
1Measuring Long-Range Dependence under Changing TrafficConditionsMatthew Roughan Darryl VeitchSoftware Engineering Research CentreLevel 2, 723 Swanston St, Carlton, Vic 3053, Australiaemail: fmatt,darrylg@serc.rmit.edu.auAbstract: Recent measurements of various types of network tra�c have shown evidence consistent with long-rangedependence and self-similarity. However, an alternative explanation for these measurements is non-stationarity in the data.Standard estimators of LRD parameters such as the Hurst parameterH assume stationarity and are susceptible to bias whenthis assumption does not hold. Hence LRD may be indicated by these estimators when none is present, or alternatively LRDtaken to be non-stationarity. The recently developed Abry-Veitch (AV) joint estimator has much better properties when atime-series is non-stationary. In particular the e�ect of polynomial trends in data may be intrinsically eliminated from theestimates of LRD parameters. This paper investigates the behavior of the AV estimator when there are non-stationaritiesin the form of a level shift in the mean and/or the variance of a process. We examine cases where the change occurs bothgradually or as a single jump discontinuity, and also examine the e�ect of the size of the shift. In particular we showthat although a jump discontinuity may cause bias in the estimates of the H, the bias is negligible except when the jumpis sharp, and large compared with the standard deviation of the process. We explain these e�ects and suggest how anyintroduced errors might be minimized. We de�ne a broad class of non-stationary LRD processes so that LRD remains wellde�ned under time varying mean and variance, and show how three subclasses correspond to meaningful models of tra�crate under changing tra�c conditions. The results are tested by applying the estimator to a real data set which contains aclear non-stationary event falling within this class.I. IntroductionIn the last few years the discovery of the self-similar nature of many kinds of packet tra�c [12], [16]has inspired a small revolution in the way that high-speed tra�c is viewed. Although no single modelis accepted as de�nitive, the Hurst parameter H, which describes the degree of self-similarity, holds acentral place in the description of such tra�c. Its accurate measurement is therefore of considerableimportance for the provision of quality of service as well as for capacity planning.The vast existing literature on tra�c modeling, and indeed on tele-tra�c performance analysis ingeneral, is overwhelmingly dominated by stationary models. However, there are good reasons to supposethat tra�c conditions do change; for example the concept of a busy hour is important both in voice anddata networks. Although the discovery of self-similarity in packet tra�c has led to a much wider rangeof tra�c models, they have nonetheless remained in the stationary world.In many tra�c situations the changing conditions or non-stationarity can be safely ignored because,over the time scales of interest, they have little e�ect { the process may be well approximated by astationary model. However scaling properties such as self-similarity and Long-Range Dependence (LRD)are inherently de�ned over a range of scales, which may well encompass periods where stationarity isa poor approximation. In this event, the question arises as to whether LRD is well de�ned, and if so,how to estimate its parameters accurately. Standard approaches { for example the R/S plot and Whittleestimators { may be inaccurate to the point of indicating LRD exists when in fact it does not [14], [19].This failure of standard estimators has led some to question the extensive body of data demonstratingLRD and self-similarity in data tra�c. Furthermore the very nature of LRD processes can cause confusion{ the long term correlations cause apparent trends, encouraging the erroneous conclusion that the datais non-stationary.The di�culties of distinguishing LRD and non-stationarity are not avoided by measuring other featuresof the data. Even the perennial sample mean is far more variable for LRD processes, so a test for non-stationarity based on observations of the sample mean under Short Range Dependent (SRD) assumptions



2would give incorrect conclusions if the process is, in fact, LRD. However a test for stationarity of the meanunder LRD assumptions requires a reliable estimate of the parameters of LRD! Hence it is important tobe able to measure LRD meaningfully and accurately without a priori knowledge of whether or not adata set is non-stationary, or the exact form a non-stationary may take.We present a set of tests of the Abry-Veitch (AV) joint estimator for the parameters of LRD [22], [20],and demonstrate that it is robust to a broad class of non-stationary behavior; that is, the AV estimatorremains accurate even when the assumption of stationarity upon which it was originally based is invalid.We explain the reasons for its robustness, and thence determine its limitations, and suggest methods formitigating any residual bias.We take care to de�ne, in Section II, a class of non-stationary processes where the LRD property iswell de�ned. For processes within this class the mean and/or variance are allowed to change in arbitraryways whilst the parameters of LRD, including the Hurst parameter, remain well de�ned and constant.In previous papers the AV estimator has been shown to be robust to polynomial trends in the mean [4].In this paper we focus on the case where the mean undergoes a level shift, one of the simplest waysto produce a large bias in estimators of the Hurst parameter, and go further to consider level shifts invariance also, and combinations of shifts in both mean and variance.We show the utility of the non-stationary class of LRD processes through three subclasses whichcorrespond to meaningful models of tra�c rate under changing tra�c conditions. In each model thevarying conditions can be thought of as a time varying number of stationary sources in a superpositionwhich contains at least one stationary LRD source. In Model I the tra�c changes due to the introductionof new constant bit rate (CBR) sources, in Model II due to variable bit rate (VBR) sources uncorrelatedwith but of the same type as the existing sources, and in Model III again new VBR sources of the sametype are introduced, but ones which are strongly correlated with the existing tra�c. In each model wefocus on level shift non-stationarities which can be thought of as a level shift in the number of sources,which reduces to a combination of level shifts in mean and/or variance. In the context of these tra�cmodels, the measurement of the Hurst parameter corresponds to measuring the `stationary part' of thetra�c under non-stationary conditions. The AV estimator allows this to be achieved robustly.We describe the AV estimator in Section III, and in Sections IV its robustness is veri�ed throughsimulation and well substantiated arguments. The major result is that the AV estimator for H remainsunbiased except in the case of jumps in the mean which are both large and sharp, where small biases(<� 0:05) can be introduced. The sensitivity of the results to other parameters of the analysis such asthe wavelet basis, and sequence length, are also discussed.In addition to simulations we examine a real Ethernet dataset in Section V which appears to containa non-stationarity well described by a mixture of Models I and II. We show that the robustness propertyholds for this data set, simultaneously verifying the robustness of the AV estimator for real data, and theconclusion that Ethernet tra�c is consistent with a non-stationary LRD model.The non-stationary LRD tra�c models and robustness results presented here lend credence to recentstudies such as [8], [10], [9], [4], [22] and [17] which use the AV estimator to demonstrate LRD in datatra�c, and to the study of LRD in tra�c in general. Furthermore, this study adds to the list of bene�tsof using the AV estimator, which already includes a run time complexity of only O(n), negligible bias,statistical e�ciency [22], the ability to be performed in real time [17], joint estimation of LRD parametersother than just the Hurst parameter [22], [3], [20], known con�dence intervals for estimates [22], [4], [2],and the possibility of performing a test of the constancy of H and other scaling exponents [21].II. The Traffic ModelsA. PreliminariesIn this paper we deal with second order tra�c modeling, that is Gaussian models, where the auto-covariance function and the mean specify the properties of the model completely. In general terms the



