
Pattern Recognition 38 (2005) 1332–1348
www.elsevier.com/locate/patcog

A bibliographical study of grammatical inference

Colin de la Higuera∗
EURISE, University of Saint-Etienne, France

Received 15 November 2004

Abstract

The field of grammatical inference (also known as grammar induction) is transversal to a number of research areas including
machine learning, formal language theory, syntactic and structural pattern recognition, computational linguistics, computational
biology and speech recognition. There is no uniform literature on the subject and one can find many papers with original
definitions or points of view. This makes research in this subject very hard, mainly for a beginner or someone who does not
wish to become a specialist but just to find the most suitable ideas for his own research activity. The goal of this paper is
to introduce a certain number of papers related with grammatical inference. Some of these papers are essential and should
constitute a common background to research in the area, whereas others are specialized on particular problems or techniques,
but can be of great help on specific tasks.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. The field

Grammatical inference is transversal to a number of fields
including machine learning, formal language theory, struc-
tural and syntactic pattern recognition, computational lin-
guistics, computational biology and speech recognition.
In a broad sense a learner has access to some data which

is sequential or structured (strings, words, trees, terms or
limited forms of graphs) and is asked to return a grammar
that should in some way explain these data. The learner is at
least partially automatic, and can also be called an inference
machine, or a learning algorithm. The induced (or inferred)
grammar can then be used to classify unseen data, compress
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these data or provide some suitable model for these data.
Typical features of the problem are:

• the data, usually composed from a finite alphabet; it is
thus usually discrete, as opposed to numerical; but on
the other hand the unbounded length of strings offers a
higher complexity for classification tasks than with usual
symbolic data;

• the sort of result: a grammar or an automaton, traditional
objects much studied by computer scientists. Such ob-
jects have the added advantage of being understandable.
One learns intelligible concepts, not black boxes; in fields
where human experts need to be able to derive new knowl-
edge from what the computer provides, this is undoubt-
edly a key feature;

• the hardness of even the easiest of problems. In usual
machine learning settings, even the easiest of the problems
are usually classified as hard;

• the variety of potential applications;
• the small number of industrial applications where gram-
mar induction is successful.
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We nevertheless strongly believe that the situation should
change in the next few years: indication of this is given by
the wide amount of applications where these techniques are
at least partially used, and the recent successes of the field.
The other grounds for this belief are that purely statistical
methods have a natural bound, that can only be overcome by
a close use of the structural nature of the data that is being
manipulated. And the discovery of this structure is where
grammatical inference can help.

1.2. Where should one start from?

The proceedings of the different International Colloquium
onGrammatical Inference (ICGI), held atAlicante[1], Mont-
pellier [2], Ames [3], Lisbon [4] and Amsterdam[5] are
good places to find technical papers. The webpage of the
grammatical inference community[6], and those of the re-
lated communities can be used to find most of the papers
in the field: thecomputational learning theory(COLT) web-
page[7] or thealgorithmic learning theory(ALT) webpage
[8] can provide good lists of earlier papers with the machine
learning perspective. Important key papers setting the first
definitions and providing important heuristics are those by
Fu [9] or Fu and Booth[10]. The structural and syntactic
pattern recognition approaches can be found for instance in
Miclet’s book [11] or in the survey by Bunke and Sanfeliu
[12], with special interest in Miclet’s chapter[13].
Surveys or introductions to the subject have been pub-

lished over the years, some of which are those by Lee[14],
Sakakibara[15], Honavar and de la Higuera[16], and de la
Higuera[17].
Scientists in the area may need access to some good text-

books on related areas: on formal languages books by Harri-
son[18] or by Hopcroft and Ullman[19] give most of the el-
ementary definitions and results. Parsing issues are discussed
in Aho and Ullman’s textbook[20]. On Machine Learn-
ing the books by Mitchell[21], Natarajan[22] or Kearns
and Vazirani[23] all give elements that are of use to derive
grammar induction results. Another place where structural
pattern recognition issues are discussed is Gonzalez’s book
[24]. An early book with many important mathematical re-
sults on the subject of automata inference is that by Trakht-
enbrot and Barzdin[25].

1.3. Organization of this paper

Because of the wide amount of subjects grammatical in-
ference is related to, a technical paper would require many
definitions, special notations and have to quote dozens of
results from formal language theory, inductive inference,
probability theory or grammar induction. We have chosen
here to only introduce the subject and the papers from
the field. Therefore hardly any formalism will be provided
in this paper, and mathematics will be described through
text only. This informality should not induce the reader
to believe that the field of grammatical inference has no

strong mathematical basis. On the contrary, formalization is
a strong issue, and even in practice, algorithms with sound
mathematical properties obtain better results than the heuris-
tics as has been shown during the ABBADINGO competition
[26]: a variety of open problems were set for the commu-
nity to solve: they involved identifying a hidden automaton
from raw data. A number of techniques were tested, with
the better results obtained from algorithms based on char-
acterizable methods[27].
We present in Section 2 the theory of the field with spe-

cial interest in those results related to inductive inference (in
Section 2.1) and on the tractability issues (in Section 2.2).
The special case where one can question a teacher about
the grammar to be learned has active learning as theoreti-
cal framework, and is described in Section 2.3. In Section
2.4 the main results concerning the distribution free PAC
model for grammars are given, and in Section 2.5 we study
the case where Kolmogorov complexity is used to define
simple distributions, leading to models calledSimple-PAC
or PACS.
In Section 3 the algorithmics are described. Special atten-

tion is given to the case of automata learning (Section 3.1)
and context-free grammar induction (Section 3.2). The later
problem is closely linked with that of learning tree automata
(Section 3.3). As most of these problems can be proved in-
tractable in an associated combinatorial search setting, arti-
ficial intelligence techniques have been tested with varying
degrees of success (Section 3.4). A special case is that of
learning from positive examples only, which is a usual case
in applications, moreover in those of pattern recognition:
this is studied in Section 3.5. In the same sort of setting
learning probabilistic automata or grammars has sometimes
been successful and certainly is today an important open
line of research; this is discussed in Section 3.6. In Section
3.7 some other formalisms (patterns, categories) that can be
used to represent languages are described.
In Section 4 the main applications of grammar induction

are described: robotics (4.1), pattern recognition (4.2), com-
putational linguistics (4.3), speech recognition (4.4), auto-
matic translation (4.5), computational biology (4.6) and a
variety of other applications (4.7) including inductive logic
programming, document management, compression, agents,
time series and music. We will conclude with open ques-
tions and new trends of research in Section 5.

