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Congestion Control for Background Data Transfers
with Minimal Delay Impact

Costas Courcoubetis, Antonis Dimakis, and Michalis Kanakakis

Abstract—Congestion control protocols for background data are
commonly conceived and designed to behave as low priority traffic,
i.e., completely yield to delay sensitive flows such as web traffic. This
behavior can cause starvation and hence the accumulation of large
numbers of flows, leading to flow level instability. In this paper we
look at the fundamental problem of designing congestion control
protocols for background traffic with minimum impact on delay-
sensitive flows while achieving a certain desired average throughput
over time. The corresponding optimal policy under various assump-
tions on the available information is obtained analytically. We give
tight bounds for the negative impact of TCP-based background
transfer protocols compared to the optimal policy, and identify the
range of system parameters for which more sophisticated congestion
control makes a noticeable difference. Based on these results, we
propose an access control algorithm for systems where control on
aggregates of background flows can be exercised, e.g., in file servers.
Simulations of simple networks suggest that this type of access
control performs better than protocols emulating low priority.

I. INTRODUCTION

A key element of the success of the internet architecture is the
ability to accommodate current and future needs of very diverse
applications. Connection rates differ by few orders of magni-
tude, while file transfer sizes vary by more than ten orders of
magnitude. Nevertheless this is achieved using only a handful of
transport protocols, mainly TCP and its variants, which in essence
allocate network bandwidth to flows continuously so as to achieve
fair sharing at all times. Indeed TCP ‘fairness’ or ‘friendliness’
[1] has become a popular prescription for congestion control
algorithms which intends to ensure equal sharing between flows.
But there are problems when all Internet flows use the same
protocol.

Not all applications value instantaneous bandwidth equally. It
is valued more by web browsing flows than, say, background
data transfers such as large batch software updates. The former
serve interactive tasks where low transfer delays are important,
while the latter are indifferent to small temporal variations of
their bandwidth share, provided the data volume downloaded
over a long time period does not change. It is well known from
scheduling theory (see [2]) that short jobs or jobs with tighter
deadlines should be assigned higher priority. Hence using TCP
as the common transport protocol creates unnecessary delays to
the web flows that are usually short and delay sensitive.

A possible solution, violating the end-to-end (e2e) principle of
the Internet architecture, is for the ISP to intervene and throttle
the bandwidth assigned to less delay sensitive flows, leaving more
space for the web traffic, or offering some form of prioritization.
But this is not in many cases an efficient solution, since the ISP
cannot have the necessary information on how much throttling is
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necessary, and for which flows [3]. Unjustified throttling of traffic
can have serious side effects for the ISP business, [4].

Recognizing this, Internet engineers have considered e2e so-
lutions, and specialized congestion control algorithms for back-
ground data transfers have emerged, e.g., TCP-LP [5], TCP-
nice [6], uTorrent transport protocol [7], LEDBAT [8]. Such
protocols are typically designed to behave as low priority traffic,
i.e., opting for low impact on the delay of short flows (that include
the web flows). But the presence of ‘elephant’ flows, i.e., long
lasting1 flows that usually carry non-real time traffic, is a serious
drawback as we explain next, motivating our approach.

In the presence of long lasting TCP flows sharing a link, any
true low priority protocol will starve since the fraction of time
the link is idle from TCP traffic will be negligible. Then new
background flows will accumulate leading to an unstable system
with sluggish performance, in contrast to the original intent of
the protocol (e.g., see Section IV below). Even if the elephant
traffic leaves some unused capacity and the low priority traffic
can detect it, this might be too little to accommodate its load,
leading again to instability2. There is also a serious problem, due
to the shrinkage of the capacity region over paths having multiple
links, even if no elephant flows are present, [10]. A low priority
flow will transmit only if all links in the path are not used by
other traffic, and this fraction of time decreases fast as the number
of links increases.

The above discussion suggests that we need to engineer pro-
tocols that can compete with the elephant flows and share with
them the excess capacity that is left over by the web traffic. But
in doing so they need to become more aggressive, unavoidably
harming the short flows.

This motivates the design of protocols for background traffic
that reduce negative externalities to short flows while guarantee-
ing some minimum performance to the background flows. These
guarantees can be implicit, i.e., maintain stability of background
flows, or explicit, i.e., achieve a given fraction of the excess
capacity, possibly higher than the one required for stability.
An example of an explicit guarantee is to provide the same
throughput (over slow timescales) as TCP would provide to the
same flow, as in [11]. This achieves ‘incentive compatibility’ with
the social planer of the ecosystem: it makes originators of the
flows indifferent between adopting a new protocol instead of TCP,
while reducing the average delays of web flows compared to the
case where all flows use TCP.

To find the structure of the optimal congestion control we
analyze the fundamental case of a single bottleneck link of
capacity C. The Internet traffic passing through the link (see
Fig. 1) is abstracted from all its unnecessary details and is
comprised by

1Due to the heavy tail distribution of the file sizes [9].
2Background flow generation is in many cases not elastic since it is automati-

cally generated by machines.
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• Traffic outside our control: it consists of i) short TCP flow
arrivals, referred to as ‘short’ or ‘web’ flows, that transfer
files with total load Cρ, hence leaving an excess capacity
of C(1 − ρ) to the rest of the flows, and ii) a fixed
number k of long TCP flows (the elephant flows from our
earlier discussion), referred to as ‘long’ flows, assumed for
simplicity to be always on3.

• Traffic that we control: these are the ‘Controlled Background
Flows (CBFs)’, i.e., flows carrying background data. Each
CBF originates at some edge of the network and models
either the transfer of a single file of a very large size
compared to the size of web flows, or an endless sequence
of file transfer requests4 at the point of entry. A natural
application of this model is to systems where a level of
aggregation is possible, such as BitTorrent peers or CDN
servers.

Our goal is to derive fundamental limits for system perfor-
mance and design controllers for the CBF traffic. Using a Markov
decision process formulation, different optimal policies arise
according to the information available. The ‘first-best’ assumes
full information on the number of flows passing through the
link at each time and serves as a benchmark (lower bound) to
compare with other more practical polices. This policy cannot be
implemented by a distributed controller using e2e information and
needs access to centralized information available at the routers.
The ‘second-best’ is the optimal ‘implementable’ policy, when
only congestion feedback is available from the network. We use
these results to obtain tight lower bounds for the performance of
simple practical policies based on TCP.

A summary of our key findings follows.

Main results

The optimal full information policy. It minimizes the average
short flow delays subject to the CBF traffic obtaining a given
fraction (implicit or explicit) f of the excess capacity C(1− ρ).
It is of a simple threshold type on the number of short flows in
the system. At any time, if the number of short flows is above
the threshold, all the capacity goes to the TCP flows (short and
long), else it is allocated to the CBF traffic.

Another interpretation of this result is that it provides the
optimal tradeoff between the average throughput of the CBFs and
the delay inflicted to the short flows; any algorithm that achieves
the same delay impact to the short flows, cannot do so by offering
a higher throughput to the CBFs.

Moreover, the negative impact to the short flows can be
arbitrarily large if f → 1.

The optimal policy implementable by congestion feedback. It
solves the same optimization problem but restricted to a set of
policies that use only information available at the edges of the
network by reacting to congestion, and can be implemented per
CBF flow. It has a simple form: if link congestion is above some
level, the controller of the CBF traffic sends no data; else it sends
at a high enough rate to keep congestion at this constant level.
This second-best policy performs asymptotically as the first-best
for ρ → 1, and numerical analysis shows that it is within few
percents of the first-best even for smaller values of ρ.

3Essentially we require k to change much slower than the time scales of
background flow arrivals and departures, see next.

4Of sizes comparable to web flows.

If there is a target for the average throughput, our results sug-
gest a simple adaptive algorithm: use the optimal implementable
congestion controller for the short time scales and adapt slowly
the congestion threshold of the algorithm to achieve the desired
throughput, as proposed by [11] and [12].

Performance of TCP-based congestion controllers. Suppose
we use wTCP5 as our congestion control algorithm, where the
value of w is chosen to obtain the required long-run average share
f of the excess capacity. Then the relative increase of the delays
of the short flows is within 20.7% of the optimal policy. This
upper bound holds uniformly over ρ, f, k ≥ 1. It is achieved for
intermediate values of f (60%) and when k = 1 long flows are in
the system. When k increases, it decreases rapidly (for k = 3 it
becomes 11%) and hence the details of the congestion controller
become insignificant.

This suggests a simple form of access control for CBFs with
an arriving stream of files: each arriving background file, instead
of immediately transmitting, it is added to a queue from which
at most w files are served at any time using TCP. The value of
w is chosen as to produce a critically loaded queue, i.e., produce
long but not infinite queues.

