A Query Algebra for Fragmented XML Stream Data

Sujoe Bose

Leonidas Fegaras

David Levine Vamsi Chaluvadi

Department of Computer Science and Engineering
The University of Texas at Arlington
416 Yates Street, P.O. Box 19015
Arlington, TX 76019-19015

{bose,fegaras,levine,chaluvad } Qcse.uta.edu

Abstract

The increased usage of mobile devices cou-
pled with an unprecedented demand for in-
formation has pushed the scalability prob-
lem of pull-based data service to the focus.
A broadcast model of streaming data over
a wireless medium has been proposed to be
a viable alternative for information dissemi-
nation. In the streaming broadcast model,
servers broadcast data in an asynchronous and
unacknowledged mode while clients process
personalized and complex queries locally, re-
lieving the load on the server. We address
the query processing of streamed XML data,
which is fragmented into manageable chunks
for easier synchronization. Although there has
been some work done in defining algebras that
model XQueries on XML documents, no work
has been done in defining query algebras for
fragmented XML stream data. We define a
model for processing fragmented XML stream
data, using the concept of holes and fillers.
This model offers the flexibility required by
the server to disseminate data in manage-
able fragments, whenever they become avail-
able, and to send repetitions, replacements
and removal of fragments. We then present
a query algebra for XQuery that operates on
this streamed XML data model. The XML
fragments are operated upon in a continuous
pipelined fashion without the need of materi-
alizing the transmitted document at the client
site.

Proceedings of the 9th International Conference
on Data Base Programming Languages (DBPL),
Potsdam, Germany, September 6-8, 2003

1 Introduction
1.1 Motivation

Traditionally, client-server architectures are service
oriented, in which the servers process client requests
in the form of queries over the server database and re-
turn the data pertaining to the client requests. In this
setup, the onus is on the server to process the requests
at the behest of the clients and to send back the results.
The dramatic increase in the mobile devices and their
data-providing applications, coupled with the complex
and customized queries from the clients, may push the
load on the servers to prohibitive proportions. The al-
ternative method is to disseminate the data available
at the servers (both static and real-time data) in a
broadcast (or multicast) medium, with multiple chan-
nels of communication, on which the clients listen.

We envision a large class of applications for a push-
based data model we call broadcast of streaming XML
data, or XStreamCast. We assume that a typical con-
figuration will consist of a small number of servers that
transmit XML data over high-bandwidth streams and
many clients that receive this data. Stream data may
be infinite or repeated and transmitted in a continu-
ous stream, such as measurement or sensor data trans-
mitted by a real-time monitoring system continuously.
Even though our model resembles a radio transmit-
ter that broadcasts to numerous small radio receivers,
our clients can tune-in to multiple servers at the same
time to correlate their stream data. In contrast to
servers, which can be unsophisticated, clients must
have enough memory capacity and processing power
to evaluate sophisticated, continuous queries on the
XML data stream. For example, a server may broad-
cast stock prices and a client may evaluate a contin-
uous query on a wireless, mobile device that checks
and warns (by activating a trigger) on rapid changes
in selected stock prices within a time period.

We believe that there will be a growing interest
in query processing of continuous data streams as
the network bandwidth increases at rates higher than
disk access times, which makes it inefficient to cache

stream data on disk and process it using conventional
database techniques. Moreover, pushing data to mul-
tiple clients is highly desirable when a large number
of similar queries are submitted to a server and the
query results are large, such as requesting a region
from a geographical database. By distributing pro-
cessing to clients, we reduce the server workload while
increasing its availability. More importantly, when the
push-based model is used, a client can correlate data
between two or more sources by tuning-in and joining
the data streams on-line, while, when the pull-based
model is used, a client must submit one query to each
server that holds the data and then join the results us-
ing a combining query. There are many sophisticated
distributed query processing techniques that address
the latter, such as semijoins, but, in general, large
amounts of data must be transmitted from servers to
clients before they are combined.

The standardization of XML, along with its
widespread adoption and usage, presents it as the lan-
guage of choice for communications between cooperat-
ing systems. XML, along with a rich set of supporting
specifications and standards, has been the focus of cur-
rent research. Even though there are several proposals
for XML query languages [13], we adopt the XQuery
standard proposed by World-Wide Web Consortium
(W3C) [6]. While the advantages of continuous pro-
cessing of streamed data compared to computation on
stored data have been understood and realized [2, 3],
not much work has been done in the streamed XML
front with XQueries as the stream processing function.
Much of the work related to XML stream processing
has been focused on XML filtering, i.e., matching a
large number of client XPath queries with XML docu-
ments at the server side and multicasting the matched
documents to the appropriate clients [15, 1]. Although
there have been some efforts on defining algebras that
model XQueries on XML documents, to our knowl-
edge, no work has been done in defining query algebras
for streamed XML data.

As an example consider two XML streams: the com-
modities stream that lists the commodities by vendor
along with its prices in USD:

<commodities>
<vendor>
<name> Wal-Mart </name>
<items>
<item>
<name> PDA </name>
<make> HP </make>
<model> PalmPilot </model>
<price currency="USD">315.25<price>
</item> ... </items>
</vendor>

</commodities>

and the currency stream that provides currency con-
version information:

<currencies>
<currency>
<code> USD </code>
<name> US Dollars </name>
<rates>
<currency>
<code> GBP </code>
<buying> 1.34 </buying>
<selling> 1.32 </selling>
</currency> ... </rates>
</currency>

</currencies>

We would like to issue a query to get a list of prices
for the PalmPilots in GBP sorted by price, lowest to
highest. The XQuery would look like:

<result>
{ for $c in stream(commodities)//vendor/items/item
where $c/model/text() = "Palm-Pilot"
return
<vendor> $c/../../name/text() </vendor>
<price>
for $u in stream(currency)//rates/currency
where $u/code/text() = "GBP"
and $u/../../code/text()=%$c/price/@currency
return $u/buying/value()*$c/price/value()
</price>
sortby ($c/price)
} </result>

The challenge is in evaluating this query against the
XML data from the two streams. The implicit join
between the commodities and the currency streams in
the above query requires a state of unbounded length,
since the GBP currency information may come at the
end of the currency stream. Moreover, the sortby
clause makes the query a blocking query, since no re-
sult can be obtained without reading both streams.

