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Abstract
The area under the ROC (Receiver Operating
Characteristic) curve, or simply AUC, has been
widely used to measure model performance for
binary classification tasks. It can be estimated
under parametric, semiparametric and nonpara-
metric assumptions. The non-parametric esti-
mate of the AUC, which is calculated from the
ranks of predicted scores of instances, does not
always sufficiently take advantage of the pre-
dicted scores. This problem is tackled in this
paper. On the basis of the ranks and the origi-
nal values of the predicted scores, we introduce
a new metric, called a scored AUC or sAUC. Ex-
perimental results on 20 UCI data sets empiri-
cally demonstrate the validity of the new metric
for classifier evaluation and selection.

1. Introduction
In the data mining and machine learning literature, there are
many learning that algorithms can be applied to build can-
didate models for a binary classification task. Such models
can be decision trees, neural networks, naive Bayes, or en-
sembles of these models. As the performance of the candi-
date models may vary over learning algorithms, effectively
selecting an optimal model is vitally important. Hence,
there is a need for performance metrics for evaluating the
models.

The predicted outcome of a classification model can be ei-
ther a class decision such as positive and negative on each
instance, or a predicted score that gives how much an in-
stance is predicted to be positive or negative. Most models
can produce predicted scores; and those that only produce
class decisions can easily be converted to models that pro-
duce predicted scores [6, 13]. In this paper we assume that
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the scores represent class-conditional likelihoods.

The performance of a classification model can be evalu-
ated by many metrics such as recall, accuracy and preci-
sion. A common weakness of these metrics is that they are
not robust to the change of the class distribution. When
the proportion of positive to negative instances changes in
a test set, they may no longer perform optimally, or even
acceptably. The ROC (Receiver Operating Characteristics)
curve, however, is insensitive to the change in the class dis-
tribution. If the class distribution changes in a test set, the
ROC curve will not change. The ROC curve has been used
as a tool for model selection in the medical area since the
late 1970s, and more recently introduced to evaluate ma-
chine learning algorithms [11, 12]. It is defined as a plot
of a model’s true positive rate as the y coordinate versus
its false positive rate as the x coordinate, under all possible
score thresholds.

The area under the ROC curve, or simply AUC, aggregates
the model’s behaviour for all possible decision thresholds.
It can be estimated under parametric [14], semiparametric
[9] and nonparametric [7] assumptions. The nonparametric
estimate of the AUC is widely used in the machine learn-
ing and data mining research communities. It is the sum-
mation of the areas of the trapezoids formed by connecting
the points on the ROC curve, and represents the probability
that a randomly selected positive instance will score higher
than a randomly selected negative instance. It is equiva-
lent to the Wilcoxon-Mann-Whitney (WMW) statistic test
of ranks [7]. Huang and Ling [10] also show show theo-
retically and empirically that AUC is a better measure for
model evaluation than accuracy.

The nonparametric estimate of the AUC is calculated on the
basis of the ranks of the predicted scores. Its advantage is
that it does not depend on any distribution assumption that
is commonly required in parametric statistics. Its weakness
is that the predicted scores are only used to rank instances,
and otherwise ignored. The AUC, estimated simply from
the ranks of the predicted scores, can remain unchanged
even when the predicted scores change. This can lead to a



loss of useful information, and may therefore produce sub-
optimal results.

This paper attempts to combine both the ranks and the orig-
inal values of the predicted scores to evaluate the perfor-
mance of binary classification models. A scored AUC met-
ric is introduced for estimating the performance of models
based on their original predicted scores. The paper has sim-
ilar aims to [3], the approaches are however different and
have been developed independently.

The paper is structured as follows. Section 2 introduces a
new algorithm to calculate the AUC, and a new AUC-like
metric derived from the AUC. Section 3 investigates the
properties of the new metric, which we call sAUC (scored
AUC). In Section 4 we present experimental results on
20 data sets from the UCI repository [1], using sAUC for
model selection. Section 5 presents the main conclusions
and suggests further work.

2. A Scored AUC
The purpose of this section is to introduce a new algorithm
for calculating the AUC, and then propose a new metric,
called scored AUC (abbreviated to sAUC).