For larger shares of f near one, wTCP’s performance converges
to the performance of the optimal policy. Hence either when k
or f is large, the use of access control described previously is
nearly optimal. In contrast, not imposing access control, so that
each arriving background file opens a new TCP connection, could
double the delay of short flows.

The rest of the paper is organized as follows. In Section II
we introduce our system model of short flow arrivals at a single
bottleneck link, and establish the optimality of threshold policies.
Bounds and formulas for the minimum delay are also given in the
case where the offered load of short flows is high. In Section II-C
we obtain the optimal policy within the class of policies imple-
mentable by congestion feedback, and establish their optimality
in heavy traffic. In Section II-D we assess the delay incurred by
weighted TCP and compare it with the optimal. In Section III we
consider a model in which background flows arrive dynamically
and propose an access control policy which limits the maximum
number of active background flows. In Section IV we compare the
performance of the access control policy with congestion control
protocols which emulate low priority. In Section V we give further
justification of our model assumptions as well as discuss an
extension of our methodology. Most proofs are relegated to the
appendix.

A. Related work

In [13], [14] the effect of congestion control on the number of
ongoing file transfers is studied. We take a similar viewpoint by
considering a model where flow-level dynamics are described by
a Markovian process, and ignore packet-level effects.

Deb et al. [15] consider a flow-level model of a large system
with many long and short flows. They consider the optimization of
congestion controllers of all flows -both background and short- by
maximizing a social welfare function which includes the average
utility obtained by background traffic and the delay caused to web
flows. Since we assume that part of the traffic, namely long and
short TCP, is not conforming (i.e., is not optimized), the optimal
policies differ considerably from the ones in [15].

5A wTCP connection obtains the equivalent of w individual TCP connections.
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(a) Bandwidth sharing under a CBF protocol.
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(b) A CBF protocol causing less delay to web flows.

Fig. 1. Illustration of bandwidth sharing model: a capacity C link is used by a constant number of CBF and long TCP flows, and a varying number short (web) flows
which occupy a fraction ρ of link capacity. As new web flows arrive at the system or old ones complete their transfers, the link capacity is reallocated between all
ongoing transfers. Since web and long flows both use TCP, these flows have equal shares at all times. It is possible to decrease the delays of web flows by choosing
the CBF protocol in Fig. 1b which obtains a lower share during times where more web flows are in the system, while occupying the same average fraction f of the
excess capacity C(1− ρ) as the CBF in Fig. 1a.

A model with nonconforming traffic is considered in [11]
where the notion of farsighted congestion controllers for CBF
flows is introduced, using a static optimization problem without
flow-level dynamics and not involving delays. These controllers
implicitly attempt to inflict less delay to short flows but without
compromising their average throughput. The starting point of our
work is that we turn this into an explicit optimization problem. It
is interesting that our second-best policy has the same structure as
the farsighted congestion controllers. Also, as mentioned earlier,
our results imply these controllers are optimal within the class of
implementable policies.

II. BANDWIDTH SHARING FOR BACKGROUND FLOWS

A. Basic model

Consider a link of capacity C shared by a set of CBFs, k long
TCP flows which have always data to send, and a dynamically
arriving stream of short TCP flows. The latter concern transfers of
files with independent and exponentially distributed file sizes, of
mean µ−1, and arrive at the link according to a Poisson process
with rate λ arrivals per unit time.

Here and in the next sections we seek to optimize the band-
width sharing policies used by the CBFs6 in order to minimize
the delay impact on the short TCP flows.

Let xn denote the download bandwidth of each TCP flow when
the number of active short TCP flows is n. This number evolves
according to a Markov chain with state space {0, 1, . . . , } and
transition rates:

n→

{
n+ 1 , with rate λ , n ≥ 0 ,

n− 1 , with rate µnxn , n ≥ 1 .
(1)

The load brought in the system by the short TCP flows is Cρ,
where ρ = λ/(µC) is the normalized load. Clearly, if ρ ≥ 1 the
Markov chain is not positive recurrent regardless of the choice of
xn’s; thus from now on ρ < 1 is assumed to always hold. The
amount of capacity C(1− ρ) left over by short TCP flows, is the
excess capacity and is consumed in its entirety by the background
flows, i.e., the k TCP and the CBFs.

6Their precise number does not matter as we will be optimizing the aggregate
behavior; we could as well think of optimizing a single CBF.

Now, the choice of (xn, n = 0, 1, . . .) determines how (actual,
not excess) capacity is shared between (short or background) TCP
and CBFs, since at state n the TCP flows use bandwidth (k+n)xn
while the CBFs consume the remaining C − (k + n)xn.

B. Optimal sharing

The problem we solve in this section is the following: what
is the optimal sharing policy (xn, n = 0, 1, . . .) such that the
average delay experienced by short TCP flows is minimized,
under the constraint that the CBF flows get a fraction f of the
excess capacity? Insofar as we only deal with the delay impact on
short flows, we do not deal with how the f fraction is attributed
between CBFs; in [12] this problem is considered using a utility
maximization framework.

Since by Little’s law the delay minimization of short flows is
equivalent to minimizing their average number, we arrive at the
following optimization problem:

N∗(k, f, ρ) = min

∞∑
n=0

nπn (2)

such that: λπn−1 = µnxnπn , n = 1, 2, . . . (3)
∞∑
n=0

πn = 1 (4)

xn ≤
C

k + n
, n = 0, 1, . . . (5)

∞∑
n=0

xnπn =
C(1− ρ)(1− f)

k
(6)

over xn ≥ 0, πn ≥ 0 , n = 0, 1, . . . (7)

Equalities (3) are the local balance equations corresponding to (1),
(5) is the link capacity constraint, and (6) is the constraint that
the CBFs attain the target fraction f .

The following theorem states that the optimal policy has a
structure of a threshold policy on the number of short flows.

Theorem 1 (Structure of the optimal policy). The optimal sharing
policy (xn, n = 0, 1, . . .) satisfies:
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If (1− ρ)k ≤ f then

xn =

{
0 , for each n ≤ n∗ ,
C
k+n for each n ≥ n∗ + 2

(8)

for some finite nonnegative integer n∗.
If (1− ρ)k > f , the CBFs get their target share while n = 0,

so they do not need to compete with short TCP flows, i.e., they
behave as low priority traffic. More specifically,

xn =

{
C[(1−ρ)k−f]
k(1−ρ)k , for n = 0 ,
C
k+n , for each n ≥ 1 .

In words, CBFs get the entire capacity at times where the
number of flows is no more than n∗, while they get zero
bandwidth in states strictly greater than n∗ + 1. Although (8)
does not specify xn∗+1, it is determined by (6), i.e.,

πn∗C + πn∗+1 [C − (k + n∗ + 1)xn∗+1] = C(1− ρ)f .

Interestingly, the optimal threshold n∗ is determined by con-
sidering an associated loss system, as described in the following
proposition.

Proposition 1 (Determination of optimal threshold). The optimal
threshold n∗ satisfies

E

(
n∗ + k + 1, k,

1− ρ
ρ

)
≤ f < E

(
n∗ + k + 2, k,

1− ρ
ρ

)
,

(9)
where

E(m, q, r) =

(
m−1
q

)
rq∑q

i=0

(
m−1
i

)
ri
,m > q ,

is the Engset formula of blocking probability for a loss system
with q circuits and m independent users, each offering traffic
equal to r Erlangs.

The mimimum average number of short TCP flows N∗(k, f, ρ)
is obtained by invoking the following proposition, which holds
for any (not necessarily optimal) threshold policy:

Theorem 2 (Performance of threshold policies). Consider any
threshold policy with

xn =

{
0 , for each n ≤ n0 ,
C
k+n for each n > n0

(10)

for finite nonnegative integer n0. The average number of short
TCP flows under this policy at stationarity is

Nn0
=

(k + 1)ρ

1− ρ
+ n0E

(
n0 + k + 1, k,

1− ρ
ρ

)
.

In particular, under the optimal policy, Nn∗ ≤ N∗(k, f, ρ) <
Nn∗+1.

As ρ approaches 1, the associated loss system in Proposition 1
is closely approximated by a standard Erlang loss system. This
simplifies the determination of both n∗ and N∗(k, f, ρ):

Corollary 1. As ρ→ 1 the optimal threshold n∗ satisfies n∗(1−
ρ) → af , where af is the unique solution of B(k, af ) = f , and

B(k, a) = ak

k!

(∑k
i=0

ai

i!

)−1
is the Erlang B formula for a system

with k circuits under a load of a Erlangs.
Moreover, the average number of flows N∗(k, f, ρ) satisfies

N∗(k, f, ρ)(1− ρ)→ k + 1 + aff , as ρ→ 1.
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Fig. 2. Minimum delay of web flows (normalized by 1/(µ− λ), i.e., the delay
in the absence of all background traffic) under the optimal policy for CBFs, as
a function of the fraction f of the excess capacity consumed by CBFs. The link
is used also by k = 10 long TCP flows. The Erlang loss approximation given in
Corollary 1 is close to the minimum delay for ρ ≥ .5.