1.2 Our Approach

Since an XML stream can be visualized as an infinite
sequence of data items belonging to some data set, in
our framework, we fragment the stream into manage-
able chunks of information. These chunks, or frag-
ments, are related to each other and can be reassem-
bled at the client side upon arrival. However, the focus
of our work is not in reconstructing the stream in the
client devices, but rather to evaluate ad-hoc queries
against these fragments at the client side in real time
and produce results. Our XML fragments follow the
Hole-Filler model in which every fragment is treated
as a “filler” and is associated with a unique ID. When
a fragment needs to refer to another fragment in a
parent-child relationship, it includes a “hole”, whose
ID matches the filler ID of the referenced filler frag-
ment. Note that a document can be fragmented to
produce fillers and holes in arbitrary ways. Further-
more, the fragments can be arranged to any depth and
breadth in a document tree.

Fragmenting a stream has the following advantages:
While it is hard to synchronize on infinitely long
streamed XML data, it is relatively easy to synchronize
on fragmented XML data. The fragmentation also is
necessary when pieces of data are made available to the
server in real-time, so that information that is avail-
able may be transmitted as and when is received. For
example, in a stock quote stream, the enumerated set
of ticker symbols are near-static, however the stock
quotes on those symbols change, and these changes
need to be transmitted often as fragments, wrapped
with sufficient context information. The stream frag-
ments can be repeated for redundancy and to accom-
modate client devices that connect sporadically.

The novelty of this paper is in characterizing XML
streams by a list of fragments, suitable for dissemi-
nation by servers and for processing by clients. This
is captured in our streamed XML model by discrete
fragments of XML data interrelated and intermittent
in arrival, wherein a particular ordering of fragments
is not guaranteed. This characterization allows servers
to be able to repeat or replace fragments, introduce
new ones or delete outdated ones. More importantly,
this approach closely reflects the dynamics of data,
especially in real-time applications, and provides the
required controls on the server to make sure clients
are synchronized with the data at the server. An-
other contribution of this paper is a novel query al-
gebra based on the streamed XML model. This alge-
bra commensurates with the main theme of our work:
to directly evaluate the queries input by the client
on streams of XML data without materializing it in
memory. We extend our earlier work on an algebra
for stored XML data [11] to operate on our streamed
XML model rather than on stored XML documents.
The challenge is in evaluating the operators against
our streamed XML model, which consists of discrete
hole and filler fragments interrelated to each other.
Since, fragments are not guaranteed to arrive at a par-
ticular order, we need to take care of arrivals of filler
fragments before the presence of a hole for the filler
and vice versa. This leads to an algebra in which the
evaluation on certain fragments may be suspended if
the fragments have holes for which the fillers have not
arrived and the path evaluation used in an algebraic
operator leads to the hole.

1.3 Assumptions

In our push-based broadcasting framework, we make
the following assumptions about the environment and
the characteristics of the components involved. We
assume that client devices connect into multiple data
streams asynchronously and have reasonable amount
of resources in terms of computing and storage. The
communication medium is assumed to be noisy and
lossy, but we will not address losses in the communi-
cation medium and handling a lossy medium is consid-

ered as future work. However, the fact that the stream
fragments can be repeated, replaced, removed or added
by the server, offsets the problem of the communica-
tion losses. It also enables clients to connect into the
stream and be able to process the data stream. The
server may send the fragments in any order. Another
assumption is that data is well-typed. The server will
transmit meta-data periodically to provide the struc-
ture of the XML data being transmitted (described
in Section 2.1). The queries are assumed to be input
through a menu interface or manually. The queries can
be generic at first and can be refined to return desired
results. Since clients can tune-in to streams at different
points in time, and the servers disseminate fragments
of data asynchronously, the results of queries will re-
flect the time in which the client are connected to the
streams as well as the duration of the connections.

1.4 Layout of the Paper

In Section 2, we present a formal model for the
streamed XML data, based on the Hole-Filler model,
which serves as the basis for our query algebra. In
Section 3, we review our earlier work on an algebra
for stored XML data and, in Section 4, we extend this
algebra to process streams of fragmented XML data.
Our streamed query algebra operates on the fragments
to produce continuous results in a pipelined fashion.
Finally, we present the related work in Section 5 and
we conclude in Section 6.

2 Our Model for Streamed XML Data
2.1 The Fragmented Hole-Filler Model

In our model, XML documents are transmitted in frag-
ments. These fragments may be disseminated by a
server in any order. To be able to relate fragments
with each other, we introduce the concept of holes and
fillers. A hole represents an empty node into which
another rooted subtree, called a filler, could be posi-
tioned to complete the tree. The filler can in turn have
holes in it, which will be filled by other fillers. Unique
IDs are assigned to the holes. The fragment that cor-
responds to a hole has the same ID in its header. Thus,
by substituting holes with the corresponding fillers, we
can reconstruct the whole XML tree at the client side
as it was in the server side. However, reconstructing
the original XML tree is not always a good idea, since
clients would have to wait for the end of the stream
to begin processing. As will be discussed in the next
section, our goal is to apply our query algebra on this
streamed model and to process XML fragments as they
become available.

