
International Journal of Cooperative Information Systemsfc World Scientific Publishing Company
ACTIVE INFORMATION GATHERING IN INFOSLEUTHTM

MARIAN NODINE, JERRY FOWLER, TOMASZ KSIEZYK,

BRAD PERRY, MALCOLM TAYLOR and AMY UNRUHMCC3500 West Balcones Center Drive, Austin, TX 78759 USA
Abstract

InfoSleuth is an agent-based system that can be configured to perform
many different information management activities in a distributed environ-
ment. InfoSleuthTM agents provide a number of complex query services that
require resolving ontology-based queries over dynamically changing, distributed,
heterogeneous resources. These include distributed query processing, location-
independent single-resource updates, event and information monitoring, sta-
tistical or inferential data analysis, and trend discovery in complex event
streams. It has been used in numerous applications, including the Environ-
mental Data Exchange Network and the Competitive Intelligence System.Keywords: Multi-agent systems, agent-based systems, information agents, heterogeneous
data, query processing, information subscription.

1. Introduction

In the past 15-20 years, numerous products and prototypes have regularly appeared

to provide uniform access to heterogeneous data sources. As a result, that access

to heterogeneous sources is now taken as a “given” by customers. Current MCC

studies indicate that, given the availability of products that achieve heterogeneous

data access, new needs emerge for solutions to the following issues:

• Dealing with information at different levels of abstraction and in varying media

forms.

• Fusing overlapping information from multiple sources into integrated wholes.

• Monitoring and reacting to changes, or patterns of changes, occurring across

the networked information sources.

• Adapting to a changing environment with respect to data availability and

domain coverage.

In other words, it is the active and integrated exploitation of information from these

sources at appropriate levels of abstraction that is of real concern to applications

of online information networks.

1



2 Active Information Gathering in InfoSleuth
….….

Resource
Agent

Structured
Databases

Information
Services

Advertise

Request

Publish

Applet

Request

Subscribe

Response

Mobile

Text, Images,
Video

Resource
Agent

Resource
Agent

User
Agent

User
Agent

Ontology 1 Ontology n

Value
Mapping

Agent

Subscription
Agent

Ontology
Agent

Multiresource
Query
Agent

Broker
Agent

Fig. 1. Dynamic and broker-based agent architecture.

This paper provides an overview of the InfoSleuth project and its management

of active information gathering and analysis tasks across heterogeneous informa-

tion sources. InfoSleuth is an agent-based system that embodies a loosely coupled

combination of technologies from information access, information integration, and

information analysis disciplines. An agent system is a dynamic set of loosely in-

teroperating (though cooperating), active processes distributed across a network

or internet. Each agent in an information-gathering system is a specialist in a

particular task in the information enterprise. Agents perform focused tasks for col-

lecting data to create information at higher levels of abstraction or for collecting

requests into generalizations of closely overlapping needs. Multiple agents interact

and cooperate to solve complex information analysis tasks across multiple levels of

abstraction. Typically an agent system uses some form of facilitation or market

bidding to link up agents requesting services with agents providing services, and

this capability is used to dynamically identify and compose goal-driven agent work

groups.

We use the term “InfoSleuth” to refer both to an agent architecture for dis-

tributed information gathering and analysis and a deployed, advanced prototype

implementation of that architecture. Figure 1 depicts the general model of the ap-

plications. An application domain is described by a set of ontologies that describe

“domain objects, events and activities”. The agent system for the application con-

sists of a network of agents capable of performing information routing, analysis, ex-

traction, and integration. A network of external information sources contains data



International Journal of Cooperative Information Systems 3

resources, at varying levels of abstraction, that provide partial evidence or facts for

elements in the ontology. Resource agents wrap information sources, extract their

content, mapping it to one or more domain ontologies, and monitoring their infor-

mation. Users interact with the system by engaging in a session of ontology-based

requests with a user agent. Core agents are used “off-the-shelf”. The agent system

dynamically identifies an agent interaction pattern appropriate to each ontological

request for higher-level (i.e., integrated and derived) information artifacts, and uses

this to decide which agents interact and exchange information to best satisfy that

request.

This implementation is extended from that presented originally1, in the fol-

lowing ways: we currently use OKBC (not KIF) for communication about ontolo-

gies. We have a wider variety of information resources, including text, images, as

well as object-oriented databases and file-system based data. New agents exist for

multi-resource query decomposition and recomposition, concept derivation, value

mapping, complex event monitoring, enforcement of business rules and deviation

detection.

The remainder of this paper provides an overview of various InfoSleuth appli-

cations and the agents and agent interaction patterns that make these applications

possible.

2. Agent Organization

Figure 2 shows the basic classification of the agent functionalities. There are five

categories of agents, represented in the figure by the four layers and one vertical

box. Requests typically flow down from the user layer towards the resource layer,

while data usually flow in the opposite direction. The arrows indicate that flow of

requests and responses can flow between the agents in the layers at either end of the

arrows. Depending on the nature of the request, different agent interaction patterns

are possible, as discussed in Sections 8 and 9. Here we give a brief overview of the

roles of the various agents.

User agents act on behalf of users to formulate their requests into a form un-

derstandable by the agents themselves, and transform results into a form accessible

to the user.

Resource agents wrap and activate databases and other repositories of in-

formation. We consider any source of information a resource. Currently, we have

implemented several different types of resource agents that can access different types

of information. These include JDBC, text, flat files, and images. We also have ser-

vice resource agents that start up offline data gathering and analysis services, such

as web crawlers and document classifiers.

The remaining agents serve as the glue of the system, gathering information

needed to process the users’ requests, and synthesizing, filtering and abstracting that

information into the level of abstraction that the user requires. These agents are

classified as service agents, query and analysis agents, and planning and temporal



4 Active Information Gathering in InfoSleuth
User Agents

Applet

Broker
Agents

Ontology
Agents

Subscription
AgentsSentinel

 Agents

Multi-resource
Query Agents

Deviation Detection
Agents

Service Resource
Agents

JDBC Resource
Agents

User
Layer

Planning &
Temporal
Layer

Query &
Analysis
Layer

Resource
Layer

User AgentsUser Agents

AppletApplet

Text Resource
Agents

Task Planning and Execution
 Agents

Monitor
Agents

Applet

Fig. 2. Layers of agents.

agents. Service agents, represented in the vertical box along the side of the figure,

provide internal information to the operation of the agent system. Query and

analysis agents, represented in the layer above the resource agents in the figure,

fuse and/or analyze information from one or more resources into single (one-time)

results. Planning and temporal agents, represented in the layer below the user

agents in the figure, guide the request through some processing which may take

place over a period of time, such as a long-term plan, a workflow, or the detection

of complex events.