In Fig. 2, N∗(10, f, ρ) is plotted against the target fraction f
under various load levels ρ, after being normalized by ρ/(1− ρ)
(the average number of short flows if background flows were
absent). The solid curve is the approximation provided by the
Erlang loss system in Corollary 1, which is fairly accurate for ρ >
0.5. Notice the sharp increase to +∞ as f → 1: it is inevitable
in their competition with non-CBF background flows for excess
capacity, for CBFs to interfere with short flows. Larger portions
of the excess capacity require higher levels of interference.

Suppose one does not use a fixed set of transition rates (xn, n =
0, 1, 2, . . .) but is allowed to switch between different policies on a
very slow timescale7. Can this ‘policy switching’ result into lower
delay? Notice that any policy used in such an optimal ‘mixture’
must be itself optimal for some level of target excess capacity
f , i.e., of the form (8); otherwise one could reduce delay by
using (8) for target f . Thus any optimal mixture of policies can
be represented by a probability measure Φ on the set of target
fractions, i.e., the set [0, 1]. Let N(f) = k+ 1 + faf be the limit
(as ρ → 1) of the rescaled average number of short flows from
Corollary 1. Then the following holds:

Lemma 1. N is a convex function.

Proof: The proof is in Appendix E
By Jensen’s inequality,

N

(∫
φΦ(dφ)

)
≤
∫
N(φ)Φ(dφ) ,

and so policy switching has worse delay than the optimal pol-
icy (8) of the same target f =

∫
φΦ(dφ), at least when ρ is

sufficiently close to 1. Fig. 2 suggests that this might not be true
only at the limit but it may hold for any value of ρ.

C. Optimal sharing within a class of policies implementable by
congestion feedback

Translating a threshold policy into an end-to-end congestion
control algorithm is a challenging task because the number n
of ongoing short TCP flows is not directly observable, and so it
must be inferred through some indirect way. The natural way to do
this is through some end-to-end observable measure of congestion

7Sufficient time between switching times should be allowed for the empirical
averages to converge, i.e., we are considering a quasi-stationary regime.
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such as packet loss and/or delay, which varies monotonically with
n.

Suppose there exist utility (i.e., increasing and concave) func-
tions u, v for which the maximization problem

max (n+ k)u(x) + v(y) (11)
such that(n+ k)x+ y ≤ C ,

over x, y ≥ 0 ,

attains its optimum at x = xn, y = C−(n+k)xn for every n > 0.
When such representation of (xn, n = 1, 2, . . . , ) is possible then
xn = (u′)−1(λn), where λn is the shadow price of the capacity
constraint. A key insight from [16] is that, in a relaxation of (11),
λn can be interpreted as the rate of congestion indicators fedback
by the link to the end users. In [16] it is also shown how the utility
functions u, v can be used as a basis for the design of end-to-end
algorithms which use the congestion signals sent by the network
to attain the optimal solution of (11), i.e., xn, at equilibrium. For
this reason, whenever a policy (xn, n = 1, 2, . . .) is represented
as above, we say it is implementable (by congestion feedback).

Note in particular that (11) implies that λn is increasing with
n, i.e., more congestion signals are sent as n increases since
the link is more congested. This implies that xn is decreasing
for implementable policies, but clearly this is not the case for
the optimal policy (8). In practical terms, the basic problem
with threshold policies is that whenever n ≤ n∗ and the CBFs
need to consume the entire link capacity, the congestion indicator
rate must increase considerably in order for TCP flows to drop
their congestion windows significantly. As a result, subsequent
upcrossings of n∗ are difficult to detect on the basis of such
congestion indicators alone.

Hence we restrict the search for an optimal policy within the
class of implementable policies where we have the following
result:

Theorem 3 (Structure of the optimal implementable policy). The
optimal implementable policy (xn, n = 0, 1, . . .) satisfies

xn =

{
xn−1 , if n ≤ n∗ ,
C
k+n if n > n∗

, n = 1, 2, . . . (12)

for some finite nonnegative integer n∗.

The policy (12) is indeed implementable:

Remark. The policy in (12) is represented by (11) by choosing
u to be any utility function and v(y) = u′(xn∗)y for all y ≥ 0.

Proof: Let x(n), y(n) be the optimum solution of (11) for
each n ≥ 1; we show x(n) = xn for each n.

First note that the definition of v implies λn ≥ u′(xn∗) and
so x(n) ≤ xn∗ for each n. x(n) < xn∗ then λn = u′(x(n)) >
u′(xn∗) so y(n) = 0, i.e., x(n) = C/(n + k). But xn∗ > xn =
C/(n + k) ≥ x(n) for all n > n∗, so x(n) = C/(n + k) = xn
for each n > n∗.

Now assume n ≤ n∗. If λn > u′(xn∗) then x(n) = C/(n +
k) ≥ xn∗ which cannot hold since x(n) = (u′)−1(λn) < xn∗ .
Thus, λn = u′(xn∗) and so x(n) = xn∗ .

Observe that the slope p∗ = u′(xn∗) of v(y) = p∗y in the
representation depends on the utility function u of the short flows
and xn∗ which in general is not known by the users. Since the
slope is determined by (6), one could start with a utility v(y) = py
and adapt p in order for CBF to achieve the target fraction. Such

an approach is followed in [11] where (12) arises in a utility
maximization context without short flow arrivals.

Another consequence of implementability is that any such
policy is amenable to distributed implementation: it can be
effected by each CBF using its own congestion controller, instead
of having a single algorithm controlling the aggregate. This is
because in the case of L CBFs indexed by l = 1, . . . , L, imple-
mentability implies a representation similar to (11) is possible
where y and v(y) are replaced by y1, . . . , yL and

∑
l vl(yl)

respectively. The utility function vl corresponds to the congestion
controller of the l-th CBF. For example, (12) can be represented
by vl(yl) = u′(xn∗)yl. This representation is not unique and
different allocations of y1, . . . , yl may arise for the same value
of
∑
l yl: the choice of vl’s should consider fairness within CBFs

which is an interesting problem of further research (see also [12]).
Now, how (12) performs compared to the optimal (8) within

the class of all policies (not necessarily implementable)? The
following theorem states that the optimal implementable policy
has optimal delay scaling as ρ→ 1.

Theorem 4 (Asymptotic optimality of implementable
policies). Let M∗(k, f, ρ) be the average number of
short flows under the optimal implementable policy. Then
limρ↑1M∗(k, f, ρ)/N∗(k, f, ρ) = 1 for every k ≥ 0, 0 < f < 1.

In Figs. 4a-4b the ratio M∗(1, f, ρ)/N∗(1, f, ρ) is plotted for
ρ = 0.5 and ρ = 0.9 respectively. The delay of the optimal
implementable policy can be up to 22% higher than the optimal
for ρ = 0.5. For ρ = 0.9 the delays of the two algorithms are
practically indistinguishable.

D. A weighted TCP sharing policy (wTCP)
In this section we consider an implementable policy which is

easier to implement than (12) and can be thought of as a weighted
variant of TCP; thus we call it weighted TCP (wTCP). It is
appealing because the delay is not much larger than the optimal
in relative terms, when ρ is close to 1.

Under wTCP the aggregate of CBFs now takes, at all times,
a fixed proportion w of a TCP flow’s instantaneous bandwidth.
Thus, the CBFs collectively behave as a set of w TCP flows,
and xn = C/(k + w + n) at each state n ≥ 1. It is easy to see
that wTCP is implementable by taking v(y) = wu(y/w) in (11).
Indeed it has been widely considered in the past (see e.g., [3],
[17], [18]) and simple implementations exist8.

If the target CBF ratio is set to f , w must satisfy w/(k+w) =
f . Thus, by Theorem 2 for n0 = 0 and k + w replacing k, the
resulting average number of short TCP flows is

Nw(k, f, ρ) =
(k + w + 1)ρ

1− ρ
=

ρ

1− ρ

(
k + 1 +

kf

1− f

)
. (13)

This is related to the optimal N∗(k, f, ρ) as follows:

Theorem 5 (wTCP performance relative to optimal). The follow-
ing hold:

1)

lim
ρ→1

Nw(1, f, ρ)−N∗(1, f, ρ)

N∗(1, f, ρ)
=

f(1− f)

1 + (1− f)2

≤ 3− 2
√

2

2
√

2− 2
≈ 20.7% .

8For example, [17] considers a modification of the additive increase and
multiplicative decrease parameter of TCP.
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normalized by the delay achieved under the optimal policy for each level of CBF
target fraction f . Their maximum difference is 20.7% attained when one long
TCP exists in the system. The difference converges to zero as the number k of
long flows increases. wTCP performs close to optimal for small and large value
of f .

