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Abstract—1It is known that multi-antenna transmissions over
frequency-selective channels can provide a diversity gain that is
product of the number of transmit antennas, the receive antennas
and the length of the channel impulse response. Liu, Xin and
Giannakis have studied multi-antenna orthogonal frequency divi-
sion multiplexing (OFDM) through frequency-selective Rayleigh-
fading channels and have introduced the concept of Space-Time-
Frequency (STF) coding to enable maximum diversity and high
coding gains.

It is known that under some conditions, an n-length cyclic
code C over Fym, (n|¢™ — 1, and m < n) can have full-
rank i.e Rank,(C) = m. Designs for Space-Time codes suitable
for both quasi-static fading channels and block-fading channels
have been derived from n length cyclic codes over F~. In this
paper, we present a simplified design of STF codes using designs
derived from cyclic codes to obtain Group Space-Time-Frequency
(GSTF) codes for frequency selective Rayleigh fading channels.
These codes achieve maximum diversity gain.

I. INTRODUCTION

Liu, Xin and Giannakis [1] have studied multi-antenna
orthogonal frequency-division multiplexing (OFDM) transmis-
sions through frequency-selective Rayleigh fading channels
i.e joint Space-Time-frequency (STF) coding over space, time
and frequency. Subchannel grouping [7],[8] has been used to
convert the STF system into group STF (GSTF) subsystems
which preserves maximum diversity gains and simplifies the
code construction. In [4] and [5], designs for full-rank and full-
diversity STBCs for quasi-static and block-fading channels
respectively were derived using conventional cyclic codes over
a finite field. In this paper we obtain codes suitable for GSTF
systems. These codes achieve full-diversity and can be easily
configured to an arbitrary number of transmit antennas.

A. Preliminary Concepts [1]

Consider a multi-antenna wireless communication system
with V; transmit antennas and [V, receive antennas, where
OFDM using N, subcarriers is employed per antenna trans-
mission as shown in Fig.1.

The fading channel between the p** transmit antenna and
v'* receive antenna is assumed to be frequency selective but
time flat and described by the base band equivalent impulse
response vector h,, 2 (R (0), hW(l)7...,hW(L)]T €
CUADX1 where L denotes the length of the channel impulse
response.
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Let 2#(p) be the data symbol transmitted on the p‘"
subcarrier (frequency bin) from the p'” transmit antenna
during the n'® OFDM symbol interval. The symbols
{zk(p), p=1,2,...,N;, p=0,1,...,N.— 1} are trans-
mitted in parallel on N, subcarriers by N, transmit an-
tennas. The three variables p, n, p respectively index the
antenna (space), time and frequency dimensions associated
with the transmission of z#(p). Thus, each z¥(p) can be
viewed as a point in a three dimensional (3-D) space-time-
frequency (STF) parallelepiped. We denote the projection of
the STF codeword on the p'” subcarrier as X(p) and X =
[X(0) X(1) ...X(N. —1)].

At the receiver, each antenna receives a noisy superposition
of the multi-antenna transmissions through the fading chan-
nels. After FFT processing, the received data sample y% (p) at
the 1" receive antenna can be expressed as,

Ny
un(p) = D Huw ()t (p) + wy (), (1)
p=1
v=12..N, p=0,1,...,N.— 1 where H,,(p) is
the subchannel gain from the p*" transmit antenna to the v*"
receive antenna evaluated on the p*" subcarrier

L
H ) 2 3 s (eI, o
=0

and the additive noise w? (p) is circularly symmetric, zero
mean, complex Gaussian with variance Ny that is assumed
to be statistically independent with respect to n, v and p.
Equation (1) represents a general model for multi-antenna
OFDM systems.

B. Subchannel Grouping and Design Criteria

The idea of subchannel grouping was introduced in [7],[8]
to reduce design complexity. In [1], the concept of subchannel
grouping has been used to simplify the STF system. The steps
are:

1. Choose the number of subcarriers equal to an integral
multiple of the channel impulse response length. i.e N, =
Ny(L+1), where Ny is a positive integer denoting the number
of groups.

2. Split the Ny x N.N, STF codeword X into N, group STF
(GSTF) codewords X4, g =0,1,..., Ny — L.
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Xg = [X9(0)7 X9(1)7 e VXQ(L)} € CN‘XNar(L+1). (3)
where X, (1) 2 X(Ngl+ g). Thus the STF system is divided
into N; GSTF (sub)systems, which can be described through
the input-output relationships,

Y, (1) = Hy()Xy(1) + Wy (0) “4)

l=0,1,...,L, g=0,1,..., N, — 1. where,

Y, (1) £ Y(Nyl +9). Hy = H(N,l + ).

