
Chapter 6
Topology Preserving Parallel 3D
Thinning Algorithms

Kálmán Palágyi, Gábor Németh, and Péter Kardos

Abstract A widely used technique to obtain skeletons of binary objects is thinning,
which is an iterative layer-by-layer erosion in a topology preserving way. Thinning
in 3D is capable of extracting various skeleton-like shape descriptors (i.e., center-
lines, medial surfaces, and topological kernels). This chapter describes a family of
new parallel 3D thinning algorithms for (26,6) binary pictures. The reported algo-
rithms are derived from some sufficient conditions for topology preserving parallel
reduction operations, hence their topological correctness is guaranteed.

6.1 Introduction

Skeleton is a region-based shape descriptor which represents the general shape of
objects. 3D skeleton-like shape features (i.e., centerlines, medial surfaces, and topo-
logical kernels) play important role in various applications in image processing,
pattern recognition, and visualization [6, 10, 38, 41, 42, 44].

An illustrative definition of the skeleton uses the prairie-fire analogy: the object
boundary is set on fire, and the skeleton is formed by the loci where the fire fronts
meet and extinguish each other [5]. Thinning is a digital simulation of the fire front
propagation: the border points that satisfy certain topological and geometric con-
straints are deleted in iteration steps [12].

A 3D binary picture [11, 12] is a mapping that assigns a value of 0 or 1 to each
point with integer coordinates in the 3D digital space Z

3. Points having the value of
1 are called black points, and those with a zero value are called white ones. Black
points form the components of a picture, while white points form the background
and the cavities. We consider (26,6)-pictures, where 26-adjacency and 6-adjacency
are, respectively, used for the components and their complement [12].
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A reduction operation transforms a binary picture only by changing some black
points to white ones (which is referred to as the deletion of 1’s). A parallel reduc-
tion operation deletes all points satisfying its condition simultaneously. A reduction
operation does not preserve topology [11] if

• any component in the input picture is split (into several components) or is com-
pletely deleted,

• any cavity in the input picture is merged with the background or another cavity,
or

• a cavity is created where there was none in the input picture.

There is an additional concept called hole (or tunnel) in 3D pictures. A hole
(which doughnuts have) is formed of 0’s, but it is not a cavity [12]. Topology preser-
vation implies that eliminating or creating any hole is not allowed.

There are three types of 3D thinning algorithms for producing the three types
of skeleton-like shape features: curve-thinning algorithms are used to extract me-
dial lines or centerlines, surface-thinning algorithms produce medial surfaces, while
kernel-thinning algorithms are capable of extracting topological kernels. A topolog-
ical kernel is a minimal set of points that is topologically equivalent [12] to the
original object (i.e., if we remove any further point from it, then the topology is not
preserved). Note that kernel-thinning algorithms are often referred to as reductive
shrinking algorithms [9]. 3D curve-thinning and surface-thinning algorithms use
operations that delete some points which are not endpoints, since preserving end-
points provides important geometrical information relative to the shape of the ob-
jects. Kernel-thinning algorithms for extracting topological kernels do not take any
endpoint characterization into consideration. Medial surfaces are usually extracted
from general shapes, tubular structures can be represented by their centerlines, and
extracting topological kernels is useful in topological description.

Most of the existing thinning algorithms are parallel as the fire front propagation
is by nature parallel. These algorithms are composed of parallel reduction opera-
tions. Parallel reduction operations delete a set of points simultaneously which may
lead to altering the topology. Note that deletion rules of parallel thinning algorithms
are generally given by matching templates. In order to verify that a given parallel
3D thinning algorithm preserves the topology for all possible (26,6) pictures, some
sufficient conditions for topology preservation have been proposed [11, 18, 36].
However, verifying these conditions usually means checking several configurations
of points, hence papers presenting thinning algorithms contain long proof parts.
Despite of complex proofs, it was claimed in [14, 45] that two parallel 3D thin-
ning algorithms [18, 19] are not topology preserving. That is why we propose a
safe technique for designing topologically correct parallel 3D thinning algorithms.
Our approach is based on some new sufficient conditions for topology preservation.
These conditions consider individual points (instead of point configurations) and
can be combined with various thinning strategies.

In this chapter we present 15 algorithms that are derived from the new sufficient
conditions combined with the three major strategies for parallel thinning (i.e., fully
parallel, subiteration-based, and subfield-based [8]) and three types of endpoints.