The upper bound is tight and is achieved at f = 2−
√

2 ≈
60%.

2) Let k ≥ 2. Then for every 0 ≤ f < 1:

lim
ρ→1

Nw(k, f, ρ)−N∗(k, f, ρ)

N∗(k, f, ρ)
≤ bk(f) , (14)

where bk(f) =
B(k − 1, af )− f

1− [B(k − 1, af )− f ]
,

with sup0≤f<1 bk(f) <∞ decreasing to zero as k →∞.

The theorem states that the relative difference between the de-
lay of wTCP and the optimal is bounded. For k = 1 the maximum
difference is about 20.7%. The second part of Theorem 5 says that
the maximum difference goes to zero for large k. We stress that
this does not need to be the case for any CBF policy: there is a
policy mixture, of the form considered in the end of section II-B,
where the difference grows unboundedly. An example of this is
an ‘on-off’ CBF which half of the time it behaves according to
wTCP with won > 0, and the remaining time it has woff = 0.
A similar calculation as above shows that the target ratio f is
achieved for won = 2kf/(1 − 2f). Thus the average number of
short flows explodes as f → 1/2, while N∗(k, 1/2, ρ) <∞.

Note that since bk(0) = limf→1 bk(f) = 0 for k ≥ 2, wTCP is
close to the optimal for high and low values of f . Fig. 3 depicts
the relative difference as a function of f where it is seen to be
decreasing in k for most values of f . Thus, for practical purposes,
wTCP appears to be close to the optimal for intermediate values
of f , even for not so large k, e.g., for k = 5 the worst difference
is 8%.

III. DYNAMICALLY ARRIVING BACKGROUND FLOWS

In the previous sections we used a system model with a fixed
number of long background flows. This was justified by our
assumption that there is an infinite amount of background data
readily available for transfer.

In this section we consider a link model as the one in Sec-
tion II-A but where the CBF is comprised by a stream of ‘micro-
flows’ of finite duration, arriving according to a Poisson process
with rate λb. Each micro-flow is associated with the download
of a file with an exponentially distributed size with mean 1/µb.
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(b) ρ = 0.9

Fig. 4. The web flow delay caused under different CBF policies, at moderate
(in (a)) and high (in (b)) loads, when k = 1. The optimal implementable policy
practically coincides with the optimal at ρ = 0.9. The ‘vanilla’ policy doubles the
delay at f = 1 compared to the other two policies which are optimal at f = 1.

Also the file sizes are assumed to be independent across different
flows. If the CBF load λb/µb is less than the excess capacity and
no amount of flow is lost, the fraction of the excess capacity
consumed by the CBF (or equivalently by its micro-flows) is
f = λb/[µbC(1 − ρ)]. We also define the normalized load of
the CBF to be ρb = λb

Cµb
.

We allow policies to depend on both the number of short flows
and micro-flows, so the state-space is comprised by vectors of
the form (n,m) where n is number of short TCP flows and m
the number of micro-flows present in the system. As we will see
below, the delay of short flows is minimized when the number
of micro-flows is a critically stable process, thus we conveniently
allow the possibility m = ∞ and consider the extended state-
space S = N× (N ∪ {∞}) 9.

A policy is specified by the bandwidth xn,m allocated to each
TCP flow at every state (n,m) ∈ S . We will consider policies
which satisfy the Feller condition:

Assumption 1. xn,m → xn,∞ as m→∞ for every n,

This means when the number of micro-flows is high, each
TCP flow will consume a well-defined amount. Also notice that
when m = 0, the link bandwidth is consumed by TCP flows, i.e.,
necessarily xn,0 = C/(n+ k) for all n ≥ 0.

Fixing any such policy yields a Markov process ((Nt,Mt), t ≥

9N∪{∞} is equipped with the one-point compactification of N induced by the
embedding m 7→ 1

1+m
of N∪{∞} into [0, 1] and the identifications m+∞ =

∞, 1/∞ = 0.
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0) which evolves according to the transition rates:

(n,m) −→


(n+ 1,m) with rate λ
(n− 1,m) µnxn,m , if n > 0

(n,m+ 1) λb , if 0 ≤ m <∞
(n,m− 1) µb [C − (n+ k)nxn,m] , if 0 < m <∞

(15)

A. Optimal sharing under dynamic arrivals of micro-flows

In this section we solve the following problem which is
analogous to to (2)-(7) in Section II-B:

N∗∗ (k, ρ) = min
∑

(n,m)∈S

nπn,m (16)

such that: (πn,m, (n,m) ∈ S) (17)
is an invariant distribution of (15)

xn,m ≤
C

k + n
, n ≥ 0, 1 ≤ m ≤ ∞ (18)

xn,0 =
C

k + n
, n ≥ 0 (19)∑

(n,m)∈S

[C − (n+ k)xn,m]πn,m =
λb
µb

, (20)

over xn,m, πn,m ≥ 0, (n,m) ∈ S. Note that the summations
in (16),(20) include the points at infinity m = ∞. The con-
straint (20) says that the CBF throughput equals its load, i.e.,
no amount of flow is lost.

It turns out that the minimum delay is the same with that
achieved in the case of a CBF with always data to send , i.e.,
the optimal value (16) coincides with (2).

Theorem 6. N∗∗ (k, ρ) = N∗

(
k, ρb

1−ρ , ρ
)

and an optimal policy
for (16) is xn,m = xn for every n ≥ 0,m > 0 including m =∞,
where (xn, n ∈ N) is the optimal policy (8) for f = ρb

1−ρ .

Proof: See Appendix I.
For the same reasons outlined in subsection II-C it is not easy

to implement the optimal policy. Hence we consider a suboptimal
but simple policy which controls the access of micro-flows which
we describe next.

B. An access control policy for micro-flows

In Theorem 6 is shown that the optimal policy in the model
with arrivals achieves the same delay for the short flows as the
optimal one without arrivals. In this section we show that a similar
result (Theorem 7 below) holds for wTCP: the delay of the
simple access control policy defined below, coincides with the
delay of wTCP in a model without arrivals. In particular this and
Theorem 6 imply that the delay induced to the short flows by the
of the access control policy is never more than 20.7% from the
optimum (in the case of arrivals).

Consider a CBF policy controlling the access of micro-flows
into the network in which no more than M active micro-flows are
allowed to transmit10, for some constant M > 0. Once an (active)
micro-flow completes its download, a previously inactive flow
(provided there is one) becomes now active. Hence the number
of active micro-flows carried by that CBF is min(m,M) when
there is a total of m micro-flows (both active and inactive). Each

10The number M is CBF specific and in general it differs across CBFs.

micro-flow once active it uses TCP for its transmission. Thus,
since the link capacity is divided equally between all TCP and
the active micro-flows, we have

xn,m =
C

n+ k + min(m,M)
, at any state (n,m) ∈ S . (21)

The number of active micro-flows is always at or below M ,
so the CBF obtains at most a M/(k+M) fraction of the excess
capacity as the result of its competition with the k background
flows which also use TCP. Choosing a too low M may result to
a throughput which is strictly lower than the load Cρb brought
by the CBF. In this case the number of micro-flows will increase
arbitrarily without though causing an arbitrary degradation to the
delay of short TCP flows. This is because the micro-flows are kept
outside of the network until they get to transmit. Choosing a too
high M will result to a stable number of micro-flows, and so their
throughput equals Cρb, but at the cost of a higher delay caused
to short flows. This delay may be uneccesarily high if stability
holds for even lower values of M . Thus M should be chosen
such that the number of micro-flows is barely stable11. Because
the number of micro-flows will be much larger than M , most of
the time there will be exactly M micro-flows transmitting. Hence
the CBF will behave as a set of M TCP flows.

The above discussion is formalized in the following result:

Theorem 7. Under the policy (21), where M satisfies

ρb
1− ρ

=
M

k +M
, (22)

the average number of short TCP flows is the same as under
a single wTCP flow with weight M (or equivalently, the same
under a CBF comprised by M TCP flows), i.e., Nw

(
k, M

M+k , ρ
)

as defined in (13).

Proof: See Appendix J.

IV. ACCESS CONTROL VERSUS LESS THAN BEST EFFORT
PROTOCOLS

Consider a file server which transmits low priority content,
e.g., a server distributing software updates after requests sent by
users of an application. All requests should be served eventually
but in such a way so other flows in the network see a mimimal
disruption in their download delays. Theorem 7 in Section III-B
suggests that the access control policy which simply limits the
maximum number M of active connections is not far (less than
20.7% away) from the minimum delay achieved by any control
policy that the server could use.

In this section we compare the performance of such a policy
with the alternative of using less-than-best-effort (LBE) protocols
such as LEDBAT and TCP-LP, using simulation.

