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Recently there have been appearing new applications of
genetic algorithms to information retrieval, most of them
specifically to relevance feedback. The evolution of the
possible solutions are guided by fitness functions that
are designed as measures of the goodness of the solu-
tions. These functions are naturally the key to achieving
a reasonable improvement, and which function is cho-
sen most distinguishes one experiment from another. In
previous work, we found that, among the functions im-
plemented in the literature, the ones that yield the best
results are those that take into account not only when
documents are retrieved, but also the order in which
they are retrieved. Here, we therefore evaluate the effi-
cacy of a genetic algorithm with various order-based
fitness functions for relevance feedback (some of them
of our own design), and compare the results with the Ide
dec-hi method, one of the best traditional methods.

Introduction

The genetic algorithms (Davis, 1991; Goldberg, 1989;
Holland, 1992; Michalewicz, 1995) represent an Artificial
Intelligence search technique that emulates the process of
the evolution of species. These algorithms are especially
suited to exploring complicated high-dimensional spaces.
They have proven their usefulness in binary spaces, but they
have also been used in real multidimensional spaces. The
document spaces that derive from the application of the
vector model are real high-dimensional spaces that are well
suited to the use of these algorithms in exploring for im-
proved solutions. For this reason, there has been a gradual
but steady appearance of applications of genetic algorithms
(GAs) to information retrieval (Belew, 1989; Chen, 1995;
Chen, Chung, & Ramsey, 1998; Chen & Iyer, 1998; Cor-

don, Moya, & Zarco, 2000, 2002; Gordon, 1988a, b, Gor-
don, 1991; Horng & Yeh, 2000; Kraft et al., 1994, 1995,
1997; López-Pujalte, 2000; López-Pujalte, Guerrero Bote,
& Moya Ang&eacuteon, 2002; Martı́n-Bautista, 2000; Mar-
tı́n-Bautista, Vila, & Larsen, 1999; Raghavan & Agarwal,
1987; Raghavan & Birchard, 1979; Robertson & Willet,
1994, 1995, 1996; Sanchez, 1994; Sanchez, Miyano, &
Bracket, 1995; Sanchez & Pierre, 1994; Smith & Smith,
1997; Vrajitoru, 1997, 1998; Yang & Korfhage, 1992, 1993,
1994).

But how do these algorithms work? As input they have a
population of individuals known as chromosomes, which
represent the possible solutions to the problem. These are
randomly generated, although if there is some knowledge
available concerning the said problem, it can be used to
create part of the initial set of potential solutions
(Michalewicz, 1995). These individuals change (evolve) in
successive iterations known as generations, by means of
processes of selection, crossover, and mutation. These iter-
ations halt when the system no longer improves, or when a
preset maximum number of generations is reached. The
output of the GA will be the best individual of the end
population, or a combination of the best chromosomes of
that population.

For each problem to be solved, one has to supply a fitness
function, f, and indeed its choice is crucial to the good
performance of the GA. Given a chromosome, the fitness
function must return a numerical value that represents the
chromosome’s utility. This score will be used in the parent
selection process so that the best-adapted individuals will
have the greatest likelihood of being chosen. The fitness
function must, therefore, be appropriate for the problem
being dealt with, because the GA’s effectiveness will to a
large degree be determined by how faithfully the fitness
function characterizes the function that is to be optimized.
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Most works on GAs applied to information retrieval use
the vector space model. They fall mainly into three main
groups according to their application: document indexing,
clustering, and relevance feedback (Cordón, Moya, &
Zarco, 1999). The last group is the most numerous, which is
not surprising because GAs had been used previously to
solve problems in which there is feedback from the envi-
ronment. In particular, they were used to fit parameters for
instance in oil-field simulations, market analysis, classifica-
tion, etc. (Glover, 1987; Goldberg, 1989; Grefenstette,
1986, 1987; Hilliard & Liepins, 1987; Robertson, 1987).