6 Topology Preserving Parallel 3D Thinning Algorithms 167

Fig. 6.1 Frequently used
adjacencies in Z

3. The set
N6(p) contains point p and
the six points marked U, D,
N, E, S, and W. The set
N18(p) contains N6(p) and
the twelve points marked by
“!”. The set N26(p) contains
N18(p) and the eight points
marked by “"”

The rest of this chapter is organized as follows. Section 6.2 reviews the basic no-
tions and results of 3D digital topology, and we present our sufficient conditions for
topology preservation. Then, in Sect. 6.3 we propose 15 parallel 3D thinning algo-
rithms and their topological correctness is proved. Since fast extraction of skeleton-
like shape features is extremely important in numerous applications for large 3D
shapes, Sect. 6.4 is devoted to the efficient implementation of the proposed algo-
rithms, and Sect. 6.5 presents some illustrative results. In Sect. 6.6 some possible
future works and open problems are outlined. Finally, we round off the chapter with
some concluding remarks.

6.2 Topology Preserving Parallel Reduction Operations

In this section, we present new sufficient conditions for topology preservation. First
we outline some concepts of digital topology and related key results that will be
used in the sequel.

Let p be a point in the 3D digital space Z
3. Let us denote Nj(p) (for j =

6,18,26) the set of points that are j -adjacent to point p (see Fig. 6.1).
The sequence of distinct points 〈x0, x1, . . . , xn〉 is called a j-path (for j = 6,26)

of length n from point x0 to point xn in a non-empty set of points X if each point of
the sequence is in X and xi is j -adjacent to xi−1 for each 1 ≤ i ≤ n (see Fig. 6.1).
Note that a single point is a j -path of length 0. Two points are said to be j-connected
in the set X if there is a j -path in X between them (j = 6,26). A set of points X is
j-connected in the set of points Y ⊇ X if any two points in X are j -connected in Y

(j = 6,26).
A 3D binary (26,6) digital picture P is a quadruple P = (Z3,26,6,B) [12].

Each element of Z3 is called a point of P . Each point in B ⊆ Z
3 is called a black

point and has a value 1. Each point in Z
3\B is called a white point and has a value 0.

An object is a maximal 26-connected set of black points, while a white component is
a maximal 6-connected set of white points. Here it is assumed that a picture contains
finitely many black points.

The lexicographical order relation “≺” between two distinct points p =
(px,py,pz) and q = (qx, qy, qz) in Z

3 is defined as follows:

p ≺ q ⇔ (pz < qz) ∨ (pz = qz ∧ py < qy) ∨ (pz = qz ∧ py = qy ∧ px < qx).
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Let C ⊆ Z
3 be a set of points. Point p ∈ C is the smallest element of C if for any

q ∈ C\{p}, p ≺ q .
A unit lattice square is a set of four mutually 18-adjacent points in Z

3, while a
unit lattice cube is a set of eight mutually 26-adjacent points in Z

3.
A black point is called a border point in (26,6) pictures if it is 6-adjacent to

at least one white point. A border point p is called a U-border point if the point
marked U = u(p) in Fig. 6.1 is a white point. We can define D-, N-, E-, S-, and
W-border points in the same way. A black point is called an interior point if it is not
a border point. A simple point in a (26,6) picture is a black point whose deletion
is a topology preserving reduction operation [12]. Note that simplicity of point p

in (26,6) pictures is a local property that can be decided by investigating the set
N26(p) [12].

Parallel reduction operations delete a set of black points and not just a single
simple point. Hence we need to consider what is meant by topology preservation
when a number of black points are deleted simultaneously.

Ma [17] gave some sufficient conditions for 3D parallel reduction operations to
preserve topology. Later, Palágyi and Kuba proposed the following simplified con-
ditions [36]:

Theorem 1 ([36]) The parallel reduction operation O is topology preserving for
(26,6) pictures if all the following conditions hold.

1. Only simple points are deleted by O .
2. Let p be any black point in a picture (Z3,26,6,B) such that p is deleted by

O . Let Q ⊆ B be any set of simple points in (Z3,26,6,B) such that p ∈ Q,
and Q is contained in a unit lattice square. Then point p is simple in picture
(Z3,26,6,B\(Q\{p})).

3. No object contained in a unit lattice cube is deleted completely by O .

Theorem 1 provides a general method of verifying that a parallel thinning algo-
rithm preserves topology. In this section, we present some new sufficient conditions
for topology preservation as a basis for designing 3D parallel thinning algorithms.

Theorem 2 The parallel reduction operation O is topology preserving for (26,6)

pictures if all the following conditions hold for any black point p in any picture
(Z3,26,6,B) such that p is deleted by O .

