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Abstract— It is known that multi-antenna transmissions over
frequency-selective channels can provide a diversity gain that is
product of the number of transmit antennas, the receive antennas
and the length of the channel impulse response. Liu, Xin and
Giannakis have studied multi-antenna orthogonal frequency divi-
sion multiplexing (OFDM) through frequency-selective Rayleigh-
fading channels and have introduced the concept of Space-Time-
Frequency (STF) coding to enable maximum diversity and high
coding gains.

It is known that under some conditions, an n-length cyclic
code C over Fqm , (n|qm − 1, and m ≤ n) can have full-
rank i.e Rankq(C) = m. Designs for Space-Time codes suitable
for both quasi-static fading channels and block-fading channels
have been derived from n length cyclic codes over Fqm . In this
paper, we present a simplified design of STF codes using designs
derived from cyclic codes to obtain Group Space-Time-Frequency
(GSTF) codes for frequency selective Rayleigh fading channels.
These codes achieve maximum diversity gain.

I. INTRODUCTION

Liu, Xin and Giannakis [1] have studied multi-antenna
orthogonal frequency-division multiplexing (OFDM) transmis-
sions through frequency-selective Rayleigh fading channels
i.e joint Space-Time-frequency (STF) coding over space, time
and frequency. Subchannel grouping [7],[8] has been used to
convert the STF system into group STF (GSTF) subsystems
which preserves maximum diversity gains and simplifies the
code construction. In [4] and [5], designs for full-rank and full-
diversity STBCs for quasi-static and block-fading channels
respectively were derived using conventional cyclic codes over
a finite field. In this paper we obtain codes suitable for GSTF
systems. These codes achieve full-diversity and can be easily
configured to an arbitrary number of transmit antennas.

A. Preliminary Concepts [1]

Consider a multi-antenna wireless communication system
with Nt transmit antennas and Nr receive antennas, where
OFDM using Nc subcarriers is employed per antenna trans-
mission as shown in Fig.1.

The fading channel between the µth transmit antenna and
νth receive antenna is assumed to be frequency selective but
time flat and described by the base band equivalent impulse

response vector hµν
�
= [hµν(0), hµν(1), . . . , hµν(L)]

T ∈
C(L+1)×1 where L denotes the length of the channel impulse
response.
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xµ
n(p) be the data symbol transmitted on the pth

ier (frequency bin) from the µth transmit antenna
the nth OFDM symbol interval. The symbols

, µ = 1, 2, . . . , Nt, p = 0, 1, . . . , Nc − 1} are trans-
in parallel on Nc subcarriers by Nt transmit an-
The three variables µ, n, p respectively index the
(space), time and frequency dimensions associated

e transmission of xµ
n(p). Thus, each xµ

n(p) can be
as a point in a three dimensional (3-D) space-time-
cy (STF) parallelepiped. We denote the projection of

codeword on the pth subcarrier as X(p) and X =
(1) . . .X(Nc − 1)].

e receiver, each antenna receives a noisy superposition
multi-antenna transmissions through the fading chan-
fter FFT processing, the received data sample yν

n(p) at
receive antenna can be expressed as,

yν
n(p) =

Nt∑
µ=1

Hµν(p)xµ
n(p) + wν

n(p), (1)

, 2, . . . , Nr, p = 0, 1, . . . , Nc − 1 where Hµν(p) is
channel gain from the µth transmit antenna to the νth

antenna evaluated on the pth subcarrier

Hµν(p)
�
=

L∑
l=0

hµν(l)e−j( 2π
Nc

)lp. (2)

additive noise wν
n(p) is circularly symmetric, zero

complex Gaussian with variance N0 that is assumed
tatistically independent with respect to n, ν and p.
n (1) represents a general model for multi-antenna
systems.

channel Grouping and Design Criteria

idea of subchannel grouping was introduced in [7],[8]
e design complexity. In [1], the concept of subchannel
g has been used to simplify the STF system. The steps

ose the number of subcarriers equal to an integral
e of the channel impulse response length. i.e Nc =
1), where Ng is a positive integer denoting the number
ps.
the Nt ×NcNx STF codeword X into Ng group STF
codewords Xg, g = 0, 1, . . . , Ng − 1.