W, (1) £ W(N,l +g).

Hence each GSTF system is a simplified STF system with a
much smaller size in the frequency dimension, as compared
with the original STF system. Liu, Xin and Giannakis [1]
consider STF coding within each GSTF system and also show
that doing this does not result in any reduction in the diversity
advantage and the design complexity is considerably reduced.
The design criteria for GSTF coding are:

1. (Sum of Ranks criterion): Design A, (the set comprising of
GSTF codewords) such that V X, # X; € A,,, the matrices
Ae(l) = [Xg(1) = X)Xy () ~ X, ¥ 1 € [0,
have full-rank.

2. (Product-of-determinants criterion): For the set of matrices
satisfying the rank criterion, design A, such that, VX, #
X; € Az, the minimum of

[Tizo det[Ac(1)]
is maximized.

In this paper, we present simple techniques to obtain GSTF
codes from the full-rank designs derived from conventional
cyclic codes over finite fields [4], [5] and study their perfor-
mance. Our design process can be extended easily to obtain
codes for systems with more number of transmit antennas
though we illustrate our design for 2 transmit antennas.

The rest of the paper is organized as follows. In Sec-
tion II, we review the theorems connected with the rank-
characterization for cyclic codes and the procedure used to
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derive designs suitable for STBCs from them. In Section III,
we present a number of GSTF codes derived from designs
based on cyclic codes and study their performance.

II. DESIGNS FROM CYCLIC CODES

We summarize the results relevant to the design of Space
Time Block codes in Theorems 2.1 and 2.2 the proofs of which
are available in [2], [3].

Theorem 2.1: Let C be the cyclic code of length n|¢"™ —
1, (m < n) over Fym characterized by the transform com-
ponent Ao € Ay, |[j]] = ej, ejlm being free and all
other transform components are constrained to zero. Then
ranky(C) = e;.

In practice, we choose the free transform domain component
Ajgs € Ap where e; = |[[j]] = m from a full size g¢-
cyclotomic coset. Then from Theorem 2.1 it follows that the
rank of the resulting code is m. This code has ¢™ codewords.

Theorem 2.2: Let C be a cyclic code of length n|¢™—1 over

Fym whose free transform domain components are A;,- and
Ajqr+s. (the indices of the free transform domain components
belong to the same ¢- cyclotomic coset and s denotes the
separation between them. (1 < s<e;—1), (0 <7 <e;—2).
Let all other transform components be constrained to zero.
Then, ranky(C) = (e; — gcd(s, €5)).
From Theorem 2.2 it follows that if we try to increase the
number of codewords by considering codes with two free
transform components from the same g-cyclotomic coset and
constraining all other transform components to zero, we can no
longer obtain full-rank cyclic codes. Hence, in our search for
full-rank STBCs for block-fading channels, we shall confine
our study to one dimensional cyclic codes of length n over
qu7 (n|qm - 1)'

We shall use Theorem 2.1 to derive derive designs for
STBCs from n-length cyclic codes over Fym from which
GSTF codes can be derived.

Definition 1: A rate-k/n, n x [ linear design over a field
F C C (the complex field) is an n x [ matrix with all its
entries F'-linear combinations of k£ complex variables and their
conjugates which are allowed to take values from the field F'
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Let (n,q) = 1 and n|¢™ — 1, where q is either 2 or a prime of

the form 4k + 1. We define I, 2 {0,1,2,...,n—1}. Let [j]
be a g-cyclotomic coset of I, of size m. By restricting 4;, j €
[4], to Fym and constraining all other transform components
to zero, we have an n-length cyclic code over Fiym whose
codewords are of the form,

[ A, B774;, B724; ..., p~(=Dig; ]

where ( is a primitive n-th root of unity in Fj» and
Aj € Fym. Viewing A; as an m-length column vector over
Fy, the codewords can be viewed as m X m matrices over Fj,
given by,

ao,0 ao,1 ao,2 SRR ag,n—1
a1,0 ai,i a1,2 ceey a1,n—1 )
Am—1,0 Am-1,1 am-1,2 ---, Am—-1,n-1

where 3% A; = Z?;Ol a; ko', a; x € Fyand « is a primitive
element of Fym . Notice that (5) is a design over F,. Also, note
that this is in general, possible for any linear code, however,
we have information about the rank, only in the case of cyclic
codes.