1. Point p is simple in (Z3,26,6,B).
2. Let Q ⊆ B be any set of simple points in (Z3,26,6,B) such that p ∈ Q,

and Q is contained in a unit lattice square. Then point p is simple in picture
(Z3,26,6,B\(Q\{p})), or p is not the smallest element of Q.

3. Point p is not the smallest element of any object C ⊆ B in (Z3,26,6,B) such
that C is contained in a unit lattice cube.

Proof It can be readily seen that if the parallel reduction operation O satisfies
Condition i of Theorem 2, then Condition i of Theorem 1 is also satisfied (i =
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1,2,3). Hence, parallel reduction operation O is topology preserving for (26,6) pic-
tures. �

6.3 Variations on Parallel 3D Thinning Algorithms

In this section, 15 parallel 3D thinning algorithms are presented. These algorithms
are composed of parallel reduction operations derived from our sufficient conditions
for topology preservation (see Theorem 2).

Thinning algorithms preserve endpoints and some border points that provide rel-
evant geometrical information with respect to the shape of the object. Here, we
consider three types of endpoints.

Definition 1 There is no endpoint of type TK.

To standardize the notations, shrinking algorithms capable of producing topo-
logical kernels are considered as kernel-thinning algorithms, where no endpoint is
preserved, hence we use endpoints of type TK (i.e., the empty set of the endpoints).

Definition 2 A black point p in picture (Z3,26,6,B) is a curve-endpoint of type
CE if (N26(p)\{p})∩B contains exactly one point (i.e., p is 26-adjacent to exactly
one further black point).

Endpoints of type CE have been considered by numerous existing 3D curve-
thinning algorithms [26–28, 34–36, 38].

Definition 3 A black point p in picture (Z3,26,6,B) is a surface-endpoint of type
SE if there is no interior point in N26(p) ∩ B .

Note that the characterization of endpoints SE is applied in some existing
surface-thinning algorithms [24, 26–28, 31, 33, 37].

In the rest of this section we present parallel 3D thinning algorithms composed
of parallel reduction operations that satisfy Theorem 2.

6.3.1 Fully Parallel Algorithms

In fully parallel algorithms, the same parallel reduction operation is applied in each
iteration step [1, 15, 16, 18, 19, 33, 45].

The scheme of the proposed fully parallel thinning algorithm 3D-FP-ε using end-
point of type ε is sketched in Algorithm 1 (ε ∈ {TK,CE,SE}). Note that Palágyi
and Németh reported three fully parallel 3D surface-thinning algorithms in [37], but
they are based on sufficient conditions that differ from the conditions of Theorem 2.
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Algorithm 1 Algorithm 3D-FP-ε

1: Input: picture (Z3,26,6,X)

2: Output: picture (Z3,26,6, Y )

3: Y = X

4: repeat
5: // one iteration step
6: D = {p | p is 3D-FP-ε-deletable in Y }
7: Y = Y \ D

8: until D = ∅

3D-FP-ε-deletable points are defined as follows:

Definition 4 A black point is 3D-FP-ε-deletable if it is not an endpoint of type ε,
and all conditions of Theorem 2 hold (ε ∈ {TK,CE,SE}).

We have the following theorem.

Theorem 3 Algorithm 3D-FP-ε (ε ∈ {TK,CE,SE}) is topology preserving for
(26,6) pictures.

Proof Deletable points of the proposed fully parallel algorithms (see Definition 4)
are derived directly from conditions of Theorem 2. Hence, all of the three algorithms
are topology preserving. �

Note that all objects contained in a unit lattice cube are formed of endpoints of
type SE. Hence, Condition 3 of Theorem 2 can be ignored in algorithm 3D-FP-SE.

6.3.2 Subiteration-Based Algorithms

In subiteration-based (or frequently referred to as directional) thinning algorithms,
an iteration step is decomposed into k successive parallel reduction operations ac-
cording to k deletion directions [8]. If the current deletion direction is d , then a set
of d-border points can be deleted by the parallel reduction operation assigned to it.
Since there are six kinds of major directions in 3D cases, 6-subiteration algorithms
were generally proposed [2, 7, 13, 20, 25, 34, 43, 46]. Moreover, 3-subiteration
[30–32], 8-subiteration [35], and 12-subiteration [36] algorithms have also been de-
veloped for this task.