Before we proceed we first describe the implementation of
the access control policy used in the simulations. As explained
in Section III-B the access control policy should pick the least
M such that (22) holds. Since the link and traffic parameters
are not known by the server, M is calculated adaptively such
that the average sending rate (in e.g., Mbps) matches the arrival
load Cρb. Both the load and sending rate are estimated by

11This is true under our simplifying view that we care only for the CBF
throughput, not the micro-flow download delay. In practice one would not want
these delays to be infinite, and thus pick M strictly above the minimum required
for stability.



8

moving averages with sufficiently long memory such the effect
of request arrivals and service completion dynamics is averaged
out. Since the sending rate is increasing in M , the latter is
increased or decreased such that the sending rate tracks the arrival
load estimate. Thus M changes on a slower timescale than the
dynamics of arrivals and departures.

We next compare the performance of our access control policy
with the performance of other LBEs in the case of a single
bottleneck link and also in the case of simple networks. Contrary
to what one might have guessed, the LBE protocols can be quite
intrusive especially under high load, the presence of elephant
flows, or LBE flows traversing several links. Access control on the
other hand, leaves flows outside of the network when congested,
and so performs significantly better.

A. Experimental setup

The simulations are performed in ns2 [19] where TCP flows use
Reno, TCP-LP flows use the implementation provided in ns2, and
LEDBAT flows use the implementation in [20]. The latter flows
use either the default 25ms target delay or a more ‘aggressive’
60ms value (labeled as LEDBAT-60 below). For comparison, we
also consider a ‘vanilla’ server policy where no form of access
control or LBE protocol is used, i.e., each request upon arriving
at the server it initiates a file transfer which uses TCP.

All links have C = 10Mbps capacity, a 80ms buffer and 25ms
propagation delay.

Flow arrivals, whether background or not, follow independent
Poisson processes, while the sizes of all files (again, background
or not) are random and follow an exponential distribution with
mean 3Mbytes.

We consider three linear network topologies described next.

B. Single link

The average load Cρb brought to the server by the requests was
3Mbps. In the top row of Fig. 5 the delay of web flows is depicted
for various levels of load ρ. The delay is normalized by the delay
of the ‘vanilla’ policy for each level of ρ. In Fig. 5a, where no
elephant flows exist, the delay under access control is comparable
to LBE protocols. In very heavy loads CBF performs significantly
better: at 95% total load the difference is 20%. As expected, the
delay of LBE protocols is always less than the ‘vanilla’ policy.
Interestingly, this is not the case if a single elephant flow is added
as in Fig. 5b: above 90% total load, LBE protocols cause worse
delays than the ‘vanilla’ policy.

To see what happens, consider the normalized average number
of active (background) flows when no elephant flows are present,
depicted in Fig. 5c. (Again, the normalization is done with respect
to the number of active flows under the ‘vanilla’ policy for the
same load ρ.) Since the LBE flows behave as ‘low priority’ traffic
yielding to competing TCP flows, more LBE flows are squeezed
out of the link as it becomes more congested. As a result a greater
number of active background downloads is observed -except for
TCP-LP above 85% total load-.

Under the presence of a single elephant flow, in Fig. 5d, the
number of background flows (relative to ‘vanilla’) has a decreas-
ing trend. This means the LBE flows do not yield as much as
when k = 0, as the load increases. This is because their absolute
number has increased considerably and it has reached a point
where the LBE flow throughput cannot be compressed further

Fig. 6. The simulated two link network topology.

since each such flow already attains its minimum possible share12.
Thus LBE traffic essentially stops behaving as low priority and
competes more equally with TCP. This has a damaging effect on
the delay of web flows as the traffic composition now contains
more aggressive flows.

On the other hand, the web flow delay caused by access control
continues to decrease (relative to ‘vanilla’) even after the addition
of the elephant flow. This is because the active number of micro-
flows does not increase as much as the total number of micro-
flows in the system. Hence the congestion of micro-flows does
not spill over to web flows.

C. Two link network

Here we consider the two link network in Fig. 6, without the
presence of elephant flows, in which Cρb =3Mbps again but now
the background flows traverse both links. In each link there is a
separate stream of web flows of normalized load ρ.

Fig. 7 depicts the web flow delay and number of active
background flows for different load levels ρ. In Fig. 7a the delay
under access control is similar to LEDBAT for web flow loads
less than 5 Mbps. Above this value a similar effect to that when
elephant flows are present occurs: in Fig. 7b the number of
LEDBAT flows decreases relative to the ‘vanilla’ policy, i.e., they
become more aggressive. The reason is that starvation effects are
expected to occur for loads ρb > (1 − ρ)2, i.e., Cρ > 4.6Mbps,
as truly low priority flows would be able to push data through
the two links only at times where no web flows are present -
an event which occurs with probability 1 − ρ- (see [10]). This
explains the peak in the relative number of LEDBAT flows after
Cρ = 5Mbps shown in Fig. 7b. Starvation in practice means the
absolute number of background flows will increase significantly
as in the case with elephant flows. Again since the LEDBAT
flow throughput cannot be compressed below a certain limit,
LEDBAT stops behaving as low priority traffic and so web delay
is damaged. The delay reduction due to LEDBAT relative to the
‘vanilla’ policy is only 10% at 95% total load.

This is contrasted with access control where the reduction is
28% for the same load. As in the single-link case, this is because
under access control the number of background flows does not
affect congestion because only a limited number of active micro-
flows transmit.

D. Three links

Here we consider the topology in Fig. 8 where there are
four routes labelled routeX, where X ∈ {1, 123, 2, 23} with
route1 spanning only link 1, route123 spanning links 1,2,3
etc. route1 is only used by a stream of web flows with
load ρ1. On each of route123,route2, and route23 there
is a CBF (carying its own stream of micro-flows) with load
ρ123 = 2, ρ2 = 1, ρ23 = 1, respectively. These three routes also

12A LBE flow sends at least one packet per round-trip-time, as TCP.
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(a) Normalized delay, no elephant flows present (k = 0)
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(b) Normalized delay, k = 1
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(c) Normalized active micro-flows, k = 0
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(d) Normalized active micro-flows, k = 1

Fig. 5. Single link network: A comparison of access control and LBE protocols for a CBF comprised by a stream of dynamically arriving micro-flows. The top
row depicts the web flow delay for each protocol normalized by the delay caused by the ‘vanilla’ policy for the same level of web flow load. The presence of a
single elephant flow (in (b)) causes LBE protocols to perform worse than the ‘vanilla’ policy at high loads. The bottom row depicts the average number of active
micro-flows normalized by the corresponding number under the ‘vanilla’ policy for the same level of load.

carry streams of web flows with the same load as the CBFs on
the same routes.

Fig. 9 depicts the normalized delay of web flows on each of the
four routes for the choices ρ1 = 0.3 and ρ1 = 0.5. Even though
link 1 is not excessively loaded (70%), the LBE protocols do
not seem to bring any significant delay savings compared to the
‘vanilla’ policy. In fact TCP-LP results to higher delays. Access
control causes less delays for the web flows on any route, except
route123 and route23 where it is close to LEDBAT which
has the lowest delay there. The difference between access control
and the LBE protocols becomes more significant for ρ = 0.5
over the routes that have highly loaded links, i.e., route1 and
route123.

V. DISCUSSION

Why low priority CBFs are not optimal? Afterall, in reality
background flows are usually transfers of finite-size files, so CBFs
could transmit only when short or long TCP flows are not present.
There are two reasons why low priority is not desirable as a
design goal. Firstly, these are not good emulators of low priority
especially in highly loaded links, as seen in simulations of the
LBE protocols in Section IV. Secondly, there may be additional
system objectives besides the delay of short flows, e.g., objective
function terms involving the performance of background flows,
such as sums of utilities as in [11], [12], utility rates as in [15],
or the delay of CBFs.

In what follows we postulate a system model which dispenses
the assumption of a constant number of background flows (long
TCP and CBFs) and consider optimization criteria which encom-
pass the performance of these flows.

The model should include states of the form (k, l, n) where
k, l, n are the numbers of long TCP, CBFs and web flows,
respectively, present in the system. Under similar conditions on
the arrival and file-size statistics, we are led to consider policies
specified by the throughput xk,l,n a TCP flow achieves at every
state (k, l, n).

If the sizes of background flows are much larger than those
of the short flows, and the arrival rate of the former is much
lower than the latter then the flow dynamics evolve on two
distinct timescales, since web flows vary much faster now than
background flows do. If the ‘slow’ state (k, l) remains constant
for a sufficiently long time, the ‘fast’ state n evolves according
to an ergodic Markov chain with transition rates determined by
(xk,l,n, n ≥ 0).

Over the time where (k, l) is constant, the average delay of
short flows is determined by the quasi-stationary distribution at
(k, l). In the same time, the CBFs obtain some fraction fk,l
(also determined by the quasi-stationary distribution) of the excess
capacity and the rest is consumed by the long TCP flows. Thus
fk,l determines the rates at which background flows of each type
depart from the system, and so the slow part of the state has a
stationary distribution determined by the fractions fk,l achieved
by CBFs at each slow state (k, l).