At the server side, the XML document may be frag-
mented by recursively pruning the tree, inserting a
hole at every point a tree is pruned and associating
it with an ID. The server may prune the tree in an
arbitrary way. This arrangement, of associating holes

with fillers, takes care of out-of-sequence transmission,
repetitions, replacements and removals. Another im-
portant piece of information transmitted by the server,
is the Tag Structure of the document transmitted in
the stream as a separate fragment. This tag structure
is a structural summary that provides the structural
make-up of the XML data and captures all the valid
paths in the data. This information is useful while ex-
panding wildcard path selections in the client queries.
Moreover, this structure gives us the convenience of
abbreviating the tag names with IDs (not used here)
for compressing stream data. The following is a tag
structure corresponding to the commodities stream:

<stream:structure>
<tag name="commmodities" id="1">
<tag name="vendor" id="2">
<tag name="name" id="3"/>
<tag name="items" id="4">
<tag name="item" id="5">
<tag name="name" id="6"/>
<tag name="make" id="7"/>
<tag name="model" id="8"/>
<tag name="price" id="9"/>
</tag>
</tag>
</tag>
</tag>
</stream:structure>

As an example of the hole-filler model of fragment-
ing XML data, consider the commodities XML doc-
ument stream with thousands of vendors, where each
vendor potentially provides thousands of items. This
document, in its entirety, may be too large to send as
a single document. Moreover, data corresponding to
all the vendors may not be available at the same time.
The commodities stream would be transmitted in the
following fragments, where each fragment is a filler for
a hole in some other filler fragment:

Fragment 1:

<commodities>
<vendor>
<name> Wal-Mart </name>
<items>
<stream:hole id="10" tsid="5"/>
<stream:hole id="20" tsid="5"/>

</vendor> ... </commodities>

Fragment 2:

<stream:filler id="10" tsid="5">
<item>
<name> PDA </name>
<make> HP </make>
<model> PalmPilot </model>
<price currency="USD">315.25<price>
</item></stream:filler>

Fragment 3:

<stream:filler id="20" tsid="5">
<item>
<name> Calculator </name>
<make> Casio </make>
<model> FX-100 </model>
<price currency="USD">50.25<price>
</item></stream:filler>

Fillers are associated to holes by matching filler IDs
with hole IDs. The filler with id = 0 is always the root
filler, and hence the root of the fragmented document.
The tsid attribute identifies the ID of the tag structure
element corresponding to the filler fragment element.
Using the tag structure ID, the structural context of
the fragment can be deduced by looking-up the tag
structure sent by the server intermittently. The filler
of fragment 2 fills the hole with ¢d = 10 inside frag-
ment 1. It can be seen that fragment 1 is near-static
while fragments 2 and 3 are not, due to variations in
price. While fragment 1 can be transmitted earlier, the
fragments 2 and 3 can be transmitted as soon as the
price on an item is received. Note that the fragmenta-
tion can be done at any level in the XML tree, based
on the flexibility in the granularity of fragmentation
in various data domains. In the example above, we
could have chosen to further fragment the right filler
such that the “price” element, which is dynamic, be
transmitted as a separate filler fragment.

2.2 Formal Definition of the Model

In this section, we formalize the fragmented stream
model of XML data outlined in Section 2.1. The ba-
sic stream components transmitted by the server are
fillers and holes, each with its own ID. In order for the
server to be able to repeat, replace and remove frag-
ments, the basic stream constructs are extended with
repeat, replace and remove primitives. The server can
also send an end-of-stream fragment, which is a marker
for end of transmission. The stream content () can
be described by the following grammar:

0 <filler id=“m” tsid="“n">z </filler>

<repeat id=“m” tsid=“n">x </repeat>
<replace id=“m” tsid=“n">x </replace>
<remove id=“m” tsid=“n"/>

<eos/>

Y

where m and n are numbers, representing the id and
tsid attributes respectively, and x is a valid XML frag-
ment, defined as follows (XML attributes are ignored):

x u= <tag>z </tag>
| <tag/>
| <hole id=“m” tsid=“n"/>
| PCDATA
|

Trx

(The root of the document is always transmitted with
filler id = “0”.) For convenience, we represent the
stream components with the following syntactic short-
hands, where m and n stand for the id and tsid at-
tribute values respectively in the original form:

v u= F(m,n,z) (a filler)
| R(m,n,z) (a repeat)
| U(m,n,z) (a replace)
| D(m,n) (aremove)
| eos (an end of stream)
| vy (a stream sequence)

The stream components thus contain XML fragments
of the original document and these XML fragments in
turn may contain holes, which will be filled by other
stream components. Note that we do not model silence
during transmission, which is inherent in stream-based
models. The reason is that we do not want to clutter
the grammar and algebra with entities not contribut-
ing to the processing. We do however consider this as-
pect when evaluating certain operators that read from
multiple streams, such as joins, since the streams may
not be synchronized, or worse, one of the streams may
be blocked.

2.3 Reconstruction of the XML Document
from Stream Fragments

The fragmented XML document in the form of holes
and fillers can be reconstructed, in its entirety, at the
client by recursively filling the holes with the corre-
sponding fillers. We define a stream transformation
function 7, which maps XML fragments represented
by ~ onto an XML document. The stream transfor-
mation function involves the process of maintaining a
mapping between filler IDs and the fillers, based on
the stream components, and recursively filling holes
with fillers with corresponding IDs. 7 can then be de-
fined in terms of the filler mapping function 77, and
the hole substitution function 73. To accurately depict
the causal semantics of the stream primitives, which
modify the mapping between filler IDs and the fillers,
we represent function 7; as taking the stream as its
argument, and returning an environment containing
the mapping between the filler IDs and fillers. The
hole substitution function 75 then substitutes the holes
in the fragments recursively. Note that this function
takes care of out-of-order arrival of holes and their cor-
responding fillers. After the holes are substituted, we
have a set of XML fragments each representing various
possible sub-trees, devoid of holes, of the original XML
document. To retrieve the original document from this
set, we retrieve the XML fragment with id = 0.