In what follows, we present three examples of parallel 3D 6-subiteration thinning
algorithms. Algorithm 2 sketches the scheme of 3D 6-subiteration parallel thinning
algorithm 3D-6-SI-ε that uses the endpoint of type ε (ε ∈ {TK,CE,SE}).
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Algorithm 2 Algorithm 3D-6-SI-ε

1: Input: picture (Z3,26,6,X)

2: Output: picture (Z3,26,6, Y )

3: Y = X

4: repeat
5: // one iteration step
6: for each i ∈ {U,D,N,E,S,W} do
7: // subiteration for deleting some i-border points
8: D(i) = {p | p is a 3D-6-SI-i-ε-deletable point in Y }
9: Y = Y \ D(i)

10: end for
11: until D(U) ∪ D(D) ∪ D(N) ∪ D(E) ∪ D(S) ∪ D(W) = ∅

The ordered list of deletion directions 〈U,D,N,E,S,W〉 [7, 34] is considered
in the proposed algorithm 3D-6-SI-ε (ε ∈ {TK,CE,SE}). Note that subiteration-
based thinning algorithms are not invariant under the order of deletion directions
(i.e., choosing different orders may yield various results).

In the first subiteration of our 6-subiteration thinning algorithms, the set of 3D-
6-SI-U-ε-deletable points are deleted simultaneously, and the set of 3D-6-SI-W-ε-
deletable points are deleted in the last (i.e., the 6th) subiteration. Now we lay down
3D-6-SI-U-ε-deletable points.

Definition 5 A black point p in picture (Z3,26,6,X) is 3D-6-SI-U-ε-deletable if
all of the following conditions hold:

1. Point p is a simple and U-border point, but it is not an endpoint of type ε in
picture (Z3,26,6,X).

2. Let A (p) be the family of the following 13 sets (see Fig. 6.2b):

{e}, {s}, {se}, {sw}, {dn}, {de}, {ds}, {dw},
{e, s}, {e, se}, {s, se}, {s, sw},
{e, s, se}.

For any set A in the family A (p) composed of simple and U-border points,
but not endpoints of type ε in picture (Z3,26,6,X), point p remains simple in
picture (Z3,26,6,X\A).

3. Let B(p) be the family of the following 42 objects in picture (Z3,26,6,X) (see
Fig. 6.2c):

{a,h}, {b,g}, {c, f }, {d, e},
{a,h, b}, {a,h, c}, {a,h,f }, {a,h,g}, {b,g, a}, {b,g, d}, {b,g, e}, {b,g,h},
{c, f, a}, {c, f, d}, {c, f, e}, {c, f,h}, {d, e, b}, {d, e, c}, {d, e, f }, {d, e, g},
{b, c,h}, {d,g,f }, {a, d,f }, {b, e,h}, {b, c, e}, {a,f, g}, {a, d, g}, {c, e,h},
{a,h, b, c}, {a,h, b, g}, {a,h, c, f }, {a,h,f, g}, {b,g, a, d}, {b,g, d, e},
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Fig. 6.2 The considered right-handed 3D coordinate system (a). Notation for the points in
N18(p) (b). Notation for the points in a unit lattice cube (c)

{b, c, e,h}, {b,g, e,h}, {c, f, a, d}, {c, f, d, e}, {c, f, e,h}, {d, e, b, c},
{d, e, f, g}, {a, d,f, g}.

Point p is not the smallest element of any object in B(p).

Note that the deletable points at the remaining five subiterations can be derived
from 3D-6-SI-U-ε-deletable points (assigned to the deletion direction U, see Defi-
nition 5) by reflexions and rotations.

Theorem 4 Algorithm 3D-6-SI-ε (ε ∈ {TK,CE,SE}) is topology preserving for
(26,6) pictures.

Proof Without loss of generality, it is sufficient to prove that the first subitera-
tion of algorithm 3D-6-SI-ε is topology preserving. To this end, we show that
the parallel reduction operation T that deletes 3D-6-SI-U-ε-deletable points (ε ∈
{TK,CE,SE}) satisfies all conditions of Theorem 2.

1. Operation T may delete simple points by Condition 1 of Definition 5. Hence
Condition 1 of Theorem 2 is satisfied.

2. It is easy to see that the family A (p) (see Condition 2 of Definition 5 and
Fig. 6.2a–b) contains all possible sets of simple U-border points that are con-
sidered by Condition 2 of Theorem 2. Therefore, this latter condition is satisfied.

3. It can be readily seen that the family of objects B(p) (see Condition 3 of Def-
inition 5 and Fig. 6.2c) contains all possible objects of U-border points that are
considered in Condition 3 of Theorem 2. Hence, this last condition is satisfied.