2. The theory

The main focus of research in the field of grammatical in-
ference has been set on learning regular grammars or deter-
ministic finite automata (DFA). Algorithms have been pro-
vided dealing with learning such grammars in a variety of
settings (and will be discussed in more detail in Section 3.1):
when both examples and counter-examples are provided or
when the learning algorithm is allowed to question some
teacher.
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Reasons justifying that most attention has been focused
on this class of grammars are that this problem may seem
simple enough but theoretical results make it already too
hard for usualMachine Learningsettings (see Section 2.4);
and for those learning paradigms in which DFA learning is
possible, such as active learning or learning from polynomial
time and data (see Section 2.2), the positive results do not
seem to hold for the next level of the Chomsky hierarchy,
the context-free grammars.
In the framework ofactive learningit is known since

Angluin’s results[28] that DFA can be inferred through a
polynomial use of aMinimal Adequate Teacher(MAT). It
is conjectured (also by Angluin[29]) not to be the case for
richer classes. In the setting of learning from a bunch of
examples, this is even clearer as DFA can be polynomially
identified from time and data, but not context-free grammars
nor non-deterministic finite automata[30].

2.1. Inductive inference

Inductive inference deals with the problem of identifying
a function given some of its values. It can be set in a variety
of manners, but the question ends up by being that ofidenti-
ficationof some hidden function. Early research in this field
is due to Solomonoff[31]. A first convincing model for the
case of grammatical inference was introduced by Gold[32]:
identification in the limit. The setting of this model is that of
on-line, incremental learning. After each new example the
learner (calledinductive machinein this setting) must return
some hypothesis. Identification is achieved when the learner
returns a correct answer and does not change its mind af-
terwards. Of course, this must hold for any target function
(grammar) in the class, and any admissible presentation of
the examples. There are two traditional settings:learning
from text, where only the positive instances are given to the
learner, but each one of these must appear at some point
or another of the presentation, andlearning from informant,
where examples are labelled as positive or negative and
each possible string must appear. It is important to note at
this point that there can be a difference between learning or
identifying a language and identifying a grammar. Indeed,
in the usual case where there may be an infinite number of
equivalent grammars (two grammars are said to be equiva-
lent if they generate the same language) one may have the
possibility of identifying a language, but never a grammar,
at least from raw data only.
Gold further developed his results[33] which mainly

state that:

• if we are given examples and counter-examples of the
language to be identified, and each individual string is sure
of appearing, then at some point the inductive machine
will return the correct hypothesis;

• if we are given only the examples of the target, then
identification is impossible for any super-finite class of
languages, i.e. a class containing all finite languages and
at least one infinite language;

• Angluin [34] strengthens this result by proving that classes
for which an infinite sequence of languages strictly in-
cluded one into each other can be constructed (this has
been introduced byWright[35] and is calledinfinite elas-
ticity) cannot be identified.

The field has continued to deal with important questions:
what classes of functions can be identified? Can we modify
the paradigm, for instance requiring to refute the class, stat-
ing that no function in the class is correct? Is it possible to
learn in a monotonic way (converging slowly)[36]? Alter-
native models dealing with approximation issues have also
been proposed (for instance by Wharton[37]).
A good survey of the field is due to Angluin and Smith

[38]; COLT and ALT proceedings is where most results can
be found. Both communities have their webpages[7,8].

2.2. Polynomial questions

Once admitted that DFA can be identified in the limit
[33], a reasonable question is that of being able to do so in
polynomial time, even if the meaning of this also needs ex-
ploring. A preliminary yet essential question is that of the
measure of the data size. Pitt[39] discusses this point with
care: the size of a set of strings (or trees) must be polynomi-
ally linked with the size of its encoding; for alphabet sizes
larger than one this means that taking the size as the sum
of the lengths of all strings in the set, or some function of
the number of strings and the length of the longest string
are two reasonable ways of counting.
Negative results concerning the combinatorics of the

problem have been given by Gold[33], who proves that the
problem of finding the smallest DFA consistent with a given
set of strings is NP-hard. Angluin[40] proves that this is
the case even when the target automaton has only 2 states
(this peculiar result is quoted by Pitt and Warmuth[41]), or
even when only a very small fraction of all the strings up to
lengthn, wheren is the size of the target, is absent. Trakht-
enbrot and Barzdin[25] had shown previously that when
all such strings were present the problem was tractable.
This is not enough to obtain a direct proof that learning in