Service agents include broker agents, ontology agents, and monitor agents. Bro-

ker agents collectively maintain a knowledge base of the information the agents

advertise about themselves. Brokers use this knowledge to match requested ser-

vices with agents. Technically, the brokers collaborate to implement both syntactic

and semantic matchmaking. When an agent comes on-line, it advertises itself to

a broker and thus makes itself available for use. When an agent goes off-line, the

broker removes its advertisement from the knowledge base. Ontology agents col-

lectively maintain a knowledge base of the different ontologies used for specifying

requests, and return ontology information as requested. Monitor agents monitor

the operation of the system.

Agents that do one-time query processing and/or data analysis include multi-

resource query agents, deviation detection agents, and other data mining agents.

Multi-resource query agents process complex queries that span multiple het-

erogeneous resources, specified in terms of some domain ontology. They may or

may not allow the query to include logically-derived concepts as well as functions

over slots in the ontology. Deviation detection agents monitor streams of data

for instances that are beyond some threshold, where the threshold may be fixed or

may be learned over time. Deviations themselves form an event stream for other



International Journal of Cooperative Information Systems 5

agents to subscribe to.

Agents that do planning or processing over time include subscription agents, task

planning and execution agents and sentinel agents. Subscription agents monitor

how a set of information (specified as an SQL query) changes over time. Task

planning and execution agents plan how users’ requests should be processed

within the agent system, including how results should be cached. They may be

specialized to particular domains, and support task plans tailored to their own

domains. Sentinel agents monitor the information and event streams for complex

events. A complex event is specified as a pattern of component events, which in turn

may be other events such as changes in the information over time, triggers detected

within individual resources, or deviations as detected by deviation detection agents.

Lastly, some domains require value mapping among equivalent representations of

the same piece of information. User agents and resource agents may use specialized

value mapping agents to assist them in this process.

3. Example Application Areas

InfoSleuth has been deployed in several applications. In this section, we discuss

domain-specific features of two of those applications, Environmental Data Exchange

and Competitive Intelligence.3.1. Environmental information systems: the EDEN project
The Environmental Data Exchange Network (EDEN) is a collaborative effort of

three United States Government agencies, the Environmental Protection Agency

(EPA), the Department of Defense (DOD), and the Department of Energy (DOE),

with the European Environment Agency (EEA). InfoSleuth is being used as a sig-

nificant component of the EDEN project. The EDEN pilot demonstration enables

integrated access via web browser to environmental information resources provided

by offices of these agencies located in Idaho, Georgia, Maryland, Tennessee, Texas,

and Virginia, with development of resources in Europe anticipated in the near future

(Table 1 gives more detail). An auxiliary demonstration prepared for the Associa-

tion of State and Territorial Solid Waste Management Organizations includes access

to databases from the environmental agencies of several individual states.

The agencies involved in the EDEN project find the acquisition, use, and dis-

semination of environmental information to be of increasing strategic importance.

Furthermore, congressional mandates have encouraged increased inter-agency co-

operation in sharing data regarding environmental remediation efforts. InfoSleuth

provides adaptability that may enhance the participants’ ability to address chang-

ing business requirements: The domain ontology of an application will change with

time, and data sources may come, go, and evolve.

Presented with an environment such as EDEN, with numerous legacy databases

each with differing schema and often with different database management software,

InfoSleuth provides a natural way of integrating data from the various sources by



6 Active Information Gathering in InfoSleuth
Table 1. EDEN data sources

Database Platform Organization Location Content

CERCLIS Oracle EPA Crystal City, VA Superfund
site profiles

HazDat Sybase EPA/CDC Atlanta, GA Toxicology
information

ITT MS-Access EPA Austin, TX Remediation
technology

EDR Oracle EPA Austin, TX Environmental
Data Registry

ERPIMS Oracle DOD Brooks AFB, TX Air Force
site profiles

IRDMIS Oracle DOD Aberdeen, MD Army site profiles
ERIP Oracle DOE Idaho Falls, ID DOE site profiles
OREIS Oracle DOE Oak Ridge, TN DOE site profiles
Basel MS-Access EEA Austin, TX Basel Convention

transport data

means of a common ontology. The considerable structural correspondence among

these legacy data sources is not by design, but because they address related problem

domains. Consequently, they cannot be integrated using traditional methods, as

the sources of a distributed database might be. Rather, independently-developed

databases with dissimilar schemas and lexicons must be conceptually integrated in a

dynamic manner. In these circumstances, value mapping and semantic translation,

reasonably well understood in the context of schema integration, become dynamic

problems that must be addressed in a flexible way. An agent-based system allows

new functionality to be incorporated into an existing design, as well as allowing new

or modified designs to be developed within the architecture of a functioning system.

The EDEN pilot demonstration concentrates on information relating to reme-

diation of hazardous waste contamination. The ontology thus focuses principally

on the relationships between contaminated sites, the wastes that cause the con-

tamination, and technologies used to remediate specific kinds of contamination in

specific media at each site. We are investigating the use of terms from the EEA’s

General European Multilingual Environmental Thesaurus2 (GEMET) to create a

standardized vocabulary and enable multi-lingual translation of the terms of queries

and results.

For each database, a resource agent has been configured with mappings from the

database schema to the common ontology. The system then provides access to all of

these resources using the common ontology as its query framework. An especially

beneficial effect of agent-based design is that a new resource can be brought into

the system dynamically.

Several issues have become conspicuous in the course of the EDEN project. Be-

cause EDEN has many diverse types of users, it naturally requires a query interface



International Journal of Cooperative Information Systems 7

that can adapt to the needs of users of different backgrounds. Section 5.2 dis-

cusses how we allow declarative construction of useful parameterized queries over a

high-level ontology.

Because the user interface has been abstracted from the normal level of database

access, it becomes more difficult to understand the scope of a query. Neither

database size nor even what databases may be accessed by a given query is read-

ily apparent to the user. A seemingly innocent query can generate huge amounts

of undesired data from several sources. Section 5.3 discusses reducing the risk of

retrieving unnecessarily large results.

Value mapping among different representations of similar information poses sig-

nificant challenges. Especially interesting are problems relating to differing gran-

ularities, such as in recording the presence of contaminants, which ranges from

detailed scientific information on both sampling and analysis to mere inference of

the presence of a contaminant at an actionable level.