Since objects contained in a unit lattice cube are composed of endpoints
of type SE, Condition 3 of Definition 5 can be ignored in algorithm 3D-6-SI-
SE. �
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Fig. 6.3 The divisions of Z3 into 2 (a), 4 (b), and 8 (c) subfields. If partitioning into k subfields is
considered, then points marked “i” are in the subfield SFk(i) (k = 2,4,8; i = 0,1, . . . , k − 1)

6.3.3 Subfield-Based Algorithms

The third type of parallel thinning algorithms applies subfield-based technique [8].
In existing subfield-based parallel 3D thinning algorithms, the digital space Z

3 is
partitioned into two [21, 22, 26], four [23, 27], and eight [3, 27] subfields which
are alternatively activated. At a given iteration step of a k-subfield algorithm, k suc-
cessive parallel reduction operations associated to the k subfields are performed.
In each of them, some border points in the active subfield can be designated for
deletion.

Let us denote SFk(i) the i-th subfield if Z3 is partitioned into k subfields (k =
2,4,8; i = 0, . . . , k − 1). SFk(i) is defined formally as follows:

SF2(i) = {
(px,py,pz) | (px + py + pz mod 2) = i

}
,

SF4(i) = {
(px,py,pz) | (px + 1 mod 2) · [2 · (py mod 2) + (pz mod 2)

]

+ (px mod 2) · [2 · (py + 1 mod 2) + (pz + 1 mod 2)
] = i

}
,

SF8(i) = {
(px,py,pz) | 4 · (px mod 2) + 2 · (py mod 2) + (pz mod 2) = i

}

The considered divisions are illustrated in Fig. 6.3.

Proposition 1 For the 2-subfield case (see Fig. 6.3a), two points p and q ∈ N26(p)

are in the same subfield, if q ∈ N18(p)\N6(p).

Proposition 2 For the 4-subfield case (see Fig. 6.3b), two points p and q ∈ N26(p)

are in the same subfield, if q ∈ N26(p)\N18(p).

Proposition 3 For the 8-subfield case (see Fig. 6.3c), two points p and q ∈ N26(p)

are not in the same subfield.

In order to reduce the noise sensitivity and the number of skeletal points (without
overshrinking the objects), Németh, Kardos, and Palágyi introduced a new subfield-
based thinning scheme [26]. It takes the endpoints into consideration at the begin-
ning of iteration steps, instead of preserving them in each parallel reduction opera-
tion as it is accustomed in the conventional subfield-based thinning scheme.
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Next, we present nine parallel 3D subfield-based thinning algorithms. The
scheme of the subfield-based parallel thinning algorithm 3D-k-SF-ε with iteration-
level endpoint checking using endpoint of type ε is sketched in Algorithm 3 (with
k = 2,4,8; ε ∈ {TK,CE,SE}).

Algorithm 3 Algorithm 3D-k-SF-ε

1: Input: picture (Z3,26,6,X)

2: Output: picture (Z3,26,6, Y )

3: Y = X

4: repeat
5: // one iteration step
6: E = {p | p is a border point, but not an endpoint of type ε in Y }
7: for i = 0 to k − 1 do
8: // subfield SFk(i) is activated
9: D(i) = {q | q is a 3D-SF-k-deletable point in E ∩ SFk(i)}

10: Y = Y \ D(i)

11: end for
12: until D(0) ∪ D(1) ∪ . . . ∪ D(k − 1) = ∅

The 3D-SF-k-deletable points are defined as follows (k = 2,4,8):

Definition 6 A black point p is 3D-SF-k-deletable (k = 2,4,8) in picture (Z3,26,

6,X) if all of the following conditions hold:

1. Point p is simple in (Z3,26,6,X).
2. If k = 2, then point p is simple in picture (Z3,26,6,X\{q}) for any simple point

q such that q ∈ N18(p)\N6(p) and p ≺ q .
3. • If k = 2, then point p is not the smallest element of the ten objects depicted in

Fig. 6.4.
• If k = 4, then point p is not the smallest element of the four objects depicted

in Fig. 6.5.

Theorem 5 Algorithm 3D-k-SF-ε (k = 2,4,8; ε ∈ {TK,CE,SE}) is topology pre-
serving for (26,6) pictures.

Proof To prove it, we show that the parallel reduction operation T that deletes
3D-SF-k-deletable points satisfies all conditions of Theorem 2.

1. Operation T may delete simple points by Condition 1 of Definition 6. Hence
Condition 1 of Theorem 2 is satisfied.

2. • Let k = 2 and let p ∈ SF2(i) be any black point in picture (Z3,26,6,X) that
is deleted by T (i = 0,1).