2.1. Calculating AUC

Denote the total number of positive instances and negative
instances by N+ and N−, respectively. Let {x1, . . . ,xN+}
(where x1 ≥ ... ≥ xN+) be the scores predicted by a model
for the N+ positives, and {y1, . . . ,yN−} (where y1 ≤ ... ≤
yN−) be the scores predicted by a model for the N− neg-
atives. Assume both xi and y j have been normalized and
they are within interval (0,1), where i = 1,2, ...,N+ and
j = 1,2, ...,N−. Since AUC is equivalent to the WMW
statistic, estimating the probability that a randomly selected
positive instance will score higher than a randomly selected
negative instance, it can be expressed as follows:

AUC =
1

N+N−

N+

∑
i=1

N−

∑
j=1

I(xi > y j) (1)

where I(•) is an indicator function satisfying I(true)=1 and
I(false)=0. Let Za be the sequence produced by merging
the {x1, . . . ,xN+} and {y1, . . . ,yN−}, and sorting the merged
set in ascending order (so a good ranker would put the pos-
itives after the negatives in Za). Then the expression of the
AUC can be simplified as follows [8].

AUC =
1

N+N−

(
N+

∑
i=1

ri−
N+(N+ +1)

2

)
(2)

where ri is the rank of xi in Za. Further simplifying the
AUC in Eq. (2), we obtain

AUC = R+ =
1

N+N−

N+

∑
i=1

(ri− i) (3)

ri− i in Eq. (3) is the number of negatives before the ith
positive in Za, and the AUC is the sum of the number of
negatives before each of the N+ positives in Za, divided by
the number of pairs of one positive and one negative.

Let Zd be the sequence produced by merging the
{x1, . . . ,xN+} and {y1, . . . ,yN−}, and sorting in descending
order (so a good ranker would put the positives before the
negatives in Zd). Analogously, the AUC can be expressed
as

AUC = R− =
1

N+N−

N−

∑
j=1

(s j− j) (4)

where s j is the rank of y j, and s j− j in Eq. (4) is the number
of positives before the jth negative in Zd . Then, the AUC
represents the normalised sum of the number of positives
before each of the N− negatives in Zd .

Based on Eq. (3) and Eq. (4), we derived the algorithm
shown in Table 1 to calculate the value of the AUC. The al-
gorithm is different from other algorithms to calculate AUC
because it doesn’t calculate ranks.

Table 1. Algorithm for calculating the AUC.
Inputs.

Z = {Ci, f (i)}
Ci: instance i
f (i): score for predicting instance Ci to be positive
N−: number of negative instances in the training set
N+: number of positive instances in the training set

Outputs.
R+: AUC value of the model
R−: AUC value of the model

Begin
1: Zd ← Z sorted decreasingly by f scores
2: initialize: R−← 0, R+← 0, n−← 0, n+← 0
3: for Ci ∈ Zd do
4: if Ci is a positive instance then
5: R−← R−+N−−n−
6: n+← n+ +1
7: else
8: n−← n−+1
9: R+← R+ +n+
10: end if
11: end for
12: R−← R−

N+N−
13: R+← R+

N+N−
End

2.2. Scored AUC

The AUC may fail to detect the performance difference be-
tween models because it is calculated simply from the ranks



of predicted scores. The following example demonstrates
this weakness of the AUC.

Example 1 Given a data set containing 3 positive and 4
negative instances, and two models, M1 and M2, built on
the data set. M1 and M2 have the following predicted
scores respectively (the underlined scores indicate where
the two models differ).

M1 : +0.95 −0.89 +0.86 +0.84 −0.15 −0.13 −0.10
M2 : +0.95 −0.89 +0.20 +0.16 −0.15 −0.13 −0.10

Here, for example, +0.95 means that a positive instance is
predicted positive with a score of 0.95, and -0.89 means
that a negative instance is predicted positive with a score
of 0.89. The two models result in the same ranking and
therefore have the same AUC. However, model M1 might
be considered better than M2 because of the following two
reasons.