We know that in the operations of information retrieval,
most of the users, who do not know the details of the
structure of the collection and of the retrieval environment,
have difficulty in formulating a well-designed query for
their immediate retrieval purposes. For this reason, the first
retrieval operation must be seen as a test, as a trial run only,
whose goal is to retrieve some useful elements from the
collection. These initially retrieved elements may then be
examined to assess their relevance, and then used to con-
struct a new improved definition of the query to retrieve
additional useful elements in subsequent searches: hence,
the importance of the techniques that allow the user’s que-
ries to be adapted to obtain better results.

One of the most popular strategies for modifying data-
base queries is relevance feedback. This process, introduced
in the 1960s, is a controlled and automatic form of modi-
fying the queries. The main idea is to use the information
provided by previously retrieved documents, identified as
relevant or irrelevant by the user, to adapt the query, so that
more documents are retrieved like the relevant ones, and
fewer than like the irrelevant ones (Salton & Buckley,
1990).

In applying GAs to relevance feedback, one can start
from a set of possible solutions (queries) and then let them
evolve under the algorithm attempting to achieve optimiza-
tion. To guide this evolution of the possible solutions, one
has to design fitness functions that evaluate how good these
solutions are, using for the purpose feedback from the user.

In a recent exhaustive study that implemented and com-
pared the different applications of GAs to relevance feed-
back (López-Pujalte, 2000; López-Pujalte et al., 2002), it
was found that the design of the fitness function was fun-
damental for the GA to optimally modify the query. Indeed,
the main differentiating feature each of those applications
was which fitness function it used. The best results in the
literature were obtained with functions that took into ac-
count not only the documents that were retrieved, but also
the order in which they were retrieved, that is, these were
fitness functions that scored not only whether the possible
solution retrieves many relevant and few irrelevant docu-
ments, but also whether the relevant documents were given
at the beginning of the list or at the end.

In the present work, we follow up on this finding by
implementing a relevance feedback GA and running it with
different order-based fitness functions. The results show
that this type of function does indeed present an excellent
behavior, unlike the rest of the functions implemented in the

specialized literature, and one can achieve a considerable
improvement in the original query with these GAs (some
times the improvement was 127%). These results match or
even surpass in some cases the Ide dec-hi method, which is
possibly the best of the classical methods used in relevance
feedback (Salton & Buckley, 1990).

The Genetic Algorithm and Fitness Functions
Used

We used a GA that had been optimized and adapted for
relevance feedback previously (López-Pujalte, 2000). We
shall next describe the characteristics of this GA, chosen for
having shown the best performance, and then we shall
describe three different fitness functions, all based on the
order of retrieval, which we used to guide the algorithm in
the search process.

The Characteristics of the GA

Representation of the chromosomes. The vectors corre-
sponding to the documents supplied as feedback are con-
verted, using the procedure described by Chen (1995), into
the chromosomes that our GA will work with. These chro-
mosomes have the same number of genes (components) as
there are terms with nonzero weights in the query and in the
documents of the feedback. One first calculates the set of
different terms contained in those documents and in the
query, and the size of the chromosomes is equal to the
number of terms in that set.

Example 1 (adapted from Chen, 1995): Consider the
following representation of the user’s query:

Q: Information, Retrieval, Indexing (three terms).
Let the following be the documents provided in the

feedback and represented by their nonzero terms:

DOC 1: Data, Retrieval, Database, Computer, Networks,
Improvements, Information, Method, Multiple, Query, Re-
lation (11 terms).
DOC 2: Information, Retrieval, Storage, Indexing, Keyword
(five terms).
DOC 3: Artificial, Intelligence, Information, Retrieval, Sys-
tems, Indexing, Natural, Language, Processing (nine terms).
DOC 4: Fuzzy, Set, Theory, Information, Retrieval, Sys-
tems, Indexing, Performance, Query (nine terms). DOC 5:
Information, Retrieval, System, Indexing, Stairs (five terms).

The total set of terms representing all the documents is
the following:

{Information, Retrieval, Indexing, Data, Database, Com-
puter, Networks, Improvements, Method, Multiple, Query,
Relation, Storage, Keyword, Artificial, Intelligence, Sys-
tems, Natural, Language, Processing, Fuzzy, Set, Theory,
Performance, Stairs}

The GA’s chromosomes will therefore have a length of
25, which is the number of different terms with nonzero
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weights in the set formed by the query and the five docu-
ments supplied in the feedback (in the present example).

