 1.00 0FGN: H = 0.50, 0° = 1.00
4t 1 4t 1
> >
2t 1 2t 1
(O 1 or o u] o 1
0 2 4 6 8 10 0 2 4 6 8 10
Octave j Octave j
6 *NS FGN: Mean Shift, J =2.0, S =300 1 6F *NS FGN: Mean Shift, J =4.0, S = 300 1
0FGN: H = 0.50, 0° = 1.00 0FGN: H = 0.50, 0° = 1.00
4t 1 4t 1
> >
2t 1 2t 1
or 1 or 1
0 2 4 6 8 10 0 10
Octave j Octave j
and

Fig. 4. Logscale Diagrams for a shift in the mean, H = 0.5. The (*) show the sample mean of the y; for the NS FGN,

the squares show the sample mean for the original FGN realizations. The vertical lines show the one standard deviation

of the NS FGN results. The smoothness and jump size parameters are shown in the figures.
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A.2 Explanations

Figure 5 shows the Logscale Diagrams of the transitions functions T'(¢; J,.S, L) defined in (12). These
are obtained exactly as if the process were stochastic, that is, the wavelet transform is performed, the
average squared coefficient at each octave is computed, and the y;’s are calculated by taking the log (after
removing the small logarithm generated bias term).

Observe that, just as for LRD processes, the y; are increasing with j, and are larger for larger J, and
smaller S. That is, the y; for a transition function increase when the level shift in the mean is larger
and sharper, and are approximately linear in j. Figure 5 also shows the Logscale Diagrams for a set of
realizations of standard FGN with H = 0.5,0.6,0.7,0.8 and 0.9.

smoothness =0 smoothness = 40

xH=0.8 H=0.8
H=0.7 H=0.7
£H=0.6 xH=0.6
¥H=0.5 2H=0.5
10 10
Octave | Octave j
smoothness = 300 smoothness = 1200
5 H=0.8 > H=08
H=0.7 H=0.7
H=0.6 H=0.6
ol H=0.5 orf H=0.5
H=0.9 H=0.9
=" _g : =" _g :
*x % J=1 * % J=1
¢ J=2 & J=2
-10t o0 o J=4 -10r |0 o J=4 .
x x FGN x x FGN Z;
-15 - - - - : -15 - - - - -
0 2 4 6 8 10 0 2 4 6 8 10

Octave | Octave j

Fig. 5. Logscale Diagram of the transition functions and stationary FGN processes. The sequences are 2'* data points
long. The *’s show the Logscale Diagram in the case with J = 1, while the &’s show the Logscale Diagram of the mean
rate with a jump J = 1, and the O’s show case with J = 4. The crosses show the Logscale Diagrams for a realization

of FGN with Hurst parameter shown, and 02 = 1 as in the previous examples.

Now the DWT is built from linear filters, and is therefore linear. Hence if we take M signals X;" and
pass them through the DW'T we get

&= 4" (15)

where d‘,i are the detail coefficients for the DWT of X (¢) = >~ X[*, and the d‘,i;m are the detail coefficients
for the DWT of X[*. Furthermore if the signals are independent then the estimates of p; = Zk(di)z/nj
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are also approximately linear, by the following argument:

2
1 N -
o = 2 () -1y (T
K k kg k m
1 N2 i g
SRR s R A

Now >, d‘i;md‘,ﬁm/nj for m # n converges to £ [dj?mdj?”], which is zero because the X[ are independent.

Hence as n; — oo
N2
po e S () = (19)
m k m

where 4" 1s the mean squared detail at scale j for the DW'T of series Xi™. Equation (16) gives the
linearity mentioned, valid in the limit of infinite data length.

In Model T two time sequences, one a LRD stochastic process W (t), and the other an arbitrary deter-
ministic mean rate m(t), are added, and hence the linearity discussed above is relevant. The sum DWT
of X(t) = m(t) + W(t), is used to give the coefficients uf, which we now know can be approximated
by pf =pui + /J}/V. Since, to obtain y]X, we essentially take the log of p;, 1f the ratio of pi" to /,L}/V is
large (resp. small), then the response of m(t) (resp. W (¢)) will dominate the result. Returning now to
the particular case of Model T where W (¢) is a standard FGN in the presence of a transition function,
in Figure 5 the sizes of the y; for both components of X (¢) appear in the same Logscale Diagram and
can be compared. It is seen that in most cases the coefficients for the FGN are significantly larger than
those for m(t) (note the log scale), the exception being that those for the transition function dominate
for large j when S = 0.