3results of the paper are also valid for non-Gaussian processes, however in that case the second orderstatistics, which we concentrate on here, are not su�cient to specify the processes fully. The models willbe de�ned in discrete time, corresponding to the discrete nature of time series obtained from real data.We de�ne the mean of a process X(t) to be the expectation mX (t) = IE[X(t)], and its variance as�2X (t) = IE[(X(t) � mX (t))2]. The autocovariance of the process is given by RX(t; s) = IE[(X(t) �mX (t))(X(s) �mX (s))], and the autocorrelation is the normalized form �X (t; s) = RX(t; s)=�X (t)�X(s).If X is stationary then the mean and variance are constants denoted by mX and �2X respectively, andthe autocovariance and autocorrelation are functions of the lag k = jt� sj only, which for uniformity ofnotation we denote by RX(k) and �X (k) = RX(k)=�2X respectively. In the stationary case the FourierTransform of RX is known as the spectral density of X and we denote it by fX .Long Range Dependence is commonly de�ned by the slow, power-law decrease in the autocovariancefunction of a second order stationary process for large lags: RX(k) � crjkj�(1��), k ! 1, � 2 (0; 1),or equivalently as the power-law divergence at the origin of its spectrum: fX(�) � cf j�j��, j�j ! 0,([6], p.160). The power-law decay is such that the sum of all correlations downstream from any giventime instant is always appreciable, even if individually the correlations are small. The past thereforeexerts a long term in
uence on the future, exaggerating the impact of tra�c variability and renderingstatistical estimation problematic. The main parameter of LRD is the dimensionless scaling exponent �.It describes the qualitative nature of scaling { how behavior on di�erent scales is related. The secondparameter, cr or cf , is a quantitative parameter which gives a measure of the magnitude of LRD inducede�ects. The time and frequency domain alternatives are related as cf = 2(2�)��c
�(�) sin((1 � �)�=2),where � is the Gamma function (note that this relation di�ers from that in [6], see [22] for details).As an example of the role and importance of each parameter, consider the statistical behavior of thesample mean estimator of the mean of a stationary process X(t) with data of length n. The classicalresult is that asymptotically for large n the sample mean follows a normal distribution, with expectationequal to mX , and variance �2X=n. In the case where X is LRD the sample mean is also asymptoticallynormally distributed with mean mX , however the variance is given by 2crn�(1+�)� � 1n [6]. Note that both crand � appear in this expression, but the variance does not. Note also that the variance in the LRD caseshrinks at a slower rate with n than in the classical case, so that for large n the con�dence intervals willbe far larger than classical theory would predict. A graphic example of this is given in Section V whichexamines a real data set.Although LRD is typically de�ned in relation to the autocovariance function, an entirely equivalentde�nition could be made in terms of the autocorrelation function:�W (k) � crjkj�(1��); k !1 � 2 (0; 1); (1)where the dimensionless constant cr � cr=�2X has replaced cr , which has the dimensions of variance.We adopt this normalized way of de�ning LRD, as it is central to our generalization to non-stationaryLRD models. Note that both cr , and the frequency domain equivalent cf , take values in (0; 1). Secondorder stationary processes which are not LRD are called Short Range Dependent (SRD), correspondingto � = 0.It is common practice to describe LRD through the Hurst parameter H = (1+�)=2, though in fact His the parameter of self-similarity and is properly used to describe only self-similar processes, which arenon-stationary. The connection to LRD is that if a process Y (with �nite second moments) is self-similarwith parameter H 2 (0; 1), then its increment process X(t) = Y (s + t)� Y (s) is LRD with � = 2H � 1.We follow this convention in the remainder of the paper of writing H instead of �.For simulation purposes sample paths of Fractional Gaussian Noise (FGN) are generated using astandard spectral technique. The FGN Z(t) is a well known canonical Gaussian LRD process whichis the increment process of the Fractional Brownian Motion, a H-self-similar process. The FGN hasautocorrelation function �Z(k) = 12�jk + 1j2H � 2k2H + jk � 1j2H�; (2)



4for k � 0. Note that if H = 12 then �Z(k) = 0 for all k � 1, corresponding to white noise, but whenH 6= 12 �Z(k) � H(2H � 1)k2H�2 ; k !1; (3)identifying cr as cr = H(2H � 1). The identity given above yields the following useful relation betweenthe variance of a FGN and its value of cf :cf = �2Z � 2(2�)1�2HH(2H � 1)�(2H � 1) sin(�(1�H)); (4)In this paper, in both theoretical and simulation contexts, by FGN we refer to FGN with �Z = 1, the socalled standard FGN. The fact that �Z for the FGN is a parametric function of a single parameter H,so that cr and cf are no longer independent variables, does not impair the generality of our conclusions.Although the two parameters of LRD are rigidly linked for FGN, we will not use this fact but will estimatethem as if they were independent, just as for real data. Further details on the FGN process can be foundin [6], [18].B. A Stationary Class of LRD ModelsStationary models dominate tra�c modeling, and performance analysis in general. Even those studiesconcentrating on transient behavior are typically de�ned in relation to a stationary regime toward whichthe transient behavior tends. There are good reasons for this. A priori physical reasoning would indicatethat, over reasonable time scales and allowing for diurnal variation, that the demand for network resourcesshould be roughly constant, and therefore that the resulting tra�c 
ow will be also. This idea of randomvariations overlaying essentially constant conditions is formalized in the traditional choice of stationarystochastic processes to model key quantities, such as the rate of incoming tra�c. More formally, astochastic process X(t) is stationary if, for each m, the m dimensional joint distribution of fX(t1 +� ); X(t2 + � ); : : : ; X(tm + � )g is independent of � for any set of m times ft1; t2; : : : ; tmg. In other words,stationarity is simply the time-origin invariance of the underlying probabilistic laws governing the process.As stated earlier, the mean, variance and autocorrelation of a Gaussian process are su�cient to com-pletely describe it. Thus, completely generally, a stationary Gaussian model for the tra�c rate X(t) canbe expressed as two simple transformations of a stationary Gaussian process W (t) with zero mean andunit variance. Namely the variance of the normalized W (t) may be changed by multiplication, and themean changed by addition, yielding X(t;m;�;�W ) = m+ �W (t)where m and � are positive constants. The above parametrisation separates out the location parametermX = m, and the scale parameter �X = � of the process, from the shape parameter, which is therole played by the entire, as yet unspeci�ed, autocorrelation function �X (k) = �W (k) = RW (k) =IE[W (t+ k)W (t)]. The autocovariance of X is just RX(k) = �2�W (k).We now partially specify �X by requiring that X be LRD, that is, we assume that it obeys (1). A fourparameter semi-parametric class of LRD tra�c models can therefore be de�ned asX(t;m;�;H; cr) = m + �W (t;H; cr) (5)where mX = m�2X = �2 (6)RX(k) = �2�W (k;H; cr)�X (k) = �W (k;H; cr)This class is semi-parametric because only the asymptotic behavior of RX(k) has been �xed, not theentire function. The class is the foundation of the non-stationary models to be constructed in the nextsection.