Hence, the chromosomes that represent each document
and the query will be the following (for the sake of sim-
plicity, we shall assume a binary representation):

C1 � ( 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
C2 � ( 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 )
C3 � ( 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 )
C4 � ( 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 )
C5 � ( 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 )
Q � (1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )

Observe that with the method described above, although
the number of genes of the chromosomes is kept fixed for
the whole population, it will vary (as will the population)
according to the query that is being processed and the
documents supplied in the feedback. There is therefore no
preset chromosome size.

Population. Our GA receives an initial population consist-
ing of the chromosomes corresponding to the relevant doc-
uments, to the irrelevant documents, and to the latter with
their terms negated (in all cases, of course, we are referring
to the feedback documents), and lastly to the query that
some other method has supposedly optimized (which, as
Davis, 1991, points out, sets it among the hybrid genetic
algorithms).

Including the chromosomes corresponding to the negated
irrelevant documents (i.e., chromosomes with all their com-
ponents made negated), this is a direct consequence of the
relevance feedback, in which the optimal query vector has
to be brought ever closer to the relevant documents and
farther away from the irrelevant documents. This is the
reason why the classical methods in some way subtract the
irrelevant document vectors from the original query vector.
In this regard, one also sees in the work of Robertson and
Willet (1996) that the GA improves markedly with the
introduction of negative weights in the chromosomes. This
is because the negative weights correspond to terms that
appear frequently in the collection but infrequently in the
relevant documents, i.e., which should not be selected to
generate the optimal query.

Selection. The GA uses simple random sampling (Gold-
berg, 1989; Holland, 1992), as a selection mechanism. This
consists of constructing a roulette wheel with as many slots
as there are individuals in the population, and where the slot
sizes are directly related to the individuals’ fitness value.
This is implemented by assigning to each individual a
selection probability equal to its fitness value divided by the
sum of the fitness values of all the individuals. With the
roulette wheel implemented in this way, the selection pro-
cess is to spin the wheel N times, each time selecting a
chromosome for the intermediate population. In this way,
the best chromosomes will naturally give rise on average to
more copies, and the worst chromosomes to fewer copies.

Our GA also uses the strategy of élitism (De Jong, 1975)
as a complement to the selection mechanism. If, after gen-
erating the new population, the best chromosome of the
previous population is no longer present simply as the result
of the whims of fortune, the worst individual of the new
population is withdrawn, and the missing best individual is
put back.

Genetic operators. We used one-point crossover as the
crossover operator (Goldberg, 1989; Holland, 1992;
Michalewicz, 1995). It is defined as follows:

Given two parent chromosomes C1 � (a1. . . am) and C2

� (b1 . . . bm), one generates two offspring chromosomes H1

� (a1, . . . , ai, bi � 1, . . .,bm) and H2 � (b1, . . . , bi, ai � 1,
. . . , am), where i is a random number in the interval [1, m
� 1] and m is the length of the chromosome.

Mutation in our algorithm is implemented as a random
process (Michalewicz, 1995). A real random number is
generated in a given interval, in our case [0,1], and that
number is taken as the new value for the gene that has to
mutate. We also found that the GA’s behavior was im-
proved by including a procedure that normalized all the
chromosomes of the population each time that the genetic
operators were applied to them (even though they already
came from normalized documents).

Control parameters. All the control parameters were fixed
experimentally, carrying out many trials to obtain their
optimal values. The control parameters, crossover probabil-
ity pc and mutation probability pm, that led to the best results
were considerably higher than those that are normally used,
especially pm (pc � 0.8 and pm � 0.2). The reason is that
this helps to maintain the population’s diversity, and to
avoid the premature convergence of the algorithm. Also, we
used 20 generations (trials with 10, 20, 40, 80, 100, and 200
generations were performed), because from that point on the
population no longer improved.