Because value maps typically are useful either in multiple domains or are too

complex or sophisticated to be addressed using traditional mechanisms, EDEN uses

separate value mapping agents (see Section 7.2). In the EDEN pilot project, value

mapping agents take advantage of the EPA’s Environmental Data Registry (EDR),

a reference implementation of the ISO/IEC 11179 meta-data registry standard.

The basic mode of interaction with EDEN is on-demand resolution of user

queries. End-users query the system of agents with respect to the terms of the

domain ontology. A user’s query is solved by resolving query constraints with re-

spect to all resource agents’ advertisements and then querying only those resource

agents that have advertised information that may satisfy the query.

MCC’s Competitive Intelligence applications perform on-demand query resolu-

tion as well, but they also exhibit a more complex behavior mode based on contin-

uing challenges, which are explained next.3.2. Competitive intelligence
One of the services MCC provides is strategic, in-depth technical analysis of its

member companies and their competitors, a practice known as competitive intelli-

gence (CI). Current practice in CI is characterized by manual information gathering

– CI professionals tend to spend 80% of their time manually gathering data and

only 20% of their time using tools to aid the gathering and analysis process. A

particularly interesting and challenging application of InfoSleuth has been to use

agents to reverse this 80/20 distribution to allow more time in high level analysis

and hypothesis generation.

We have been using InfoSleuth agents to discover, acquire, integrate, and moni-

tor CI information from open sources to provide on-demand historical snapshots of

competitor statistics across multiple performance indicators; and to detect trends

and changes in technology indicators for individual companies, for groups of related

companies, or for general technology sectors.



8 Active Information Gathering in InfoSleuth
Table 2. Types of competitive intelligence information sources

Source Category Sample Sources

Macro-level statistics: sales, SEC filings (www.sec.gov)
R&D expenditures, workforce profiles Hoovers online (www.hoovers.com)

company web sites
Current events Press releases (www.prnewswire.com)

CNN daily (www.cnn.com)
company web sites

Growth technology US, European, Japanese patent listings
Emerging technology INSPEC publications database

IEEE, ACM online bibliographies

InfoSleuth CI applications support continual information discovery using a set

of resource agents and task planning agents that accepts domain ontologies as long-

running “challenges” to discover related information. The resource agents encap-

sulate various levels of information analysis, from simple web crawling to more

complex concept classification and extraction. The task planning agents organize

data flow among these resource agents to accomplish a spectrum of information

finding and analysis activities.

Each resource agent accepts subscriptions for long-running knowledge discovery

tasks, catalogs the information it produces, and then advertises that information in

terms of the domain ontology. As a result, a resource agent finds itself serving long-

running information discovery challenges and then answering on-demand queries

about news and trends with respect to the information it has produced for a given

challenge. While the discussion in the rest of this paper focuses primarily on the

problem of answering single queries, we discuss subscriptions and long-running tasks

briefly in Section 9.

CI application activities are performed with respect to four types of information

products, as listed in Table 2. Note that, for the most part, these resources are

either collections of semi-structured text documents, or structured records contain-

ing various free-text attributes. As a result, technologies for extracting semantic

concepts from text are of paramount importance in CI applications.

Each InfoSleuth CI application is characterized by a set of ontologies represent-

ing a technical definition of concepts and properties of a domain. The goal of each

application is to discover information and information trends that match nodes in

the domain ontology, catalog this information according to the ontology, and inspect

the catalogned information and information trends.

Each domain ontology represents two things to the InfoSleuth agents. First, the

particular domain description represented by an ontology is viewed by the agents

as the terms of their knowledge discovery challenge. Second, the ontology gives

a representation of the way the user would like to view and monitor a particular

domain.



International Journal of Cooperative Information Systems 9

Two of the several CI applications are described here, technology tracking and

intellectual property management.Technology tracking: The goal of the CI Technology Tracking application is
automatic creation and maintenance of a technology taxonomy, with documents

classified as belonging to various nodes in the taxonomy. This application uses four

types of InfoSleuth resource agents: those that interact with established information

search services, those that discover and begin monitoring new information sources,

those that extract context and content from source articles, and those that classify

documents by extracted content.

In a typical interaction with this application, an analyst asks questions like “How

many articles in May 1999 contained information about the price of active matrix

displays? Show me the articles,” or “How is the concept of ‘active matrix displays’

being discussed in the news? Show me the dominant terms and phrases associated

with this concept.”Intellectual property management: The Intellectual Property Management ap-
plication seeks to identify potential prior patent claims for a given patent or tech-

nical document. The user identifies a target document and highlights important

“terms of art” in this target. InfoSleuth takes the target plus annotations as input

and constructs a portfolio of potential prior claims. The sources of information

include US and international patents, technical publications, general web searches,

and focused company web site traversals. As with Technology Tracking, web site

traversal and source monitoring are performed by one class of agents and detailed

invalidation analysis by another.

4. Ontologies

In this and the following sections, we describe some of the functionalities and ap-

proaches we have taken within the InfoSleuth agent system for the various aspects

of information gathering and analysis that we address. We begin with ontologies,

which are foundational to our semantic approach to describing information.4.1. What is an ontology?
Consider the query, “Are computer hardware companies in the Austin area

doing well? ” This query is problematic in that it is conceived using unrestricted

natural language, which cannot be understood by InfoSleuth; furthermore it cannot

be posed well in SQL, because there is no specification of either the source of

the information or exactly what entities and attributes are being referred to by

“computer hardware companies”, “Austin area” and “doing well”. Clearly, there is

a need for some intermediate language that allows us to talk about things of interest

on a high, resource independent level, would be straightforward for humans to use,

and at the same time would be easier to deal with than unrestricted English. This

language we call an ontology.

An ontology is a collection of concept types and their relationships, as used



10 Active Information Gathering in InfoSleuth
in a domain of discourse by a specific group of agents (human, software, or both)

towards solving a specific class of problems. When an ontology is used to integrate

information, we can say that it constitutes a semantic model of the integrated

information. It can then be used as a vocabulary for conversing about the integrated

information and for describing it. There is no one ontology used in InfoSleuth, but

rather a set of domain-specific ontologies, with one or more ontologies used for a

given application. Because ontologies are domain-specific, it is easier to eliminate

ambiguities. In InfoSleuth, each query is posed over some single, domain-specific

ontology.4.2. Representation of ontologies using OKBC
Ontologies can be formally represented in many different ways. Two well-known

examples are the ER model with extensions for hierarchical knowledge, and the

Horn-clause form of classical first-order predicate logic. One of the obstacles in

integrating independently-developed ontologies is that of mapping different repre-

sentational systems to each other. The database community developed ODBC to

help address this issue. With similar motivation, the knowledge representation com-

munity has been working, under DARPA’s coordination, on an analogous standard

called Open Knowledge Base Connectivity, or OKBC.3;4
The OKBC protocol provides a set of operations for a generic interface to un-

derlying knowledge representation systems (KRs). The interface layer allows an

application some independence from the idiosyncrasies of specific KRS software and

enables development of generic tools that operate on many knowledge representation

systems. OKBC provides operations for manipulating knowledge expressed in an

implicit representation formalism called the OKBC knowledge model. It supports an

object-oriented representation of knowledge and provides a set of representational

constructs commonly found in object-oriented knowledge representation systems.