Let Q ⊆ X ∩ SF2(i) be any set of black points in (Z3,26,6,X) such that
p ∈ Q, Q is contained in a unit lattice square, and each point in Q\{p} is
simple in picture (Z3,26,6,X).
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Fig. 6.4 The ten objects that are taken into consideration by 2-subfield algorithms. Notations: each
point marked by “"” is a black point; each point marked by “!” is a white point. (Note that each
of these objects is contained in a unit lattice cube)

Fig. 6.5 The four objects considered by 4-subfield algorithms. Notations: each point marked “"”
is a black point; each point marked “!” is a white point. (Note that each of these objects is con-
tained in a unit lattice cube)

Then Q = ∅ or Q = {q} by Proposition 1, and such kind of sets are con-
sidered by Condition 2 of Definition 6. Hence Condition 2 of Theorem 2 is
satisfied.

• Let k = 4 and let p ∈ SF4(i) be any black point in picture (Z3,26,6,X) that
is deleted by T (i = 0,1,2,3).

Let Q ⊆ X ∩ SF4(i) be any set of black points in (Z3,26,6,X) such that
p ∈ Q, Q is contained in a unit lattice square, and each point in Q\{p} is
simple in picture (Z3,26,6,X).

Then Q = ∅ by Proposition 2. Hence Condition 2 of Theorem 2 is satisfied.
• Let k = 8 and let p ∈ SF8(i) be any black point in picture (Z3,26,6,X) that

is deleted by T (i = 0,1, . . . ,7).
Let Q ⊆ X ∩ SF8(i) be any set of black points in (Z3,26,6,X) such that

p ∈ Q, Q is contained in a unit lattice square, and each point in Q\{p} is
simple in picture (Z3,26,6,X).

Then Q = ∅ by Proposition 3. Hence Condition 2 of Theorem 2 is satisfied.
3. • Let k = 2 and let C ⊆ X ∩ SF2(i) be any object in picture (Z3,26,6,X) that

is contained in a unit lattice cube (i = 0,1).
It can be readily seen by Proposition 1 that all the ten possible cases for such

objects are depicted in Fig. 6.4, and these objects cannot be deleted completely
by Condition 3 of Definition 6.

Hence Condition 3 of Theorem 2 is satisfied.
• Let k = 4 and let C ⊆ X ∩ SF4(i) be any object in picture (Z3,26,6,X) that

is contained in a unit lattice cube (i = 0,1,2,3).
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It can be readily seen by Proposition 2 that all the four possible cases for
such objects are depicted in Fig. 6.5, and these objects cannot be deleted com-
pletely by Condition 3 of Definition 6.

Hence Condition 3 of Theorem 2 is satisfied.
• Let k = 8 and let C ⊆ X ∩ SF8(i) be any object in picture (Z3,26,6,X) that

is contained in a unit lattice cube (i = 0,1, . . . ,7).
It is easy to see that there is no such an object by Proposition 3.
Hence Condition 3 of Theorem 2 is satisfied. �

Since objects contained in a unit lattice cube are composed of endpoints of type
SE, Condition 3 of Definition 6 can be ignored in algorithm 3D-k-SF-SE (k =
2,4,8).

6.4 Implementation

One may think that the proposed algorithms are time consuming and it is rather
difficult to implement them. That is why we outline a method for implementing any
3D fully parallel thinning algorithm on a conventional sequential computer. This
framework is fairly general, as similar schemes can be used for the other classes of
parallel algorithms and some sequential 3D thinning algorithms [33, 37, 38].

The proposed method uses a pre-calculated look-up-table to encode simple
points. In addition, two lists are used to speed up the process: one for storing the
border points in the current picture (since thinning can only delete border points,
thus the repeated scans/traverses of the entire array storing the picture are avoided);
the other list is to collect all deletable points in the current phase of the process.
At each iteration, the deletable points are found and deleted, and the list of border
points is updated accordingly. The algorithm terminates when no further update is
required.

For simplicity, the pseudocode of the proposed 3D fully parallel thinning algo-
rithms is given (see Algorithm 4). The subiteration-based and the subfield-based
variants can be implemented in similar ways.

The two input parameters of the procedure are array A which stores the input
picture to be thinned and the type of the considered endpoints ε. In input array A,
the value “1” corresponds to black points and the value “0” denotes white ones.
According to the proposed scheme, the input and the output pictures can be stored
in the same array, hence array A will contain the resultant structure.