7 is defined on a stream v as 7 (y) = Z2(71 (v, 0))[0],
where 77 returns an environment ¢, which is a set of
bindings that, for each fragment, it binds the fragment
ID to the fragment content. The filler mapping func-
tion, 7, is defined over the stream -, and is shown in a

case method of function definitions, over the possible
stream primitives as follows:

Ty (F(m,n,2),¢) = (U{(m,z)}
71((m,n,z),¢) = CU{(m,z)}
Ti(D(m,n),¢) = {(ky)|(ky) €C k#m}
7—1((m n, $)7<) = ’Tl((m,n)7C) U{(m7x)}
71(@05 () = ¢
Ti(v1572,¢) = Ti(y2,71(11,0))

Filler fragments and repeat fragments are appended
into the environment {, while a delete fragment re-
moves the mapping of an ID. A replace fragment
causes the deletion of an existing filler with matching
ID and the subsequent addition to the environment. A
stream sequence is handled recursively and the end-of-
stream fragment simply returns the final environment.
The hole substitution function, 73(¢) merges the frag-
ments in ¢ by filling holes with fillers:

T(¢) = {(kylm/a])[(m,z) € (ky) €(,
<hole id=“m”.../> € y }

where y[m/z] replaces <hole id=“m".../> in y with x.
Finally, after applying 75 to (, we retrieve the entire
XML tree by indexing the root (of id=“0").

Thus, given a query ¢(z1, ..., z,) over n XML trees
Z1,-..,Zn, and a query ¢’ (y1,...,7n) over n streams
of XML data 71, ..., v,, we say that g and ¢’ are equiv-
alent iff:

Vv o T(¢ (mn,. .. qT1),--, T ()

that is, ¢ and ¢’ must return the same result for any
input. We will use this natural transformation for
proving the equivalence of our streamed XML algebra
to our algebra for stored XML data. Our effort con-
centrates on designing ¢’, operating on the fragments,
such that it will yield identical result as q operating on
entire XML documents. We present this in a two step
process: first, we give the semantics of our algebra ¢,
for stored XML data (XML trees). We then transform
this algebra into ¢/, which operates on the fragmented
XML model and produces identical results as ¢q. Re-
constructing the original XML tree is not always a
good idea, since clients would have to wait for the end
of the stream to begin processing. The emphasis of
our work is in providing the semantics of a query al-
gebra such that, executing the query on the fragments
and then constructing the resulting document to form
the final output produces the same result as construct-
ing the entire document and then executing the query.
Thus the results can be pipelined and produced as and
when they occur.

a’Yn))

3 An Algebra for Stored XML data

In this section, we present our algebra for stored XML
data introduced in earlier work [11]. Our streamed

[Pp,(D)]s = {<v=T>}

@, head

[[pred (X)]]é =

[[FZriBuzered()]]5 =
[t € [X]s }

{tuoty | te € [X]s, ty € [Y]s, [pred]sot,or, }
{to<v=w>|te[X]s weP(ot,path), [pred]sotocv=w> }

[Oprea(X)]s {tltel[X]s [predfse }
[Ty, (X)]s = {<vi=tv,...,0,
[XUY]s [X1s + [Y]s
[XP<reaY]s =
[" (X5 =

®/{ [head]sct | t € [X]s, [pred]sor }
{ [group]sot,o < v =@/{ [head]sot, | t2 € [X]s, [pred]sot,,

=tw, > |[te[X]s}

[[group]]l%b = [[group]]gotl } >

Figure 1: An Algebra for Stored XML Data

XML algebra, described in the next section, has the
same algebraic operators but different data domains
(streams rather than trees) and different semantics.

The algebraic bulk operators along with their se-
mantics are given in Figure 1. The inputs and output
of each operator are sequences of tuples that contain
XML subtrees. These sequences are captured as lists of
records and can be concatenated with list append, +-.
There are other non-bulk operators, such as boolean
comparisons, which are not listed here. The seman-
tics is given in terms of record concatenation, o, and
list comprehensions, { e | ... }, which, unlike the set
former notation, preserve the order and multiplicity
of elements. The form &/{ --- } reduces the elements
resulted from the list comprehension using the associa-
tive binary operator, @ (a monoid, such as U, 4+, *, A,
V, etc). That is, for a non-bulk monoid @, such as +,
we have +/{a1,a2...,a,} = a;+as+-: - -+ay,, while for
a bulk monoid, such as U, we have U/{aj,az2...,a,} =
{a1} U{az} U---U{an}.

The environment, §, is the current record under con-
sideration, and is used in the nested queries. Nested
queries are mapped into an algebraic form in which
some algebraic operators have predicates, headers, etc,
that contain other algebraic operators. More specifi-
cally, for each record, d, of the stream passing through
the outer operator of a nested query, the inner query is
evaluated by concatenating § with each record of the
inner query stream.

An unnest path is, and operator predicates may
contain, a path expression v/path, v/path/text(), or
v/path/data(), where v is a record attribute in the op-
erator’s input sequence and path is a simple XPath of

the form:
path == A
| A/path
for a tag name A. The unnest operation is the only

mechanism provided for traversing an XML tree struc-
ture. It uses function P, which is defined over paths

as follows:

P(t,v/path) P’ (tw, path)
P (<A>zx ,A/path) = P'(z,path)
P(<A>z A) {<A>z }
P’ (x1 w2, path) P’(x1,path)
U P’ (x2, path)
otherwise