• If we select a threshold (i.e., operating point) from the
interval (0.21, 0.83) and estimate the performance of
the two models using metrics precision and accuracy,
M1 outperforms M2, and

• when the scores predicted for the two positives change
within interval (0.15, 0.89), the AUC value remains
unchanged. This may lead to a biased estimate for
model performance.

An alternative understanding of the AUC is as follows.
In Eq. (1), the component I(xi > y j) is an indicator that
only reflects the ordinal comparison between the predicted
scores, but it does not reflect how much xi is larger than y j.

Obviously, (xi− y j)I(xi > y j) measures not only whether
xi > y j but also how much xi is larger than y j. If we replace
I(xi > y j) with (xi−y j)I(xi > y j) in Eq. (1), and denote the
new metric by sAUC (scored AUC), we have the following
definition.

Definition 1 The scored AUC is defined as

sAUC =
1

N+N−

N+

∑
i=1

N−

∑
j=1

(xi− y j)I(xi > y j) (5)

The scored AUC uses both the ranks I(xi > y j) and the orig-
inal predicted scores (xi− y j). It estimates the score dif-
ference between randomly chosen positives and negatives
with positive score differences, multiplied with the proba-
bility that a positive score difference occurs. The latter term
is estimated by AUC, and thus sAUC may be interpreted as
a multiplicative correction on AUC.

In order to simplify sAUC in Eq. (5), we replace ri − i,
which is the number of negatives before the ith positive

instance, with the sum of predicted scores for the negatives
before the ith positive instance in Za in Eq. (3). Similar
replacement can be made in Eq. (4). Then, we can obtain:

sAUC =
1

N+N−

(
N−

∑
j=1

s j− j

∑
t=1

xt −
N+

∑
i=1

ri−i

∑
t=1

yt

)

where ∑
s j− j
t=1 xt is the sum of the scores predicted for pos-

itive instances before the jth negative instance in Za, and
∑

ri−i
t=1 yt is the sum of the scores predicted for negative in-

stances before the ith positive instance in Zd . Denote

Rs+ =
1

N+N−

N−

∑
j=1

s j− j

∑
t=1

xt

and

Rs− =
1

N+N−

N+

∑
i=1

ri−i

∑
t=1

yt

Then, sAUC = Rs+−Rs−. The algorithm for calculating
the values of sAUC, Rs+ and Rs− is shown in Table 2.

Table 2. Algorithm for calculating sAUC.
Inputs.

Z = {Ci, f (i)}
Ci: instance i
f (i): score for predicting instance Ci to be positive
N−: number of negative instances in the training set
N+: number of positive instances in the training set
Vp−: sum of f (i) of negative instances

Outputs.
sAUC: scored AUC

Begin
1: Zd ← Z sorted decreasingly by f scores
2: initialize: Rs−← 0, Rs+← 0, ns−← 0, ns+← 0
3: for Ci ∈ Zd do
4: if Ci is a positive instance then
5: Rs−← Rs−+Vp−−ns−
6: ns+← ns+ + f (i)
7: else
8: ns−← ns−+ f (i)
9: Rs+← Rs+ +ns+
10: end if
11: end for
12: Rs−← Rs−

N+N−
13: Rs+← Rs+

N+N−
14: sAUC← Rs+−Rs−

End

In building a classification model, one hopes that the scores
predicted for positive instances are larger whereas those for
negative instances are smaller. Hence, a good model should
have a large Rs+ and a small Rs−.

Example 2 Continuing Example 1, we have
Rs+ = 0.7417, Rs− = 0.1692 and sAUC = 0.5725, for
model M1, and
Rs+ = 0.4067, Rs− = 0.1692 and sAUC = 0.2375, for
model M2.



3. Properties of sAUC
The properties of sAUC are investigated in this section.

Lemma 1 If xi = 1 and y j = 0 for any i and j, then Rs− =
0, Rs+ = 1 and sAUC = AUC = 1.

Denote M+ =
1

N+

N+

∑
i=1

xi and M− =
1

N−

N−

∑
i=1

yi. The quan-

tity M+−M− estimates the score difference between ran-
domly selected positives and negatives (i.e., not just those
that have positive score differences), and is investigated in
[3].