Example 1: Let the number of transmit antennas Ny = 3.
We take n = 7. The 2-cyclotomic coset of 1 modulo 3
is {1,2,4}. With A; taking all of Fg and other transform
components constrained to zero, we obtain a one dimensional
cyclic code C such that Ranky(C) = 3. Let « be a cube root
of unity in Fg. With Fg = Fy[x]/(2® + 2 + 1), the codewords
of C are of the form given in (6) where ag,a1,as € Fb.
This is an example of a rate % design. To obtain STBCs from
the above designs, we have to map the elements of [, into
the complex field such that the full-rank property of the finite
field design is preserved. We call a signal set to be matched to
Fy, if there exists a map from Fj, to the signal set which is an
isometry for the F;-rank to the complex field rank. There are
two such maps, the Hammons and El Gamal map [9] (suitable
for codes over extension fields of F5) and the map proposed
by Lusina Gabidulin and Bossert [10] (suitable for codes over
Fym where ¢ is a prime of the form 4k 4 1). An n-length
cyclic code over Fym will give rise to an m x n STBC with
2™ codewords for m transmit antennas. Hence, the code rate
in bits per channel use is < log,(2™) = m/n. Now, assuming
that we want full-rank STBCs, we have the condition m < n.
Therefore, for the case of cyclic codes over Fam, the data rate
is always upper bounded by 1 bit per channel use. Hence, we
will not consider the Hammons and El Gamal map here. To
achieve higher code rates, we have to derive STBCs from non
binary cyclic codes by making use of the map proposed by
Lusina, Gabidulin and Bossert [10].

A. Map proposed by Lusina Gabidulin and Bossert [10]

Let ¢ be a prime of the form ¢ = 4k+1. A Gaussian integer
w is a complex number defined as w = a+ib, a, b € Z, i =
v/—1 and it is known that every prime number ¢ of the form
g =1 mod 4 can be written as ¢ = (u + iv) X (u — iv) =

u? — v%. The number IT = wu + iv is known as Gaussian
prime number where u, v € Z. Let II' = u — 4v. Then
calculation modulo IT is defined as, { = w modulo 11 =

w— H/} IT where [.] performs the operation of rounding to

w
T
the nearest Gaussian integer. The Gaussian integers modulo
II form a field, G = {{o =0, &1 =1, {2,...,,(4—1} and
the map ¢ : F, = Gp given by (; = ¢ mod Il =
i — 1%//} I, + =0, 1, 2,...,, p—1 is an isomorphism
[10]. Therefore when we map codewords from a linear cyclic
code over Fym, ¢ =5,13,17,..., which are m x n matrices
over F, to m x n matrices over the complex Gaussian field,
the full-rank property of the code over Fim is preserved.
An example of the map between I35 and the corresponding
complex Gaussian field is:

0+ — 0,1+ 1,2 0+il,3 — 0—il, 4 — —1.

III. DESIGNS AND SIMULATION RESULTS

We illustrate the process of obtaining GSTF codes from
designs derived from cyclic codes through several examples.

Example 2: We will first study the GSTF code derived from
C1 which is obtained from the (4,1) code C; over Fy: that
is derived from a (6, 1) cyclic code over Fi52 by dropping the
last two columns of every codeword. The original cyclic code
is characterized by parameters n = 6, ¢ = 5, m = 2. The
5-cyclotomic coset of 1 mod 6 is {1,5}. With A; taking all of
Fys = Fz]/(2? + x + 1) and all other transform components
constrained to zero, we have a rank-2 cyclic code over Fy with
25 codewords which can be expressed as 2 x 6 matrices over
F5. We make use of the map proposed by Lusina et al. to
derive a full-rank 2 x 6 STBC. Let us denote this STBC by C.
The codewords of C are of the form given in (7) where ag, a1 €
F5, &: F5 — Giy2;. We can reduce the length of this STBC
by dropping the last two columns. The corresponding STBC is
denoted by C;. The codewords of C; are of the form given in
(8), where ag,a1 € F5, & : F5 — G112;. We assume that the
channel impulse response length L + 1 = 2. The parameters
chosen for this GSTF code derived from C; are, Ny = 2, N,. =
1, number of groups N, = 32, OFDM symbol interval N, =
2, number of subcarriers N, = N, x (L + 1) = 64. We pick
up a set of 32 codewords from the code C; randomly. Let
these codewords be indexed by parameter k, 0 < k < 31.
Since N, = 2, each GSTF symbol has length 2. We split each
codeword into two parts in the following manner. Let cq (k)
denote the k'" codeword of C;. We represent c; (k) as,