P'(t,path) = 0

The extraction operator, p, gets an XML document,
T, and returns a singleton list whose unique element
contains the entire XML tree. Selection (o), pro-
jection (), merging (U), and join (P) are similar
to their relational algebra counterparts, while unnest
(1) and nest (T') are based on the nested relational
algebra. The reduce operator, A, is used in pro-
ducing the final result of a query/subquery, such as
in aggregations and existential/universal quantifica-
tions. For example, the XML universal quantifi-
cation every $v in $x/A satisfies $v/A/data()>5 can
be captured by the A operator, with & = A and
head= v/A/data()>5. Collection query results can be
constructed by A by using a collection monoid, such
as U. Like the XQuery predicates, the predicates used
in our XML algebraic operators have implicit existen-
tial semantics related to the (potentially multiple) val-
ues returned by path expressions. For example, the
predicate v/A/data()>5 used in the previous example
has the implicit semantics 3z € v/A/data() : x>b,
since the path v/A/data() may return more than one
value. Finally, even though selections and projections
can be expressed in terms of A, for convenience, they
are treated as separate operations. Please refer to [11],
for a complete treatment of translating queries written
in XQuery to our algebra, and for some query normal-
ization and optimization rules.

3.1 Example

To illustrate the usage of the operators in our algebra,
we consider the following XQuery, which returns the

list of vendors selling HP PDAs:

for $b in document(commodities)//vendor//item
where $b/name = “PDA”
and $b/make = “HP”
return <vendor> { $b/../../name } </vendor>

Its corresponding equivalent algebraic form is:

h .)
AN, (0, (periems/ien
(Mt),c/commodltles/vendor (pc (T))))))

where
T = document(commodities)
h = element(“vendor”, v/name)
p1 = b/name = “PDA”
ps = b/make = “HP”

The extraction operator, P, extracts the complete
XML tree from the commodities document and binds
it to the wvariable ¢, while the unnest operator,

v.e/commodities/vendor * 1.averges the document using
the path c¢/commodities/vendor and binds the ele-
ments obtained by the unnesting operation to the vari-
able c. These elements are subsequently unnested by
pubv/items/item - hinding the variable b to each item.
The selection operators, 0,, and 0y, , filter the ele-
ments based on the predicates b/name = “PDA” and
b/make = “HP” respectively. The element construc-
tion function, element(“vendor”,v/name), constructs
an XML element with tag name “vendor” and content

. Uho
v/name, while the reduce operator A unions to-
gether the elements returned by the element function.

4 An Algebra for Fragmented XML
Stream Data

The algebraic operators for streamed XML data take
stream fragments as input and produce stream frag-
ments as output. The fragments are streamed through
the various operators in a pipelined fashion. While all
the incoming fragments are examined, some of them
are discarded when the operator predicate evaluates to
false. Some fragments may not contain enough infor-
mation to be evaluated by a particular operator, due
to the presence of holes. When an operator has insuf-
ficient information to validate a fragment, it suspends
the processing of this fragment until the relevant fillers
arrive.

Before we present the details of the algebraic oper-
ators, we give some useful definitions.

Since a streamed query may operate on multiple
input streams, the client must maintain one tag struc-
ture for each input stream. For an input stream, s,
function TS(s) returns the tag structure of s (an XML
tree). Furthermore, for each input stream s and for
each tsid m in T'S(s), function T'SID(s, m) returns the

subelement of this tag structure with id = m. Ex-
pressed in XPath, it is equal to:

TSID(5,m) = TS(s); /tag[@tid = “ni”]

For example, TSID(s,7) evaluates to the tag struc-
ture element <tag name="make" id="7"/>, for the
tag structure corresponding to the commodities stream
s presented earlier. Given a tag structure s and a path
expression path, Q(s, path) returns the set of tag struc-
tures reachable by path:

Q(<tag name=“A" ...>y</tag>, A/path)
= Q(y,path)
Q(<tag name="A" ...>y</tag>, A)
= { <tag name=*“A" ..>y</tag>}
Q(xy x2,path) = Q(x1,path) U Q(x2,path)
Q(x,path) = 0 otherwise

The intermediate results between our stream al-
gebraic operators are records of the form: <wv; =
€1,...,U, = e,>, where v; are range variables in-
troduced by the algebraic operators and e; are XML
fragments. The hole ID m in F(m,n,z) can be -1
to indicate that this filler is generated by one of the
operators and does not fill any hole. Each range vari-
able v is associated with a set of tag structures, called
DOMAIN(v), which can be statically determined (at
compile-time) from the algebraic operator tree and the
tag structures of the input streams using the function
Q: Each range variable v ranges over the result of a
path expression w/path, thus,

DOMAIN(v) = {y|x € DOMAIN(w), y € Q(x, path) }

Content Restriction: For each intermediate result
record of the form < ... ,v; = F(m,n,x),... >, the
condition, 3z € DOMAIN(v;) : z//tag/@Qid = “n”,
must hold. That is, the tag structure of the fragment
streamed through the input and associated with the
range variable v; is not necessarily equal to one of the
tag structures of v;, but, more generally, it can be a
descendant of one of them. If a record does not satisfy
this restriction, it is suspended (explained below).

Each n-ary algebraic operator op in the algebraic
tree of a query is associated with n 4+ 1 binding lists
G, 0 < i < n, one for for each input and one for
the output, (y, which maps fragment IDs to frag-
ment contents. If a fragment from the operator’s i’th
input stream cannot be processed due to fragment
holes, then the fragment is suspended in (;. When
a filler comes that fills one of the holes of a suspended
fragment, then the fragment is awaken again and re-
examined.

Function P’ (defined in Section 3) is extended to
handle holes:

P’(<hole id=“m” .../>,path) = P'((i(m),path)
ifm e ¢

P’(<hole .../>,path) = { L} otherwise

That is, P’'(x, path) returns a set of elements, where
each element can be either a L or an XML element. If
there is at least one L in P’(z, path), the path cannot
be completely evaluated against & due to holes in x.