5C. A Non-Stationary Class of LRD modelsDespite the dominance of stationary modeling, it is well known that tra�c conditions do change, andnot just over very large time scales. Stationary models, even fractal ones, are not always adequate. It isdi�cult however to move to non-stationary paradigms, as there are so many kinds of non-stationarity,and which ones are most appropriate involves many unanswered empirical issues. For example whichproperties of variable tra�c can be classi�ed as varying and which as constant? What is the meaningof a parameter such as the mean, the expression of stationarity par excellence, when it is allowed tovary, and what time varying forms does it take? In this section we present a class of non-stationaryLong Range Dependent models (NS LRD), where long range dependent processes are generalized to allownon-stationarities of certain well de�ned kinds. More speci�cally, we begin with a stationary LRD model,and de�ne a class of non-stationary variations by transforming it to induce a change in the mean and/orvariance, whilst the parameters measuring the LRD, including H, remain well de�ned and constant. Inthis way some time-varying properties are allowed, and are well de�ned, but important features of theoriginal stationary model remain, and remain well de�ned also. After having de�ned a general class ofprocesses where the idea of non-stationary LRD makes sense, we then identify three sub-classes withparticular meaning as models for tra�c.A class of non-stationary LRD models for the tra�c rate X(t) is again given by transformation of themean zero, unit variance LRD W (t;H; cr), resulting inX(t;m;�;H; cr) = m(t) + �(t)W (t;H; cr) (7)where m(t) and �(t) are positive functions of time. Comparing with equation (5), we see that the locationand scale parameters have become time varying, but the shape function �W , and its associated parameters(H; cr), do not change. In fact mX (t) = m(t)�2X (t) = �2(t)RX(t; s) = �(t)�(s)�W (t� s;H; cr) (8)�X (t; s) = �W (t� s;H; cr) � �W (k;H; cr):Thus, although the autocovariance function is no longer a function of the lag only, the autocorrelationfunction retains this property despite the non-stationarities in location and scale. Since we have useda de�nition of LRD based on such an autocorrelation function, it remains well de�ned, and gives aprecise meaning to the notion of non-stationary LRD models, where the LRD parameters (H; cr) retaintheir physical meanings, and remain constant. Thus, in this framework the estimation of (H; cr) hasthe meaning of measuring (part of) the `stationary part' of the non-stationary tra�c model. In thispaper we concentrate on the robust estimation of H. Although the estimation of cr (via ĉf ) in thenormal stationary context is well understood ([22], [20]), and that of cr is a straightforward extension,the estimation of cr in the non-stationary context is more di�cult and will be studied elsewhere.The tra�c model of equation (7) is a very general one. The empirical and modeling question of centralimportance is, assuming that equation (7) holds, what are the forms of m(t) and �(t)? In order tobe useful, simple forms with physical meaning must be found. Before choosing speci�c forms for m(t)and �(t), we discuss three di�erent canonical scenarios, each of which are expected to apply in di�erentsimpli�ed tra�c situations. In each case, intuitively the function m(t) plays the role of a local mean,and is to be understood as the time variation of the number of sources in the superposition. The modelsdi�er in the way in which the local variance �2(t) is linked to the local mean m(t).� Model I: Varying level of deterministic or CBR tra�c.X(1)(t) = m(t) + �W (t): (9)



6The variation of m(t) can be understood as due to a time varying deterministic tra�c component, forinstance from a varying number of CBR sources, superposed onto a (possibly aggregate) LRD source.The variance therefore remains constant. Aggregated SRD sources could also be treated this way, as theyare close to deterministic compared to LRD sources.� Model II: Varying numbers of uncorrelated LRD (modeling VBR) sources.X(2)(t) = m(t) + �pm(t)W (t): (10)Here we imagine that a time varying number of independent, identically distributed VBR sources aresuperposed. At a �xed time t, the marginal distributions of the tra�c has mean and variance proportionalto the number of sources which are active.� Model III: Varying numbers of correlated LRD (modeling VBR) sources.X(3)(t) = m(t) + �m(t)W (t): (11)Again we imagine that a time varying number of identically distributed sources are involved in thesuperposition, but now we assume perfect correlation between them, leading to a variance proportionalto the square of the number of sources.Clearly additional models could be de�ned to take into account more heterogeneous mixtures of CBRand VBR sources, both correlated and un-correlated. An example is given later of an Ethernet tracewhich convincingly follows a mixture of Models I and II.D. Level Shift Non-StationaritiesFor the remainder of the paper we work within the context of a particular form of m(t) and �(t),namely that of level shifts. By this we mean a monotone transition from one constant level to another,with a smoothness parameter specifying the abruptness of the transition. The motivation for this istwo-fold. First, by studying such changes of level, we consider a conceptually simple yet quite extremeform of non-stationarity which is also physically meaningful. Second, as discussed in more detail below,it has already been shown [4] how polynomial trends and trends well approximated by polynomialsare eliminated using a wavelet based estimator. Discontinuous changes on the other hand are poorlyapproximated by polynomials and require a separate treatment.The level shifts are de�ned using the following family of transition functions:T (t; J; S; L) = 1+ J2 + J� arctan�t � LS � ; (12)where J 2 IR is the size of the level shift, S � 0 is a smoothness parameter, and L 2 IR is a locationparameter. The transition is made from a level of 1 to 1 + J . In Figure 1 four members of the familyare illustrated with smoothness values S = f0; 40; 300;1200g, each with J = 1 and L = 8192. Thesame smoothness values are used in simulations, although for space reasons typically only results forS = f0; 300g will be shown. The case S = 0 corresponds to the limit of the above function as S ! 0from above, namely a step function. The smoothness parameter has the dimensions of time and givesa measure of the duration of the `transition region'. A dimensionless measure of the rapidity of changeacross the region, a shape-like parameter, is given by J=S. Two jump sizes are considered here, J = 2�and J = 4�, where � is the constant appearing in the de�nitions of Models I{III. For simplicity we set� = 1 in what follows. Data sequences are typically of length n = 214 = 16384, with a level shift occurringin the middle, so that L = n=2 as in Figure 1.Summarizing, we consider Models I{III with the process W (t) being a standard FGN, and set m(t) =T (t; J; S; n=2), with J 2 f2; 4g, S = f0; 40; 300;1200g, and n = 214. Sample paths of these NS FGNmodels are obtained by �rst generating a sample of standard FGN with a selected H (cf is then givenby 4), multiplying by �(t) and then adding m(t). Figure 2 shows examples with J = 4 for Models I andII, with H = 0:8 (implying cf � 0:28).