Xg = [Xg(0),Xg(1), . . . ,Xg(L)] ∈ C
Nt×Nx(L+1). (3)

where Xg(l)
�
= X(Ngl + g). Thus the STF system is divided

into Ng GSTF (sub)systems, which can be described through
the input-output relationships,

Yg(l) = Hg(l)Xg(l) + Wg(l) (4)

l = 0, 1, . . . , L, g = 0, 1, . . . , Ng − 1. where,

Yg(l)
�
= Y(Ng l + g),Hg

�
= H(Ngl + g),

Wg(l)
�
= W(Ngl + g).

Hence each GSTF system is a simplified STF system with a
much smaller size in the frequency dimension, as compared
with the original STF system. Liu, Xin and Giannakis [1]
consider STF coding within each GSTF system and also show
that doing this does not result in any reduction in the diversity
advantage and the design complexity is considerably reduced.
The design criteria for GSTF coding are:
1. (Sum of Ranks criterion): Design Axg

(the set comprising of
GSTF codewords) such that ∀ Xg �= X

′
g ∈ Axg

, the matrices
Λe(l) = [Xg(l) − X

′
g(l)][Xg(l) − X

′
g(l)]

H ∀ l ∈ [0, l]
have full-rank.
2. (Product-of-determinants criterion): For the set of matrices
satisfying the rank criterion, design Axg

such that, ∀Xg �=
X

′
g ∈ Axg

, the minimum of
∏L

l=0 det[Λe(l)]

is maximized.
In this paper, we present simple techniques to obtain GSTF

codes from the full-rank designs derived from conventional
cyclic codes over finite fields [4], [5] and study their perfor-
mance. Our design process can be extended easily to obtain
codes for systems with more number of transmit antennas
though we illustrate our design for 2 transmit antennas.

The rest of the paper is organized as follows. In Sec-
tion II, we review the theorems connected with the rank-
characterization for cyclic codes and the procedure used to
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II. DESIGNS FROM CYCLIC CODES

ummarize the results relevant to the design of Space
lock codes in Theorems 2.1 and 2.2 the proofs of which
ilable in [2], [3].
rem 2.1: Let C be the cyclic code of length n|qm −
≤ n) over Fqm characterized by the transform com-
Ajqs ∈ A[j], |[j]| = ej , ej |m being free and all
ansform components are constrained to zero. Then
C) = ej .
tice, we choose the free transform domain component

A[j] where ej = |[j]| = m from a full size q-
mic coset. Then from Theorem 2.1 it follows that the
the resulting code is m. This code has qm codewords.
rem 2.2: Let C be a cyclic code of length n|qm−1 over
ose free transform domain components are Ajqr and
(the indices of the free transform domain components
to the same q- cyclotomic coset and s denotes the
on between them. (1 ≤ s ≤ ej −1), (0 ≤ r ≤ ej −2).
other transform components be constrained to zero.
ankq(C) = (ej − gcd(s, ej)).
heorem 2.2 it follows that if we try to increase the
of codewords by considering codes with two free

m components from the same q-cyclotomic coset and
ining all other transform components to zero, we can no
obtain full-rank cyclic codes. Hence, in our search for
k STBCs for block-fading channels, we shall confine
dy to one dimensional cyclic codes of length n over
|qm − 1).
hall use Theorem 2.1 to derive derive designs for
from n-length cyclic codes over Fqm from which
odes can be derived.
ition 1: A rate-k/n, n × l linear design over a field

(the complex field) is an n × l matrix with all its
F -linear combinations of k complex variables and their
tes which are allowed to take values from the field F .
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Fig. 1. MIMO-OFDM system model



Let (n, q) = 1 and n|qm − 1, where q is either 2 or a prime of

the form 4k + 1. We define In
�
= {0, 1, 2, . . . , n − 1}. Let [j]

be a q-cyclotomic coset of In of size m. By restricting Aj , j ∈
[j], to Fqm and constraining all other transform components
to zero, we have an n-length cyclic code over Fqm whose
codewords are of the form,[

Aj , β−jAj , β−2jAj , . . . , β−(n−1)jAj

]
where β is a primitive n-th root of unity in Fqm and
Aj ∈ Fqm . Viewing Aj as an m-length column vector over
Fq , the codewords can be viewed as m× n matrices over Fq

given by,



a0,0 a0,1 a0,2 . . . , a0,n−1

a1,0 a1,1 a1,2 . . . , a1,n−1

...
...