polynomial time is impossible but Angluin proves the hard-
ness of the task even usingmembership queries[42] (a string
can be proposed to the oracle who must answer if the string
belongs to the target language or not) orequivalence queries
[43] (a grammar is proposed to the oracle who answers yes
if the hypothesis is equivalent to the target, and provides a
counter-example if not). In the second case, Angluin intro-
duced the combinatorial notion ofapproximate fingerprints
of independent interest: these correspond to a subset of hy-
pothesis out of which only a small fraction can be excluded,
given any counter-example, resulting in the necessity of us-
ing an exponential number of equivalence queries to isolate
a single hypothesis. Gavaldà studies this notion with care in
[44]. Pitt [39] uses this result to prove the intractability of
the task of identifying DFA with a polynomial number of
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mind changes only. The problem is proved to be hard[45],
and by typical reduction techniques[46] is proved complete
(hardest) in its class. But Pitt’s model may be itself too de-
manding, as it is closely linked with Littlestone’s learning
model[47].
Based on teaching models[48,49], de la Higuera proposes

the model ofidentification in the limit from polynomial time
and data[30]. This model can be seen as intermediate be-
tween those of identification in the limit and PAC in the
sense that harder classes such as context-free grammars or
non-deterministic finite automata are not learnable whereas
DFA are. For a class of grammars to be learnable in this
setting it is required that each grammar in the class admits
some robust characteristic set of polynomial size. The set
is characteristic in the sense that from it the learning algo-
rithm will return some equivalent grammar, and robust in
the sense that this remains true whenever this characteristic
set is included in any correctly labelled learning set.
Valiant’s PAC model is a model considered indicative of

how hard learning is for a specific class. In the case of
grammar induction mainly negative results are known. The
model can be made easier by limiting the classes of possible
distributions. This is done by means ofSimple-PAC or PACS
settings. We will discuss these in Sections 2.4 and 2.5.

2.3. Active learning

Active learning is about learning with queries asked to
an oracle. The model has been introduced by Angluin[50].
In a setting more general than that of grammar induction,
bounds on the number of queries needed to learn can be
found in Ref.[51], whereas Angluin[42] gives an overview
of various query systems.
A recent survey paper of the field (also by Angluin) is

Ref. [29], where the openness of the problems related to
non-deterministic finite automata or context-free grammars
is recalled. Membership and equivalence queries together
form aMinimal Adequate Teacher.With this systemAngluin
proves that regular languages can be identified with only a
polynomial amount of queries[28]: the proposed algorithm
is calledL∗. Balcazar et al.[52] study how to use more of
one sort of queries or the other, but the tradeoff is that you
need an exponential number of membership queries in order
to simulate an equivalence query. In the case of context-free
grammars the negative proofs by Angluin and Kharitonov
[53] with MATS are related to cryptographic assumptions.
On the other hand, if structural information is available,
Sakakibara proves the learnability of the class of context-
free grammars in this model[54].
Returning to the DFA case, it should be noticed that the or-

acle has no reason to return the counter-example the learner
really needs. The case where this is not so, and the oracle
returns the smallest counter-example is studied in Ref.[55].
Sufficiency of query systems is presented by Bshouty et

al. [56].Angluin presents a sufficient condition (approximate
fingerprints) for languages to be learnable by equivalence

queries in Ref.[43]. The condition is proved necessary by
Gavaldá[44]. If a class does not have approximate finger-
prints, then (unless P=NP) it can be learned in polynomial
time through equivalence queries. Obviously, the result does
not apply to any well-known language classes.
The model has received considerable attention and there

are many papers on learning with different sorts of queries.
Sakakibara[57] learns context-free grammars from queries;
Yokomori [58] learns 2-tape automata from both queries
and counter-examples, and in Ref.[59] non-deterministic
finite automata from queries also in polynomial time, but
depending on the size of the associated DFA; Vilar extends
queries to translation tasks in Ref.[60], Maler and Pnueli
[61] learn Büchi automata from queries on infinite strings.

2.4. PAC learning of languages

Exact learning has always been considered a hard to
achieve goal. In a setting that is meant to represent a more
realistic situation, Valiant[62] introduced theprobably ap-
proximately correct(PAC) model, which has also been stud-
ied in the context of grammar induction (see Natarajan’s
book [22], with also a nice discussion about these issues
and special interest to the DFA case).
An unknown distribution over all possible examples

exists, and examples are sampled under this distribution.
Learning is done from this sample, and the result is tested
under the same distribution. It is required to be able to
learn under any distribution, but, since one may be unlucky
during the sampling processes, exactitude is not required: a
small (�) error is permitted, and one should not do worse
than this error rate in more than very few cases (a fraction
of all possible cases, bounded by�). Number and size of
examples should be polynomial in 1/�, 1/�, and the size
of the target; the run-time complexity needs to be polyno-
mial in the same parameters, plus the length of the longest
example that has been seen.
In this PAC setting few positive results (for grammatical

inference) are known. One way to obtain positive results is
by means of defining subclasses for which theVC-dimension
(studied by Ishigami and Tani[63] for the case of DFA) can
be made finite. This is done by Bhattacharyya and Nagaraja
[64]: terminal distinguishable regular languages are defined
as grammars that are backward deterministic and strongly
unambiguous. Another positive PAC-type of result is given
by Ron et al.[65], when restricting to stochastic acyclic
DFA, with distinguishable states(for any 2 states there is
a string whose difference in probability when using these
states as initial is above a given threshold): see Section 3.6.1
for details.
Even for the case of DFA, most results are negative:

Kearns andValiant[66] linked the difficulty of learning DFA
with that of solving cryptographic problems believed to be
intractable (a nice proof is published in Kearns and Vazi-
rani’s book[23]).
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2.5. Simple PAC

The PAC model introduced by Valiant[62] has also re-
ceived criticism. For instance the obligation to learn under
any distribution may seem too hard. It also may be the case
that some concepts (those “hard” to encode) may not be
learnable whereas the more “natural” ones may be learnable.
Based on Kolmogorov complexity[67], simple distri-

butions are those where simple (admitting short descrip-
tions) strings have high probability[68]. This is the set-
ting for Simple-PAC learning. Denis et al. further restricted
the model (it is called PACS) by allowing a benign teacher
to select the learning sample, following a distribution that
“knows the concept to be learned”. Technically, it requires
replacing the Kolmogorov complexity by the conditional
Kolmogorov complexity. Parekh and Honavar[69] proved
this was possible for the case of DFA.