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smoothness = 1200Fig. 2. Non-stationary FGN (parameters shown on each subplot). The white lines show the mean, while the dashed linesshow one standard deviation about the mean. The left (right) �gure shows NS FGN's constructed according to Model I(resp. II). III. The Abry-Veitch Joint EstimatorIn [22], [20] a semi-parametric joint estimator of LRD in the frequency domain, i.e. of (H; cf ), isdescribed based on the Discrete Wavelet Transform (DWT). We now summarize this approach and theproperties of the estimator.A. Wavelets and the Dyadic GridThe Wavelet transform can be understood as a more 
exible form of a Fourier transform, where X(t)is transformed, not into a frequency domain, but into a time-scale wavelet domain (a; t), a 2 IR+, t 2 IR.The sinusoidal functions of Fourier theory are replaced by wavelet basis functions  a;t(u) �  0(u�ta )=pagenerated by simple translations and dilations of the mother wavelet  0, a band pass function withlimited spread in both time and frequency. The wavelet transform can thus be thought of as a methodof simultaneously observing a time series at a full range of di�erent scales a, whilst retaining the timedimension of the original data. Multiresolution analysis theory [7], [1] shows that no information is lostif we sample the continuous wavelet coe�cients at a sparse set of points in the time-scale plane knownas the dyadic grid, de�ned by (a; t) = (2j; 2jk), j; k 2 IN , leading to the Discrete Wavelet Transformwith discrete coe�cients dX(j; k) known as details. By using the DWT very signi�cant computationaladvantages are gained, as the details can be computed by a fast pyramidal algorithm with complexity ofonly O(n). In fact the computational load and memory requirements are so low that on-line, real-timeimplementations are possible with inexpensive hardware [17]. Henceforth we deal exclusively with thedetails of the DWT. The octave j is simply the base 2 logarithm of scale a = 2j, and k plays the roleof time (although a time whose rate varies with j). For �nite data of length n, j will vary from j = 1,the �nest scale in the data, up to some j2 � log2(n). The number of coe�cients available at octave j is



8denoted by nj , and approximately halves with each increase of j.B. The Logscale DiagramThe main feature of the wavelet approach which makes it so e�ective for the statistical analysis ofscaling phenomenon, such as LRD, is the fact that the dilation operations underlying the constructionof the wavelet basis themselves possess a scaling property, and therefore generate a matched `co-ordinatesystem' naturally suited to the study of such phenomena. The main practical outcome is that the LRDin the time domain representation is reduced to residual short range correlation in the wavelet coe�cientplane fj; kg, thus removing entirely the special estimation di�culties. In fact for each �xed j, the detailseries dX(j; �) can be regarded as a stationary process with weak short range dependence, and acrossscales the di�erent series can be regarded as uncorrelated. To exploit these properties, averages are takenacross time at �xed j, to form �j = 1nj njXk=1 jdX(j; k)j2: (13)The random variable �j is a non-parametric, unbiased estimator of the variance of the process dX(j; �)(the means of the details are zero), and can be thought of as a near-optimal way of concentrating thegross second order behavior of X at octave j. Furthermore, the �j are themselves only weakly dependent,so the analysis of each scale is largely decoupled from that at other scales. To analyze the second orderdependence of X(t) on scale therefore, we are naturally lead to study �j as a function of j. Since weconsider LRD to be essentially a power-law behavior of second order moments, this is naturally done ina log-log plot, called the Logscale Diagram, examples of which appear throughout the paper, for examplein �gure 4. Note that the vertical con�dence intervals about each of the yj = log2(�j) increase withj since, as already noted, nj+1 = nj=2. (Note that in forming yj small corrective terms are in factsubtracted from log2(�j) to account for the fact that IE log(�) 6= log(IE�).) Prior to any estimation longrange dependence must �rst be detected by observing, if present, regions of alignment in the LogscaleDiagram from some lower scale j1 up to the largest scale in the data. For example in �gure 4, taking thecon�dence intervals into account, alignment is clearly present and j1 is chosen to be 2. The alignmentis observed to continue to the largest scale present, j2 = 9, consistent with the known LRD nature ofthe synthesized data. Further discussion on the use of the Logscale Diagram and detailed issues whichcannot be entered into here can be found in [4], [22], [5], [3].C. The EstimatorAssuming that a valid alignment has been detected between octaves j1 and j2, the Abry-Veitch jointestimator of the LRD parameters (�; cf ) can then be used by performing a weighted linear regression overthe scales j 2 [j1; j2]. Exact expressions for the weights are available in terms of special functions [22],however for moderate to large nj they are very well approximated by 2(log2 e)2=nj at octave j. The slopeof the regression is simply the exponent �, and H is estimated as Ĥ = (1+ �̂)=2. The estimator ĉf of cf isrelated to the intercept of the regression: ĉf = p2â where â is the intercept and p a known bias correctionfactor (see [22] for details). The normalized form can be estimated using ĉf = ĉf=S2 where S2 is theunbiased sample variance estimator of the variance of X. It can be shown that this joint estimator, undersome additional technical hypotheses [22], [3], is unbiased and has very close to minimal variance, andminimal variance in an asymptotic regime. It performs well under deviations from the said hypotheses,and is close to unbiased in practice even for small length data, provided that j1 and j2 are appropriatelychosen. Note that the multiplication of X(t) by a factor � induces corresponding factors of �2 in cf andĉf , but does not a�ect H or cf , nor their estimates. Further details of the wavelet based estimation ofH, and related issues concerning the wavelet based estimation of scaling exponents, can be found in [4],[22], [5], [2], [3].An important 
exibility inherent in the wavelet based analysis is the ability to freely choose a propertyof the mother wavelet, the number N of vanishing moments [7]. This property has important implications