OKBC implementations exist for several programming languages, and provide ac-

cess to knowledge bases both locally and over a network.

The ontologies used in the InfoSleuth system are formulated using OKBC, and

this allows queries over ontological concepts to be formulated and used by the

system independently of the knowledge base behind the ontology agent’s OKBC

server. Note that the adoption of a representational standard like OKBC does not

solve the problem of semantic integration of the concepts in multiple ontologies–

that is, the problem of how to determine whether two different objects in different

ontologies refer to the same concept in the given domain of discourse. This is a

much harder problem, and a planned area for future work in the InfoSleuth project.4.3. Constructing and Modifying Ontologies
For InfoSleuth to be able to mediate and integrate information, it must be able

to use, and provide tools for building and maintaining, one or more appropriate

ontologies describing the domains of interest. The size and complexity of required



International Journal of Cooperative Information Systems 11

Fig. 3. Igor window showing a fragment of the Technology Tracking ontology.

ontologies varies greatly. For more complex domains, ontologies with hundreds and

even thousands of concepts might be necessary.

We provide a graphical ontology editor, Igor, to help users build and modify In-

foSleuth ontologies. Igor provides advanced features for constructing and visualizing

large ontologies. Ontology fragments can be presented for inspection. A special-

ized query language has been developed which lets users formulate in a graphic and

interactive way what ontology fragments they want to see. Some of the most sophis-

ticated graphical browsing features rely on zooming (the use of internal cameras and

lenses). Another device used in the graphical presentation of ontology fragments is

the Poincare disk, invented originally for visualizing objects in hyperbolic geometry.

Igor also provides assistance to the user, and checks input changes to the on-

tology for internal consistency. For example, our editor prevents its users from

specifying slot inverses that don’t specify domain and range consistently. Similarly,

taxonomical links which would cause circularity in the taxonomy graph are not

allowed. When Igor detects that the user is about to create an inconsistency, it

abandons the operation and displays an error message.

Figure 3 shows a screen with a view of a fragment of one of the ontologies used

in the Competitive Intelligence applications. The box titled ”Employee” defines a

class for which two relations have been specified: “name” and “works for”. The

latter relates this class to another class in the ontology (not shown), “Company”.

This relation, when viewed from the perspective of “Company” has a different name,

“employs”. The class “Key Employee” is a subclass of the class “Employee”.4.4. Distributing Ontologies
Once an appropriate domain ontology is built, it can be deployed in the InfoSleuth

system. Ontology agents wrap the OKBC servers that store the ontologies and

provide them to agents that need them. They provide ontology specifications to



12 Active Information Gathering in InfoSleuth
users for request formulation, to resource agents for mapping, and to other agents

that need to understand and process requests and information in the application

domain.

5. Querying InfoSleuth5.1. Query language
The InfoSleuth query language comprises the main features of SQL2, plus some

extensions from SQL3.5 The main construct from SQL3 is the use of path expres-

sions, which may appear in any of the select, from and where clauses. The syntax

of path expressions is consistent with that used in both SQL3 and OQL.6 Another

feature of the language is that functions are allowed in the select and where clauses.

The syntax of functions in InfoSleuth SQL is consistent with that used in relational

database systems such as Oracle.5.2. Query formulation
Queries in InfoSleuth are specified over ontologies. InfoSleuth provides a generic

way of creating multiple viewing contexts over portions of a given ontology. This

allows different users with different needs to access different kinds of data in different

ways. The Template-based Query Markup Language (TQML) specifies a mapping

between natural language query fragments and SQL over an ontology, and represents

the parameters through entry fields or domain-valued menus and list boxes.7 The

TQML browser, which uses this mapping language, facilitates the specification of

well-formed InfoSleuth queries. It also maintains a materialized view of the available

data, derived from the results of queries that the user has specified as he looks

through the data.

Query specifications are delivered to the browser by the User Agent. The user

interface then populates choice lists from the user’s locally materialized view of the

ontology and uses the currently selected values to build the correct SQL query. Fig-

ure 4 shows the TQML query interface using the EDEN ontology and the “Scientist”

viewing context.

Once the query is fully-specified, it is passed to the InfoSleuth agent system as

an SQL query. InfoSleuth retrieves the requested information, and the results are

returned in the form of Web pages. InfoSleuth annotates the result with the sites

that responded with information. Figure 5 shows a result window.5.3. Query restriction
In many applications that fuse heterogeneous information, database size and/or re-

sult size can become critical factors in the response time of a given query. This has

a significant effect on the usability of such an information system. In particular,

it affects the semantics of queries that can be considered acceptable to the system,



International Journal of Cooperative Information Systems 13

Fig. 4. Query window from the TQML browser.

Fig. 5. Reply window from the TQML browser.



14 Active Information Gathering in InfoSleuth
because inadequately constrained queries can result during the process of decom-

posing the query and physically mapping it onto information resources. Without

addressing this issue in some way, no large-scale system can be viable.

We are developing declarative definitions of semantic constraints on classes in

the ontology such that a user agent can discourage or forbid a user from posing a

query on a particular class without specifying an adequate constraint in the where

clause. Currently, this work is based on the query differencing operation described

by Minock et.al.8

6. Brokering

Brokering is the dynamic location and recommendation of active agents relevant to

a specific task. When a requesting agent has a specific task that needs doing, and it

must locate some agent that can do that task, then it asks the broker to recommend

specific agents to which it can forward its request. We describe brokering in more

detail in a paper by Nodine et.al.96.1. Broker agents
The broker agent maintains a knowledge base of information that all the other

agents have advertised about themselves. A broker agent implements the brokering

service that uses this knowledge to match agents with requested services.