3. The algorithmics

Once most negative results described in the previous sec-
tion induced people to believe that nothing could be done,
pragmatic considerations (problems that need solving, data
from which some automaton or grammar has to be inferred)
required new techniques for grammatical inference. Some of
these were mere heuristics, based on good properties regular
languages had, and that might be detected: Miclet describes
a variety of these early heuristics in[11] or [13]. We will
present these methods and algorithms by grouping them in
classes corresponding to the problems they are intended to
solve.

3.1. About DFA learning

The most well-known problem in grammatical inference
is that of learning a deterministic finite automaton from both
positive and negative data. The fact that the associated com-
binatorial problem (is there a DFA with at mostn states
consistent with this data?) is intractable was established by
Gold [33] and Angluin[40] in 1978 and improved by Pitt
and Warmuth[41] where it is shown that even finding a
polynomially larger DFA than the minimum DFA, consis-
tent with the data, is NP-hard. Gold[33] gave a first algo-
rithm that works when the data is sufficient but refuses to
generalize if it is not (even though no algorithm can decide
in which of the two cases one stands). Trakhtenbrot and
Barzdin proved that in the special case where all the data up
to a certain length are presented there exists an algorithm
that can identify DFA. But that amount of data is too large
for the algorithm to be of practical use.
Algorithm RPNI, proposed by Oncina and García, is ca-

pable of generalizing (even if perhaps very badly in the
worse cases), and identifying DFA. A nice lattice setting of
the problem is presented by Dupont et al.[70]: nodes of the
lattice correspond to all the different automata that can be

obtained by merging states from the maximal canonical au-
tomaton (a star-like automaton that exactly recognizes the
positive data from the sample). The number of nodes, and
hence the size of the lattice, is exponential in the size of the
initial automaton. Even if the lattice representation is of no
practical use (full exploration of this lattice is doomed, due
to its size), it does provide us with means to prove conver-
gence of new algorithms. Lang[71] showed experimentally
that depth-first techniques commonly used to cope with the
size of the lattice do really badly until a certain (but expo-
nential in the size of the target) quantity of data is given.
Lang’s results clearly depend strongly on his particular ex-
perimental setting, but even if taken as a worse-case setting,
join the theoretical arguments against the possibility of be-
ing able to learn DFA efficiently in the general case.
In 1997, theABBADINGO competition[26] restored inter-

est in the problem of DFA inference, and although a neural
network technique seemed to do well, at the end, anevidence
driventechnique developed by Price, based on classical state
merging, won[27]. The idea was to try different merges but
keep the one that had highest score. A (cheap) alternative
to evidence driven heuristics is data driven heuristics[72],
where the idea is to try merging those states through which
most information is known. Some problems from that com-
petition are still open.
Artificial intelligence techniques were used on this prob-

lem also, as for instance TABU search by Giordano[73] or
genetic algorithms by Dupont[74]. Other artificial intelli-
gence techniques are described in Section 3.4.
Another idea is to learn a non-deterministic automaton

instead. In this line Denis et al.[75] offer an interesting
approach, andYokomori[59] learns non-deterministic finite
automata, but from queries and counter-examples.
Work has continued since, with best results obtained to

date (on large automata) by de Oliveira[76] and Lang[77].
Parallel versions of the basic algorithms have been studied
by Balcazar et al.[78] but do not seem to have been tested
on large problems.

3.2. The case of context-free languages

Learning the entire class of the context-free languages
seems to be intractable whichever learning model you
choose. Nevertheless, the class can of course be identified
in the limit, and the question as to whether it can be identi-
fied with a polynomial number of queries to a MAT is still
an open question, but widely believed to be also intractable
[29]. One barrier is that of determinism, and the other that
of linearity, motivating early studies for the class of linear
languages[79]. But it should be noticed that in the setting
of identifying from polynomial time and data this class is
still not learnable[30].
One first option to obtain positive results is that of extend-

ing results from the class of the regular languages (when
represented by DFA). This is the line followed foreven linear
languagesfor which a number of results is known: Takada
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[80], Sempere and García[81] and Mäkinen[82] have all
worked on this class and give similar results by different
techniques. Even linear languages are generated by gram-
mars where the rules are balanced: the right hands are com-
posed either of terminal symbols only, or are of the form
uT v where onlyT is non-terminal andu andv have iden-
tical length. Following this trend, other results concerning
this class of languages (or similar) are an extension to a hi-
erarchy of linear languages[83], the case where only pos-
itive strings are available[84] (but then only a sub-class is
identifiable), and the case where the positive information is
structural (if you know where thecenterof the strings is)
[85]. Different surveys on the subject have been written by
Yokomori [86], Lee [14] or Sakakibara[15]. In Ref. [87] a
larger class, that of deterministic linear grammars, is proved
by de la Higuera and Oncina to be identifiable from poly-
nomial time and data. A general way of detecting if this is
the case for other classes of grammars is given by the same
authors in Ref.[88]. Giordano[89] proposes to see the prob-
lem as that of an exhaustive search in a lattice defined by the
Reynolds coverover grammars in Chomsky normal form.
In a series of papers, Sakakibara gives techniques to learn

context-free grammars from structured data[54], data con-
taining positive structured data[90], unstructured data by
genetic algorithms[91] and data containing some structure
again by genetic algorithms[92]. There are also a number
of very specific results that will be of interest to special-
ists: Ishizaka[93] learns another restricted class of context-
free grammars, that of the simple deterministic grammars.
It should be noticed that these grammars are not linear.
A special case should be made of Nevill-Manning and

Witten’s algorithm SEQUITUR [94]. Although it cannot be
included into the class of grammar induction algorithms,
as it has no generalization capacity, it is an elegant way of
deducing a context-free grammar from just one (usually very
long) sentence. This grammar can then generate just one
string: the original one. Running in linear time and space,
SEQUITUR is more than just a compression technique as
it also explains the data it has to compress by giving its
structural nature.