9with respect to robustness to smooth additive trends [4]. More precisely, if p(t) is a polynomial of orders with s < N , then the details of X(t) = p(t) +W (t) will be the same as those of W (t), as waveletswith N > s are `blind' to such polynomials. The polluting polynomial does not have to be small inmagnitude, it can in fact be far larger than the random signal itself. In practice, estimation bias dueto the presence of deterministic `trends' which are smooth, though not polynomial, can also be largelyeliminated [4], [3]. Such trends include sinusoidal, power-law decreasing, and even power-law increasingfunctions (provided their exponent does not exceed that of the stochastic component). Discontinuous'trends' however cannot be eliminated in this way, motivating us to study them here under Model I.Robustness under time varying variances has not yet been studied at all, motivating Models II and III.IV. Robustness TestsIn this section we �rst investigate level changes in mean and variance separately { achieved by additiveand multiplicative transformations respectively { to determine the e�ect of each in isolation. We thenstudy each of the three tra�c models proposed in Section II-C. As they are simply particular combinationsof level changes in mean and variance, they can be naturally understood by combining the individuale�ects of the mean and variance transformations in the appropriate way. Other models not consideredhere could also be understood using this approach, for examples mixed versions of Models I, II and III,such as that invoked in the analysis of the Ethernet data described later.A. Robustness to Mean Level ChangesWe begin by investigating the robust estimation of (H; cf ) of a standard FGN to which a transitionfunction has been added, corresponding to an increase in mean with constant variance:X(t) = T (t; J; S; n=2) +W (t;H; cf ): (14)The results can be directly applied to Model I, and will be combined with the results of the next sectionto study Models II and III. Note that for this model cf remains well de�ned, as the variance is constant.We therefore include estimates for cf using the joint AV estimator [22], though the focus will remain onH.Apart from the work mentioned above where use is made of the vanishing moments of the wavelets,previous work on the e�cient detection of LRD and measurement of H in the presence of deterministicnon-stationarities in the mean includes that of Taqqu and Teverovsky [19]. In [19] modi�cations toestimators of Whittle type allow LRD and two kinds of non-stationarities in the mean: levels changesand decreasing power-law trends, to be distinguished. The wavelet-based approach outlined here is morepowerful as it allows for robust estimation without the need for a preliminary analysis to check for and todetermine the type of non-stationarity, and a wider range of non-stationarities are allowed. It also leadsto estimates where the bias due to the non-stationarities is lower.A.1 ObservationsWe perform the AV estimation procedure as presented in Section 3 both on realizations of standardFGN, and on those same realizations after transformation, and compare the two. As noted in [22],although FGN has an almost `pure' power-law spectrum, not all scales can be used due mainly to thepresence of initialization errors in the wavelet decomposition. The lower cuto� scale used in the estimationis therefore set to j1 = 2.The estimates of H and cf presented in Table I are averages of AV estimates over 30 realizations,and can be thought of as estimates of the expectation of the respective estimators. The 95% con�denceintervals noted in the table { measured in the NS case and known in the stationary case { indicate thevariance of the average estimates, and can therefore be used to compare the stationary and non-stationaryresults. It is important to understand that, since the transformations are deterministic, in Table I weare not so much interested in the statistical performance of the estimators, but rather the systematic



10change in the estimates induced by the nonlinear transformation of the data. Indeed the performancebefore the transformation is already known for both H and cf and we have no need to study it here.If we can understand the average e�ect of the transformation, then the statistical performance in thenon-stationary case will be able to be inferred from the known stationary results.Stationary FGN Estimates NS FGN: Mean ShiftH S J Ĥ ĉf Ĥ ĉf0.50 0 4.0 0.498 � 0.0032 0.9792 0.555 � 0.0029 0.77432.0 0.521 � 0.0029 0.890740 4.0 0.515 � 0.0029 0.90962.0 0.505 � 0.0028 0.9515300 4.0 0.498 � 0.0029 0.97822.0 0.498 � 0.0029 0.97901200 4.0 0.498 � 0.0029 0.97932.0 0.498 � 0.0029 0.97930.80 0 4.0 0.799 � 0.0032 0.2716 0.811 � 0.0035 0.25812.0 0.802 � 0.0036 0.267940 4.0 0.801 � 0.0036 0.26892.0 0.799 � 0.0036 0.2710300 4.0 0.799 � 0.0036 0.27152.0 0.799 � 0.0036 0.27161200 4.0 0.799 � 0.0036 0.27162.0 0.799 � 0.0036 0.2716TABLE IHurst parameter estimates with j1 = 2 before and after a mean change. Each of the results Ĥ and ĉf arethe average of 30 tests. In addition for H the 95% confidence intervals are shown, based on the knownperformance of the estimator for the stationary FGN and the variance of the 30 tests in the NS FGN cases.The �rst two result columns show the estimates of (H; cf ) obtained for the original stationary FGN, tobe used as a control. The second column shows the NS FGN estimates after the mean level shift transfor-mation. It is seen that, except in 5 cases, the NS estimates ofH fall within the control con�dence intervalsbased on the stationary FGN. The exceptions: (H;S; J) = (0:5; 0; 2); (0:5;0;4); (0:5;40;2); (0:5;40;4); (0:8;0; 4),occur when the transition is sharp and the level shift large, and are more severe for low H. The changesin the estimates for cf are also only notable for sharp, large shifts. Moreover, even in the most extremecase the bias is � 10% { hence it is very unlikely that apparent strong evidence for LRD, such as ameasurement Ĥ > 0:6, is in fact due to non-stationarity in the mean. Furthermore, any non-stationaritylarge and sharp enough to cause a 10% bias is easy to detect as the jump size is of the order of four timesthe standard deviation of the process.For a deeper understanding of these results we must examine the Logscale Diagrams of the data. Thedeterministic changes caused by the addition of the transition function can be observed by superposingin the same Logscale Diagram the results before and after the transformation, as shown in Figures 3 and4 for two values of H. Again, averages of 30 realizations are given to show the systematic changes due tothe transformation. These average yj values can be taken to be valid estimates of the expectation of therespective yj 's. The vertical 95% con�dence intervals shown about the average NS yj 's correspond to asingle observation, and were calculated based on the 30 measurements of the NS yj 's.We can see in Figure 3, where H = 0:8, that in most cases there is very little change between the meanyj 's for the NS FGN and the stationary FGN. Hence the accuracy of the estimates of (H; cf ). Whenthere is a large, sharp jump (for instance J = 4; S = 0) there is a noticeable deviation at higher scales



11from the values of yj for the stationary control. This leads to bias in the estimates, though it is limitedbecause the regression used to estimate (H; cf ) from the yj is weighted, giving less weight to higher scales.This corruption of the higher scale yj's is more evident when the Hurst parameter is smaller. It is mostevident when H = 0:5 such as in �gure Figure 4. In the following sub-section we explain the origin ofthese e�ects.
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12A.2 ExplanationsFigure 5 shows the Logscale Diagrams of the transitions functions T (t; J; S; L) de�ned in (12). Theseare obtained exactly as if the process were stochastic, that is, the wavelet transform is performed, theaverage squared coe�cient at each octave is computed, and the yj's are calculated by taking the log (afterremoving the small logarithm generated bias term).Observe that, just as for LRD processes, the yj are increasing with j, and are larger for larger J , andsmaller S. That is, the yj for a transition function increase when the level shift in the mean is largerand sharper, and are approximately linear in j. Figure 5 also shows the Logscale Diagrams for a set ofrealizations of standard FGN with H = 0:5; 0:6; 0:7; 0:8 and 0:9.