...
...

...
am−1,0 am−1,1 am−1,2 . . . , am−1,n−1


 (5)

where β−kjAj =
∑m−1

i=0 ai,kαi, ai,k ∈ Fq and α is a primitive
element of Fqm . Notice that (5) is a design over Fq . Also, note
that this is in general, possible for any linear code, however,
we have information about the rank, only in the case of cyclic
codes.

Example 1: Let the number of transmit antennas Nt = 3.
We take n = 7. The 2-cyclotomic coset of 1 modulo 3
is {1, 2, 4}. With A1 taking all of F8 and other transform
components constrained to zero, we obtain a one dimensional
cyclic code C such that Rank2(C) = 3. Let α be a cube root
of unity in F8. With F8 = F2[x]/(x3 + x+ 1), the codewords
of C are of the form given in (6) where a0, a1, a2 ∈ F2.
This is an example of a rate 3

7 design. To obtain STBCs from
the above designs, we have to map the elements of Fq into
the complex field such that the full-rank property of the finite
field design is preserved. We call a signal set to be matched to
Fq , if there exists a map from Fq to the signal set which is an
isometry for the Fq-rank to the complex field rank. There are
two such maps, the Hammons and El Gamal map [9] (suitable
for codes over extension fields of F2) and the map proposed
by Lusina Gabidulin and Bossert [10] (suitable for codes over
Fqm where q is a prime of the form 4k + 1). An n-length
cyclic code over F2m will give rise to an m × n STBC with
2m codewords for m transmit antennas. Hence, the code rate
in bits per channel use is 1

n
log2(2

m) = m/n. Now, assuming
that we want full-rank STBCs, we have the condition m ≤ n.
Therefore, for the case of cyclic codes over F2m , the data rate
is always upper bounded by 1 bit per channel use. Hence, we
will not consider the Hammons and El Gamal map here. To
achieve higher code rates, we have to derive STBCs from non
binary cyclic codes by making use of the map proposed by
Lusina, Gabidulin and Bossert [10].

A. Map proposed by Lusina Gabidulin and Bossert [10]

Let q be a prime of the form q = 4k+1. A Gaussian integer
w is a complex number defined as w = a+ib, a, b ∈ Z, i =√−1 and it is known that every prime number q of the form
q ≡ 1 mod 4 can be written as q = (u + iv) × (u − iv) =

u2 − v
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ion modulo Π is defined as, ζ = w modulo Π =
Π′

Π′

]
Π where [.] performs the operation of rounding to

rest Gaussian integer. The Gaussian integers modulo
a field, Gπ = {ζ0 = 0, ζ1 = 1, ζ2, . . . , , ζq−1} and

p ξ : Fq ⇒ GΠ given by ζi = i mod Π =
′

Π′

]
Π, i = 0, 1, 2, . . . , , p − 1 is an isomorphism

erefore when we map codewords from a linear cyclic
er Fqm , q = 5, 13, 17, . . . , which are m× n matrices
to m × n matrices over the complex Gaussian field,

l-rank property of the code over Fqm is preserved.
mple of the map between F5 and the corresponding
x Gaussian field is:
, 1 	→ 1, 2 	→ 0 + i1, 3 	→ 0 − i1, 4 	→ − 1.

III. DESIGNS AND SIMULATION RESULTS

llustrate the process of obtaining GSTF codes from
derived from cyclic codes through several examples.
ple 2: We will first study the GSTF code derived from

ch is obtained from the (4, 1) code C1 over F52 that
ed from a (6, 1) cyclic code over F52 by dropping the
columns of every codeword. The original cyclic code
cterized by parameters n = 6, q = 5, m = 2. The

tomic coset of 1 mod 6 is {1, 5}. With A1 taking all of
[x]/(x2 + x + 1) and all other transform components

ined to zero, we have a rank-2 cyclic code over F5 with
words which can be expressed as 2 × 6 matrices over
make use of the map proposed by Lusina et al. to
full-rank 2×6 STBC. Let us denote this STBC by C.