The conclusion is that, except for large j in the case of very abrupt jumps with large magnitude, the
FGN dominates the Logscale Diagram, and therefore we obtain accurate estimates of y;. The accuracy
of the estimates of I and ¢; clearly follows from that of the y;. However even when the upper scale
y;’s are inaccurate the resultant estimate for (H,¢;) is not strongly biased because, as noted above, the
weighted regression underlying the estimator places less weight on the higher scale data, as these have
naturally greater variability. The weights were not designed however to eliminate the corrupting effects
of non-stationarities, and are not the optimal way of doing so. An improvement would be to select an
upper cutoff scale based on some measure of the level of non-stationarity.

If the exact size and location of the jump were known, the above argument could be used to exactly
predict the scale j at which the Logscale Diagram switches from representing the self-similar phenomenon
to representing the non-stationary behavior. This could be used to predict the upper scale to be used
in the regression. In practice we might not know the exact nature of the jump, but the argument could
be used in an approximate sense in the selection of a mitigating upper cutoff. Alternatively a procedure
could be used to pick upper (and lower) scales to be used in the regression using heuristic arguments

based on how well the regression line fits the data.

B. Robustness to Variance Changes
We next consider the robust estimation of H of a standard FGN transformed by multiplication by a
transition function, corresponding to a level increase in variance at constant (zero) mean:

X(t)=T(t;J,9,n/2) - W(t; H,c;). (17)

Now that the variance of X is time varying, ¢; is no longer defined, though c; of course is. We repeat
that the study of the robustness of an estimator for ¢; will appear elsewhere, and we concentrate here
on H.
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B.1 Observations

Table 11 shows the effect of the level change in variance on the estimates of the Hurst parameter. The
results are again the average of 30 realizations. Note that the change in variance introduces only very

minor variation in the Hurst parameter estimates — we can conclude that no significant bias is introduced.

FGN NS FGN: Variance Shift

o |s |J & H
0.50 | 0 4.0 || 0.498 & 0.0032 | 0.497 £ 0.0034
2.0 0.498 + 0.0031
40 4.0 0.497 + 0.0033
2.0 0.498 + 0.0031
300 | 4.0 0.497 + 0.0032
2.0 0.498 + 0.0030
1200 | 4.0 0.498 + 0.0030
2.0 0.498 + 0.0029
0.80 |0 4.0 || 0.799 £ 0.0032 | 0.799 & 0.0051
2.0 0.799 £ 0.0047
40 4.0 0.799 + 0.0051
2.0 0.799 + 0.0046
300 | 4.0 0.799 + 0.0049
2.0 0.799 + 0.0045
1200 | 4.0 0.799 + 0.0046
2.0 0.799 + 0.0043

TABLE II

HURST PARAMETER ESTIMATES WITH j; = 2 BEFORE AND AFTER A VARIANCE CHANGE. EACH OF THE RESULTS IS THE
AVERAGE OF 30 TESTS. IN ADDITION 95% CONFIDENCE INTERVALS ARE SHOWN, BASED ON THE KNOWN PERFORMANCE OF

THE ESTIMATOR FOR THE STATIONARY FGN AND THE VARIANCE OF THE 30 TESTS IN THE NS FGN CASES.

B.2 Explanations

Consider the Logscale Diagrams shown in Figure 6. Each plot shows three superimposed Logscale
Diagrams, each of which displays averaged results over transformations of the same 30 realizations of an
underlying stationary FGN. The lower and upper rows of points correspond to the underlying FGN with
standard deviations matched to that of the NS FGN at time zero and at time n (the end of the data)
respectively. The NS FGN plot is the one lying between these two extremes.