3.3. Tree automata

Tree automata are the direct extension of DFA and NFA
for trees instead of strings. They also provide a smooth link
between automata and context-free grammars. Learning tree
automata has already been dealt with in Fu and Booth’s
survey[10].
There are very strong links between learning context-free

grammars from bracketed data (or the actual skeletons or
parse-trees without inner labels) and learning regular tree
grammars[54].
The advantages are nevertheless that a deterministic case

exists, allowing to re-use results from DFA learning in this
setting. An extension of RPNI to deal with trees is provided
by García and Oncina[95]; a tree version of the best known

algorithm for stochastic DFA (ALERGIA: see Section 3.6.1)
is proposed by Carrasco et al.[96]. For the case of learning
from positive structural data only, Knuutila has presented a
state of the art in Ref.[97]; for the same problem, Fernau
[98] extends to tree automata results allowing to state when
a class is identifiable from positive data only.

3.4. Artificial intelligence approaches

The number of possible automata or grammars that might
be adequate with a given learning sample is such that arti-
ficial intelligence techniques might be an answer. The com-
binatorics of the problem of grammatical inference involve
mainly the space in which things should be looked for. In the
case of the regular languages, this is described by Dupont
[74]. The VC-dimension of finite automata is studied by
Ishigmai and Tani[63]. The search space for the context-
free grammar problems has hardly been studied, but it has
been seen as a version space by Vanlehn and Ball[99], de-
scribed in Ref.[89] by Giordano, and also used by Langley
and Stromsten[100] by means of a simplicity bias and a
representation change. Dupont used genetic algorithms to
deal with a population of DFA, in the partition lattice set-
ting defined previously (Section 3.1). Using TABU search
has also been looked into by Giordano[73]. In the case of
context-free grammars, genetic algorithms (this time on the
rules) were tried by Sakakibara and Kondo[91]. Experi-
ments suggest that the knowledge of part of the structure
(some parenthesis) may help and reduce the number of gen-
erations needed to identify[92]. A rough set approach is
proposed by Yokomori and Kobayashi[101]. Oliveira and
Silva [76] proposed algorithm BIC that attempts to merge
states, starting from the prefix tree acceptor, but that can
back-track intelligently, so as to avoid testing consistency
for automata for which inconsistency should be derived from
prior testing; this is done through conflict diagnosis. The do-
main they are concerned with is that of digital circuit design
(synthesis of a finite state controller from descriptions of ob-
served input/output signals). In this case, the problem is not
so much a problem of approximately learning some good
enough machine, as that of exactly discovering the correct
smallest machine, and doing this from as little data as possi-
ble. Therefore, the benchmarks they use correspond to hard
problems, but in their class. It should be noticed that due
to the characteristics of the setting, the sizes of the inferred
automata are necessarily limited: from 10 to 20 states.

3.5. Learning from positive data only

The problem of learning from positive data alone is prob-
ably the most practical of grammatical inference settings.
There are many papers dating from the 1970s and the 1980s
dealing with this subject, published mainly inside the pat-
tern recognition community. A good survey is that of Knuu-
tila [102], who classifies the methods into heuristic and
characterizable ones. Characterizable methods for the entire
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class of the regular languages are limited by Gold’s result
[32]. Angluin [103] defines reversible languages and gives
an algorithm for this sub-class of the regular languages. An-
gluin gives other theoretical general results (as to sufficient
conditions to be able to identify from positive examples
only [34]).
García and Vidal[104] give another algorithm for the

class ofk-testable languages, also known as local languages
and that correspond to an unnecessarily stochastic version of
n-grams. In the same line of research even linear languages
can be specialized in such a way as to be able to identify
them from positive examples only[84]. Denis et al.[105]de-
fine sub-classes of languages that can be identified through
non-deterministic finite automata by positive data only.
An elegant generalization of these results is proposed by
Fernau[106].

3.6. When we talk about probabilities

For a number of reasons the above models can be unsat-
isfying: incapacity of dealing with noisy data, hardness to
learn from positive data only, true distributions that are not
arbitrary but context dependent.
A classical idea is to introduce probabilities in the model.

The most famous of such probabilistic finite state machines
arehidden Markov models(HMMs). Alternative machines,
and closer to objects from formal language theory are
stochastic automata and stochastic context-free grammars.
Stochastic context-free grammars are context-free gram-
mars where to each rule is associated a probability, in
such a way that the sum of the probabilities of all possible
expansions of any non-terminal symbol is 1. A stochastic
automaton is the graphical representation of a stochastic
regular grammar, with determinism and non-determinism
defined as usual.
Stochastic grammars and automata thus define a distribu-

tion over all strings. Specific parsing algorithms have been
defined, and there has been quite a lot of work over the
years around thesemodels (see for instance Refs.[107,108]).
There are lot of difficult issues involved with learning such
models: the question of correctly estimating the probabili-
ties is often hard, smoothing becomes an important ques-
tion, and finally, one should not forget that the underlying
hypothesis is not that the language is regular or context-free,
but that the distribution is. Therefore, learning a stochastic
automaton involves a modification of bias from what has
been presented before: even if the underlying language is
regular, the distribution may not be.