Solution. The GA ends by returning as the solution both the
best chromosome found during the process, and the centroid
of those chromosomes in the final population that have a
fitness value equal to the maximum found in that generation.
This second method of finding the solution responds to the
idea of avoiding the useless loss of potentially valuable
information, because, if in the last generation there is more
than one chromosome with the maximum fitness value,
under what criterion would we select one and reject the rest?
We implemented and evaluated both methods.

Formally, the centroid calculation is defined as follows:

tiR �

�
j�1

T

f�max� � Cij

�
j�1

T

f �max�
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where tiR is the term i of the resulting chromosome; T is the
total size of the population; f(max) is a function that returns
1 if the chromosome’s fitness is equal to the value of the
population’s maximum fitness, and zero otherwise; and Cij

is the term i of chromosome j.

The Fitness Functions

We ran the GA described above with different order-
based fitness functions. In particular, as well as a fitness
function of this type given in the literature (Horng & Yeh,
2000), we designed two new functions that reward the fact
that the relevant documents appear at the top of the list of
retrieved documents. We shall next describe each of these
functions in detail.

Fitness 1. This fitness function, due to Horng and Yeh
(2000), is very innovative. As well as taking into account
the number of relevant and of irrelevant documents, it also
takes account of the order of their appearance, because it is
not the same that the relevant documents appear at the
beginning or at the end of the list of retrieved documents.

The said fitness function (Chang & Hsu, 1999; Kwok,
1997) is constructed as follows: One calculates the similar-
ity of the query vector with all the documents (using the
scalar product), and sorts the documents into decreasing
order of similarity. Finally, one calculates the fitness value
of the chromosome with the following formula:

F �
1

�D� �
i�1

�D� �r�di� �
j�1

�D� 1

j �
where �D� is the total number of documents retrieved, and
r(d) is the function that returns the relevance of document d,
giving a 1 if the document is relevant and a 0 otherwise. We
shall refer to this fitness function as fitness 1.

One sees that the function represents an ingenious
method of summing fractions whose denominator indicates
the positions of the documents, with the relevant documents
producing more fractions depending on the position that
they occupy.

Fitness 2. With this fitness function, the GA will include an
additional parameter A, which will determine the values of
the factors to be used by the said function. The function will
also compare the indicated chromosome and the feedback
documents, using the cosine as the measure of similarity.
After sorting the documents into relevance order, one accu-
mulates for all the retrieved documents (with similarity
greater than zero):

1

A
� � �A � 1�

A � �pos�1�

where pos is the position of the document under consider-
ation.

This accumulation has an important feature: it will be
positive when the document is relevant, and negative oth-
erwise.

Lastly, the total accumulated result is multiplied by the
recall of the retrieval to give the value returned by the
function as the chromosome’s fitness.

One sees that this function, as is the case with the other
order-based functions, needs no threshold or document cut-
off. Instead, it considers all the documents that were re-
trieved, i.e., with a similarity greater than zero.

As was the case with the previous function, this method
guarantees that each classification will have a different
value, i.e., although the number of relevant documents
retrieved is the same, their order of appearance directly
influences the calculation.

Fitness 3. This function, as also was the previous function,
is of our own design, and consists in finding the mean
precision in nine recall intervals, 0.1, 0.2, . . . , 0.9, but
performing an interpolation process to eliminate any ambi-
guities.

The process followed by this fitness function is illus-
trated in detail in the pseudocode of the algorithm in Fig-
ure 1.

As one sees, this function calculates the chromosome’s
similarity with the feedback documents by calling a func-
tion that uses a cosine similarity measure. The results are

FIG. 1. Algorithm to calculate the fitness function 3.
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stored in an auxiliary table, as long as the similarity of the
document with the chromosome is greater than zero. This
table is sorted into decreasing order of similarity. Then
begins the procedure to find the mean interpolated precision
in the nine recall intervals. This procedure is basically to
assign as an interval’s precision the highest precision of all
the points of recall that precede it to the right.

Before returning, the function checks whether the preci-
sions of all the intervals have been found. If not, the rest of
the intervals are assigned the last precision calculated (treat-
ment of remaining intervals).