The figures clearly display the main feature of a change in variance. FEach y; is shifted so that it lies
directly between the y; of the stationary process with the same variance as the initial (smallest) variance
of the NS FGN;, and the y; of the stationary process with the final (largest) variance of the NS FGN. The
effect is similar for the H = 0.5 case (space limitations prevent showing the plots here). This effect is to
be expected. The y-intercept of the Logscale Diagram for each of the stationary FGN’s is directly related
to ¢ (see Section ITI-C) and the variance of each process is proportional to its value of ¢; via (4). The NS
FGN variance function lies between the constant variances of the two stationary FGNs and therefore the
y; of the NS FGN curve should lie between the y; of the two extremes. The same conclusion follows from
the observation that the u; ~ 2%/, in both the stationary or non-stationary cases, is a measure of the
average energy in the data at scale j, and an increase in variance corresponds to an increase in energy.

A further, key observation is that the size of the shift is roughly the same for each j, that is the NS
FGN curve appears to be simply a shifted version of the stationary curves. The slope of the NS FGN
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0 2 4 6 8 10 0 2 4 6 8 10
. . Octave | . . Octave |
Fig. 6. Logscale Diagrams for a change in the variance, H = 0.8. The (*) show the sample mean of the y; for the NS

FGN, and the (O) and (o) show the sample mean of the y;’s for FGN processes with variance matched to that of the
NS FGN at time 0 and time n respectively. The vertical lines show the one standard deviation of the NS FGN results.

The smoothness and jump size parameters are shown in the figures.

curve 1s therefore almost the same as before the transformation, and therefore the estimate of H will be
essentially unchanged as observed above.

Again the explanation for this behavior lies in the linearity of the estimates. We consider the extreme
case — a jump shift discontinuity. The process can be decomposed into two process — one which is just a
stationary FGN, and a second, which is zero for the first half of the data sequence and a stationary FGN
for the second half. By linearity the p; for the original process will be y; = /{5»1) + /{5»2), where u‘g»l) and
ﬂ;z) are those for the stationary FGN and the FGN which starts half way through the data sequence.
The former is well understood (as it is just that for a stationary FGN) while the later will be those for

a stationary FGN of half the length of the original data — the zero terms will not contribute anything,
(1

and the edge effects can be assumed to be minimal in this context. Hence the final p; are given by p;

shifted by an amount such that in the Logscale plot the shift 1s almost constant.

C. Robustness for the Variable Traffic Models

In this section we discuss the three traffic models described in Section II-C. Recall that they have been
specialized in the following way: the LRD process W(t; H,c,) is taken to be a standard FGN, ¢ = 1,
and we set m(t) = T(t; J,S,n/2), with J € {2,4}, S = {0,40, 300,1200}, and n = 2**. Sample paths are
obtained by first generating a sample of standard FGN with a selected H, and then transforming it first
by a multiplication by &(t), followed by an addition of m(t). The linearity of the wavelet transform and
the approximate linearity of the y; discussed in Section IV-A.2 allow us to decompose each model into a
variance level shift, followed by a mean change. The discussion below is therefore based on the detailed

discussions of the two previous sub-sections.

C.1 Model I: Additional CBR sources
Model I, for which o(¢) = 1, is in fact exactly the same as the process described in Section IV-A where

the mean changes, but the variance remains constant, and has therefore already been considered in detail.
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C.2 Model II: Additional uncorrelated VBR, sources
Conceptually Model TI, for which a(t) = 1/m(t), describes an increase in the traffic rate due to the

introduction of uncorrelated VBR sources, each with the same LRD parameters H and c;. The result is
a change in the mean, and a change in the variance which is proportional to the mean.

Due to the approximate linearity, to a first approximation we expect that the lack of bias from the
variance shift, followed by the small bias due to a mean level shift, will combine to yield low bias
characteristics essentially the same as that of a mean level shift alone. This is indeed what we find, as
seen in Table Il where, just as in Table I, significant bias is found only in jumps which are both large
and sharp. Second order effects result in the overall bias being in fact lower in Model II. This is because
the shift induced by the change in variance has one beneficial side effect. The wavelet response to the
FGN process with non-stationary variance is shifted up, however the response to the transition function
defining m(¢) is not shifted, therefore the increase in the mean has less effect in the Logscale Diagram

and causes less bias in the estimate of H.