¢ (k’) _ l:l‘ll(k‘) 1’12(]€) mlg(k) $14(]€):| )
21 (k‘) xQQ(k) $23(k) $24(k‘)

Codeword c; (k) is split into two GSTF symbols X (k) and
X (k + 32) in the following manner,

o wu(k}) .Tlg(k’) o 1’13(](1) 1‘14(]{2)
X(k) a |:$21(k‘) .Z‘gg(k‘):| ’ X(k * 32) o |:$23(k‘) $24(k):|
Symbol X (k) is conveyed on subcarrier k& and symbol X (k +
32) is conveyed on subcarrier k + 32. (over two antennas and
two time slots). Thus each of the 64 GSTF symbols obtained
from these 32 codewords is modulated on the corresponding
subcarrier. Simulation proceeds by repeatedly selecting 32
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ap ag+air+az aop+ai+az a1 + a2 ag + a2 al ag
ai a2 ao ap + a1 ap +a1+az ai+az ao+ a2 (6)
az ao ap + a1 ap + a1 + a2 a1 + a2 ap + a2 al
&(ao) &(4a0 +a1) &Bao+a1) &(4ao) E(ao+4a1)  £(2a0 +4a1) @
E(a1) €(2a0 +2a1) £&(2a0 +a1) &(4a1) &(3ap +3a1)  &(3ap +4ar)
€(ao) €&(4ao +a1)  &(3ap +a1) &(dao) ®)
&(a1)  €(2a0 +2a1) &(2a0 +a1) §(4ar)

codewords at random, obtaining 64 GSTF symbols from them
and transmitting them on 64 carriers. ML decoding has been
performed and the probability of GSTF symbol error has been
plotted as a function of signal to noise ratio (SNR). In Fig.
2, the performance of this code has been compared with the
performance of STF block code and the STF trellis code
proposed by Liu, Xin and Giannakis [1]. The rate of the GSTF
code (in bits/sec/Hz) is defined as,

_ _logs(IC))
rate = L+1) <N,

where |C| denotes the number of codewords in the code.
Hence, the (4,1) code over Fi2 is characterized by rate
tog2(35)  — 1.16 bits/sec/Hz. The STF Block code and
the STF trellis code proposed by Liu, Xin and Giannakis
are characterized by rate 2 bits/sec/Hz. From Fig. 2 we
observe that our code gives a performance advantage of about
approximately 1 dB over the STF block code but has a lower

rate

Example 3: In a similar manner, the (4, 1) code over Fi3:
C,, is obtained by dropping the last three columns of the (7,1)
cyclic code over Fis2. Let the STBC derived from this by
using the Lusina map be denoted by Cs. The codewords of Cy
are of the form,

&(ao) &(3ao +5a1) &(4ao + 1la1)
&(ar) €&(9ao+3a1)  &(ao + 3a1)

where ag, a; € Fis, f:Flg — G2+3i.
Assuming that the channel impulse response length L + 1 =
2, the GSTF code derived from Cy is characterized by the
parameters, Ny = 2, N, = 1, N, = 64, Ny = L]\i =
32, N, = 2. To perform simulation, we choose 32 codewords
from Cs randomly and assign GSTF symbols to codewords in a
manner identical to that done for the GSTF system in Example
2. From (9), we conclude that the rate of this GSTF code is
% = 1.85 bits/sec/H~z. Simulation results pertaining
to the performance of this code are plotted in Fig. 2. We
observe that the performance of this code in terms of error
rate is inferior to the STF block code proposed by Liu, Xin
and Giannakis but superior to the STF trellis code proposed
by the same authors. The diversity order of the GSTF codes
is by definition, N¢N,.(L + 1). In this case the diversity for
both the codes is equal to 2 x 1 x 2 = 4.

Example 4: Let us now consider three different GSTF
codes of diversity order Ny x N, x (L +1) = 2 x 1 x
3 = 6 derived respectively from length 6 cyclic code over

bits/sec/H z. 9

&(Tao + a1)

{(6a0+a1) (10)

27x, 1 Rx, L+1=2, N, =64

OFDM symbol error probability

—+ GSTF from (4,7) code over F,

-6~ GSTF by Liu et al.
_a GSTF from (4,1) code over F‘59

—— STF trellis code by Liu et al.

SNR (dB)

Fig. 2. Performance comparison of GSTF code derived from reduced length
(4,1) code over Fy2 , and the GSTF code derived from reduced length (4, 1)
code over [ 32 with the STF Block code and the STF trellis code proposed
by Liu, Xin and Giannakis.