Given an intermediate result record ¢ and a predi-
cate pred over this record, P(t, pred) can return a true,
false, or L (undefined) value. That is, P’(z, path) re-
turns a set of elements, where each element can be
either a 1 or an XML element. A predicate is in gen-
eral a boolean formula that combines simple predicates
using boolean operators (A, V, etc). A simple predi-
cate typically compares two XPaths or one XPath with
a value. If pred is a simple predicate and there is a
path v/path in pred such that L € P(t,v/path), then
P(t,pred) evaluates to L; otherwise, P(t, pred) is true
if for each path v/path in pred, there is an XML value
x € P(t,v/path) such that pred evaluates to true when
v/path is replaced by x; otherwise, it is false. For the
boolean operators, we use three-value logic. For ex-
ample, false V false = false, true Va = x V true = true,
otherwise z Vy = L.

The extension of the path evaluation function P
to handle fillers and holes forms the basis for the ex-
tension of our algebraic operators to operate on the
fragmented XML model. We will now see how each
operator is extended to handle the holes and fillers in
XML streams. Note that each operator is producing
output as a sequence of records as illustrated by the
following BNF,

§:=<V; =€1,...,0, =€,>; S| eos

Where <v; = eq,...,v, = e,> is a record output from
the operators, as discussed earlier in this section. This
accounts for the pipelined operation of the algebraic
operators while interrogating the stream, modeled as
a sequence of fragments.

We will now show how some of the operators for
stored XML algebra have been extended for streamed
XML.

4.1 The Extraction Operator P,

The extraction operator extracts the fragments from
the stream and identifies each of these fragments with
the range variable v. Every input fragment satisfies
the content restriction since the tag structure of v is
the root tag structure. Since this operator does not
use paths, no fragments need to be suspended. The
semantics of this operator is straightforward:

[Pot; Vs — <v=t>;[pPu(M]s
[py(eos)]s — eos
where the environment ¢ is the current record under
consideration, as in the stored XML algebra.
4.2 The Selection Operator 0, cq

The selection operator filters the fragments from the
stream based on the predicate specified. Since selec-

tion is a unary operator, it uses one environment (i
for the input stream, which is always empty, and one
environment (, for the output stream. If the selection
predicate pred cannot be evaluated completely against
the current tuple ¢ of the input stream, then the tuple
is suspended in (j:

Co+= {t}

where operation (y += ts adds a set of tuples ts to
Co. Thus, selection lets the tuple ¢ pass to the output
stream only if pred evaluates to true:

[[O-pred(t 5 7)]]6 -

if P(0ot,pred) = L

if P(6 ot, pred) = true
then ¢; [0 prea(7)]s
else [0 prea(7)]s
[[O-pred(eos)]]5 = ¢€os

If P(6 o t, pred) evaluates to true, then the fragment
record t is output. The operator then recursively pro-
cesses the remaining stream of records. If P(§ot, pred)
evaluates to false (failed predicate) or L (presence of
a hole), then the fragment record ¢ is not embedded to
the output stream. Additionally, at the arrival of eos,
the buffer ¢, is cleared, i.e {5 = 0.

4.3 The Projection Operator T, . ..

The projection operator uses the projection variables
to select attributes from the current tuple of the input
stream:

[Toren (5 V)]s
=< =t .Uy =00, > [Ty, (V)]s

[Tor.....0n (€08)]5 = eos

4.4 The Merge Operator U

The merge operator propagates the input tuples from
either one of the two input streams into the output
stream (without removing duplicates):

[t) Uels = tas [Unals
[viUta; v2)ls = to; [Uls

[eosUq]s = [yUeos]s = v

Note that the semantic interpretation of the merge op-
eration captures effectively the processing of streamed
fragments when data is available in either of the
streams, or possibly on both at the same time.

4.5 The Join Operator P<,..q

The streamed join operator performs a join between
the fragments of two streams ; and 5 based on the
predicate pred. It suspends all the tuples from both in-
put streams because each fragment from either stream
needs to be preserved since it may be joined with in-
coming fragments from the other stream. If the evalu-
ation of the join predicate pred over a pair of records

t; and t9 is undetermined (i.e., L) due to the presence
of holes, the concatenation t1 o t5 is suspended in the
binding list of the output stream, (3. Furthermore,
tuples from the left stream are suspended in (;:

[[(tl 5 ’71) [><]p7‘ed 72]]5
= {tyoty |ty € (o, P(§ 0ty oty,pred) = true }
5 [[71 Npred 72]]5

Gi+=t
CO +: {tl Ot2 | t2 c <27 P(60t1 Ot27pred) = J‘ }

The tuples from the right stream are suspended in (o:

H’)ﬁ Dqp?"ed (t2 3 ’72)]]5
= {tioty|t1 €, P(d oty ote,pred) = true }

5 [h’l Npred 72]]5

G += 12
C+= {tiota|[t1 €, P(dotyoty,pred) =L}

When an eos is received in stream -;, the contents
of buffer (5 can be flushed, since they are not needed
anymore (there cannot be any more fragments of XML
from stream (; that would need to be joined with frag-
ments in (3). The converse is true when an eos is re-
ceived in stream <5, wherein buffer (; can be flushed.
After both streams receive an eos, an eos is embedded
to the output stream. Finally, and more importantly,
the binding lists (p is reduced when a filler of a hole
in a fragment in (p arrives from the input streams,
which causes the tuple that contains this fragment to
be reconsidered by the join operator.

The semantics of our join operator resembles the
symmetric join algorithm [23]. To evaluate the equi-
join X >z a—y. g Y using a symmetric join, we have to
maintain two hash tables in memory that contain the
same number of buckets, one for stream X with a hash
function based on z.A and one for the stream Y based
on y.B. When a tuple, z, arrives in the stream X, it
is inserted in the X hash table and is joined with all
the tuples in the Y hash table that have the same hash
key. The matched pairs are immediately streamed into
the output. A similar operation is performed when a
new tuple arrives in the stream Y.