Lastly, the mean of all the stored precisions is calculated,
one for each interval, and this mean will be the fitness value
of the given chromosome.

Obviously, these stored fixed-recall-interval precisions
would change if the relevant documents appeared in a
different order. Hence, for a new order and the resulting
different precisions, the mean of the precisions would also
be different.

The complexity of the three fitness functions is high, and
fairly similar, and, as there will never be a great number of
feedback documents, it will not significantly affect process-
ing times.

Experiment and Evaluation

As we mentioned above, one of our prime objectives is to
check the supposedly good behavior of different GAs that
use order-based fitness functions, as well as making com-
parisons with some traditional method, in particular the Ide
dec-hi method, which had given the best results in the study
of relevance feedback by Salton and Buckley (1990). (In
this last study, six of the traditionally most often used
methods were examined in depth.)

The Ide dec-hi method (Ide, 1971), which we have taken
as the model against which to test our feedback experi-
ments, is highly intuitive and very simple, at the same time
as being amazingly effective. It consists simply in adding
directly to the weights of the original query those of all the
relevant documents of the set of documents supplied for
feedback, and subtracting from them the weights of the first
irrelevant document obtained in the retrieval that belongs to
the said set.

Formally, the query vector is reformulated as follows:

Q� � Q � �
all relevant

Di � S

where Q is the original query vector, Di is the vector of the
relevant document i, and S is the vector of the top-ranked
irrelevant document.

Test Collection and Document Vectorization

To perform our experiments, we had to generate a test
database. We created this from one of the test collections
that is best known and of greatest prestige amongst inves-

tigators, the Cranfield collection (López-Pujalte, 2000;
López-Pujalte et al., 2002; Robertson & Willet, 1996; Sal-
ton & Buckley, 1990; Yang & Korfhage, 1994). This con-
sists of 1,398 documents on diverse aspects of aeronautical
engineering, and 225 queries for which the relevance judge-
ments are known. One of the main reasons for choosing this
collection is that it has been used on a great many occasions
for feedback and GA experiments, so that it offered the
possibility of comparing results.

The number of documents that were finally fixed for the
feedback implementation was 15 (we also performed trials
with 10, 20, and 25 documents), i.e., for each query the first
15 documents retrieved were examined to determine their
relevance, and this information was supplied to the algo-
rithm as feedback.

It was necessary to make a selection of the 225 queries
associated with this collection, so as to be left with those
queries that were suitable for testing the relevance feedback
technique that the present work is studying, because not all
the queries in the collection were suitable. Thus, for in-
stance, queries that retrieve all the relevant documents
among the first 15 are not suitable, because there are no
documents left that are interesting to retrieve. Likewise,
neither are queries appropriate that fail to retrieve any
relevant document among these first 15, because they can
then provide no information for feedback. In particular, we
selected for the evaluation a group of queries (33) that had
at least three relevant documents retrieved among the first
15, and at least 5 relevant documents yet to be retrieved.

First, to determine which terms we would use to describe
the documents of the collection, we performed the follow-
ing steps (Guerrero & Moya Anegón, 2001; Guerrero, Moya
Anegón, & Herrero Solana, 2002):

(1) Extract all the words from each of the documents.
(2) Eliminate the stop words, using a list of stop words

generated from the frequency dictionary of Kuccera and
Francis (1967), as we had also done in other studies
(Guerrero et al., 2001).

(3) Stem the remaining words. For this purpose we used the
Porter Stemmer, which is the most commonly used
stemmer in English (Frakes & Baeza-Yates, 1992; Por-
ter, 1980).

The final number of terms from the documents of the
Cranfield collection after completion of the above process
was 4,307, so that we shall be working with 1,398 document
vectors of 4,307 components.

Next, to assign the weights, we used the scheme de-
scribed in Salton and Buckley (1990) to equiparate in as far
as possible our experiments with theirs. The formula is:

aij �

�0.5 � 0.5
tfij

max tf� � log
N

ni

��0.5 � 0.5
tfij

max tf�
2 �log

N

ni
�2

where aij is the weight assigned to the term tj in the docu-
ment Di; tfij is the number of times that the term tj appears
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in the document Di; nj is the number of documents indexed
by the term tj; and N is the total number of documents in the
database.