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13are also approximately linear, by the following argument:�j = 1nj Xk �djk�2 = 1nj Xk  Xm dj;mk !2= 1nj Xk Xm �dj;mk �2 + 1nj Xn Xm6=nXk dj;mk dj;nk :NowPk dj;mk dj;nk =nj for m 6= n converges to E �dj;mdj;n�, which is zero because the Xmt are independent.Hence as nj !1 �j ! 1nj Xm Xk �dj;mk �2 =Xm �mj ; (16)where �mj is the mean squared detail at scale j for the DWT of series Xmt . Equation (16) gives thelinearity mentioned, valid in the limit of in�nite data length.In Model I two time sequences, one a LRD stochastic process W (t), and the other an arbitrary deter-ministic mean rate m(t), are added, and hence the linearity discussed above is relevant. The sum DWTof X(t) = m(t) +W (t), is used to give the coe�cients �Xj , which we now know can be approximatedby �Xj = �mj + �Wj . Since, to obtain yXj , we essentially take the log of �j , if the ratio of �mj to �Wj islarge (resp. small), then the response of m(t) (resp. W (t)) will dominate the result. Returning now tothe particular case of Model I where W (t) is a standard FGN in the presence of a transition function,in Figure 5 the sizes of the yj for both components of X(t) appear in the same Logscale Diagram andcan be compared. It is seen that in most cases the coe�cients for the FGN are signi�cantly larger thanthose for m(t) (note the log scale), the exception being that those for the transition function dominatefor large j when S = 0.The conclusion is that, except for large j in the case of very abrupt jumps with large magnitude, theFGN dominates the Logscale Diagram, and therefore we obtain accurate estimates of yj . The accuracyof the estimates of H and cf clearly follows from that of the yj. However even when the upper scaleyj 's are inaccurate the resultant estimate for (H; cf ) is not strongly biased because, as noted above, theweighted regression underlying the estimator places less weight on the higher scale data, as these havenaturally greater variability. The weights were not designed however to eliminate the corrupting e�ectsof non-stationarities, and are not the optimal way of doing so. An improvement would be to select anupper cuto� scale based on some measure of the level of non-stationarity.If the exact size and location of the jump were known, the above argument could be used to exactlypredict the scale j at which the Logscale Diagram switches from representing the self-similar phenomenonto representing the non-stationary behavior. This could be used to predict the upper scale to be usedin the regression. In practice we might not know the exact nature of the jump, but the argument couldbe used in an approximate sense in the selection of a mitigating upper cuto�. Alternatively a procedurecould be used to pick upper (and lower) scales to be used in the regression using heuristic argumentsbased on how well the regression line �ts the data.B. Robustness to Variance ChangesWe next consider the robust estimation of H of a standard FGN transformed by multiplication by atransition function, corresponding to a level increase in variance at constant (zero) mean:X(t) = T (t; J; S; n=2) �W (t;H; cf ): (17)Now that the variance of X is time varying, cf is no longer de�ned, though cf of course is. We repeatthat the study of the robustness of an estimator for cf will appear elsewhere, and we concentrate hereon H.



14B.1 ObservationsTable II shows the e�ect of the level change in variance on the estimates of the Hurst parameter. Theresults are again the average of 30 realizations. Note that the change in variance introduces only veryminor variation in the Hurst parameter estimates { we can conclude that no signi�cant bias is introduced.FGN NS FGN: Variance ShiftH S J Ĥ Ĥ0.50 0 4.0 0.498 � 0.0032 0.497 � 0.00342.0 0.498 � 0.003140 4.0 0.497 � 0.00332.0 0.498 � 0.0031300 4.0 0.497 � 0.00322.0 0.498 � 0.00301200 4.0 0.498 � 0.00302.0 0.498 � 0.00290.80 0 4.0 0.799 � 0.0032 0.799 � 0.00512.0 0.799 � 0.004740 4.0 0.799 � 0.00512.0 0.799 � 0.0046300 4.0 0.799 � 0.00492.0 0.799 � 0.00451200 4.0 0.799 � 0.00462.0 0.799 � 0.0043TABLE IIHurst parameter estimates with j1 = 2 before and after a variance change. Each of the results is theaverage of 30 tests. In addition 95% confidence intervals are shown, based on the known performance ofthe estimator for the stationary FGN and the variance of the 30 tests in the NS FGN cases.B.2 ExplanationsConsider the Logscale Diagrams shown in Figure 6. Each plot shows three superimposed LogscaleDiagrams, each of which displays averaged results over transformations of the same 30 realizations of anunderlying stationary FGN. The lower and upper rows of points correspond to the underlying FGN withstandard deviations matched to that of the NS FGN at time zero and at time n (the end of the data)respectively. The NS FGN plot is the one lying between these two extremes.The �gures clearly display the main feature of a change in variance. Each yj is shifted so that it liesdirectly between the yj of the stationary process with the same variance as the initial (smallest) varianceof the NS FGN, and the yj of the stationary process with the �nal (largest) variance of the NS FGN. Thee�ect is similar for the H = 0:5 case (space limitations prevent showing the plots here). This e�ect is tobe expected. The y-intercept of the Logscale Diagram for each of the stationary FGN's is directly relatedto cf (see Section III-C) and the variance of each process is proportional to its value of cf via (4). The NSFGN variance function lies between the constant variances of the two stationary FGNs and therefore theyj of the NS FGN curve should lie between the yj of the two extremes. The same conclusion follows fromthe observation that the �j � 2yj , in both the stationary or non-stationary cases, is a measure of theaverage energy in the data at scale j, and an increase in variance corresponds to an increase in energy.A further, key observation is that the size of the shift is roughly the same for each j, that is the NSFGN curve appears to be simply a shifted version of the stationary curves. The slope of the NS FGN
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y jFig. 6. Logscale Diagrams for a change in the variance, H = 0:8. The (*) show the sample mean of the yj for the NSFGN, and the (2) and (�) show the sample mean of the yj 's for FGN processes with variance matched to that of theNS FGN at time 0 and time n respectively. The vertical lines show the one standard deviation of the NS FGN results.The smoothness and jump size parameters are shown in the �gures.curve is therefore almost the same as before the transformation, and therefore the estimate of H will beessentially unchanged as observed above.Again the explanation for this behavior lies in the linearity of the estimates. We consider the extremecase { a jump shift discontinuity. The process can be decomposed into two process { one which is just astationary FGN, and a second, which is zero for the �rst half of the data sequence and a stationary FGNfor the second half. By linearity the �j for the original process will be �j = �(1)j + �(2)j , where �(1)j and�(2)j are those for the stationary FGN and the FGN which starts half way through the data sequence.The former is well understood (as it is just that for a stationary FGN) while the later will be those fora stationary FGN of half the length of the original data { the zero terms will not contribute anything,and the edge e�ects can be assumed to be minimal in this context. Hence the �nal �j are given by �(1)jshifted by an amount such that in the Logscale plot the shift is almost constant.C. Robustness for the Variable Tra�c ModelsIn this section we discuss the three tra�c models described in Section II-C. Recall that they have beenspecialized in the following way: the LRD process W (t;H; cr) is taken to be a standard FGN, � = 1,and we set m(t) = T (t; J; S; n=2), with J 2 f2; 4g, S = f0; 40; 300;1200g, and n = 214. Sample paths areobtained by �rst generating a sample of standard FGN with a selected H, and then transforming it �rstby a multiplication by �(t), followed by an addition of m(t). The linearity of the wavelet transform andthe approximate linearity of the �j discussed in Section IV-A.2 allow us to decompose each model into avariance level shift, followed by a mean change. The discussion below is therefore based on the detaileddiscussions of the two previous sub-sections.C.1 Model I: Additional CBR sourcesModel I, for which �(t) = 1, is in fact exactly the same as the process described in Section IV-A wherethe mean changes, but the variance remains constant, and has therefore already been considered in detail.