ewords of C are of the form given in (7) where a0, a1 ∈
F5 	→ G1+2i. We can reduce the length of this STBC
ping the last two columns. The corresponding STBC is
by C1. The codewords of C1 are of the form given in

ere a0, a1 ∈ F5, ξ : F5 	→ G1+2i. We assume that the
l impulse response length L + 1 = 2. The parameters
for this GSTF code derived from C1 are, Nt = 2, Nr =
ber of groups Ng = 32, OFDM symbol interval Nx =
ber of subcarriers Nc = Ng × (L + 1) = 64. We pick
t of 32 codewords from the code C1 randomly. Let

odewords be indexed by parameter k, 0 ≤ k ≤ 31.
x = 2, each GSTF symbol has length 2. We split each
rd into two parts in the following manner. Let c1(k)
the kth codeword of C1. We represent c1(k) as,

c1(k) =

[
x11(k) x12(k) x13(k) x14(k)
x21(k) x22(k) x23(k) x24(k)

]
.

rd c1(k) is split into two GSTF symbols X(k) and
32) in the following manner,[

x11(k) x12(k)
x21(k) x22(k)

]
, X(k + 32) =

[
x13(k) x14(k)
x23(k) x24(k)

]

l X(k) is conveyed on subcarrier k and symbol X(k +
onveyed on subcarrier k + 32. (over two antennas and
e slots). Thus each of the 64 GSTF symbols obtained
ese 32 codewords is modulated on the corresponding
ier. Simulation proceeds by repeatedly selecting 32



codewords at random, obtaining 64 GSTF symbols from them
and transmitting them on 64 carriers. ML decoding has been
performed and the probability of GSTF symbol error has been
plotted as a function of signal to noise ratio (SNR). In Fig.
2, the performance of this code has been compared with the
performance of STF block code and the STF trellis code
proposed by Liu, Xin and Giannakis [1]. The rate of the GSTF
code (in bits/sec/Hz) is defined as,

rate =
log2(|C|)

(L + 1) × Nx

bits/sec/Hz. (9)

where |C| denotes the number of codewords in the code.
Hence, the (4, 1) code over F52 is characterized by rate
log2(25)

2×2 = 1.16 bits/sec/Hz. The STF Block code and
the STF trellis code proposed by Liu, Xin and Giannakis
are characterized by rate 2 bits/sec/Hz. From Fig. 2 we
observe that our code gives a performance advantage of about
approximately 1 dB over the STF block code but has a lower
rate

Example 3: In a similar manner, the (4, 1) code over F132

C2 is obtained by dropping the last three columns of the (7, 1)
cyclic code over F132 . Let the STBC derived from this by
using the Lusina map be denoted by C2. The codewords of C2
are of the form,»

ξ(a0) ξ(3a0 + 5a1) ξ(4a0 + 11a1) ξ(7a0 + a1)
ξ(a1) ξ(9a0 + 3a1) ξ(a0 + 3a1) ξ(6a0 + a1)

–
(10)

where a0, a1 ∈ F13, ξ : F13 	→ G2+3i.
Assuming that the channel impulse response length L + 1 =
2, the GSTF code derived from C2 is characterized by the
parameters, Nt = 2, Nr = 1, Nc = 64, Ng = Nc

L+1 =
32, Nx = 2. To perform simulation, we choose 32 codewords
from C2 randomly and assign GSTF symbols to codewords in a
manner identical to that done for the GSTF system in Example
2. From (9), we conclude that the rate of this GSTF code is
log2(169)

2×2 = 1.85 bits/sec/Hz. Simulation results pertaining
to the performance of this code are plotted in Fig. 2. We
observe that the performance of this code in terms of error
rate is inferior to the STF block code proposed by Liu, Xin
and Giannakis but superior to the STF trellis code proposed
by the same authors. The diversity order of the GSTF codes
is by definition, NtNr(L + 1). In this case the diversity for
both the codes is equal to 2 × 1 × 2 = 4.

Example 4: Let us now consider three different GSTF
codes of diversity order Nt × Nr × (L + 1) = 2 × 1 ×
3 = 6 derived respectively from length 6 cyclic code over
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erformance comparison of GSTF code derived from reduced length
e over F

52 , and the GSTF code derived from reduced length (4, 1)
r F

132 with the STF Block code and the STF trellis code proposed
in and Giannakis.