FGN NS FGN: Model IT | NS FGN: Model III
7[5 [J |7 7 7
0.50 | 0 4.0 || 0.498 0.526 £ 0.0037 0.506 £ 0.0043
2.0 4 0.0032 | 0.511 + 0.0033 0.500 £ 0.0040
40 4.0 0.506 + 0.0035 0.499 4+ 0.0037
2.0 0.502 + 0.0031 0.497 4+ 0.0038
300 | 4.0 0.498 + 0.0032 0.497 4+ 0.0035
2.0 0.498 + 0.0030 0.497 4+ 0.0035
1200 | 4.0 0.498 + 0.0030 0.496 4+ 0.0036
2.0 0.498 + 0.0029 0.497 4+ 0.0033
0.80 | 0 4.0 || 0.799 0.803 + 0.0049 0.799 4 0.0058
2.0 4 0.0032 | 0.800 + 0.0046 0.799 4 0.0054
40 4.0 0.799 =+ 0.0050 0.798 4+ 0.0057
2.0 0.799 + 0.0046 0.798 4+ 0.0054
300 | 4.0 0.799 + 0.0049 0.798 4+ 0.0056
2.0 0.799 + 0.0045 0.798 4+ 0.0053
1200 | 4.0 0.799 + 0.0046 0.798 4+ 0.0054
2.0 0.799 + 0.0043 0.798 4+ 0.0050

TABLE IIT

HURST PARAMETER ESTIMATES WITH j; = 2 FOR MODELS Il AND III. EACH OF THE RESULTS IS THE AVERAGE OF 30 TESTS.
IN ADDITION 95% CONFIDENCE INTERVALS ARE SHOWN, BASED ON THE KNOWN PERFORMANCE OF THE ESTIMATOR FOR THE

STATIONARY FGN AND THE VARIANCE OF THE 30 TESTS IN THE NS FGN CASES.

C.3 Model IIT: Additional correlated VBR sources
Conceptually Model 11, for which o(t) = m(t), describes an increase in the traffic rate due to the

introduction of correlated VBR sources, each with the same LRD parameters H and c;. The result is a
change in the mean, and a change in the variance which is proportional to the square of the mean.

The results are shown in Table I1I, and are similar to those of Model II. Despite the clear difference
between Models IT and III, in terms of the present robustness problem they are essentially described by
the same arguments. The level shift in the mean can be dealt with as before, while the change in the
variance results in a shift in the Logscale Diagram which has little or no effect on the Hurst parameter
estimate. In fact in this case the level shift is even larger, and therefore the bias introduced by the change

in the mean 1s even smaller.
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D. Sensitivity to Other Parameters

The previous sections have all used the same length sequences, and the same wavelet bases for the
purposes of comparison, but it is important to study the sensitivity of the results to sequence length
and to wavelet basis. This section presents the results of our tests, though space limitation prevent the

inclusion of the Logscale plots.

D.1 Sensitivity to data length

214 have been examined, however, one might suspect that the results

Until now data sequences of length
depended in some way on the sequence length. To study this we examined a sequence of 2'® data points.
The same transformations we performed, though the smoothness parameter was scaled by ' = Sn’/n in
order that the transition region takes up the same proportion of the total length of the data.

The primary effect of longer sequences is to increase the number of scales available for investigation. A
further effect is to reduce the variance of the estimates y; at each scale, providing more accurate estimates
in both the stationary and non-stationary cases.

However, there is an effect due to the transition function. The effect is primarily to extend the line
shown in Figure 5 to higher scales. This would lead to a serious introduction of bias into the results
except that there is also a downwards shift of this curve. The downwards shift occurs because there is a
larger region uneffected by the transition which no-longer contributes to the curve, even though there is
now more data supporting the LRD measurement. We find that overall the bias remains at a similar level
for this increase in sequence length leading us to the conclusion that our results are not highly sensitive
to the length of the data.

D.2 Sensitivity to wavelet basis

Throughout this paper we have used a single wavelet basis for the DW'T, namely the Daubechies
wavelet basis with N = 5 vanishing moments (and filter lengths of 10 taps). This section considers the
effect of changing the number of vanishing moments of the wavelet basis.

We examined the behviour both for the Daubechies wavelet basis with 3 vanishing moments is used
(with filters 6 taps long), and with N = 10 (filters 20 taps long). Apart from the differing edge effects,
which result in differences in the uppermost scale which can be measured, there 1s one noticeable effect.
When we have more vanishing moments in the wavelet basis the coefficients y; for the transition function
are lower. This is beneficial because it improves the performance of the estimator in the presence of
non-stationarity, but it comes at the cost of a reduction in the amount of data n; available at each scale,
resulting in additional variance in the estimation. It also results in extra computation due to the longer
filters which must be used.