Multibrokering allows the process of matching service agents to requests to be

distributed across multiple brokers, each representing a different set of agents. That

is, brokers collaborate with each other in making recommendations to requesting

agents for specific services other agents have advertised. When a broker receives

a request for an agent with specific capabilities, it looks for matches in its own

repository of agent information and may also query other brokers to find external

agents with needed capabilities.6.2. Advertising and querying
The brokering process follows an advertising/querying paradigm. When an agent

comes online, it announces itself to some broker by advertising to it, using the terms

and attributes described in the “infosleuth ontology” and constraints on the values

of those attributes. The infosleuth ontology is a special ontology used by agents

to specify advertisements and queries. Concepts represented within the infosleuth

ontology include:

Content - What ontology subset is accessible by the agent?

Services - What can the agent do for you?

Syntax - What are the interfaces to those services?

Performance - How well can the agent do this at the moment?



International Journal of Cooperative Information Systems 15

Properties - Where is the agent? What protocols does it speak?

As is evidenced by the above list, the infosleuth ontology represents many dif-

ferent levels of characterizing an agent.

The broker stores all of the advertised information in its knowledge base. When

an agent’s set of available services changes, the agent may update its advertisement,

and the broker will update the information in its knowledge base. When an agent

goes offline, it unregisters itself to the broker, so that its advertisement can be

removed from the knowledge base.

Agents requesting services formulate queries for servicing agents to the broker

in terms of the infosleuth ontology. The broker then matches the request to ser-

vicing agents whose advertisements correspond to the constraints specified by the

requesting agent. Finally, the broker returns a recommendation containing those

servicing agents to the requesting agent.6.3. The brokering process
The brokering process is the method by which an agent matches up a query with

the agent advertisements to determine which agents can satisfy the specific request

described in the query. As is evidenced by the different kinds of things represented

in the infosleuth ontology, brokering occurs at many different levels of agent char-

acteristics.

Syntactic brokering is the process of matching requests to agents on the basis

of the syntax of the incoming messages. A classic example of syntactic brokering is

found in CORBA (Common Object Request Broker Architecture)10, which locates

processes that can execute a method call that has a specific signature defined in its

Interface Definition Language. In the agent-based community, KQML (Knowledge

Query Manipulation Language)11 also specifies syntactic-level brokering, as its ad-

vertise performative specifies one or more “performative forms” that the requesting

agent can fill in when requesting a service from the advertising agent.

Semantic brokering is the process of matching requests to agents on the basis of

the requested capabilities or services, and/or (in an information system) constraints

on the information that an agent can provide.

Pragmatic brokering is the process of filtering a set of agents that provide the

requested services and maintain the requested interfaces, in order to determine

whether or not external considerations will affect the quality of service. Pragmatic

considerations include such things as the performance of the machine the agent is

running on and the security requirements of the agent with respect to the requester.6.4. An example
For example, consider the following query specified in (extended) SQL over a com-

pany profile ontology.

SELECT name, products FROM technology-company



16 Active Information Gathering in InfoSleuth
WHERE technology-company.site in Central Texas

At some level, the agent system will need to locate the SQL-speaking resources that

contain the raw information needed to answer this query.

Consider that we have a set of resources that have advertised that they maintain

company profiles, and another set of resources that have advertised that they have

company site information, each advertising a select set of cities its information

covers. The broker would first locate all resources that speak SQL in its repository

(syntax). It would then filter through the resources to find those that understand

the company profile ontology and have information on sites. It would filter through

these to determine which ones, based on their advertised value constraints, could

be in Central Texas (semantics). This is done using constraint matching. Note

that the purpose of this last step is to eliminate obviously useless resources, and

may possibly still select resource agents that do not have the intended information.

From this remaining list, the broker agent may eliminate agents that do not have

the correct access permissions (pragmatic).

A second query to the broker would cover company profiles for technology com-

panies, and specifically within the profile, any resources that have the company

names and products parts of the profile.

7. Information and Value Mapping7.1. Resource agents and ontology mapping
Resource agents in InfoSleuth are responsible for bringing external information and

external services into the agent network as “ontologically”, or “semantically”, an-

notated information resources. Every resource agent (RA) wraps some external

information source or service. This wrapper:

• Identifies the select fragment of the overall domain ontology that the RA

knows it can extract from its underlying information source.

• Advertises this ontological fragment that it supports, along with constraints

on the instances it can provide.

• Advertises its querying capabilities (as a subset of InfoSleuth SQL), in addition

to other capability information.

• Accepts queries against its advertised ontological fragment and produces infor-

mation resources from its underlying source that map to facts in the ontology.

• Accepts subscription queries against its advertised ontological fragment and

produces change notifications whenever the answer to the query changes in

the underlying source.



International Journal of Cooperative Information Systems 17

Ontology:

class Publicity(date, title, source, URL)

subclass TechPub(tech-categories)

subclass CompanyPub(company, topic)

Advertisement:

class TechPub(date > ’1998/12/01’, source, URL,

tech-categories in {’displays’, ’imaging’})

Fig. 6. Resource agent advertisement example

To better understand the advertisements resource agents create, consider an

ontology to consist of a set of classes and subclasses describing concepts in a domain.

Furthermore, let slots (or properties) be attached to each class describing facts

about that concept in the domain. Finally, assume slots are inherited along the

class hierarchy. With this type of representation, a resource agent’s advertisement

would consist of three things: (1) the most specific classes in the ontology for

which the agent has information; (2) the subset of slots for each class that the

agent can provide information about; and (3) the slot value constraints the agent

asserts to hold for the range of information it can provide about a particular slot.

Consider the example in Figure 6. In this example we show a sample advertisement

for concept TechPub such that the agent supports all slots on this concept except

titles; and, furthermore, the agent asserts value range constraints on the date and

tech-categories of the publicity information it can provide.

The InfoSleuth system provides a set of tools and Java templates for building

resource agents with minimal or no programming. A growing set of standard RA

types have been defined. Each of the standard RA types is attached to a new

information source by merely specifying configuration and mapping files. Standard

types include:

• JDBC RAs that encapsulate JDBC-accessible sources. JDBC is the Java

DataBase Connectivity standard that provides uniform access to relational

databases.

• Regex RAs that pull information from semi-structured text files based on

grammars of regular expression matching.

• Text RAs that pull information from semi-structured text files based on fo-

cused syntactic and semantic language parsing.

• OODB RAs that encapsulate collection-oriented semantics and path traversals

in object-oriented databases.

• Service RAs that encapsulate batch-oriented external services or tools and

map ontological requests into scheduled invocations of the external service.