Last, we normalized the document vectors, dividing
them by their Euclidean norm, because according to the
study of Noreault, McGill, and Koll (1981), the best simi-
larity measures are those that make angular comparisons
between vectors.

A similar process is then carried out on the queries
associated with the collection. This gives the normalized
vectors corresponding to the queries, which we shall be
attempting to optimize with relevance feedback.

Experimental Design

The scheme of the experiment to implement relevance
feedback by means of the different methods (our GAs and
the Ide dec-hi method, which will be used for comparison)
is very simple (López-Pujalte, 2000):

(1) Each of the collection’s queries is compared with all of
its documents, using the cosine similarity measure. This
gives a list of the similarities of each query with all the
collection’s documents.

(2) This list is sorted into decreasing order of degree of
similarity.

(3) The normalized document vectors corresponding to the
top 15 documents of the list, together with their rele-
vance judgements and the normalized query vector, are
presented as input to the algorithm responsible for op-
timizing the query.

(4) The program will also generate as output a masking file.
This contains for each query all the documents that are
not to be considered in the evaluation process (they will
be the first 15 that have been used in modifying the
queries), because we shall be following the residual

collection method as described by Salton & Buckley
(1990).

Figure 2 shows the flow chart corresponding to this
process.

It should be noted that, while the Ide dec-hi method only
has to be run once, because it will always yield the same
output; this is not the case with the GAs, because their
random nature means that they give different (while similar)
outputs on each run. The final results presented are the
maximum values obtained in all the trials carried out for
each GA.

Evaluation

We next evaluated the retrieval results by means of the
classical measures of recall and precision. We calculated
the interpolated precision at fixed recall intervals (of width
0.1) as described by Salton and McGill (1983), and the
average precision at all the recall points as is done by Salton
and Buckley (1990) in their feedback study, so as to be able
to compare the different systems.

We also used the residual collection method (Chang,
Cirillo, & Razon, 1971), in which all the documents previ-
ously seen by the user (whether relevant or not) are ex-
tracted from the collection, and both the initial and the
revised queries are evaluated on this residual collection.
This is done because the relevance feedback operation has
to be judged on its ability to retrieve new documents that
have not been originally examined by the user. Indeed, this
is the standard method of evaluating relevance feedback,
because its estimate is more realistic and unbiased (Baeza-
Yates & Ribeiro-Neto, 1999; Harman, 1992; Salton &
Buckley, 1990).

Results

The final results of our experiment are listed in Table 1,
which gives the mean precision in three recall intervals
(0.25, 0.5, and 0.75, representing low, medium, and high
levels of recall, respectively) for each of the algorithms that
were implemented, as well as the percentage improvement
over the initial unoptimized query. We also represent these
results graphically in Figure 3.

FIG. 2. Data flow chart corresponding to the experimental design.

TABLE 1. Results of different relevance feedback methods for the Cran-
field collection.

Method

Best Centroid

Mean Improve Mean Improve

No feedback 0.098
Ide (dec-hi) 0.218 120.8%
GAs
GA with fitness 1 0.218 120.8% 0.220 123.6%
GA with fitness 2 0.218 120.8% 0.210 114.2%
GA with fitness 3 0.218 120.8% 0.224 127.2%
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As one sees in the table, the results after applying the
relevance feedback technique present a very major improve-
ment (around 120%) with respect to the original query,
whether the implementation is via the classical Ide dec-hi
method or with any of our GAs. This is not always the case
when using GAs, which employ other types of fitness func-
tion (López-Pujalte, 2000; López-Pujalte et al., 2002).

As expected, the GAs behave very satisfactorily, because
they all use order-based fitness functions. Two of them (GA
1 and GA 3) improve on the best of the traditional relevance
feedback methods in information retrieval, with the third
GA equalling the traditional method.

One thus sees that the relevance feedback technique that
yields the best results is a GA, in particular that which uses
our fitness function 3 that we described in detail above.