10

web .ow load C; (Mbps)
2 3 4 5 6 7w

eb
.
ow

d
el
ay
(r
el
at
iv
e
to
`v
an
il
la
')

0

0.5

1

access control
LEDBAT
LEDBAT60
TCP-LP

(a) Web flow delay for each protocol normalized by the
delay caused by the ‘vanilla’ policy for the same level
of web flow load.
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(b) The average number of active micro-flows normalized
by the corresponding number under the ‘vanilla’ policy
for the same level of load.

Fig. 7. Two link network: comparison of access control, ‘vanilla’, and LBE
protocols for a CBF comprised by a stream of dynamically arriving micro-flows.
LBE starvation effects occur at Cρ ≥ 4.6Mbps even without the presence of
elephant flows.
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Fig. 8. The three link network simulated in Section IV-D under two different
loads (ρ1 = 0.3 and 0.5) for the web flows traversing only link 1.

Thus the assumption of a constant number of background
flows made in this paper is not unjustified, and this provides
the motivation. In the terminology of the present section, in
Section II-B (xk,l,n, n ≥ 0) is chosen to minimize the delay of
short flows for each (k, l), for any value of fk,l. Thus, the policies
considered in this paper are relevant whenever the overall system
objective includes the delay of short flows along with additional
terms involving the performance of background flows. Since both
type of performance criteria are determined by the choice of
fk,l at every k, l, the system objective is optimized by solving
a Markov decision problem involving the slow state process.

This suggests that a good CBF controller consists of the i) fast
timescale congestion control that deals with how the protocol
responds to congestion in the fast timescale that determines the
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Fig. 9. Three link network: A comparison of access control, ‘vanilla’, and LBE
protocols for a CBF comprised by an arriving stream of micro-flows. The web
flow delay (normalized by the delay caused by the ‘vanilla’ policy) for each route
and each value for ρ1 ∈ {0.3, 0.5}. The access control policy performs better
than LBE when the (web) load in link 1 is increased to ρ1 = 0.5. It does not
cause significantly worse delay to web flows not passing through link 1 (i.e.,
route2 and route23).

instantaneous capacity share13, which can be based on the policies
of this paper, and ii) slow timescale feedback control, that looks
at the state of the CBF and adapts, in the slow timescale, the fk,l
parameters supplied to the fast timescale congestion controller.

An interesting problem is to assess how well simple CBF
controllers perform relative to the optimal, as the latter is likely
to depend on non-observable quantities such as the number of
background flows.

APPENDIX
PROOFS

A. Proof of Theorem 1

Consider the case (1 − ρ)k > f first. If xn, n = 0, 1, . . . are
defined as in Theorem 1, CBFs do not affect the dynamics of
the Markov chain. Hence, the stationary distribution is given by
Lemma 5 for n0 = 0. In fact, the average bandwidth constraint (6)
is readily shown to hold for this stationary distribution. Since the
average number of TCP flows is minimized by setting xn at their
maximum value C

k+n for each n = 1, . . ., we conclude that the
allocations xn, n = 0, 1, . . . are optimal.

For the remainder of this section we consider the case (1 −
ρ)k ≤ f .

Lemma 2. If (1− ρ)k ≤ f then x0 = 0.

Proof: Assume first that xn = C
k+n for all n ≥ 1. Then the

stationary distribution is given by Lemma 5 for n0 = 0, and

π0x0 +

∞∑
n=1

πnxn = (1− ρ)k+1x0 +
C(1− ρ)− C(1− ρ)k+1

k
.

Plugging this into (6) yields f = (1− ρ)k(1− kx0/C) which it
does not hold unless x0 = 0.

Now assume that there exists n ≥ 1 for which the inequality
in (5) is strict. If x0 > 0 then we could decrease x0 and increase
xn such that (6) remains true. Notice though, that the increase of
xn does decrease the average number of short TCP flows, while
the increase of x0 does not have any effect whatsoever. Thus, the
optimal allocation x0 must be zero.

13Few round-trip times needed for TCP window adaptation to converge.
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We now transform the optimization problem into an equivalent
decision problem. For each n ≥ 0 and xn, πn which satisfy (3)-
(7), define

π̄n = xnπn
k

C(1− ρ)(1− f)
, yn+1 =

π̄n
π̄n+1

. (23)

The following holds:

Lemma 3. The numbers π̄n, yn, n ≥ 0 as defined in (23) satisfy
the constraints

∞∑
n=0

π̄n = 1 , (24)

yn+1 ≤
n+ 1

ρ(k + n)
, n ≥ 0 , (25)

∞∑
n=0

nπ̄n =
ρk

(1− ρ)(1− f)
, (26)

π̄n ≥ 0 , n = 0, 1, . . . (27)

Conversely, for any π̄n, yn, n = 0, 1, . . . satisfying (24)-(27)
there exist unique πn, xn, n = 0, 1, . . . for which (3)-(7) and (23)
hold.

Proof: Summing (23) over n = 0, 1, . . . and using (6)
yields (24). (25) follows by mutliplying both sides of (5) by πn
and utilizing (3),(23). Since ρ < 1, the average rate of departures
must equal λ, that is,

∞∑
n=0

µnxnπn = λ⇔
∞∑
n=0

nπ̄n =
ρk

(1− ρ)(1− f)
,

which proves (26).
To show the converse part, define

πn =
(n+ 1)(1− ρ)(1− f)

ρk
π̄n+1

and xn =

{
Cρyn+1

n+1 , if π̄n+1 > 0 ,

0 , if π̄n+1 = 0 ,
for each n = 0, 1, . . .

(28)

Now, (3) follows by noting that nyn
n+1 = πn−1

πn
and substitution in

the definition of xn above. Also,
∞∑
n=0

πn =

∞∑
n=0

(n+ 1)(1− ρ)(1− f)

ρk
π̄n+1

=

∞∑
n=0

n(1− ρ)(1− f)

ρk
π̄n = 1 ,

by making use of (24). (5) follows by (25) and the definition of
xn above, while (6) follows directly from the definition of πn, xn.

This deals with existence; to establish uniqueness note that
any collection of πn, xn, n = 0, 1, . . . which satisfy (23) and (3)
defines πn uniquely by the latter equation. Thus, xn is defined
uniquely by (23) for every n ≥ 1, while x0 is determined by (6).

Now, if we multiply both sides of (3) by n− 1 and sum over
n = 1, 2, . . . we get

λ

∞∑
n=1

(n− 1)πn−1 =
µC(1− ρ)(1− f)

k

( ∞∑
n=1

n2π̄n −
∞∑
n=1

nπ̄n

)

=
µC(1− ρ)(1− f)

k

∞∑
n=1

n2π̄n − λ ,

when (26) holds. Thus, the minimization of the objective in (2)
is equivalent to that of the second moment of the distribution
π̄n, n = 0, 1, . . ., when (26) holds. Combining this with Lemma 3
leads to the following equivalent formulation:

Minimize
∞∑
n=0

n2π̄n over π̄n, yn, n ≥ 0

such that (24)-(27) and the second equation in (23) hold.
(29)

The following Theorem characterizes the optimal solution. It
also covers the restriction to the implementable class of policies
considered in Theorem 3.

Theorem 8. The optimal solution of the minimization prob-
lem (29) satisfies:

yn =

{
n

ρ(k+n−1) n > m

0 n < m
,n = 1, 2, . . . , (30)

for some m ≥ 1.
If in addition to (24)-(27),(23) the constraint

yn+1

n+ 1
≤ yn

n
, n = 1, 2, . . . (31)

is imposed, the optimal solution satisfies

yn =

{
n

ρ(k+n−1) n ≥ m
nyn−1

n−1 1 ≤ n < m
, (32)

for some m ≥ 1.

Theorem 1 follows as a direct corollary of Theorem 8, since
then by Lemma 3, there exist unique xn, n ≥ 0 given by (28) in
terms of the optimal solution yn, n ≥ 1 of (29). Thus (8) follows
by defining n∗ = m− 2, where m is as in Theorem 8.

The proof of Theorem 8 itself is based on the following
comparison lemma:

Lemma 4. Let (yn), (y′n) be two sequences of transition rates
for which the respective stationary distributions (π̄n) and (π̄′n)
they induce satisfy (26), and ym+1 < y′m+1, yn = y′n for all
n /∈ {m,m+ 1} for some m ≥ 1.

Then
∑
n n

2π̄′n ≤
∑
n n

2π̄n holds.