This effect is predicted by the robustness with respect to N discussed in Section III-C. The level shift
used here can be approximated by a polynomial — the higher the degree the better the approximation.
Hence the more vanishing moments, the better the polynomial approximation, and the more of the
level shift which is removed by the DWT before estimation. Unfortunately the improvement gained
by increasing the number of vanishing moments in the Daubechies wavelet basis diminishes, and values
beyond N =5 seem to give little improvement (see [1] for more details of such effects). However, it may

be that other wavelet basis could have better properties in this regard and could be tested.

V. REAL DATA EXAMPLE

Of course when examining robustness a whole range of issues become important. The preceeding results
are based upon Fractional Gaussian Noise models; and the question arises, “How robust is AV estimator
when applied to real data, rather than just FGNI” This section demonstrates that the robustness of the
AV estimator extends to real data by testing an Ethernet data set with an obvious level shift in the
mean. The data is derived from the ‘pOct’ Bellcore trace [12]), and corresponds to byte counts in 10ms

intervals.
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The jump is clearly seen in Figure 7, where the data has been split into ten blocks and the sample
means and variances calculated independently over each. In the upper plot for the means, for comparison
purposes two confidences intervals are shown for each estimate, the larger (smaller) corresponding to
stationary LRD (resp. SRD) assumptions. The greater variability of LRD processes is dramatically
visible in the contrasting size of these intervals — the small SRD confidence intervals are almost invisible.
Note that the LRD based intervals required the estimation of (H, ¢f) over each block, and therefore vary
across the blocks. The small confidence intervals in the variance case are according to the incorrect SRD

assumptions only, as LRD alternatives are not available.
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Fig. 7. Transitions in mean and variance in pOct. The byte data is split into ten contiguous blocks and sample means
(top) and variances calculated. A level change is seen in each, with a common transition region. The horizontal solid
line gives the overall value for each series, with confidence interval to the far left. For the mean plot the larger (smaller)
confidence interval about each point corresponds to LRD (resp. SRD) assumptions. For the variance plot only SRD

confidence intervals are shown, and the dashed line gives the average of the ten variance values.

Figure 8 shows the data averaged over finer intervals (10 seconds) for easier visualisation. The data
shows a distinct level shift in mean at about 1050 seconds, and the mean estimates to the left and right of
the transition region are 2.40 and 4.14 respectively, where the exact intervals of measurements are shown
in Figure 8(a). The variance also increases as a level shift with the jump in the same region, going from
7.3 to 9.5 as measured over the same intervals. The mean therefore jumps by J = 1.73 and the variance
by a multiplicative factor of J = 1.3, properties consistent with a mixture of Models I and II, that is a
mixture of CBR and VBR sources.

It has already been shown in [4] that Hurst parameter estimates using the AV estimator effected to
the right and the left of the level shift agree both with each other, and with the estimate made over the
whole data set. The work in [4] does not, however, fully explain how to reconcile the observed constancy
of the wavelet estimates of H, with the non-stationarity in the mean. It 1s now possible to recognize
that H may remain constant regardless of the non-stationarity in mean and variance, and explain the
AV estimator’s robustness in the presence of this non-stationarity.

In addition, the availability of the model allows us to meaningfully transform the data to remove the
non-stationarity, and measure the Hurst parameter under stationary conditions for further comparison.
The results are shown in Table IV where it is clear that no noticable error has been introduced by the
non-stationarity. No attempt is made to measure ¢; as it is not defined in Model III, and once again,
although well defined we do not consider the second parameter ¢, in this paper.

We now provide a description of how the mean level shift is removed. The key point here is that
we wish to show robustness, not absolute accuracy, and hence a simple method for modelling the level
shift is quite sufficient. One of the transition functions 7'(¢) is used, calibrated by first estimating the

mean at the beginning of the data over a range shown in Figure 8(a), and then the parameters of the
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H 95% C1
original data 0.779 | £ 0.0072
corrected data 0.779 | £ 0.0072

data interval (150,950) 0.769 | £ 0.0108
data interval (1170,1750) | 0.779 | £+ 0.0128