3.6.1. Stochastic automata
Stochastic finite state machines have been introduced

more than 30 years ago[107,108]. They can be used in
a variety of settings, and have seen independent theories
developed because of that. Common features involve the
algorithmics used for parsing with these machines: the
VITERBI algorithm [109] computes for a given string the

most probable parse. But finding the most probable string
(in the non-deterministic case) is NP-hard[110]. Baum
[111] gives techniques enabling to estimate the probabilities
of a given model from a fixed bunch of data. Casacuberta
[112] explores the relationship between probabilistic finite
automata and HMMS.
Negative results concerning the possibility of approximat-

ing given distributions by means of stochastic automata can
be found in Abe and Warmuth’s paper[113]. Negative re-
sults concerning the inference of these automata (in a very
general setting) are by Kearns et al.[114]. Description of
the process of identification in the limit with probability 1,
and useful tools can be found in Angluin’s unpublished re-
port [51].
The inference of these automata was made possible by

different techniques: algorithm ALERGIA [115] learns them
from a polynomial amount of data, but the proof in that pa-
per is not convincing. For a special class of automata, those
that are acyclic (i.e. the language is finite), Ron et al.[116]
give an algorithm that provably converges and even PAC-
learns if a specific condition called�-distinguishability is
met. Stolcke and Omohundro[117] follow a Bayesian ap-
proach in order to learn stochastic automata, but no proof
of identification is given. Young-Lai and Tompa[118] use
ALERGIA for document classification, improving the algo-
rithm to take into account better its parameters, and avoid-
ing those merges not substantiated by enough evidence. A
data driven heuristic[72] based on ALERGIA is presented
by Goan et al.[119]: the authors claim good experimental
results. Basing oneself on a dynamic programming compu-
tation of the relative entropy[120], algorithm MDI [121]
does better than ALERGIA on computational linguistics and
speech tasks. The heuristic can also admit a data driven ap-
proach and then does even better[122]. Alternatively, one
can use neural networks to infer stochastic automata[123].
Carrasco and Oncina[124] give a formal proof of the identi-
fication in the limit with probability one of a weaker version
of ALERGIA, RLIPS, whereas de la Higuera and Thollard
[125] extend this proof to ALERGIA (Stern-Brocottrees are
used to identify the probabilities). The case where the strings
in the learning sample are drawn without repetitions is stud-
ied by de la Higuera[126]. Finally, one important issue is
that of smoothing[127]: the inferred automaton or gram-
mar can give null probabilities to some unseen events, and
these events might turn up: the effects may be disastrous.
Knowing how to redistribute part of the mass of probabil-
ities on such unseen events is of crucial importance; some
techniques on finite automata are described by Dupont and
Amengual[128] or by Thollard[122].

3.6.2. Stochastic context-free grammars
The question of inferring probabilistic context-free gram-

mars is going to prove even harder than that of doing the
same with finite state machines. Yet the problem has been
shown to be of interest in speech recognition[129] or in
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computational biology[130] because these grammars can
capture the long-term dependencies that can arise for in-
stance in folding, and thus in secondary structure. A first
problem that requires study is that of checking if a given
grammar is consistent: it is easy to derive a set of rule prob-
abilities for which there is a strictly positive probability that
the derivations of the grammar do not halt: larger and larger
derivation trees are constructed that (with probability one)
never stop expanding. Booth and Thompson[131] give con-
sistency conditions which are proved to hold if the probabili-
ties are estimated from the data[132]. Another “elementary”
problem is that of parsing with such a grammar[133]. There
are two levels of learning problems:

• If you know the grammar rules you can try to estimate the
probabilities that fit best. The usual algorithm in that case
is the well-known inside–outside algorithmintroduced
by Baker [134] and studied by Lari and Young[135].
Alternative estimation techniques exist (as for example
by Ra and Stockman[136] or Sakakibara et al.[130]).

• You can first learn the rules and then the probabilities.
If you have additional information about the data, such
as some of its structure, you can turn to adapting a tree-
automaton learning algorithm (this is done by Sakakibara
[54,90]) if this is not the case, it may be necessary to learn
a simplified automaton, corresponding for instance to a
local language, and then estimate the probabilities: this
path is taken by Rico-Juan et al.[137]; the direct approach
of inferring directly the context-free grammars is hard
and seems to be attacked only by artificial intelligence
techniques, such as genetic algorithms[138].

3.7. Other language representations

Obviously, grammars forming the Chomsky hierarchy
correspond to the best-known way of describing languages
but there have been other ways, including categorial gram-
mars and patterns.

3.7.1. About pattern languages
Pattern languages have first been studied by Angluin

[139]. They are defined by patterns which are sequences
of letters, variables and wild-cards. Strings are in the lan-
guage if they can match the pattern. Different authors have
studied variants of pattern languages. Goldman and Kwek
[140] provide a good picture of the situation and pointers to
the field that has developed independently, with most work
done inside the ALT and COLT communities. There is a lot
of very specific research in the field, and a survey of these
would require a whole article. Just to give the flavor of this
research: typical pattern problems have been proved hard
(even checking membership is NP-complete); the hardness
of the combinatorics can be seen by considering the VC-
dimension [141], so simplification of the task has been
done by introducing types[142] or considering the case
where there is only one pattern[143]. Alternative learning

techniques have involved trying to learn pattern languages
by means of case-based algorithms[144] or studying the
stochastic case[145].