16C.2 Model II: Additional uncorrelated VBR sourcesConceptually Model II, for which �(t) = pm(t), describes an increase in the tra�c rate due to theintroduction of uncorrelated VBR sources, each with the same LRD parameters H and cf . The result isa change in the mean, and a change in the variance which is proportional to the mean.Due to the approximate linearity, to a �rst approximation we expect that the lack of bias from thevariance shift, followed by the small bias due to a mean level shift, will combine to yield low biascharacteristics essentially the same as that of a mean level shift alone. This is indeed what we �nd, asseen in Table III where, just as in Table I, signi�cant bias is found only in jumps which are both largeand sharp. Second order e�ects result in the overall bias being in fact lower in Model II. This is becausethe shift induced by the change in variance has one bene�cial side e�ect. The wavelet response to theFGN process with non-stationary variance is shifted up, however the response to the transition functionde�ning m(t) is not shifted, therefore the increase in the mean has less e�ect in the Logscale Diagramand causes less bias in the estimate of H.FGN NS FGN: Model II NS FGN: Model IIIH S J Ĥ Ĥ Ĥ0.50 0 4.0 0.498 0.526 � 0.0037 0.506 � 0.00432.0 � 0.0032 0.511 � 0.0033 0.500 � 0.004040 4.0 0.506 � 0.0035 0.499 � 0.00372.0 0.502 � 0.0031 0.497 � 0.0038300 4.0 0.498 � 0.0032 0.497 � 0.00352.0 0.498 � 0.0030 0.497 � 0.00351200 4.0 0.498 � 0.0030 0.496 � 0.00362.0 0.498 � 0.0029 0.497 � 0.00330.80 0 4.0 0.799 0.803 � 0.0049 0.799 � 0.00582.0 � 0.0032 0.800 � 0.0046 0.799 � 0.005440 4.0 0.799 � 0.0050 0.798 � 0.00572.0 0.799 � 0.0046 0.798 � 0.0054300 4.0 0.799 � 0.0049 0.798 � 0.00562.0 0.799 � 0.0045 0.798 � 0.00531200 4.0 0.799 � 0.0046 0.798 � 0.00542.0 0.799 � 0.0043 0.798 � 0.0050TABLE IIIHurst parameter estimates with j1 = 2 for Models II and III. Each of the results is the average of 30 tests.In addition 95% confidence intervals are shown, based on the known performance of the estimator for thestationary FGN and the variance of the 30 tests in the NS FGN cases.C.3 Model III: Additional correlated VBR sourcesConceptually Model III, for which �(t) = m(t), describes an increase in the tra�c rate due to theintroduction of correlated VBR sources, each with the same LRD parameters H and cf . The result is achange in the mean, and a change in the variance which is proportional to the square of the mean.The results are shown in Table III, and are similar to those of Model II. Despite the clear di�erencebetween Models II and III, in terms of the present robustness problem they are essentially described bythe same arguments. The level shift in the mean can be dealt with as before, while the change in thevariance results in a shift in the Logscale Diagram which has little or no e�ect on the Hurst parameterestimate. In fact in this case the level shift is even larger, and therefore the bias introduced by the changein the mean is even smaller.



17D. Sensitivity to Other ParametersThe previous sections have all used the same length sequences, and the same wavelet bases for thepurposes of comparison, but it is important to study the sensitivity of the results to sequence lengthand to wavelet basis. This section presents the results of our tests, though space limitation prevent theinclusion of the Logscale plots.D.1 Sensitivity to data lengthUntil now data sequences of length 214 have been examined, however, one might suspect that the resultsdepended in some way on the sequence length. To study this we examined a sequence of 218 data points.The same transformations we performed, though the smoothness parameter was scaled by S0 = Sn0=n inorder that the transition region takes up the same proportion of the total length of the data.The primary e�ect of longer sequences is to increase the number of scales available for investigation. Afurther e�ect is to reduce the variance of the estimates yj at each scale, providing more accurate estimatesin both the stationary and non-stationary cases.However, there is an e�ect due to the transition function. The e�ect is primarily to extend the lineshown in Figure 5 to higher scales. This would lead to a serious introduction of bias into the resultsexcept that there is also a downwards shift of this curve. The downwards shift occurs because there is alarger region une�ected by the transition which no-longer contributes to the curve, even though there isnow more data supporting the LRD measurement. We �nd that overall the bias remains at a similar levelfor this increase in sequence length leading us to the conclusion that our results are not highly sensitiveto the length of the data.D.2 Sensitivity to wavelet basisThroughout this paper we have used a single wavelet basis for the DWT, namely the Daubechieswavelet basis with N = 5 vanishing moments (and �lter lengths of 10 taps). This section considers thee�ect of changing the number of vanishing moments of the wavelet basis.We examined the behviour both for the Daubechies wavelet basis with 3 vanishing moments is used(with �lters 6 taps long), and with N = 10 (�lters 20 taps long). Apart from the di�ering edge e�ects,which result in di�erences in the uppermost scale which can be measured, there is one noticeable e�ect.When we have more vanishing moments in the wavelet basis the coe�cients yj for the transition functionare lower. This is bene�cial because it improves the performance of the estimator in the presence ofnon-stationarity, but it comes at the cost of a reduction in the amount of data nj available at each scale,resulting in additional variance in the estimation. It also results in extra computation due to the longer�lters which must be used.This e�ect is predicted by the robustness with respect to N discussed in Section III-C. The level shiftused here can be approximated by a polynomial { the higher the degree the better the approximation.Hence the more vanishing moments, the better the polynomial approximation, and the more of thelevel shift which is removed by the DWT before estimation. Unfortunately the improvement gainedby increasing the number of vanishing moments in the Daubechies wavelet basis diminishes, and valuesbeyond N = 5 seem to give little improvement (see [1] for more details of such e�ects). However, it maybe that other wavelet basis could have better properties in this regard and could be tested.V. Real Data ExampleOf course when examining robustness a whole range of issues become important. The preceeding resultsare based upon Fractional Gaussian Noise models, and the question arises, \How robust is AV estimatorwhen applied to real data, rather than just FGN?" This section demonstrates that the robustness of theAV estimator extends to real data by testing an Ethernet data set with an obvious level shift in themean. The data is derived from the `pOct' Bellcore trace [12]), and corresponds to byte counts in 10msintervals.



18The jump is clearly seen in Figure 7, where the data has been split into ten blocks and the samplemeans and variances calculated independently over each. In the upper plot for the means, for comparisonpurposes two con�dences intervals are shown for each estimate, the larger (smaller) corresponding tostationary LRD (resp. SRD) assumptions. The greater variability of LRD processes is dramaticallyvisible in the contrasting size of these intervals { the small SRD con�dence intervals are almost invisible.Note that the LRD based intervals required the estimation of (H; cf ) over each block, and therefore varyacross the blocks. The small con�dence intervals in the variance case are according to the incorrect SRDassumptions only, as LRD alternatives are not available.