Lemma 2 If xi > y j for any i and j, then sAUC = M+−
M−.

Theorem 1 Rs+ ≤M+ and Rs− ≤M−.

Proof.

Rs+ =
1

N+N−

N−

∑
j=1

s j− j

∑
t=1

xt ≤
1

N+N−

N−

∑
j=1

N+

∑
t=1

xt = M+

and

Rs− =
1

N+N−

N+

∑
i=1

ri−i

∑
t=1

yt ≤
1

N+N−

N+

∑
i=1

N−

∑
t=1

yt = M−

Theorem 2 M+−M− ≤ sAUC≤ AUC.

Proof.

M+−M− =
1

N+N−

N+

∑
i=1

N−

∑
j=1

(xi− y j)

≤ 1
N+N−

N+

∑
i=1

N−

∑
j=1

(xi− y j)I(xi > y j)

= sAUC

Because xi ≤ 1 and 0 ≤ yi ≤ 1, it follows that xi− y j ≤ 1.
We then have

sAUC =
1

N+N−

N+

∑
i=1

N−

∑
j=1

(xi− y j)I(xi > y j)

≤ 1
N+N−

N+

∑
i=1

N−

∑
j=1

I(xi > y j)

= AUC

4. sAUC for model selection
Our initial experiments to evaluate the approach introduced
in this paper are described in this section. We use both the
sAUC and the AUC metrics to select models on the training
set, and compare them using the AUC values on the test set.
20 data sets are selected from the UCI repository [1] for this
purpose. Table 3 lists their numbers of attributes, numbers
of instances, and relative size of the majority class.

Table 3. UCI data sets used in our experiments.

Majority
# Data set #Attrs Size Class
1 Australia 14 690 55.51
2 Sonar 60 208 51.92
3 Glass 9 214 67.29
4 German 20 1000 69.40
5 Monk1 6 556 50.00
6 Monk2 6 601 65.72
7 Monk3 6 554 55.41
8 Hepatitis 19 155 78.71
9 House 16 435 62.07
10 Tic-tac-toe 9 958 64.20
11 Heart 13 227 55.56
12 Ionosphere 34 351 64.10
13 Breast Cancer 9 286 70.28
14 Lymphography 17 148 56.81
15 Primary Tumor 17 339 55.75
16 Solar-Flare 12 323 56.35
17 Hayes-Roth 4 133 60.91
18 Credit 15 690 55.51
19 Balance 4 625 53.92
20 Bridges 12 108 66.67

In the experiments, a data set was divided into ten folds:
eight for training, one for validation, and one for testing.
We first trained five models, (naive Bayes, logistic, decision
tree, kstar, and voting feature interval [2]) on the training
set, selected the model with maximum values of sAUC or
AUC on the validation set, and finally tested the selected
models on the test set. We ran the experiment ten times
yielding 100 pairs of AUC values, and performed a paired
t-test with level of confidence 0.05 to test the significance
of the average difference in AUC. The AUC values of the
models selected by the two metrics are shown in Table 4.
As indicated in the table, we obtained 6 significant wins for
sAUC and 2 significant losses.

We noticed that the 6 data sets where the sAUC metric won
are relatively small, and hypothesised that sAUC may be
particularly suitable for smaller data sets. We tested this
by randomly selecting 150 instances from each data set.
Applying the same approach to model selection, we ob-
tained the results shown in Table 5. Among the 20 data sets,
we now obtain 9 significant wins and no losses. Although
further investigations are necessary, we believe these are
promising results.



Table 4. Results of experiment with 20 UCI data sets (AUC val-
ues). The last column (labelled S?) indicates whether this is a
statistically significant win or loss for sAUC, using a paired t-test
with 0.05 level of confidence.