18 Active Information Gathering in InfoSleuth
For all standard types, new RAs are built by specifying configuration files that

define the behavior of the agent and its mappings between ontological concepts and

local information source artifacts.7.2. Value mapping
Ontologies specify canonical representations both of the concepts in the application

domain and of value-domains for the actual domain elements. Data represented in

other value-domains can be mapped into the ontology’s canonical value-domain by

both resource agents and user agents so that they may relate values expressed in

the conceptual domains in the ontology to data as stored in real world databases

and as perceived by users. The value mapping problem has several manifestations,

including the following which are specifically relevant to the current InfoSleuth

applications. In all of these cases, the actual process of mapping between value

domains is independent of the shared ontology that the query is specified over.

• Traditional: Mapping takes place by imposing a view on that information

and/or defining functions to translate the data from one value domain to an-

other, as is currently done in relational databases, e.g. the work of Heimbinger

and McLeod.12 This type of mapping provides little support for semantics, but

rather relies on the structure of the data.

• Reasoning: Sometimes the conversion of values requires sophisticated rea-

soning or computation. This might occur, for instance, if data is measured

over intervals, but the duration and boundaries of the intervals differ between

information sources. The reasoning approach is desirable especially when in-

ferencing rules or computations are changing as new semantic knowledge is

discovered.

• Multi-ontology based: When concepts in the common domain take their

values from some set of external ontologies, mapping can be specified explicitly

among the external ontologies as relationships between a term in one ontology

and the related terms in each other ontology.

• Changing equivalences: The values of specific attributes may take one form

from some (changing) equivalence class. This case differs from the previous

one in that membership is not fixed (i.e., one value per value domain), but

may be very flexible. This type of mapping often occurs with hand-entered

data, where people may use different abbreviations or misspellings for the

same item (e.g., ”sulfuric acid”, ”sulph. acid”, ”sufluric acid”). Many of

these equivalences may be derivable from multiple information sources.

Aside from the traditional approach, these methods for doing value mapping

are fairly complex. InfoSleuth takes the approach of encapsulating the mapping of

equivalent value domains in specialized value mapping agents. Users query and view



International Journal of Cooperative Information Systems 19

data in their preferred value domain, and their user agents access the value mapping

agents to do the value mapping necessary to communicate with other agents in the

canonical value domain. Resource agents whose databases do not maintain data in

the canonical value domain access the value mapping agents to perform the converse

mapping.

8. Query Processing

Query processing involves receiving a query, discovering which resources have the

information requested by the query, forwarding fragments of the query to those

resources, and fusing the results into a single result that answers the query. The

focus of the query processing task is the (multi-resource) query agent. Given a

query over some domain ontology, a query agent must decompose the query into

• a collection of subqueries, each addressed to a specific resource agent

• a collection of global queries that together serve to fuse the subquery results

into an integrated answer to the query

The query agent must then coordinate the processing of the query, by sending out

subqueries to their respective resource agents, collecting the results and executing

the global queries. The issues in query processing are somewhat related to those

encountered in multidatabase systems and mediator systems, 13;14;15;16;17;18;19 but
there are some significant differences. InfoSleuth allows for resource agents to con-

tinually enter and leave the system, so the query agent does not have access to a

global catalog of the data provided by each resource agent. Instead, it must col-

laborate with one or more brokers to identify the resource agents that can assist

with the processing of a given query. Subqueries sent to resource agents are al-

ways expressed in terms of the domain ontology, issues of subquery translation and

execution being encapsulated within the resource agent.

The interaction pattern for processing of multi-resource queries is shown in Fig-

ure 7 and described in detail in Perry et.al.’s agent interactions paper.208.1. Logical optimization
The query parser identifies the ontological classes that are used in the query, and a

sequence of operations (in extended relational algebra) which can be used to gener-

ate the result of the query from the extents of the classes. Logical optimization is

then applied, to yield a more efficient (but logically equivalent) sequence of opera-

tions. Typically this involves pushing select and project operations, so that they are

applied first. The usual rationale for this is that these operations reduce the size of

their operands, so applying them early serves to reduce the volume of data trans-

mitted between agents. In InfoSleuth there is an additional benefit to be derived.

By associating select and project operations directly with specific classes, the query

agent is able to issue more specific requests to the broker, which can therefore more



20 Active Information Gathering in InfoSleuth
UA

RARA

QA

Broker

QA

RA

1



2
3

4

5

6
7 8

9

10

Fig. 7. Agent interaction pattern for query processing.

accurately identify the relevant resource agents. For example, if a query includes

the condition “company.city = ‘Austin’”, and a resource agent has advertised

that it knows only about companies in Houston, the broker will deduce that that

resource agent is irrelevant to this particular query. Similarly, if the query involves

“company.city” only, the broker would eliminate a resource agent that knows only

company names and gross income.8.2. Data localization
A query over a global ontology must be transformed into a query over the ontologi-

cal fragments provided by specific resource agents. This requires the query agent to

obtain, from a broker, details of those resource agents which have advertised knowl-

edge of the relevant portions of the ontology. As described above, when a constraint

and a subset of attributes can be associated with each class in the query, the broker

is better able to eliminate irrelevant agents from consideration. A harder case is

when a resource agent advertises some, but not all, of the attributes relevant to the

query. In that case, the resource agent may still be used, but only if its data can

be combined with those of another resource which provides the missing attributes.

The query agent uses semantic analysis of resource agent advertisements to identify

cases where two resource agents provide complementary information on the same

entities. In such cases, the query agent introduces a join to combine the data from

the two resources.

It is also necessary to take account of the fact that resource agents can advertise

at different levels of the taxonomic hierarchy. Thus, it may happen that a query

refers to a class “Company”, while a resource agent has advertised knowledge of the

class “TechnologyCompany”. If “TechnologyCompany” is a subclass of “Company”,

the resource agent should still receive the query, which should be translated into

the terms that the resource agent has advertised (i.e., “TechnologyCompany”).



International Journal of Cooperative Information Systems 218.3. Query decomposition
Having determined which resource agents can provide a materialization of each of

the ontological classes, the next step is to assign each operation to a resource agent.

The aim here is to assign as much processing as possible to the resource agents

which provide the data. However, we also need to take into account the capabilities

of each resource agent. The query agent is itself responsible for executing those

operations that the resource agents cannot implement, as well as those operations

that combine data from two or more resources. The result of query decomposition

is a collection of subqueries to be executed by resource agents, and a collection of

global queries to be executed by the query agent.8.4. Query execution
For a given decomposition, there are still several options available for processing

a query. In particular, the execution can be optimized for all answers or for the

first few answers.21 When optimizing for all answers, the goal is for the query agent

to as quickly as possible obtain all the necessary data for computing the result.