4.6 The Unnest Operator Mz;izth

The unnest operator provides the means to traverse
the tree based on the path expression path and the
predicate pred. It unnests the XML fragments based
on the path expression and then applies the predicate

validation:

[2er™ (ks)]s
= {to<v=w>]|weP@ot,path), w# L,
P(§oto < v=w >, pred) = true }

P ne ™ ()]s

<0+: {to<v:w>‘w€7y(50t7path)a
Ploto<v=w>,pred) =1}

125" (cos)]s = eos

If the unnesting path or the predicate evaluates to L,
then the unnesting pair (the current record concate-
nated with one of the results of applying path over the
record) is suspended in (y. If an eos is received, we
return it and we flush the output buffer (.

@,head

4.7 The Reduce Operator A, 4

The reduce operator applies the header to each tuple
and merges the results using &:

AT)]s

pred

= if P(dot,pred) = true A P(dot, head) # L

@, head
then P(d ot, head) @ [A,cq (V)]s
@®,head
GISQ[[pred (7)]]5
@®,head

H pred (t; 7)]]5 = €0s

If either the predicate or the header is unable to eval-
uate, the current tuple is suspended:

Co+= {t} ifPot,pred)=_LVP(dot,head) =L

v,®,head

4.8 The Nest Operator Fgmup,med

The nest operator itself does not produce any output,
since it is blocked:

v,B,head v,®,head
Hrgroup,pred(t) 7)]}5 - [[Fgroup,pred(’wﬂ(s

v,®,head
Hrgroup,pred(eos)]] 5 = €08

If any of the head, group, or pred cannot be evaluated
completely, the tuple ¢ is suspended in (3. The (j
binding list contains one tuple for each group. If a
new group is found, then a new tuple is inserted in (p;
otherwise, the head of the current tuple is accumulated
in the group tuple:

if P(6ot,pred) = true:
find x € (o : P(6 0z, group) = P(d ot,group);
if none exists:
then (o += P(d ot,group)o < v=P(dot, head) >
else z.v = z.v & P(0 ot, head).

The groups can only be flushed after the end of the
input stream.

4.9 An XQuery Example Using the Streamed
XML Algebra

To illustrate the usage of the operators in our streamed
XML algebra, we consider the XQuery presented in
Section 3.1, which returns the list of names of vendors
selling HP PDAs evaluated against the fragments from
the commodities stream, as shown in Section 2. Let
f1, f2, f3 correspond to the fragments 1, 2 and 3. The
commodities stream can be visualized as a sequence of
the fragments f1; fo; f3;...;e0s. When the fragments
are streamed through the operators, the unnest op-
erator, ,LL”’C/ commodities/vendor - gygpends the fragment
f1, since it encounters a hole with id = 10 during
its path traversal. When the fragment f, arrives,
the suspended fragment is processed, and is streamed
through. This fragment is them passed through the
second unnest operator as well as the selection opera-
tors, 0, and 0, , and is added to the result stream.
When the fragment f3 arrives, the fragment f7, still
being suspended due to another unresolved hole with
id = 20, is similarly streamed through the unnest op-
erator, It is however filtered out in the selection stage.
The eos stream element flushes the buffers. Note that
the structural context of a fragment can be deduced
with the help of the tsid attribute in the fragments and
the tag structures transmitted by the server.

4.10 Equivalence Between the Stored and the
Streamed XML Algebra

Given an XML query, its algebraic tree based on our
streamed XML algebra is exactly the same as that
for our stored XML algebra, since both algebras use
identical algebraic operators. Therefore, to prove the
equivalence theorem in Section 2.3, we need simply to
prove that for each n-ary algebraic operator op of the
stored algebra and its equivalent op’ of the streamed
algebra, we have:

op(T(m),---.T(m)) = T(op'(m, ...

for arbitrary finite streams -;. That way, by starting
from the algebraic tree in the stored algebra of an n-ary
query g, we can build the algebraic tree in the streamed
algebra using the above natural transformations, since
the 7 translations can propagate bottom-up in the
query tree, yielding at the end the algebraic tree for
the streamed query ¢’ that satisfies:

dT(n)-- - T(m) = T(d (-

We leave the proofs for an extended version of this
paper. With the fragmented model, it is beneficial to
operate on fragments as and when they arrive, instead
of waiting to materialize the complete document for
two main reasons, firstly, processing can be continuous,
pipelined and timely, secondly, the fragments that do
not satisfy the predicates can be safely discarded as
soon as possible thereby conserving memory.

a'Yn))

a'Yn))

5 Related Work

There are many recent projects related to query pro-
cessing on data streams, which are overviewed else-
where [2, 3].

The hole-filler model for XML data has been pro-
posed in [19] in the context of pull-based content nav-
igation over mediated views of XML data from dis-
parate data sources. In our framework, the hole-filler
model is used in a push-based model, for fragmenting
XML data to be sent to clients for selective query pro-
cessing. Our main motivation is to relieve the load on
the server and leverage the processing power in client
devices. Based on previous experience with traditional
databases, queries can be optimized more effectively if
they are first translated into a suitable internal form
with clear semantics, such as an algebra or calculus.
There are already many proposals for algebras on semi-
structured and XML data, including an algebra based
on structural recursion [5], YATL [9, 8], SAL [4], x-
algebra [12], TAX [17], and the Niagara algebra [22].
In contrast to these algebras, with the possible excep-
tion of the Niagara algebra, our work is based on the
nested relational algebra, since our focus is on pipelin-
ing the algebraic operators using main-memory, rela-
tional evaluation algorithms. In addition, there is a
recent proposal for a data model and an XQuery alge-
bra by the W3C committee [10], whose main purpose
is in expressing well-formed semantics, such as type
inference. This algebra is basically a core subset of
XQuery and, unlike conventional database algebras,
does not address performance issues.