3.7.2. Categorial grammars
Computational linguists have long been interested in

working on grammatical models that would not fit into
Chomsky’s hierarchy. Furthermore, their objective is to
find suitable models for syntax and semantics to be inter-
linked, and provide a logic-based description language. Key
ideas relating such models with the questions of language
identification can be found in Kanazawa’s book[146], and
discussion relating this to the way children learn language
can be found in papers by a variety of authors, as for in-
stance Ref.[147]. The situation is still unclear, as positive
results can only be obtained for special classes of gram-
mars (see for instance Ref.[148]), whereas, here again, the
corresponding combinatorial problems (for instance that
of finding the smallest consistent grammar) appear to be
intractable[149].

4. Applications

Applications based purely on grammatical inference are
few, but many use grammatical inference ideas or tech-
niques. As described in the introduction, there is still ample
room to find a task where these techniques have done much
better than other machine learning or pattern recognition
programs. The applications are of interest also because they
have often lead to thorough progress in the algorithms of
the fields. Having to deal with large alphabets, noisy data,
very long strings, scarcity issues and other practical matters
has allowed to introduce new problems and to better some
of the existing algorithms. We shall point out to these new
ideas, when possible.
The early papers in pattern recognition (by Fu and

Booth [10] or Miclet [13]) and Sakakibara’s article[15]
are some of the few places where survey work has taken
place.

4.1. Robotics and control systems

Map learning is one potential application for grammat-
ical inference. Dean et al.[150] consider the case where,
whilst visiting an environment, the robot may perceive its
observation with some possibility of error (but less than
0.5). Related work is by Rivest and Schapire[151]. As an-
other example, Rieger[152] constructs a prefix tree from
robot traces. This tree can of course be interpreted as an
automaton. Because of sensor imprecision, an NFA, or bet-
ter, a stochastic automaton describes the model best and can
be used for further navigation. In control theory, Luzeaux
has also used grammar induction techniques in the field of
control theory[153].



1340 C. de la Higuera / Pattern Recognition 38 (2005) 1332–1348

4.2. Structural pattern recognition

Structural pattern recognition (for a general description
see Bunke and Sanfeliu’s book[12]) was an early applica-
tion of grammatical inference. There are many publications,
mainly from the 1970s. Miclet[11,13] and Fu and Booth
[10] give details of some of the applications of grammatical
inference to textures in images, fingerprints classification,
dynamic systems or recognition of pictures of industrial ob-
jects. Two representative studies are those by Lucas et al.
[154], where image contours are learned, and by Ney[155],
for a general survey. Ron et al.[116] also describe a charac-
ter recognition task by learning stochastic finite automata.

4.3. Computational linguistics

There has always been a lot of interest in relating gram-
matical inference with natural language. One direction has
been taken by Adriaans through shallow grammars[156]
(using categorial grammars (see Section 3.7.2): this theo-
retical work is the backbone of the EMILE prototype[157].
Another direction has been followed by Mohri[158]. Mohri
argues that basically DFA, transducers or probabilistic au-
tomata are in fact the same object, and that only the output
function changes. This leads to the construction of a system
to manage these objects[159].

4.4. Speech

Speech technology makes use of language models which
in turn require the capacity of parsing uttered sentences with
respect to a language model. Typical language models are
n-grams[160], but HMMs can also be used[161].
Finite automata have been considered as alternative lan-

guage models for nearly 10 years[162]. Thollard et al.[121]
use stochastic automata as an alternative model. Smoothing
intervenes in this task also[128]. Amengual et al.[163] of-
fer a nice survey of the use of grammar induction techniques
for the task of constructing language models. Ye Wang and
Acero[164] obtain reasonable results on theATIS task[129]
by means of learning context-free grammars.

4.5. Automatic translation

Oncina et al.[165]produced algorithmOSTIA to deal with
learning subsequential transducers. These are deterministic
finite automata with outputs both on the edges and the final
states. The inputs for learning are in this case pairs of strings
representing the input sentence and the associated output
sentence. Improvements of the initial algorithm by Oncina
and Varó[166] involve using specific domain knowledge in
order to hope to be able to learn partial functions. A version
working with translation queries was developed by Vilar
[60], and Oncina again[167] uses a data driven approach in
order to better OSTIA’S results. Further ideas to better the
alignment between text and its translation can be found in

Ref. [168], whereas the use of OSTIA in general translation
tasks and projects is surveyed by Amengual et al.[169].

4.6. Applications in computational biology

Molecular biology has necessarily the data and the prob-
lems for grammatical inference scientists to work on. For
the past 10 years this has been so, and even if the most suc-
cessful methods in the field are not necessarily those using
grammars or automata, there are sufficient features in lan-
guage theory for work to continue. Brazma et al.[170] pro-
pose an overview of the situation, with special emphasis on
pattern languages. Determining common patterns in DNA,
RNA or protein sequences allows to build alignments, dis-
criminate members of families from non-members, and the
discovery of new members. Wang et al.[171] apply such
techniques for DNA sequence classification tasks: patterns
are induced through a learning stage, and used to score in
a classification stage. Sakakibara et al.[130] learn stochas-
tic context-free grammars fromtRNA sequences. The fact
that induced grammar is context-free allows to discover and
model part of the secondary structure. In the same line of
research, secondary structure prediction was detected also
by context-free grammars by Abe and Mamitsuka[172]. An
experimental result by Salvador and Benedí[173] is that a
combination of context-free grammars and bi-grams obtains
good results: they use Sakakibara’s algorithm[90] on data
that can present some very structured regions isolated and
others that are not structured.
A lot of more general work concerns the study of hidden

Markov models, their relationship with grammars. LyngsZ et
al. study all typical distances between distributions in[174]
and prove intractability results in[175]. The technique is
improved to be able to also compare context-free stochastic
grammars[176].