TABLE IV

THE HURST PARAMETER ESTIMATES FOR THE ORIGINAL DATA, THE DATA ONCE THE NON-STATIONARITY IN THE MEAN IS

REMOVED, AND THE DATA ON THE TWO INDICATED TIME INTERVALS (TIMES ARE GIVEN IN SECONDS).

transition function: the transition point, jump size and smoothness. We do this using Matlab’s non-
linear minimisation function fmins which performs the Nelder-Mead simplex search described in [15],
[11]. Figure 8(b) shows the fitted transition function superimposed over the data. Figure 8(c) shows
the data with the transition function subtracted, yielding an approximately zero-mean data sequence. A
second transformation would be the next step to normalise the variance also and obtain an approximately
stationary data sequence, the ‘W (t)’, however we do not do this as we know that the effect on the estimate
is negligible. This 1s especially true since the model 1s intermediate to that of Model I and II, and Model 1
has constant variance.

Finally Figure & shows the Logscale Diagrams for the original data and the corrected data. We can
see that the two Logscale Diagrams are almost exactly the same except for a small discrepancy at higher
scales. This discrepency has no noticable effect on the Hurst parameter estimate because of the weighted
regression which gives less weight to the higher scales. The figure also shows the log-scale response to
the transition function used to model the change in mean. The response is significantly lower than that
of the data sequence and hence the transition has little effect on the estimates. The ability to quantify

this smaller response is the additional insight into the robustness that modelling the shift allows.

VI. MITIGATION

As mentioned previously the effects of a mean level shift appear in the higher scales of the Logscale
Diagram. They could therefore be almost completely eliminated by choosing an upper scale j» for the
regression analysis (which underlies the estimation of (H,¢) from the Logscale Diagram) which is not
the largest available, but something smaller. By taking j, = 6 for example the bias 1s almost completely
removed. Even in the worst case of S = 0 and J = 4.0, the average results for H after transformation
are 0.509 &+ 0.0035 compared to the average over the 30 stationary FGN’s which yield 0.497 4 0.0038, a
bias of only 0.01.

VII. CONCLUSION

Our main finding is that the wavelet based estimator of LRD of Abry and Veitch [22], [20] has robustness
properties which allow good estimates to be made of the Hurst parameter, despite non-stationarities which
may be present in the mean and variance, specifically level shifts. We illustrate this robustness, explain
its origin, and indicate when the residual bias due to the non-stationarities may be appreciable and how
it can be minimized.

As an essential precursor to the robustness study, a broad class of non-stationary LRD processes were
defined. They allow a well defined separation of the mean and variance, which are allowed to be time
varying, from the time constant parameters, including the LRD parameters, which remain well defined
despite the non-stationarity.

Because of the many ways in which non-stationarity and LRD can be confused, and render parameter
estimation mutually problematic, it is particularly important to have robust estimators so that 1t is not

necessary to know the full details of the structure of the traffic before valid estimation of vital parameters,
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such as H, can take place. Although the focus was on level shifts in mean and variance in this paper,
this represents in some senses a worst case, and we expect that the robustness found will hold for a very
wide range of non-stationarities. This has already been shown in the case of the mean (additive trend)
in [4]. Thus, provided that a model such as (7) holds for the data in question, the AV estimator allows
the Hurst parameter to be measured, and in particular the question of the presence or absence of LRD
decided, without any need to tackle in advance or simultaneously the difficult stationary issue. This 1s
an enormous practical advantage. Once it is known that LRD is or is not present, then analysis of any
non-stationarities can be tackled in a far more informed way.

Three sub-classes of non-stationary LRD processes were highlighted as meaningful, idealised traffic
models. Each corresponds to a level shift in the number of new sources being added to an underlying
stationary LRD source, but where the new sources vary according to: Model I: CBR or aggregated short
range dependent sources, Model II: uncorrelated LRD sources modelling VBR traffic, and Model III:
highly correlated LRD sources. An Ethernet data set was studied where clear correlated level shift
stationarities were found in the mean and variance corresponding to an case intermediate to Models 1

and II. The non-stationary LRD model was used to explain the time variation of the data, and the



21

robustness of the wavelet based estimator was used to measure its Hurst parameter, confirming previous

work in [4] which had observed the robustness for this same data set without a full explanation.

The optimal estimation of the time varying parameters of the models, and the interesting issue of

models where the Hurst parameter itself varies in time [13], were not addressed here.
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