First, the input picture is scanned and all the border points are inserted into the
list border_list. We should mention here that it is the only time consuming scan-
ning. Since only a small part of points in a usual picture belong to the objects, the
thinning procedure is much faster if we just deal with the set of border points in the
actual picture. This subset of object points is stored in border_list (i.e., a dynamic
data structure). The border_list is then updated: if a border point is deleted, then
all interior points that are 6-adjacent to it become border points. These brand new
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Algorithm 4 Fully parallel thinning algorithm
1: Input: array A and endpoint characterization ε
2: Output: array A
3: // collect border points
4: border_list = 〈empty list〉
5: for each p = (x, y, z) in A do
6: if p is border point then
7: border_list = border_list +〈p〉
8: A[x, y, z] = 2
9: end if

10: end for
11: // thinning
12: repeat
13: deleted = 0
14: deletable_list = 〈empty list〉
15: // checking Condition 1 of Theorem 2
16: for each point p = (x, y, z) in border_list do
17: if p is a simple point and not an endpoint of type ε then
18: deletable_list = deletable_list +〈p〉
19: A[x, y, z] = 3
20: else
21: A[x, y, z] = 2
22: end if
23: end for
24: // checking Condition 2 of Theorem 2
25: for each point p in deletable_list do
26: if deletion p does not satisfy Condition 2 of Theorem 2 then
27: deletable_list = deletable_list −〈p〉
28: end if
29: end for
30: // checking Condition 3 of Theorem 2
31: for each point p in deletable_list do
32: if deletion p does not satisfy Condition 3 of Theorem 2 then
33: deletable_list = deletable_list −〈p〉
34: end if
35: end for
36: // deletion
37: for each point p = (x, y, z) in deletable_list do
38: A[x, y, z] = 0
39: border_list = border_list −〈p〉
40: deleted = deleted+1
41: // update border_list
42: for each point q = (x′, y′, z′) that is 6-adjacent to p do
43: if A[x′, y′, z′] = 1 then
44: A[x′, y′, z′] = 2
45: border_list = border_list +〈q〉
46: end if
47: end for
48: end for
49: until deleted = 0
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border points of the actual picture are added to the border_list. In order to avoid
storing more than one copy of a border point in border_list, array A represents
a four-color picture during the thinning process: the value “0” corresponds to the
white points, the value “1” corresponds to (black) interior points, the value “2” is
assigned to all (black) border points in the actual picture (added to border_list), and
the value “3” corresponds to points that are added to the deletable_list (i.e., a sublist
of border_list).

The kernel of the repeat cycle corresponds to one iteration step of the thinning
process. The number of deleted points is stored in the variable called deleted. The
thinning process terminates when no more points can be deleted (i.e., no further
changes occur). After thinning, all points having a nonzero value belong to the pro-
duced skeleton-like shape feature.

Simple points in (26,6) pictures can be locally characterized; the simplicity of
a point p can be decided by examining the set N26(p) [12]. There are 226 possible
configurations in the 3 × 3 × 3 neighborhood if the central point is not considered.
Hence we can assign an index (i.e., a non-negative integer code) for each possible
configuration and address a pre-calculated (unit time access) look-up-table having
226 entries of 1 bit in size, therefore, it requires only 8 megabytes storage space in
memory.

By adapting this efficient implementation method, our algorithms can be well
applied in practice: they are capable of extracting skeleton-like shape features from
large 3D pictures containing 1 000 000 object points within one second on a standard
PC.

6.5 Results

The proposed 15 algorithms were tested on objects of different shapes. Here we
present some of them (see Figs. 6.6–6.12). The pairs of numbers in parentheses are
the counts of object points in the produced skeleton-like structure and the parallel
speed (i.e., the number of the performed parallel reduction operations [8]).

6.6 Possible Future Works and Open Problems

In this section, we will outline some possible future works and open problems con-
cerning parallel 3D thinning.

• Conventional thinning algorithms preserve endpoints to provide important geo-
metric information relative to the object to be represented. Bertrand and Cou-
prie proposed an alternative strategy [4]. They developed a sequential thinning
scheme based on a generalization of curve/surface interior points that are called
isthmuses. Isthmuses are dynamically detected and accumulated in a constraint
set of non-simple points.
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Fig. 6.6 A 191 × 96 × 114 image of a hand and its topological kernels produced by the five
proposed parallel 3D kernel-thinning algorithms. The original image contains 455 295 black points.
Since the original object contains a hole, there are holes in its topological kernels, too

The very first parallel 3D isthmus-based curve-thinning algorithm was de-
signed by Raynal and Couprie [39]. Each iteration step of their 6-subiteration
algorithm consists of two phases:

1. Updating the constraint set, by adding points detected as isthmuses;
2. Removing “deletable” points which are not in the constraint set.