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Subseries numberFig. 7. Transitions in mean and variance in pOct. The byte data is split into ten contiguous blocks and sample means(top) and variances calculated. A level change is seen in each, with a common transition region. The horizontal solidline gives the overall value for each series, with con�dence interval to the far left. For the mean plot the larger (smaller)con�dence interval about each point corresponds to LRD (resp. SRD) assumptions. For the variance plot only SRDcon�dence intervals are shown, and the dashed line gives the average of the ten variance values.Figure 8 shows the data averaged over �ner intervals (10 seconds) for easier visualisation. The datashows a distinct level shift in mean at about 1050 seconds, and the mean estimates to the left and right ofthe transition region are 2:40 and 4:14 respectively, where the exact intervals of measurements are shownin Figure 8(a). The variance also increases as a level shift with the jump in the same region, going from7:3 to 9:5 as measured over the same intervals. The mean therefore jumps by J = 1:73 and the varianceby a multiplicative factor of J = 1:3, properties consistent with a mixture of Models I and II, that is amixture of CBR and VBR sources.It has already been shown in [4] that Hurst parameter estimates using the AV estimator e�ected tothe right and the left of the level shift agree both with each other, and with the estimate made over thewhole data set. The work in [4] does not, however, fully explain how to reconcile the observed constancyof the wavelet estimates of H, with the non-stationarity in the mean. It is now possible to recognizethat H may remain constant regardless of the non-stationarity in mean and variance, and explain theAV estimator's robustness in the presence of this non-stationarity.In addition, the availability of the model allows us to meaningfully transform the data to remove thenon-stationarity, and measure the Hurst parameter under stationary conditions for further comparison.The results are shown in Table IV where it is clear that no noticable error has been introduced by thenon-stationarity. No attempt is made to measure cf as it is not de�ned in Model III, and once again,although well de�ned we do not consider the second parameter cf in this paper.We now provide a description of how the mean level shift is removed. The key point here is thatwe wish to show robustness, not absolute accuracy, and hence a simple method for modelling the levelshift is quite su�cient. One of the transition functions T (t) is used, calibrated by �rst estimating themean at the beginning of the data over a range shown in Figure 8(a), and then the parameters of the



19Ĥ 95% CIoriginal data 0.779 � 0.0072corrected data 0.779 � 0.0072data interval (150,950) 0.769 � 0.0108data interval (1170,1750) 0.779 � 0.0128TABLE IVThe Hurst parameter estimates for the original data, the data once the non-stationarity in the mean isremoved, and the data on the two indicated time intervals (times are given in seconds).transition function: the transition point, jump size and smoothness. We do this using Matlab's non-linear minimisation function fmins which performs the Nelder-Mead simplex search described in [15],[11]. Figure 8(b) shows the �tted transition function superimposed over the data. Figure 8(c) showsthe data with the transition function subtracted, yielding an approximately zero-mean data sequence. Asecond transformation would be the next step to normalise the variance also and obtain an approximatelystationary data sequence, the `W (t)', however we do not do this as we know that the e�ect on the estimateis negligible. This is especially true since the model is intermediate to that of Model I and II, and Model Ihas constant variance.Finally Figure 8 shows the Logscale Diagrams for the original data and the corrected data. We cansee that the two Logscale Diagrams are almost exactly the same except for a small discrepancy at higherscales. This discrepency has no noticable e�ect on the Hurst parameter estimate because of the weightedregression which gives less weight to the higher scales. The �gure also shows the log-scale response tothe transition function used to model the change in mean. The response is signi�cantly lower than thatof the data sequence and hence the transition has little e�ect on the estimates. The ability to quantifythis smaller response is the additional insight into the robustness that modelling the shift allows.VI. MitigationAs mentioned previously the e�ects of a mean level shift appear in the higher scales of the LogscaleDiagram. They could therefore be almost completely eliminated by choosing an upper scale j2 for theregression analysis (which underlies the estimation of (H; cf ) from the Logscale Diagram) which is notthe largest available, but something smaller. By taking j2 = 6 for example the bias is almost completelyremoved. Even in the worst case of S = 0 and J = 4:0, the average results for Ĥ after transformationare 0:509 � 0:0035 compared to the average over the 30 stationary FGN's which yield 0:497 � 0:0038, abias of only 0:01. VII. ConclusionOur main �nding is that the wavelet based estimator of LRD of Abry and Veitch [22], [20] has robustnessproperties which allow good estimates to be made of the Hurst parameter, despite non-stationarities whichmay be present in the mean and variance, speci�cally level shifts. We illustrate this robustness, explainits origin, and indicate when the residual bias due to the non-stationarities may be appreciable and howit can be minimized.As an essential precursor to the robustness study, a broad class of non-stationary LRD processes werede�ned. They allow a well de�ned separation of the mean and variance, which are allowed to be timevarying, from the time constant parameters, including the LRD parameters, which remain well de�neddespite the non-stationarity.Because of the many ways in which non-stationarity and LRD can be confused, and render parameterestimation mutually problematic, it is particularly important to have robust estimators so that it is notnecessary to know the full details of the structure of the tra�c before valid estimation of vital parameters,
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(a) Dashed vertical lines indicate estimation rangesfor means and variances. Means are shown with 95%con�dence intervals. 0 200 400 600 800 1000 1200 1400 1600 1800
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(b) The �tted transition function, shown as a dashedline superimposed on the data-set.
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(d) The Logscale Diagrams of the original data (�),the corrected data (2), and the transition function(�).Fig. 8.such as H, can take place. Although the focus was on level shifts in mean and variance in this paper,this represents in some senses a worst case, and we expect that the robustness found will hold for a verywide range of non-stationarities. This has already been shown in the case of the mean (additive trend)in [4]. Thus, provided that a model such as (7) holds for the data in question, the AV estimator allowsthe Hurst parameter to be measured, and in particular the question of the presence or absence of LRDdecided, without any need to tackle in advance or simultaneously the di�cult stationary issue. This isan enormous practical advantage. Once it is known that LRD is or is not present, then analysis of anynon-stationarities can be tackled in a far more informed way.Three sub-classes of non-stationary LRD processes were highlighted as meaningful, idealised tra�cmodels. Each corresponds to a level shift in the number of new sources being added to an underlyingstationary LRD source, but where the new sources vary according to: Model I: CBR or aggregated shortrange dependent sources, Model II: uncorrelated LRD sources modelling VBR tra�c, and Model III:highly correlated LRD sources. An Ethernet data set was studied where clear correlated level shiftstationarities were found in the mean and variance corresponding to an case intermediate to Models Iand II. The non-stationary LRD model was used to explain the time variation of the data, and the
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