Proof: We show that π̄ dominates π̄′ in the convex stochastic
order which by definition (e.g., see 3.A.1 in [21]) then implies∑
n n

2π̄′n ≤
∑
n n

2π̄n.
First note that sgn(π̄n − π̄′n) = sgn(π̄0 − π̄′0) 14 for all

n < m since yn = y′n in that range. Similarly sgn(π̄n − π̄′n) =
sgn(π̄m+1 − π̄′m+1) for all n > m is true. Now

sgn(π̄m − π̄′m) = sgn
(
π̄m−1y

−1
m − π̄′m−1y′m

−1
)

≤ sgn
(
π̄m−1 − π̄′m−1

)
,

since y′m ≤ ym which follows from the assumption that π̄ and
π̄′ have the same mean and y′m+1 ≥ ym+1. In turn this implies
sgn(π̄m− π̄′m) ≤ sgn(π̄m+1− π̄′m+1). Thus, π̄m− π̄′m can change
sign at most twice as n goes from 1 to∞. It is easy to see that the
distributions π̄ and π̄′ are not stochastically ordered so Theorem
1.A.12 in [21] implies that π̄m − π̄′m cannot change sign only

14sgn(x) = 1 is the sign function: it takes the values -1,0,1 if x < 0, x = 0,
or x > 0 respectively.
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once. Thus there are exactly two sign changes and so by Theorem
3.A.57 π̄ dominates π̄′ in the convex stochastic order.

Now we are ready to prove Theorem 8.
Proof: Let y be the optimal solution of (29) and suppose

ym+1 < (m + 1)/(ρ(k + m)) and ym > 0 for some m ≥ 1.
Then there exist transition rates y′ with ym+1 < y′m+1 ≤ (m +
1)/(ρ(k + m)), ym > y′m ≥ 0 y′n = yn for all n /∈ {m,m + 1}
and for which the corresponding stationary distribution π̄′ still
satisfies (26). Then Lemma 4 implies that y is not optimal and we
arrive at a contradiction. Thus either yn+1 = (n+ 1)/(ρ(k+ n))
or yn = 0 for all n ≥ 1, which in turn implies (30).

If (31) is required then the same reasoning implies that yn+1 =
(n + 1)/(ρ(k + n)) or yn/n = yn+1/(n + 1) holds for all n ≥
1. Notice that if yn = n/(ρ(k + n − 1)) then (n + 1)yn/n =
(n + 1)/(ρ(k + n − 1)) > (n + 1)/(ρ(k + n)) ≥ yn+1, and so
yn+1 = (n+ 1)/(ρ(k + n)) must be true. This proves (32).

B. Proof of Proposition 1

Lemma 5. The stationary distribution of the number of short
TCP flows is

πn =


(n+k
k )(1−ρ)k+1ρn∑k

i=0 (n0+k
i )(1−ρ)iρn0+k−i , n ≥ n0 ,

0 , n < n0 .

for the threshold policy with threshold n0. In particular, πn =
P (X = n|X ≥ n0), where X is the sum of k + 1 independent
geometric random variables, each with ‘success’ probability 1−ρ.

Proof: Let X be the sum of k + 1 independent geometric
distributions each with ‘success’ probability 1− ρ. Then,

P (X = n) =

(
n+ k

k

)
(1− ρ)k+1ρn ,

for every n = 0, 1, . . .. This distribution is readily shown to satisfy
the detailed balance equations

P (X = n)ρ = P (X = n+ 1)
n+ 1

n+ 1 + k
, n = 0, 1, . . . ,

which correspond to a system with the threshold set to zero. Since
the Markov chain is reversible, the stationary distribution for the
case n0 > 0 is πn = P (X = n|X ≥ n0), i.e.,

πn =

(
n+k
k

)
(1− ρ)k+1ρn∑k

i=0

(
n0+k
i

)
(1− ρ)iρn0+k−i

, n = n0, n0 + 1, . . .

and 0 for n < n0, where we have used the identity

∞∑
n=n0

(
n+ k

k

)
(1− ρ)k+1ρn =

k∑
i=0

(
n0 + k

i

)
(1− ρ)iρn0+k−i

(33)
which follows by noting that the event X ≥ n0 corresponds to
the occurence of at most k ‘successes’ in a sequence of n0 + k
Bernoulli trials.

The proof of the Proposition follows by the observation that
the threshold policy with the threshold set at n0 with xn0

= 0

obtains a fraction f =
πn0

1− ρ
= E

(
n0 + k + 1, k,

1− ρ
ρ

)
of the

excess capacity, by Lemma 5. See [12] for more details.

C. Proof of Theorem 2

The average number of short TCP flows at stationarity is, by
Lemma 5,

E(X|X ≥ n0) = n0 − 1 +

∞∑
n=n0

P (X ≥ n|X ≥ n0)

= n0 − 1 +

∑k
i=0Gi

P (X ≥ n0)
, (34)

where Gi =

∞∑
n=n0

(
n+ k

i

)
(1− ρ)iρn+k−i

=
1

1− ρ

i∑
j=0

(
n0 + k

j

)
(1− ρ)jρn0+k−j ,

by identifying k ≡ i and n0 ≡ n0 + k − i in (33), and so,
k∑
i=0

Gi =

k∑
i=0

k + 1− i
1− ρ

(
n0 + k

i

)
(1− ρ)iρn0+k−i .

Plugging this back to (34) gives the formula for Nn0
in the

statement after some algebra.

D. Proof of Corollary 1

Consider a sequence of threshold policies indexed by ρ for
which the threshold level nρ satisfies nρ(1 − ρ) → a as ρ → 1.
Since the number of users nρ+k+1, in the loss system described
in Proposition 1, grows with ρ while the total load converges to a,
the call arrival process is approximated by a Poisson process with
rate a. Hence the blocking probability is approximated by the Er-

lang B formula, i.e., E
(
nρ + k, k,

1− ρ
ρ

)
→ B(k, a) , as ρ→

1.
Observe that since B(k, 0) = 0, B(k,+∞) = 1, and B(k, a)

is increasing in a, there is a unique af for which B(k, af ) = f
holds. Thus, n∗(1− ρ)→ af as ρ→ 1, and both the lower and
upper bounds in Proposition 1 converge to B(k, af ).

E. Proof of Lemma 1

The second derivative of N is N ′′(f) =
1

(B′)2
[
2(B′)2 −BB′′

]
, where B,B′, B′′ are the values of

B(k, a), its first, and second derivatives respectively, with
respect to the second argument evaluated at a = af . (We
have also used the fact that B(k, af ) = f for all f , and so
B′a′f = 1, B′′a′f

2
+B′a′′f = 0.)

But, B′ = B (k/af − 1 +B) and a further differentiation gives

N ′′(f) =

(
B

B′

)2 [(
ρ−1 − 1

)2
+
ρ−2

k
+B

(
ρ−1 − 1

)]
, (35)

where ρ = a/k. For ρ ≤ 1, (35) is nonnegative.
To deal with ρ > 1 first note that N ′′(f) > 0 is equivalent to

B ≤ k(ρ− 1)2 + 1

kρ(ρ− 1)
.

But this inequality follows by noticing the expression on the right
hand side is greater than the upper bound of B,

B ≤
k(ρ− 1)2 + 2ρ+ (ρ− 1)

√
4kρ+ k2(1− ρ)2

kρ(ρ− 1) + 2ρ+ ρ
√

4kρ+ k2(1− ρ)2
,

shown by Harel [22].
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F. Proof of Theorem 3

Lemma 3 allows one to consider the equivalent problem (29).
The constraint xn ≥ xn+1, n ≥ 0 implied by implementability
is equivalent to (31) in the light of (28). Now Theorem 8
characterizes the optimal policy which is just (12) by (28) and
the identification n∗ = m− 1.