3, the length 6 code over F132 , C4 and the length
c code over F172 , C5. (We will assume in the
ng two examples that the channel impulse response
L + 1 = 3 and Nc = 63). The length 6 code over
4 is derived from the cyclic code of length 7 over
dropping the last column of every codeword. Let us

by C3, C4, C5 respectively the STBCs derived from
4, C5. The codewords of C3 are of the form given
, where a0, a1 ∈ F5, ξ : F5 	→ G1+2i. Let us
sider the GSTF derived from C3. This is characterized
= 2, Nr = 1, Ng = Nc

(L+1) = 63
3 = 21, Nx = 2.

re each GSTF symbol is a (2 × 2) matrix over F5.
STF codeword consists of three GSTF symbols.
rst pick up a set of 21 codewords from C3 randomly.
codewords of C3 be indexed by parameter k, 0 ≤ k ≤
deword k of C3 is represented by c3(k)). Let c3(k)
the kth codeword of C3. We represent c3(k) as,

»
x11(k) x12(k) x13(k) x14(k) x15(k) x16(k)
x21(k) x22(k) x23(k) x24(k) x25(k) x26(k)

–

rd c3(k) is split into three GSTF symbols X(k),
21),X(k + 42) in the following manner,[

x11(k) x12(k)
x21(k) x22(k)

]

2
4a0 a0 + a1 + a2 a0 + a1 + a2 a1 + a2 a0 + a2 a1 a2

a1 a2 a0 a0 + a1 a0 + a1 + a2 a1 + a2 a0 + a2

a2 a0 a0 + a1 a0 + a1 + a2 a1 + a2 a0 + a2 a1

3
5 (6)

»
ξ(a0) ξ(4a0 + a1) ξ(3a0 + a1) ξ(4a0) ξ(a0 + 4a1) ξ(2a0 + 4a1)
ξ(a1) ξ(2a0 + 2a1) ξ(2a0 + a1) ξ(4a1) ξ(3a0 + 3a1) ξ(3a0 + 4a1)

–
(7)

»
ξ(a0) ξ(4a0 + a1) ξ(3a0 + a1) ξ(4a0)
ξ(a1) ξ(2a0 + 2a1) ξ(2a0 + a1) ξ(4a1)

–
(8)



X(k + 21) =

[
x13(k) x14(k)
x23(k) x24(k)

]

X(k + 42) =

[
x15(k) x16(k)
x25(k) x26(k)

]

Symbol X(k) is conveyed on subcarrier k, symbol X(k +21)
is conveyed on subcarrier (k + 21) and symbol X(k + 42)
is conveyed on subcarrier (k + 42). Simulation proceeds by
repeatedly selecting 21 codewords of C3 at random, obtaining
63 GSTF symbols from them using the outlined procedure
and transmitting these symbols on 63 carrier frequencies. for
k = 0, 1, 2, . . . , 20, W is a 3×2 matrix representing the noise
terms. The entries of W are independent complex Gaussian
with zero mean and unit variance. ML decoding has been
performed and the probability of GSTF codeword error has
been plotted as a function of signal to noise ratio (SNR)
in Fig. 3. This GSTF code has a rate equal to log2(25)

3×2 =
0.774 bits/sec/Hz.

Example 5: Let us now consider the GSTF code derived
from C4. The codewords of C4 are of the form given in (12)
where a0, a1 ∈ F13, ξ : F13 	→ G2+3i. The corresponding
GSTF code is characterized by parameters Nt = 2, Nr =
1, Ng = 21. We have carried out simulations for the GSTF
code derived from this design in a similar manner as in
Example 4 and have plotted the results in Fig. 3. This GSTF
code has a rate of log2(169)

3×2 = 1.233 bits/sec/Hz.
Example 6: Let us now consider the GSTF code derived

from C5. This code has 289 codewords of the form given in
(13), where a0, a1 ∈ F17. ξ : F17 	→ G4+i. The corresponding
GSTF code is characterized by parameters Nt = 2, Nr =
1, Ng = 21, We have carried out simulations for the GSTF
code derived from this design in a similar manner as in
Example 4 and have plotted the results in Fig. 3. This GSTF
code has a rate of 1.3626 bits/sec/Hz.
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