# Data set use AUC use sAUC S?
1 Australia 90.15±0.53 90.25±0.60
2 Sonar 93.67±1.03 94.48±0.93
3 Glass 95.23±0.90 97.16±0.61 ∨
4 German 92.34±0.86 92.34±0.86
5 Monk1 99.98±0.017 99.89±0.071
6 Monk2 97.05±0.32 94.06±0.58 ×
7 Monk3 98.63±0.28 98.84±0.23
8 Hepatitis 90.74±1.15 91.13±1.01
9 House 99.66±0.089 99.55±0.19
10 Tic-tac-toe 99.68±0.034 99.71±0.024
11 Heart 92.60±0.68 92.47±0.75
12 Ionosphere 95.47±0.41 92.35±0.53 ×
13 Breast Cancer 85.88±1.33 87.67±1.09 ∨
14 Lymphography 88.22±1.04 88.89±1.00 ∨
15 Primary Tumor 87.28±0.85 87.84±1.04
16 Solar-Flare 89.62±0.72 89.50±0.67
17 Hayes-Roth 93.00±1.03 94.25±0.85
18 Credit 90.14±0.50 91.05±0.45 ∨
19 Balance 99.88±0.043 99.98±0.0083 ∨
20 Bridges 86.16±1.51 88.13±1.3 ∨

average 93.05 93.45

5. Conclusions
The ROC curve is useful for visualising the performance
of scoring classification models. Both the ROC curve and
the AUC have drawn considerable attentions. ROC curves
contain a wealth of information about the performance of
one or more classifiers, which can be utilised to improve
their performance and for model selection. For example,
Provost and Fawcett [12] studied the application of model
selection in ROC space when target misclassification costs
and class distributions are uncertain; the AUC values have
been used by Ferri, Flach and Hernández-Orallo to find op-
timal labellings of decision trees [4]; and Flach and Wu [5]
introduce an approach to model improvement using ROC
analysis.

In this paper we introduced the scored AUC (sAUC) metric
to measure the performance of a model. The difference be-
tween AUC and scored AUC is that the AUC only uses the
ranks obtained from predicted scores, whereas the scored
AUC uses both the ranks and the original values of the pre-
dicted scores. sAUC was evaluated on 20 UCI data sets,
and found to select models with larger AUC values then
AUC itself, particularly for smaller data sets.

The scored AUC metric is derived from the Wilcoxon-
Mann-Whitney (WMW) statistic which is equivalent to
AUC. The WMW statistic is widely used to test if two
samples of data come from the same distribution, when no
distribution assumption is given. Evaluating learning algo-

Table 5. Results of experiment with 150 randomly selected in-
stances (AUC values). The data sets marked with * have less than
150 instances, so the results are the same as in Table 4.

# Data set use AUC use sAUC S?
1 Australia 84.06 ±1.63 86.02±1.55 ∨
2 Sonar 91.02±0.76 91.03±0.87
3 Glass 93.37±1.47 96.13±0.76 ∨
4 German 70.39±2.14 68.80±1.88
5 Monk1 93.66±1.65 95.62±1.27 ∨
6 Monk2 79.82±2.11 80.98±1.65
7 Monk3 96.31±0.77 97.74±0.60 ∨
8 Hepatitis 90.74±1.15 91.13±1.01
9 House 98.84±0.33 99.75±0.11 ∨
10 Tic-tac-toe 95.60±1.05 95.96±1.07
11 Heart 93.86±1.15 95.65±0.87 ∨
12 Ionosphere 93.07±1.25 92.75±1.38
13 BreastCancer 78.39±2.32 78.86±2.52
14 Lymphography* 88.22±1.04 88.89±1.00 ∨
15 PrimaryTumor 85.33±1.22 86.62±1.22
16 Solar-Flare 89.25±1.15 88.54±1.07
17 Hayes-Roth* 93.00±1.03 94.25±0.85
18 Credit 83.51±1.39 83.61±1.39
19 Balance 97.83±0.58 99.41±0.15 ∨
20 Bridges* 86.16±1.51 88.13±1.3 ∨

average 89.36 89.97

rithms can be regarded as a process of testing the diversity
of two samples, that is, a sample of the predicted scores
for postive instances and that for negative instances. As
the scored AUC takes advantage of both the ranks and the
orignal values of samples, it is potentially a good statistic
for testing the diversity of two samples. Our future work
will focus on studying the scored AUC from this statistical
point of view.
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