4.7. Other applications

4.7.1. ILP
Inductive logic programming[177] has several links

with grammatical inference. It shares some of its objec-
tives (when learning recursive rules) and sometimes its
techniques. Boström’s system MERLIN parses the data by
the background knowledge and uses this information to
learn a deterministic finite automaton[178], or a stochastic
one [179]. System GIFT by Bernard et al.[180,181] im-
proves on MERLIN, by learning directly tree automata, thus
not needing to lose representation capacity by having to
linearize the data.

4.7.2. Document management
There are a number of possible applications dealing with

documents as data. They either involve constructing dictio-
naries[182], inferring the grammar generating the tags that
have been used[118].
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The rise of XML has lead to some new challenges for the
field (Fernau points out some of these in[183]). Chiidlovski
obtains some preliminary results by using context free gram-
mar learning techniques[184]. For these reasons there has
lately been increasing interest in tree automata (see Section
3.3) and tree patterns[185].

4.7.3. Compression
As described in Section 3.2, SEQUITUR [94] learns a

grammar from just one string. The obtained grammar can
then only generate the string SEQUITUR has learned from.
Compression results with this method are comparable to the
best compression methods. Moreover, SEQUITUR extracts
the structure of the text.
N-grams have allowed to build good compression

schemes on text. Using the same sort of ideas, Rico-Juan
et al. [137] first learn ak-testable tree automaton, and then
probabilize this. The obtained model is then used with very
good compression rates on tree-like data (XML files, for
instance).

4.7.4. Applications to agents
Intelligent agents should have the ability to learn. They

are concerned with many learning problems.An original one
is that of learning the strategy followed by another agent in
a multi-agent world. This can be for negotiation or for col-
laboration. The interaction can be described as a repeated
game, and the agent’s strategy can be modelled as a DFA,
at least when this strategy is rational: a rational strategy for
an agent is just a Moore machine. After each move by its
opponent, the agent changes state and acts deterministically
following the state it is in. From just one “game” it is possi-
ble to learn the opponent’s strategy as is shown by Carmel
and Markovitch[186] who adapt Angluin’sL∗ algorithm.
The same authors[187] study the related issues and, as in
this case the learning is active, how to handle the risk in-
volved with exploration to get hold of new learning data.
The algorithms have been tested and have obtained good
results in typical applications for the field, based on the it-
erated prisoner’s dilemma.

4.7.5. Applications to time series
It would certainly seem that DFA or PFA could in some

way be used as “next value” predictors for the case of dis-
crete time series. Probably because other methods must do
better there has been very little done in this context. One
noticeable exception is the work by Giles et al.[188] who
learn a stochastic finite automaton through neural network
techniques, and then use it to predict if the value of a cur-
rency is to go up or down on the currency market. Results
correspond to a 47% error rate, which in the case of cur-
rency prediction seems of interest.

4.7.6. Data mining
There have been recent applications in the emerging fields

related with the World Wide Web. We only give 2 examples

here of problems on which grammatical inference tech-
niques have been tested:

• Levene and Borges[189] intend to learn user behaviors
from their navigation patterns;

• Chidlovskii et al.[190]generate wrappers for meta-search
engines semi-automatically through learning a simplified
transducer: given a web page returned by a search engine,
where only the first query is labelled, the grammar for
the entire page is constructed. This can then be used to
parse new pages. In Ref.[191]Chidlovskii usesk-testable
languages for this purpose.

4.7.7. Music
When dealing with music, representation issues acquire

a specific importance: both pitch and length have to be en-
coded, and polyphony is clearly going to be a hard question.
Cruz and Vidal[192] use stochastic automata to model mu-
sic styles (Ragtime, Bach, etc.); the automaton is inferred
from a number of pieces of music and can then be used to
classify a new piece or even to produce a melody.

5. New trends, open problems

As a conclusion to this survey we would like to emphasize
certain research directions that should be of importance in
the next few years.

• Context-free grammars: As pointed out in Section 3.2,
most non-trivial theoretic results concerning the learn-
ability of these models are negative. But the challenge re-
mains open. The main directions that have been followed
consist in using some form of simplicity bias (such a line
has been followed byAdriaans andVervoort[157] or Lan-
gley and Stromsten[100]), or by exploring the set of all
possible rules (by Sakakibara and Kondo[91] or Gior-
dano[89]). On the other hand, extensions of standard al-
gorithms for DFA have been proposed for certain classes
of linear deterministic grammars. The advantage of this
alternative is that of obtaining characterizable methods,
and not heuristics. It is hard to tell which line will win on
the long run, but trying to extend the linear deterministic
grammars to a non-linear setting would be a good step in
the right direction.

• Dealing with noisy data: Experimental work suggests that
grammar induction algorithms are not robust to noise,
whatever its source. Yet for many applications it is nec-
essary to be able to cope with a certain quantity of noise.
One usual way out is to deal with stochastic grammars
which can deal with noise, but makes the implicit as-
sumption that the distribution (not the just language) is
regular. There have been few lines of investigation fol-
lowed so far to deal with noisy or erroneous examples.
Sakakibara cites some theoretical ideas in his review of
the field[15]. Sebban and Janodet use distances over ex-
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amples to eliminate examples that may be noisy[193].
Practically, only algorithms dealing with stochastic au-
tomata or grammars are proving to be robust and have
thus been used in applications. Building noise tolerant al-
gorithms is clearly one big issue of the field.

• Combining grammar induction with other techniques or
prior knowledge: In most applications the knowledge
from which one wants to learn is not just strings. More
information is available that cannot be introduced into
the learning framework as things stand. Kermorvant and
de la Higuera[194] introduced type automata to model
external knowledge into grammar induction, and Cano
et al. [195] chose to work on forbidden configurations
in the target language. A similar point was made by
McAllester and Schapire[196]: they proposed “seeding
the search with sufficient initial regularities”.
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