Therefore, all subqueries are immediately sent out to the resource agents, and the

query agent computes the result once all the resource agents have responded. This

strategy works well when all subqueries return answers at about the same time. On

the other hand, it is not very effective in an environment which includes a mix of fast

and slow resources. In that instance, optimization for first few answers can yield

substantial improvements in response time. The aim of that approach is to obtain

sufficient data to compute at least some of the answers quickly, without having to

wait for all the data from the slowest resources. The user will then receive the result

as a stream.

Another technique which we have implemented for improving response times is

to cache the results of queries to resource agents, so that subsequent queries can be

answered from the cache without the need for costly access to slow resources. If a

prior query Q1 subsumes a subsequent query Q2, the latter can be answered from
the cache by means of a residual query Q3 against the result of Q1.22
9. Requests over Time

Subscriptions and periodic requests monitor a set of information, specified as a

query, over time. In a periodic request, the user specifies a query and an interval,

the agents compute the answer to the query at the beginning of each interval, and

forward each result to the user. This implements a classic pull interface. In a

subscription/notification, the user specifies a query, and the agents immediately

generate a response to that query. When the answer to that query changes for some

reason, the agents compute the specifics of the change and forward them to the user.

This implements a combination pull/push interface, where the user tailors the query

to his needs (“pull”), but the changes are sent back only as needed (“push”).



22 Active Information Gathering in InfoSleuth9.1. Subscription execution
The subscription agent relies on the capabilities of the query agent in processing

a subscription over time. It is an example of building one InfoSleuth functionality

above a more basic one.

Figure 8 shows the agent interaction pattern for subscriptions. In the top left

diagram, the user agent sends the subscription to the subscription agent. The sub-

scription agent consults the query agent to obtain its query plan for the subscrip-

tion content. Then, the subscription agent places subscriptions with the relevant

resource agents based on the query plan. In the top right diagram, data in the

resource agents has changed. The resource agents notify the subscription agent.

The subscription agent then forwards the query to the query agent, which in turn

queries the resource agents. In the bottom figure, the resource agents return their

answers to the query agent, which computes the global query result and forwards

the answers to the subscription agent. The subscription agent takes the difference

between the new answer and the previous query sent to the query agent for that

subscription. The subscription agent returns the computed differences to the user

agent and caches the new result. Also in the lower diagram, asynchronously the

subscription agent has requested a new query plan from the query agent and noticed

that a new resource agent has come online, so it forwards a subscription request to

the new resource agent.9.2. Aggregation and �ltering in subscriptions
InfoSleuth also supports the subscription retrieval of information at higher levels

of abstraction and aggregation than are necessarily represented in the underlying

data. Information is aggregated and abstracted using a variety of data mining and

complex event detection agents which work in a cascading manner to process and

digest the information into a level of abstraction appropriate to the user. Currently,

our derived concept, deviation detection and sentinel agents, as well as our planned

association rule mining agent, collaborate to accomplish these aggregation and ab-

straction tasks. These processes are described in more detail by Unruh et.al.23

10. Related Work

There are a number of other agent systems targeted towards information gath-

ering tasks, which share similarities with InfoSleuth in the functionality of the

agents as well as the system organization. Most contain agents which “wrap”

resources and combine information using mediation techniques. These include

SIMS24, TSIMMIS25 and InfoMaster26;27. These systems differ from InfoSleuth
in that the actual translation of information from its local schema or representation

to that of the ontology is done within the mediator itself. Because this translation

and integration is done more centrally, these systems have yet to prove themselves

when integrating even tens of agents. InfoSleuth’s approach of having each resource



International Journal of Cooperative Information Systems 23

UA

RARA

QA

Broker

SA

RA

1


2

3

4
6

5

7

8

9

UA

RARA

QA

Broker

SA

RA



 10

11

13

12

14

UA

RARA

QA

Broker

SA

RA





15 16

20

21
17

18

19 22

23



Fig. 8. Agent interaction pattern for subscriptions.



24 Active Information Gathering in InfoSleuth
agent do its own translation to the ontological concepts has proven to scale to those

levels.

The RETSINA agent framework28;29;30 uses agents to address information re-
trieval in a similar manner to that of InfoSleuth. In RETSINA, “middle agents”

provide the glue that links information sources to applications or users that need

the information. RETSINA uses semantic brokering to locate required informa-

tion; however, that brokering takes a different form than is used within our brokers.

Furthermore, RETSINA has not been used for the same forms of complex query

and subscription processing as InfoSleuth has been tested in. The process of using

brokering or matchmaking to locate information for integration was also explored

in the context of the SHADE project31;32 and in OOA.33
Other work on using agents to gather and fuse information has been done by the

government. These include DAIS34 and the ARPI architecture.35 These exercises

so far have focused on specific tasks, and use a fixed set of agents to accomplish

that task. It is not clear whether they can expand into the more flexible realm of

dynamic agent communities.

11. Conclusion

In this paper, we have described InfoSleuth, an agent-based system for informa-

tion gathering and analysis. The paper has emphasized InfoSleuth’s ability to ex-

tract and advertise information about semantic concepts; to integrate information

from heterogeneous sources; and to provide long-running information-gathering and

analysis tasks. Software agents are used to dynamically couple these capabilities

together to support monitoring and analysis of ontological concepts which change

over time, at multiple levels of abstraction. Emergent from these capabilities are a

set of goal-driven agent interaction patterns.

InfoSleuth is a deployed, advanced prototype system performing information

gathering and analysis over open information sources. The success of our approach

has been to realize that real information gathering applications require a goal-driven

interaction between information access, information integration, and information

analysis technologies. Whereas each of these technologies has received much prior

attention, a flexible integration of these disciplines has not yet occurred. This has re-

sulted in relatively few successful deployments of information gathering technologies

in open information networks. A major component of our ongoing work is the active

deployment of the system to distributed information gathering applications, such

as EDEN and Competitive Intelligence. As these application deployments progress,

we believe cooperating agent technologies will emerge as the proper technology to

address these challenging, yet practical, application environments.

Acknowledgements

The InfoSleuthTM Project (http://www.mcc.com/projects/infosleuth) is an R&D
project at MCC that is supported by various industrial and government sponsors.



International Journal of Cooperative Information Systems 25

In addition, we would like to acknwledge the hard work of the rest of the Info-

Sleuth team, including Richard Brice, Tony Cassandra, Damith Chandrasekara,

John Dinsmore, Chung Hee Hwang, Qing Jia, Gale Martin, Mike Minock, Mosfeq

Rashid, Marek Rusinkiewicz, Nancy Perry, and Bill Bohrer.