G. Proof of Theorem 4

For every m0 ≥ 0 and ρ ∈ (0, 1) define mρ = m0/(1 − ρ)
and let Nρ be a random variable distributed according to the sta-
tionary distribution of the number of short flows under threshold
policy (10) with n0 = mρ. Also let Mρ be the stationary number
of short flows under policy (12) with n∗ = mρ. We will first
show that limρ↑1EM

ρ/ENρ = 1.
Note that ((1−ρ)Mρ, ρ ∈ (0, 1)) is a tight sequence of random

variables since lim supρ↑1(1 − ρ)EMρ ≤ limρ↑1(1 − ρ)ENρ =
k+1+m0B(k,m0), where the last limit follows by Corollary 1.
Thus (1 − ρ)Mρ d−→ M̂ for some M̂ , over a subsequence. By
Lemma 6 below, any such limit must satisfy P (M̂ > (1 −
ε)m0) = 1 for every ε > 0, and so P (M̂ ≥ m0) = 1. But then
we must have15 P ((1 − ρ)Mρ ≥ m0) → 1 over the convergent
subsequence. Since this holds over any such subsequence we have
limρ↑1 P (Mρ ≥ mρ) = 1. In turn this implies,

lim
ρ↑1

(1− ρ)E(Mρ) = lim
ρ↑1

(1− ρ)E(Mρ|Mρ ≥ mρ)

= lim
ρ↑1

(1− ρ)E(Nρ) ,

which establishes the claim.
We will also show that the two policies obtain the same

CBF target fractions, or equivalently, the same throughputs. The
background throughput under the threshold policy is bopt(ρ) =
CP (Nρ = mρ) since background flows transmit only at the
lowest state, i.e., mρ. On the other hand under (12) back-
ground flows grab whatever bandwidth is left over by TCP
flows, i.e., bimp(ρ) = E

(
C − (min(Mρ,mρ)+k)C

mρ+k

)
. We show that

bimp(ρ)/bopt(ρ)→ 1 as ρ ↑ 1.
First note that

E (Mρ1{Mρ ≤ mρ}) =

mρ−1∑
n=0

(n+ 1)P (Mρ = n+ 1)

=

mρ−1∑
n=0

ρ(mρ + k)P (Mρ = n) = ρ(mρ + k)P (Mρ < mρ) ,

and thus bimp(ρ) = C

[
mρ

mρ + k
P (Mρ ≤ mρ)− ρP (Mρ < mρ)

]
=

CP (Mρ ≤ mρ)

[
mρ

mρ+ k
− ρ+ ρP (Mρ = mρ|Mρ ≤ mρ)

]
.

Hence, bimp(ρ)/bopt(ρ) equals

P (Mρ ≤ mρ)
[

mρ
mρ+k − ρ+ ρP (Mρ = mρ|Mρ ≤ mρ)

]
P (Mρ = mρ|M ≥ mρ)

=
P (Mρ ≥ mρ)

(
mρ
mρ+k − ρ

)
P (Mρ = mρ|M ≤ mρ)

+ ρ→ 1 ,

15For this to hold we must also ensure that P (M̂ = m0) = 0. This can be
shown by an easy coupling argument which we omit because it is overly technical.

where the limit follows from the fact (e.g., see [23]) that P (Mρ =
mρ|Mρ ≤ mρ) = B(mρ,mρ+ρk−m0) = O(

√
1− ρ) as ρ ↑ 1.

This and the previous claim establish the theorem.

Lemma 6. For every ε > 0, P (Mρ ≥ (1− ε)mρ)→ 1 as ρ ↑ 1.

Proof: First note that for the birth-death chain describing
the number of short flows, in states n ≤ (1 − ε)mρ the birth to
death transition rate ratio is at least ρ/(1 − ε). This means that
Mρ stochastically dominates L where the latter has the stationary
distribution of the birth-death process over states {0, . . . , (1 −
ε)mρ} with birth and death rate ρ and 1− ε respectively. Now,

P (L(1− ρ) < m0(1− 2ε)) ≤
(

1− ε
ρ

)mρε
for every ρ, and so limρ↑1 P (L(1 − ρ) ≤ m0(1 − 2ε)) = 0. But
then lim inf

ρ↑1
P (Mρ(1− ρ) ≥ m0(1− 2ε)) ≥

1− lim
ρ↑1

P (L(1− ρ) < m0(1− 2ε)) = 1.

H. Proof of Theorem 5

1) Follows by simple manipulations using the expressions from
Corollary 1 and (13).

2) It is easier to consider the delay difference relative to wTCP:

lim
ρ→1

Nw(k, f, ρ)−N∗(k, f, ρ)

Nw(k, f, ρ)
≤

kf
1−f − aff
k + kf

1−f

=
1− f
k

af (B(k − 1, af )− f) ≤ B(k − 1, af )− f .

by using the identity kB(k, af )/(1−B(k, af )) = afB(k−1, af )
and the definition B(k, af ) = f . The last step follows by noting
that the average number of ongoing calls af (1 − B(k, af )), in
the associated loss system, is less than the number of circuits k.
Reexpressing the delay difference relative to the optimal yields
the bound in (14).

To get the upper bound, first notice that
sup0≤f≤1 [B(k − 1, af )− f ] = supa≥0 [B(k − 1, a)−B(k, a)],
and for every a ≥ 0, F (k, a) = B(k − 1, a) − B(k, a) → 0
as k ↑ ∞. Moreover, since B(k, a) concave in k [24], F (k, a)
is nonincreasing in k. Thus the convergence is uniform over
intervals of the form [0, a0]. It is uniform over the entire positive
axis if supk≥k0,a≥a0 F (k, a) can be made arbitrarily small by
some choice of k0, a0. But this follows since for every sequence
ak ↑ +∞ we have F (k, ak) ≤ F (k0, ak) for any k ≥ k0, and
F (k0, ak)→ 0 as k ↑ ∞.

Lastly, notice that for k ≥ 2 we have F (k, 0) < 1, and so the
uniform bound is non-trivial since sup0≤f<1 bk(f) <∞.

I. Proof of Theorem 6

First we show the inequality:

Lemma 7. N∗∗(k, ρ) ≥ N∗
(
k, ρb

1−ρ , ρ
)

.

Proof: Fix any (xn,m, πn,m, (n,m) ∈ S) satisfying (17)-(20)
and define

πn =
∑

m∈N∪{∞}

πn,m , xn =

∑
m∈N∪{∞} xn,mπn,m∑
m∈N∪{∞} πn,m

for every n = 1, 2, . . . then it is easy to check that (3)-(6) hold
with f = ρb

1−ρ . Moreover the policy (xn, n = 0, 1, . . .) for the
chain in (1) achieves the same average number of short flows.
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The reverse inequality holds due to the following result which
is also useful in showing Theorem 7.

Proposition 2. Let (xn, n ≥ 0) be a policy for the chain (1),
possessing an invariant distribution (πn, n ≥ 0) with

∞∑
n=0

πn [C − (n+ k)xn] = Cρb . (36)

Then any policy (xn,m, (n,m) ∈ S) for the chain (15) with
xn,m = xn for all n ∈ N,m ≥M for some M ≥ 1, possesses a
unique invariant distribution (πn,m, (n,m) ∈ S) which satisfies
πn,∞ = πn for all n.

In particular:
1) The mass of (πn,m) is concentrated at m = ∞, i.e., the

number of micro-flows is unstable.
2) The number of short flows is distributed according to (πn),

and
3) the average throughput of the CBF satisfies (20).

Proof: Clearly πn,∞ = πn, πn,m = 0 for all m < ∞, is an
invariant distribution. To show that it is unique, we will show that
there is no invariant distribution which assigns positive probability
in states with m <∞.

Let (ñt, t ≥ 0) be the Markov chain in (1), and define

m̃t = m̃0+N+ (λbt)−N−
(∫ t

0

µb
[
C − (ñs− + k)xñs−

]
ds

)
,

t ≥ 0, where N+, N− are unit rate Poisson processes independent
of all other processes. (ñt, m̃t) evolves according to (15) in all
states except those with m ≤M − 1. Let n = min{n > 0|πn >
0}. Since (ñt) is positive recurrent, τi, the i-th return time to
ñt = n, for i ≥ 1, has a finite expectation. Also,

E (m̃τ1 − m̃0|m̃0, ñ0 = n) = λbE(τ1|ñ0 = n)

− E
[∫ τ1

0

µb
[
C − (ñs− + k)xñs−

]
ds

∣∣∣∣ m̃0, ñ0 = n

]
=

λb
λπn

− 1

λπn

∑
n

µb [C − (n+ k)xn]πn = 0 ,

where the last inequality follows by (36), and the one before by
the cycle-formula. Thus the sequence m̃τ1 , m̃τ2 , . . . is a zero drift
random walk on Z. Consequently, the chain (ñt, m̃t) is null recur-
rent, and so is its truncation (n̂t, m̂t) in N×{M,M+1, . . .} ⊂ S.

Now, the null recurrence of (n̂t, m̂t) and the positive recurrence
of (n̂t) imply P ((n̂t, m̂t) ∈ N× {M}) → 0 as t → ∞. Hence
m̂t visits M very infrequently and so must the second component
of the chain (15). Thus the latter process is null recurrent (in
the component m < ∞) and so it does not possess an invariant
distribution (with m <∞ occuring with positive probability).

The policy (xn,m) defined in Theorem 6 fulfills the conditions
of Proposition 2 since (36) is equivalent to (6) for f = ρb

1−ρ . Thus
there exists a policy for (15) which has an average number of short
flows equal to N∗

(
k, ρb

1−ρ , ρ
)

. This implies N∗
(
k, ρb

1−ρ , ρ
)
≥

N∗∗(k, ρ).

J. Proof of Theorem 7

Define (xn) to be the wTCP policy with weight M . Then (36)
holds because the left-hand side equals M

M+kC(1 − ρ) = Cρb.
Thus (xn), (xn,m) fulfill the conditions of Proposition 2 and so
(xn,m) behaves as (xn).
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