Our goals are similar to those of the Niagara Con-
tinuous Query Processing project, NiagaraCQ [7]. A
recent work by this group proposed the use of punctu-
ations for handling blocking operators [20]. A punctu-
ation is a hint transmitted by a server to clients along
with the data to indicate properties about the data.
One example of a punctuation is the indication that
all prices of stocks starting with ‘A’ have already been
transmitted. Punctuations are properties that hold
from the point of their transmission up-to the end of
the stream, allowing us to view an infinite stream as a
mixture of finite streams.

There is some work recently on using stream trans-
ducers to process continuous XML streams [18]. A
transducer generalizes deterministic finite automata
(DFAs) in that it allows the generation of output dur-
ing a state transition. Even though DFAs have been
shown to achieve a high throughput for XPath expres-
sions and for non-blocking XQueries on single XML
streams [14], it still to be shown that are also effective
for multiple input streams, which require advanced
main-memory join techniques that have already been
successfully addressed by main-memory databases.

6 Conclusion

In this paper, we have illustrated the main theme of
our work: evaluating the user defined queries on frag-
mented XML stream data in a continuous fashion, as
opposed to materializing the stream and then evalu-
ating the queries on the complete XML. We started
by motivating the need for fragmented XML dissem-
ination and subsequent query evaluation on streamed
fragments. Our query algebra for processing of frag-
mented XML data is modeled in the lines of that
for complete XML data, hence the query optimiza-
tions proposed in our previous work can be applied
to the fragmented XML data processing as well. The
streamed fragments are processed by our algebraic op-
erators and are then combined to form the final result.
Since the data is continuous and so are the queries, we
continuously update the result to reflect the data and
the query predicates.

References

[1] M. Altinel and M. Franklin. Efficient Filtering of
XML Documents for Selective Dissemination of
Information. In VLDB 2000.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and Issues in Data Stream
Systems. In PODS 2002, pages 1-16.

[3] S. Babu and J. Widom. Continuous Queries Over
Data Streams. SIGMOD Record, 30(3):109-120,
September 2001.

[4] C. Beeri and Y. Tzaban. SAL: An Algebra for
Semistructured Data and XML. In WebDB 1999,
pages 37-42.

[5] P. Buneman, S. Davidson, G. Hillebrand, and
D. Suciu. A Query Language and Optimization
Techniques for Unstructured Data. In SIGMOD
1996, pages 505-516.

[6] D. Chamberlin, D. Florescu, J. Robie, J. Simeon,
and M. Stefanescu. XQuery: A Query Language
for XML. W3C Working Draft. Available at
http://www.w3.org/TR/xquery/, 2000.

[7] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
NiagaraCQ: A Scalable Continuous Query System
for Internet Databases. In SIGMOD 2000, pages
379-390.

[8] V. Christophides, S. Cluet, and J. Siméon. On
Wrapping Query Languages and Efficient XML
Integration. In SIGMOD 2000, pages 141-152.

[9] S. Cluet, C. Delobel, J. Simeon, and K. Smaga.
Your Mediators Need Data Conversion! In SIG-
MOD 1998, pages 177-188.

[10] D. Draper, P. Fankhauser, M. Fernandez, A. Mal-

hotra, K. Rose, M. Rys, J. Simeon, and
P. Wadler. XQuery 1.0 and XPath 2.0 Formal
Semantics. W3C Working Draft. Available at

http://www.w3.org/TR/query-algebra/, 2002.

[11] L. Fegaras, D. Levine, S. Bose, and V. Chalu-
vadi. Query Processing of Streamed XML Data.
In CIKM 2002, pages 126-133.

[12] M. Fernandez, J. Simeon, and P. Wadler. An Al-
gebra for XML Query. In FST TCS 2000.

[13] D. Florescu, A. Levy, and A. Mendelzon.
Database Techniques for the World-Wide Web:
A Survey. SIGMOD Record, 27(3):59-74, 1998.

[14] T. Green, G. Miklau, M. Onizuka, and D. Suciu.
Processing XML Streams with Deterministic Au-
tomata. In ICDE 2003.

[15] A. Gupta and D. Suciu.
XPath Queries with Predicates.
2003, pages 419-430.

Stream Processing of
In SIGMOD

[16] Z. Ives, A. Levy, and D. Weld. Efficient Eval-
uation of Regular Path Expressions on Stream-
ing XML Data. Technical Report, University of
Washington, 2000, UW-CSE-2000-05-02.

[17] H. V. Jagadish, Laks V. S. Lakshmanan, Divesh
Srivastava, and Keith Thompson. TAX: A Tree
Algebra for XML. In DBPL 2001, pages 149-164.

[18] B. Ludéscher, P. Mukhopadhyay, and Y. Pa-
pakonstantinou. A Transducer-Based XML
Query Processor. In VLDB 2002.

[19] B. Ludéascher, Y. Papakonstantinou, and P. Ve-
likhov. Navigation-driven Evaluation of Virtual
Mediated Views. In EDBT 2000, LNCS 1777.

[20] P. Tucker, D. Maier, T. Sheard, and L. Fegaras.
Online analysis and Querying of Continuous Data
Streams. IEEE Transactions on Knowledge and
Data Engineering, May-June 2003.

[21] T. Urhan and M. Franklin. XJoin: A Reactively-
Scheduled Pipelined Join Operator. IEEE Data
Engineering Bulletin, 23(3):27-33, 2000.

[22] S. Viglas, L. Galanis, D. DeWitt, D. Maier, and
J. Naughton. Putting XML Query Algebras into
Context. Unpublished manuscript, 2002.

[23] A. Wilschut and P. Apers. Dataflow Query Exe-
cution in a Parallel Main-Memory Environment.
In PDIS 1991, pages 68-77.