References

1. R. Bayardo et al. InfoSleuth: Agent-based semantic integration of information in open
and dynamic environments. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 195–206. ACM Press, Jun 1997.

2. European Environmental Agency. General european multilingual environmental the-
saurus, 1997.

3. V.K. Chaudhri, A. Farquhar, R. Fikes, and P.D. Karp. Open knowledge base connec-
tivity 2.0. Technical Report KSL-98-06, Stanford University, 1998.

4. Richard Fikes and Adam Farquhar. Distributed repositories of highly expressive
reusable ontologies. IEEE Intelligent Systems and Their Applications, 14(2):73–
79, 1999.

5. J. Melton. A SQL3 snapshot. In Proceedings of the International Conference on
Data Engineering, 1996.

6. S. Cluet. Designing OQL: allowing objects to be queried. Information Systems, 23(5),
1998.

7. M. Minock and J. Fowler. Template query mark-up language (TQML) 1.0. Technical
Report INSL-122-98, MCC, 1998.

8. Michael Minock, Marek Rusinkiewicz, and Brad Perry. The identification of missing
information resource agents by using the query difference operator. In Proceedings of
the International Conference on Cooperative Information Systems, 1999.

9. M. Nodine, W. Bohrer, and A. Ngu. Semantic multibrokering over dynamic heteroge-
neous data sources in InfoSleuth. In Proceedings of the International Conference
on Data Engineering, 1999.

10. Object Management Group and X/Open. The Common Object Request Broker:
Architecture and Specification, Revision 1.1. John Wiley and Sons, 1992.

11. Y. Labrou. Semantics for an Agent Communication Language. PhD thesis, UMBC,
Sep 1996.

12. Dennis Heimbinger and Dennis McLeod. A federated architecture for information man-
agement. ACM Transactions on Office Automation Systems, 3(3):253–278, Jul
1985.

13. D. Woelk, P. Cannata, M. Huhns, W. Shen, and C. Tomlinson. Using Carnot for
enterprise information integration. In Proceedings of the International Conference
on Parallel and Distributed Information Systems, 1993.

14. Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object fusion in mediator
systems. In Proceedings of the International Conference on Very Large Databases,
1996.

15. S. Adali, K. Candan, Y. Papakonstantinou, and V. Subrahmanian. Query caching and
optimization in distributed mediator systems. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 1996.

16. A. Tomasic, L. Raschid, and P. Valduriez. Scaling access to heterogeneous data sources
with DISCO. IEEE Transactions on Knowledge and Data Engineering, 10(5),
1998.

17. A. Levy, A. Rajaraman, and J. Ordville. Querying heterogeneous information sources



26 Active Information Gathering in InfoSleuth
using source descriptions. In Proceedings of the International Conference on Very
Large Databases, 1996.

18. M. Roth and P. Schwarz. Don’t scrap it, wrap it! A wrapper architecture for legacy data
sources. In Proceedings of the International Conference on Very Large Databases,
1997.

19. D. Florescu, L. Raschid, and P. Valduriez. A methodology for query reformulation in
CIS using semantic knowledge. International Journal of Cooperative Information
Systems, 5(4), 1996.

20. B. Perry, M. Taylor, and A. Unruh. Information aggregation and agent interaction pat-
terns in InfoSleuth. In Proceedings of the International Conference on Cooperative
Information Systems, 1999.

21. R. Bayardo and D. Miranker. Processing queries for first few answers. In Proceedings of
the International Conference on Information and Knowledge management, 1996.

22. D. Miranker, M. Taylor, and A. Padmanaban. A tractable query cache by approxima-
tion. Technical Report MCC-INSL-127-98, MCC, 1998.

23. A. Unruh, G. Martin, and B. Perry. Getting only what you want: Data mining and
event detection using InfoSleuth agents. Technical Report INSL-113-98, MCC, 1998.

24. Y. Arens, C.A. Knoblock, and W. Shen. Query reformulation for dynamic information
integration. Journal of Intelligent Information Systems, 6(2):99–130, 1996.

25. Garcia Molina, Y. Papakonstantinou, D. Quass, A. Rajarman, Y. Sagiv, J. Ullman,
and J. Widom. The TSIMMIS approach to mediation: Data models and languages.
Journal of Intelligent Information Systems, 8(2):117–132, 1997.

26. D. Geddis, M. Genessereth, A. Keller, and N. Singh. InfoMaster: a virtual informa-
tion system. In Proceedings of the ACM CIKM Intelligent Information Agents
Workshop, 1995.

27. M.R. Genessereth, A. Keller, and O.M. Duschka. Infomaster: An Information Integra-
tion System. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 539–542, Tucson, Arizona, 1997.

28. K. Decker and K.P. Sycara. Intelligent adaptive information agents. Journal of Intel-
ligent Infromation Systems, 9(3):239–260, 1997.

29. Katia Sycara, Matthias Klusch, Seth Widoff, and Jianguo Lu. Dynamic service match-
making among agents in open information environments. SIGMOD Record, 1999.

30. Intelligent software agents.
31. McGuire, Kuokka, Weber, Tenenbaum, Gruber, and Olsen. SHADE: Technology for
knowledge-based collaborative engineering. Journal of Concurrent Engineering: Re-
search and Applications, 1(3), 1993.

32. D. Kuokka and L. Harada. Integrating information via matchmaking. Journal of
Intelligent Information Systems, 6(2):261–279, 1996.

33. D. L. Martin, H. Oohama, D. Moran, and A. Cheyer. Information brokering in an
agent architecture. In Proceedings of the International Conference on the Practical
Application of Intelligent Agents and Multi-Agent Technology, April 1997.

34. DAIS Group. Dais. <www.atl.external.lmco.com/projects/dais>.
35. Donald McKay, Jon Pastor, Robin McEntire, and Tim Finin. An architecture for
information agents. In A. Tate, editor, Advanced Planning Technology. AAAI Press,
May 1996.

InfoSleuth is a trademark of Microelectronics and Computer Technology Cor-

poration. All other company, product, and service names mentioned are used for

identification purposes only, and may be registered trademarks, trademarks, or ser-



International Journal of Cooperative Information Systems 27

vice marks of their respective owners. All analyses are done without participation,

authorization, and endorsement of the manufacturer.

c©Copyright 1998. Microelectronics and Computer Technology Corporation. All

Rights Reserved. Members of MCC may reproduce and distribute this material for

internal purposes by retaining MCC’s copyright notice and proprietary legends and

markings on all complete and partial copies.