F52, Cg, the length 6 code over Fi32, C,4 and the length
6 cyclic code over Fjr2, Cs. (We will assume in the
following two examples that the channel impulse response
length L + 1 = 3 and N, = 63). The length 6 code over
F2, Cy is derived from the cyclic code of length 7 over
F32 by dropping the last column of every codeword. Let us
denote by Cs, C4, Cs respectively the STBCs derived from
Cs, C4, Cs. The codewords of Cs are of the form given
in (11), where ag, a1 € F5, £€: F5 +— Giyo. Let us
first consider the GSTF derived from C3. This is characterized
by, Ny =2, N, =1, Ny = e = 8 =21 N, = 2.

¢ @+1) — 3
Therefore each GSTF symbol is a (2 x 2) matrix over Fj.
Each GSTF codeword consists of three GSTF symbols.

We first pick up a set of 21 codewords from C3 randomly.
Let the codewords of C3 be indexed by parameter k, 0 < k <

20. (Codeword k of Cj is represented by c3(k)). Let c3(k)
denote the k*" codeword of C3. We represent c3(k) as,

l’ll(k)

cs(k) = [m(k) et

1‘22(16)

m13(k) 3314(k‘)
T3 (k) T24 (k)

1‘15(1@)
1'25(k)

l‘lﬁ(k)
:Cgﬁ(k)

Codeword c3(k) is split into three GSTF symbols X(k),
X (k4 21),X(k 4 42) in the following manner,
Ill(k) .’Elz(k)
X(k) =
( ) |::E21(k) .Z‘Qg(k)
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&(ao) &(4ao+a1) E(3ap+a1) €&(4ao) E(ao +4a1)  &(2a0 +4a1) an
{(al) §(2a0 + 2a1) 5(2a0 + a1) 5(4(11) 5(30,0 + 3(11) §(3a0 + 4a1)
&(ag) €(3ap +5a1)  &(dap +1la1) &(Tao +a1) E(ao +12a1)  €&(3ap + 2a1) (12)
&(a1) €(9ao +Ta1)  €&(ao +3a1)  €&(6ao +a1) &(Tao +Tar) €(12a0 4 4a1)
€(ao) €E(15ag +12a1) €£(14ag 4 8a1) &(16ao +5a1)  £(2a0 +a1)  £(3ao + 2a1) a3
£(ar)  €(12a0 +7a1)  £(120 + Ta1) &(3a1) &(5ap +a1)  €&(bag + 4aq)
.l‘lg(k) 1‘14(]{,‘) : 27Tx, 1 Rx, L+1=3, N.=2, N_= 63, Diversity order = 6
X(k+21) = 10 ‘ ; :
e “32’,3 %Z; S ol
_ T15 16 ) _a STF codes from (6,1) code over F gy
X(k+42) = was(k)  wa0(k)

Symbol X (k) 1s conveyed on subcarrier k, symbol X (k + 21)
is conveyed on subcarrier (k + 21) and symbol X(k + 42)
is conveyed on subcarrier (k + 42). Simulation proceeds by
repeatedly selecting 21 codewords of C3 at random, obtaining
63 GSTF symbols from them using the outlined procedure
and transmitting these symbols on 63 carrier frequencies. for
k=0,1,2,...,20, W is a 3 x 2 matrix representing the noise
terms. The entries of W are independent complex Gaussian
with zero mean and unit variance. ML decoding has been
performed and the probability of GSTF codeword error has
been plotted as a function of signal to noise ratio (SNR)
in Fig. 3. This GSTF code has a rate equal to % =
0.774 bits/sec/Hz.

Example 5: Let us now consider the GSTF code derived
from C4. The codewords of C4 are of the form given in (12)
where ag,a1 € Fiz, £ : Fiz — Gais;. The corresponding
GSTF code is characterized by parameters N; = 2, N, =
1, Ny = 21. We have carried out simulations for the GSTF
code derived from this design in a similar manner as in
Example 4 and have plotted the results in Fig. 3. This GSTF
code has a rate of w = 1.233 bits/sec/H z.

Example 6: Let us now consider the GSTF code derived
from Cs. This code has 289 codewords of the form given in
(13), where ag, a1 € Fi7. & : Fi7 — G44;. The corresponding
GSTF code is characterized by parameters N; = 2, N, =
1, Ny = 21, We have carried out simulations for the GSTF
code derived from this design in a similar manner as in
Example 4 and have plotted the results in Fig. 3. This GSTF
code has a rate of 1.3626 bits/sec/H z.
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