It has to be noted that the performance of these order-
based functions appears to be inversely proportional to the
decay rate, at least in the present case (fitness 1 decays
geometrically with respect to order, fitness 2 exponentially,
and fitness 3 more slowly than geometrically). This may be
a very useful clue to how future fitness functions should be
implemented for this type of genetic algorithm.

With respect to the form of calculating the solution, as
we noted above, there are two alternatives, as is seen in the
table: (1) The best solution: the best chromosome found
throughout the process; and (2) the centroid solution: the
centroid of the final population’s chromosomes whose fit-
ness value is the maximum value calculated for this popu-
lation.

As one sees from Table 1, in two cases the GA yields
better results with the centroid method. The other case,
fitness 2, presents the better results with the first (the best)
method. One notes that the two GAs that improve on the Ide
dec-hi method do so when using the centroid method. This
method is therefore very promising for functions of this
type, which give especial importance to the order in which
documents are retrieved.

In sum, the improvement achieved with feedback in our
experiments was from 120.8% to 127.2% using the Cran-
field collection. This even surpassed the 120.8% improve-
ment obtained with the Ide dec-hi method. As is shown in
Figure 3, the greatest improvement (127.2%) was attained
with the GA using fitness function number 3 and the cen-
troid method to calculate the solution. The GA surpasses the
classical method by almost 7%. Although this improvement
is small, it is nonetheless statistically significant under both
Student’s t-test and the sign test.

With respect to the computation times of the different
methods, obviously the traditional Ide dec-hi method is far
less time consuming. The times of the GAs are, however,
still quite acceptable, around 2 seconds per query. No sig-
nificant differences in time were observed between using
one or another fitness function. The computing system used
was a Pentium III, at 700 MHz, with 256 MB of RAM and
26 GB of hard disk space.

Conclusions

The document spaces derived from the application of the
vector model are very high-dimensional real spaces. Be-
cause GAs have proven their effectiveness in exploring
large complicated spaces, they can be used to search the said
document spaces and indeed are found to lead to good
results. The GAs find a major field of application in infor-
mation retrieval.

Given the relative ease of implementing relevance feed-
back (whether by GAs or by more traditional methods), and
the excellent results that are achieved, any information
retrieval system worth considering should incorporate a
feedback module.

To guide the evolution of the possible solutions in ge-
netic methods, one has to design fitness functions that
evaluate the goodness of the intermediate solutions, using
the information provided by feedback from the user. It is in
these fitness functions where experiments most differ from
each other. They are the key to achieving a good level of
improvement, because, as we have observed, whether the
exploration results in success or utter failure depends on
these functions.

We here tested three different functions that had in
common the evaluation not only of the retrieved documents
themselves but also the order in which they were retrieved,
because earlier work had clearly indicated that this was a
good design alternative.

The results showed that these GAs allow one to consid-
erably improve the original query using relevance feedback
(in a single iteration). The improvement was from 120.8%
to 127.2% using the Cranfield collection (the greatest im-
provement being with the GA using fitness function 3). This
even surpassed the 120.8% improvement obtained with the
Ide dec-hi method, which is one of the best classical meth-
ods used in relevance feedback according to the work of
Salton and Buckley (1990).

As we had expected, these results improved on those
obtained with GAs reported in the literature that use other
fitness functions (López-Pujalte, 2000, López-Pujalte et al.,
2002). They thus allow one to state that the retrieval order
is a fundamental factor to take into account in implementing
these functions to guide the algorithm in performing the
relevance feedback task, and thereby optimize the original
query. In the present area, therefore, one can conclude that
it is desirable to use fitness functions that value not only
whether the possible solution retrieves many relevant doc-
uments and few irrelevant documents, but also whether the

FIG. 3. Improvement percentages with respect to the original query as
obtained by different relevance feedback methods for the Cranfield collec-
tion.
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relevant documents are at the top of the retrieval list or at
the end.

As we noted above, there seems to be a pointer to the
direction that future work should follow in that the perfor-
mance of the three tested fitness functions was inversely
proportional to the rate of decay with respect to order.
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López-Pujalte, C. (2000). Algoritmos genéticos aplicados a la retroali-
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