Raynal and Couprie gave these “deletable” points by 3 × 3 × 3 matching tem-
plates, and proved that simultaneous deletion of “deletable” points is a topology
preserving reduction operation. Hence their algorithm is topology preserving.

In a forthcoming work, we are going to combine our sufficient conditions for
topology preservation (see Theorem 2) with various parallel thinning strategies
(i.e., fully parallel, subiteration-based, and subfield-based) and some character-
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Fig. 6.7 A 135 × 86 × 191 image of a dragon and its centerlines produced by the five proposed
parallel 3D curve-thinning algorithms. The original image contains 423 059 black points

izations of isthmuses to generate new parallel 3D curve-thinning and surface-
thinning algorithms.

• The 3D parallel thinning algorithms presented in this chapter are based on The-
orem 2 (i.e., some sufficient conditions for topology preservation). Conditions 2
and 3 of Theorem 2 are “asymmetric”, since points that are the smallest elements
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Fig. 6.8 A 380×287×271 image of a deer head and its centerlines produced by the five proposed
parallel 3D curve-thinning algorithms. The original image contains 1 658 641 black points
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Fig. 6.9 A 103×381×255 image of a helicopter and its centerlines produced by the five proposed
parallel 3D curve-thinning algorithms. The original image contains 273 743 black points

of some sets may not be deleted. It is easy to see that the following theorem
provides “symmetric” conditions for topology preservation.

Theorem 6 The parallel reduction operation O is topology preserving for (26,6)

pictures if all the following conditions hold for any black point p in any picture
(Z3,26,6,B) such that p is deleted by O .

1. Point p is simple in (Z3,26,6,B).
2. Let Q ⊆ B be any set of simple points in (Z3,26,6,B) such that p ∈ Q, and Q

is contained in a unit lattice square.
Then point p is simple in picture (Z3,26,6,B\(Q\{p})).

3. Point p is not an element of any object C ⊆ B in (Z3,26,6,B) such that C is
contained in a unit lattice cube.

In a future work, we plan to combine alternative sufficient conditions for topology
preservation with parallel thinning strategies to generate further classes of 3D
parallel thinning algorithms.

• Unfortunately, skeletonization methods (including thinning) are rather sensitive
to coarse object boundaries, hence the produced skeletons generally contain some
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Fig. 6.10 A 45×191×191 image of a gear and its medial surfaces produced by the five proposed
parallel 3D surface-thinning algorithms. The original image contains 596 360 black points



184 K. Palágyi et al.

Fig. 6.11 A 285×285×88 image of a camel and its medial surfaces produced by the five proposed
parallel 3D surface-thinning algorithms. The original image contains 1 088 458 black points
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Fig. 6.12 A 122 × 93 × 284 image of a car and its medial surfaces produced by the five proposed
parallel 3D surface-thinning algorithms. The original image contains 1 321 764 black points

false segments. In order to overcome this problem, unwanted skeletal parts are
usually removed by a pruning process as a post-processing step [40]. In [29], we
presented a new thinning scheme for reducing the noise sensitivity of 3D thinning
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algorithms. It uses iteration-by-iteration smoothing which removes some border
points being considered as extremities.

We are going to design new topology preserving parallel contour smoothing
operations, and combine our 3D parallel thinning algorithms (based on sufficient
conditions for topology preservation) with iteration-by-iteration smoothing.

• It is easy to see that subiteration-based and subfield-based parallel thinning
schemes are not invariant under the order of deletion directions and subfield ac-
tivations, respectively. It means that choosing different orders of directions may
yield various results in subiteration-based algorithms, and varieties of skeleton-
like shape features can be produced by a subfield-based algorithm with diverse
orders of the active subfields.

Neither order-independent subiteration-based nor subfield-based parallel thin-
ning algorithms have been proposed. We are going to deal with this unsolved
problem (i.e., we plan to construct subiteration-based and subfield-based algo-
rithms that produce the same result for any order of deletion directions and sub-
field activation).

6.7 Concluding Remarks

Fast and reliable extraction of skeleton-like shape features (i.e., medial surface, cen-
terline, and topological kernel) is extremely important in numerous applications for
large 3D shapes. In this chapter we presented a variety of parallel 3D thinning algo-
rithms and their efficient implementation. They are based on some sufficient condi-
tions for topology preserving parallel reduction operations, hence their topological
correctness is guaranteed. The algorithms are based on different characterizations
of endpoints. Additional types of endpoints coupled with sufficient conditions for
topology preservation yield newer thinning algorithms.
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